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Abstract. The theory of crack propagation in orthotopic media is developed by
applying the theory of incremental deformations in the vicinity of a state of initial
stress. This is carried out in the context of a new approach to analytical methods and
a physical analysis which takes into account plastic deformation under prestress. The
state of initial stress is triaxial along the directions of elastic symmetry, and the crack
is parallel to these directions. An additional shear component for the initial stress is
also taken into account and general conditions are derived for crack propagation,
including the case of fluid injection into the crack. The analysis is first carried out
for an homogeneous medium. The nonlinear influence of the initial stress appears in
two ways: first, through a fundamental purely elastic effect related to the occurrence
of surface instability, and second, through the influence of the initial stress on plastic
behavior. The particular cases of an isotropic elastic medium with finite initial strain
and an orthotropic incompressible medium are discussed. The analysis is extended to
a crack between dissimilar orthotropic media with initial stress. The method of analysis
leads to a number of simplifications and brings out new properties of the solutions for
this type of problem. For incompressible media without initial stress, the typical oscil-
latory behavior disappears. Uniqueness of the solutions is also derived.

1. Introduction. The theory of crack propagation was first developed by Griffith
[1] [2], who considered the problem of failure of a brittle elastically isotropic material.
Since that time an abundant literature has become available on crack mechanics based
on the classical linear theory of elasticity. The stress distribution in the vicinity of a
linear and circular crack was evaluated by Sneddon [3] and the case of a linear crack
with nonuniform internal pressure was discussed by Sneddon and Elliott [4], The latter
analysis is based on the solution of simultaneous integral equations obtained by Bus-
bridge [5]. The case of a circular crack was also treated by Sack [6]. Important contribu-
tions concerning both physical and mathematical aspects of these problems were made
by Barenblatt; an extensive account of these contributions is presented in a review
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paper [7]. Many original contributions are also found in a book by Sneddon and
Lowengrub [8].

The problem of crack mechanics at an interface between dissimilar isotropic media
was investigated by Salganik [9], Rice and Sih [10], Erdogan [11] and England [13].
The same problem for two bonded media with two-dimensional anisotropy was solved
by Gofoh [13]. The particular case of an isotropic medium bonded to an anisotropic
medium was treated by Clements [14], who considered the application to bonded isotropic
and transverse isotropic media. Erdogan and Gupta [15] have analyzed stresses due
to cracks in a medium composed of a number of adhering layers of isotropic media.

The main purpose of the present paper is to analyze crack propagation in homo-
geneous and bonded orthotropic media taking into account the nonlinear influence
of the state of initial stress by applying the theory of incremental deformations [16, 17,
18, 19, 20] developed by the author. A physical discussion is also included which provides
a novel outlook and considers the influence of initial stress on the plastic separation
energy. The whole theory is developed in the context of a new analytical approach
which greatly simplifies the analysis in a large variety of problems of crack mechanics.

The basic analytical procedure is outlined in Sec. 2. It starts from the solution for
a halfspace with sinusoidally distributed tractions along the surface. Solutions were
derived by the author for a large number of cases of orthotropic and initially stressed
media. They are all analytically of the same type and differ only in values of the coeffi-
cients. By use of these coefficients it is then possible to formulate an equivalent problem
by means of Laplace's equation. The same analytical procedure therefore becomes
applicable to a large variety of problems. Fundamentally, the fact that this is possible
is due to the similarity property of linear problems for any homogeneous halfspace,
namely that the surface displacements under given sinusoidal surface tractions are
proportional to the wavelengths. General expressions are obtained for the shape of a
crack under any arbitrary internal loading. The case of uniform loading is obtained
in a remarkably simple way. Conditions for uniqueness of the solution and its behavior
at infinity are examined in detail.

The physical aspects of crack propagation are discussed in Sec. 3 in the context of
linear isotropic elasticity. This provides an extension of the concepts advanced by
Irwin [21], Orowan [22], Dugdale [26] and Goodier and Field [27] to include plastic
properties. The influence of initial stress on the separation energy is discussed. Similarity
considerations lead to a separation energy which depends linearly on crack size. The
crack propagation condition is derived on the basis of energy balance for given initial
stresses and given interval fluid pressure in the crack. The influence of initial stress
may be quite large, since plastic properties of materials are known to increase by a
large order of magnitude, for example, under high hydrostatic stress.

A preliminary analysis based on linear elasticity theory is presented in Sec. 4 for
crack propagation in orthotropic media. In addition to illustrating the simplicity of
the method, the result provides an insight into more complex cases. Expressions for
the shape of a crack under an internal loading of arbitrary distribution are immediately
derived from the results of Sec. 2.

In Sec. 5, the influence of initial stress is evaluated by applying the author's theory
of incremental deformation. This theory is essentially nonlinear with respect to the
influence of initial stress. However, it is linearized with respect to small incremental
strains in the vicinity of the state of initial stress. The material is assumed to be ortho-
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tropic for incremental strains, with principal initial stress along the axes of symmetry.
The crack is parallel to a plane of symmetry and its edges are parallel to an axis of
symmetry. An additional initial shear stress is also taken into account under the assump-
tion that it is small enough that the orthotropic symmetry is not disturbed. Fluid
under pressure is also injected into the crack. The crack propagation condition is derived.
The particular case of an isotropic medium whose initial condition is one of finite strain
is discussed in Sec. 6. Some new features in crack propagation are also discussed which
are related to the phenomenon of surface instability of an initially stressed half-space.
As expected, the resistance to crack propagation is diminished when the condition of
surface instability is approached. However, the effect of a shear component for the
initial stress is much less pronounced than the effect of the normal stresses or the fluid
pressure.

In order to complete the analysis the case of crack propagation between two dis-
similar adhering materials is developed in Sec. 7. Both materials are orthotropic for
incremental deformations. The axes of symmetry for incremental properties and for
the state of initial stress coincide with the coordinate axes for each material. The interface
and the crack are in the xz plane and the edges of the crack are parallel to the z direction.
The state of initial stress in each of the media may be different except for the stress S22
normal to the interface. The procedures used in the foregoing section are generalized
to this case and a solution is obtained for the crack deformation due to the application
of internal loading with arbitrary distribution. This internal loading includes the case
in which it is represented by an increment of fluid pressure in excess of the initial value.
The procedure used here provides again an analysis which is remarkably simple. It
leads to a classical Hilbert problem by diagonalization of a two-by-two Hermitian
matrix which is shown to be positive-definite. Hence the characteristic values are posi-
tive. Furthermore, their product turns out to be unity. The solution of the Hilbert
problem is obtained from Muskhelishvili [23]. Uniqueness of the solution is also discussed.
Except for the values of the coefficients, the analytical solution turns out to be funda-
mentally the same as for the case of initially stress-free isotropic media. The same
singular behavior with violent oscillations occurs near the crack tips: this singular
behavior is due essentially to the presence of a coupling term in the Hermitian matrix.
Under certain conditions this coupling may vanish or be negligible. In this case the
oscillatory singular behavior disappears and the crack propagation condition may be
derived immediately without further calculations. This is verified rigorously for in-
compressible materials without initial stress. Thus if the effects of initial stress on
incremental deformation appear only in a change of value of the elastic coefficients,
the theory of crack propagation at an interface between orthotropic incompressible
materials is drastically simplified.

2. Basic procedure. The method of analysis will first be presented in the context
of the classical problem in isotropic elasticity. It will be shown that the crack problem is
readily solved once we have determined solutions for the elastic halfspace which are
sinusoidally distributed along the surface. Since a large number of such solutions were
derived earlier [16, 18, 19, 20] for the very general case of orthotropic initially stressed
media, the solution of the crack problem for such cases follows immediately.

We shall consider the plane strain problem of an elastic half-space occupying the
region y < 0, the x axis lying along the free surface. The displacements along x and y
are denoted by u and v and the stress components are <rxx , <rvv , <riy . Surface tractions
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normal to the free surface are applied with a sinusoidal distribution along x. Hence at
the free surface the stress is

(T„„ = q cos Ix (2.1)

while the normal displacement is

v — V cos Ix. (2.2)

The relation between the amplitude q of the surface traction and the amplitude V of
the surface displacement is readily evaluated by the classical theory of elasticity. We find

q = KIV (2.3)
with

K = E/2(1 - S), (2.4)
where E is Young's modulus and v is Poisson's ratio.

We note that by shifting the origin by a distance ir/2l, i.e. by replacing x by x — t/2I,
Eqs. (2.1) and (2.2) become

<rvv = qx sin Ix, v = Vi sin Ix, (2.5)

where the relation between and Vt is the same as (2.3), i.e.

qi = KIV\ . (2.6)
An arbitrary distribution of v may be represented by a Fourier integral

v = f [F(Q cos Ix + F,(Q sin Ix] dl. (2.7)

Hence, according to Eqs. (2.1), (2.2), (2.3), (2.5) and (2.6), the corresponding normal
surface traction is

<t„„ = K f [IV(1) cos Ix + ZFj(Z) sin Ix] dl. (2.8)
Jo

Let us define a function <p(x, y) in the halfplane y > 0 by the relation

4>(x, y) = [ e~lv[V(l) cos Ix + F,(Z) sin Ix] dl. (2.9)
Jq

The function <j> is harmonic and satisfies Laplace's equation

(d2<t>/dx2) + (d2<t>/dy2) = 0. (2.10)

Moreover, it vanishes at y = °°. From Eqs. (2.7) and (2.8) we derive the following
basic property:

v = 4>{x, 0), <jvv = —K(d<t>/dy) at y = 0. (2.11)

Hence the relation between normal displacements and tractions at the surface of the
halfplane is the same as between a harmonic function and its normal derivative. Note
that this result does not depend on the particular nature of the elasticity problem.
It is essentially due to the fact that the factor Kl in Eq. (2.3) is inversely proportional
to the wavelength; this in turn is a consequence of dimensional similitude. Hence the
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result should be valid for any homogeneous medium in the absence of any characteristic
dimension. This is of course applicable to any homogeneous halfspace whether isotropic
or not.

Eqs. (2.11) may be expressed in terms of holomorphic functions in the plane y > 0.
We denote by Z(z) such a function of the complex variable z = x + iy■ Eqs. (2.11)
for z = x become

v = Z + Z*, ur„ = KiZ' - Z'*), (2.12)
where

Z' = dZ/dz (2.13)
and * denotes the complex conjugate quantity.

A very simple solution of Eq. (2.12) is obtained for the case where — <ryy is equal
to a constant pressure p on the x axis in the interval |x| < c while v = 0 for |x| > c.
We put

Z = -(p/2K)i[z - (z2 - c2)1/2], (2.14)

where the argument of {z — c2)172 is chosen between 0 and ir in the halfplane y > 0.
Since we have

z - (a2 - c2)1/2 = c2/[z + (z2 - c2)1/2], (2.15)

the value of Z vanishes at |z| = to as 1/z. That this is the required behavior and leads
to a unique solution is shown below in the last paragraph of this section. Moreover,
substitution of (2.14) in Eqs. (2.12) with z = x yields

v = 0 for |z| > c,

— <rya = p for |x| < c, (2.16)

-v = (p/K)(c - x2)i/2 for |x| < c.

Because of the symmetry relative to the x axis this solution corresponds to a crack of
length 2c subject to a uniform internal fluid pressure p. The crack assumes an elliptic
shape of width distribution

w = -2v = (2p/K)(c - Xy\ (2.17)

In order to solve the more general problem of an arbitrary distribution of <rVI) along x,
we first consider the case of a concentrated point load at x = t (|<| < c), i.e.

<r^(x) = —5(x — t), (2.18)

where 5 is the Dirac function. For this case the second of Eqs. (2.12) is satisfied if we put

dZ/dz = (l/2xK) [(c2 - <2)/(c2 - z2)]1/2(z - 0"1. (2.19)

This is easily verified since we may write

l/(z — t) = (d/dz)[log (z - 0] = (d/dx)[log r + id,], (2.20)

where

z — t = r exp (id,). (2.21)
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Note that Eq. (2.19) is in agreement with the required condition that Z vanishes as
\/z at infinity. As shown below in the last paragraph of this section, this insures that
the solution (2.19) is unique. In order to obtain Z we must now integrate (2.19). A
standard procedure is to rationalize the equation. There are several ways to do this
but the most suitable in this case is to use the conformal transformation

2 = (c/2)(r + l/f) (2.22)
which transforms the unit circle on the segment \x\ < c on the real axis. Also consider
the relation

t = (c/2 )(r + 1/t) (2.23)

where r is the point on the unit circle corresponding to the point x = t on the real axis.
On the unit circle f, r and t* may be written

f = exp (id), t = 1/t* = exp (id'). (2.24)

They correspond to the points

x — c cos 6, t — c cos 6' (2.25)

on the x axis. With the new variables the differential equation (2.19) becomes

dZ/dt = (l/2xX)[l/(f - r) - l/(r - r*)]. (2.26)
Hence

Z = (1/2tK) log ((f - r)/(f - r*)). (2.27)
This result satisfies the condition v = 0 on the real axis for |z[ > c, as required. It also
embodies a wellknown solution in potential flow problems where a source and a sink
are located at points r and t* on a circle [24], With this value of Z the width distribution
w of the crack is obtained from the first of Eqs. (2.12) and may be written

w = —2v = (2/tt/O log [R(x, t)] (2.28)

where

R(x, t) = |f - r*|/|f - r| . (2.29)

In these expressions the values of f and r are defined by Eqs. (2.24) and correspond to
points on the circle. Hence they may be expressed in terms of the angles 0 and 6' by
means of the following relations, which have an obvious geometrical interpretation:

If - r| = |(f - r)(f* - r*)|I/2 = 2 sin |1(* - 6%

If - t*| = |(f - T*)(f* - t)|1/2 = 2 sin |i(6 + 0%
(2.30)

Therefore

R(x, t) — sin l|(0 + 0')|/sin \\(6 — 0')\ . (2.31)

Since 6 and 8' may be interchanged we derive the reciprocity property

R(x, t) = R(t, x) (2.32)

as required by the theory of elasticity. For a continuous distribution p(x) of the load
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along the crack the width is obviously derived by superposition of solutions (2.28) for
the point load. Hence

2 J p(t) log [R(x, 0] dt. (2.33)

In many problems the pressure distribution is symmetric, i.e.

p{x) = p(-x).

In this case the width distribution (2.33) becomes

2 [ pit) log t)] dt (2.34)
Jo

where

_ tan ||(fl + Q')\ _ [sin 9 + sin Q'\ . .
Kl ~ tan |*(0 - d')\ ~ |sin 9 - sin 9']' ^,6S>)

It is interesting to compare this expression with results obtained by other investigators.
We make use of the identity

fJo

fi(f - Die - 0 dt' , , ,
vr - x'w - f) 'log W(I'01 (2-36)

where x = c cos 9 and t = c cos 9' while

l(x) = 0 for x < 0

= 1 for x > 0

is the Heaviside unit step function. The identity is easily verified by the substitution
of z = (t'2 — x2)1'2/{t'2 — t2)1/2 as the variable of integration. By introducing the value
(2.36) into the integral (2.34) we derive

4 r _ t' dt' _ r" p(t)
J, (r - xT21 (t,2 - t2y/2 dt -6*>

which coincides with the expression given by Sneddon [8].
In the foregoing analysis we have assumed that the load applied to the crack is in

the nature of a fluid pressure, i.e. that it acts normally to the surface of the crack.
The same procedure is readily applied to the case of purely tangential tractions <rxy
equal and opposite acting on the bottom and upper faces of the crack. Because of sym-
metry the faces remain in contact, i.e. the width remains zero, but the surfaces slip
relative to each other by an equal amount in opposite directions. To show this, consider
a sinusoidally distributed tangential load

cxv — t cos Ix, <rvv = 0 (2.39)

applied to the halfspace y < 0 at y = 0. The corresponding tangential displacement is

u = U cos Ix (2.40)
with

r = KlU (2.41)
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and the same value (2.4) for K. Hence, except for some sign differences, all expressions
derived above for the normal load are applicable. For example, if the tangential traction
erx„ is a constant, the relative slip distribution of the crack surfaces is

u = 2u = (2aJK)(c2 - x2)1/3- (2.42)

For an arbitrary distribution of crxv(x) the relative slip is given by the integral (2.33)
where w and p(t) are replaced by u and oxy(t) respectively.

Uniqueness of solution. Physical conditions on the x axis and the definition (2.9)
require <£ to vanish at infinity. As a consequence Z = <j> + i<t>i must also vanish at infinity
since

d<j>/Ox = d<j>i/dy, d<t>/dy = —d<f> i/dx. (2.43)

The condition dcfr/dx = d<p/dy = 0 implies d<j>i/dx = d4>i/dy = 0. Hence at infinity 4>i
is a constant which may be chosen equal to zero without affecting the physical problem.
The function Z is defined in the upper halfplane. We may extend it to the lower halfplane
by a Schwarz reflection. At the point z* the value in the lower halfplane is defined
as —Z*(z). The conditions Z + Z* = v = 0 or Z = — Z* on the x axis for \x\ > c imply
that the function Z is holomorphic throughout except at a cut \x\ < c on the x axis
where it is discontinuous. According to Eqs. (2.12) the value of the discontinuity is

v(x) = Z(x) + Z*(x). (2.44)

Since Z vanishes at infinity its value is expressed by the Cauchy integral (see [23])

Z(z) = [+C dx. (2.45)
2iri J-c x — z

For \z\ > c we may write the expansion

Z(-z) = -hi L v(x) dx ~ hi L xv(x) dx • (2'46)
Since the volume of the crack is not zero, the coefficient of z-1 does not vanish. Hence
Z is of the order z'1 at \z\ = oo. That these results imply uniqueness of the foregoing
solutions can be seen as follows. Consider two solutions <j> satisfying the boundary
conditions

(2.47)

(2.48)

v = <l>(x, 0) = 0 for |x| > c,

<rvv = —K(d<j>/dy) for \x\ < c, y = 0.

The difference 4>d of these two solutions satisfies the conditions

<t>d(x, 0) = 0 for [a;| > c,

d<t>j/dy = 0 for \x\ < 0, y = 0.

Let us apply Green's theorem to <j>d . We may write

J J (grad <t>d)2 dx dy — J ds (2.49)
where C is a contour composed of the x axis and an infinite half-circle centered at the
origin in the half-plane y > 0, d<j>d/dn is the normal outward derivative on the contour
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and A is the area inside the contour. On the infinite half-circle <j>d and d<frd/dn are of the
order 1/z and 1/z2 respectively; therefore the line integral vanishes on this half-circle.
On the x axis it also vanishes because of the boundary conditions (2.48). Hence grad
<pd = 0, and since <pd is zero at infinity it vanishes everywhere in the half-plane. Therefore
the solution <f> is unique. The same conclusion holds for the solution corresponding to
a given distribution uxy{x) of shear stress at the crack.

3. The physics of crack propagation. The classical Griffith theory of crack propa-
gation [1] [2] assumed a brittle isotropic perfectly elastic material and derived a propaga-
tion criterion under static conditions, based on energy balance. Along the same lines,
the influence of plasticity was considered by Irwin [21], Orowan [22], Dugdale [26],
and Goodier and Field [27]. The physical analysis may be extended to include the
influence of anisotropy and initial stress on the plastic deformation. Similarity properties
also provide some new insights.

We assume an isotropic material with a crack subject to a uniform fluid pressure p.
The volume of the crack per unit thickness measured normally to the x, y plane is

V = tt pc/K (3.1)

where K is the coefficient (2.4). This value of V is derived from Eq. (2.17). The elastic
energy stored in the medium is

W = §pU (3.2)

When the crack size progresses by an amount dc we may write the following energy
balance equation:

p(dV/dc) - (dW/dc) = 2Sn. (3.3)

The left-hand side is the work done by the pressure minus the change of energy stored
elastically. On the right the quantity S„ is the work necessary to separate a unit area
of the medium. We have introduced a subscript n to indicate that S„ represents the
energy required for separation of the crack surfaces in a direction normal to the crack.
This is to distinguish it from the case where the separation occurs by shear which will
be considered below. By substituting expressions (3.1) and (3.2), Eq. (3.3) yields

p = (2&nK/irc)1/2. (3.4)

This is the critical pressure required for crack propagation.
An important aspect of the problem resides in the significance of S„, which we shall

call the energy of normal separation. For physical reasons it is obvious that in general
it will be a function of the size c of the crack.

Let us start with the case of a perfectly brittle material. The separation requires
the creation of two free surfaces, each with a surface energy equal to the surface tension.
Hence we may write

£» = 2T. (3.5)
With this value the critical pressure (3.4) becomes

V = (4 TK/icc)u\ (3.6)

which coincides with the classical Griffith result [2], A slight correction to this result
may be introduced by taking into account the acoustic energy radiated during the
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cracking process. We denote this energy by A(c) to indicate that it may depend on
the size of the crack. Hence

S„ = 2 T + A(c). (3.7)

For a large category of materials plasticity plays an important if not dominant role.
Therefore we write

Sn = 2 T + 0„(c), (3.8)

where 0„(c) includes the energy dissipated in plastic deformation and acoustic radiation
for normal separation. In a first approximation it is natural to assume that 0„(c) is
proportional to the size of the crack, i.e.

0,(c) = anc. (3.9)

The physical justification of this assumption is based on the fact that the size of the
plastic region surrounding the crack tip must be proportional to the crack size, as
required by the principle oj similitude. If these assumptions are valid it is of interest
to note that the critical pressure (3.4) required for crack propagation does not decrease
indefinitely with increasing size of the crack but tends toward a constant value given by

p = {2anK/ir)l/2 (3.10)

Actually, the value of an also depends on p (see [27]). However, throughout the present
analysis this dependence will be considered as a separate problem.

Before proceeding any further, a remark is in order regarding the value (3.2) of
the elastic energy which is based on the assumption that the material behaves throughout
according to the linear theory of elasticity. This is obviously not the case, because of
the existence of the plastic region surrounding the crack tip. Actually the value of W
should be corrected by substracting the elastic energy which would be present in the
plastic region if it remained elastic. While such a correction may be introduced formally,
we shall not do so explicitly in the present analysis.

The influence of the state of initial stress on crack propagation is twofold. In order
to avoid confusion it is important to distinguish two entirely different aspects of the
problem. One aspect resides in the influence of initial stress on the purely elastic portion
of the stress field. This requires a more elaborate analysis based on the theory of incre-
mental deformations [20] which will be developed in Sec. 5. The other is the dependence
of the separation energy S„ on the magnitude of the initial stress. In the present section
we shall limit ourselves to a preliminary discussion which considers only this second
aspect of the problem. This will provide a clear physical basis for the more elaborate
analysis of Sec. 5.

Since the classical test results obtained by von Karman [25], it is wellknown that
the ductility of materials increases considerably under large hydrostatic pressure.
Materials which are brittle originally may become plastic under pressure. As the latter
increases the work required to reach failure may be multiplied by a large factor. This
means that the separation energy (3.8) should be written

Sn = 2T + nn(Pi , c) (3.11)

where the plastic energy 0„ is a function of the initial hydrostatic stress Pi. In particular,
expression (3.9) becomes
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= can(pi) (3.12)

where the coefficient an is now a function of Pi . The value of this coefficient may greatly
increase and become dominant for increasing pressure p.- .

When a fluid pressure p > p< is applied inside the crack the crack tends to propagate.
An important feature here is due to the fact that for a moderate pressure increment
p — Pi the elastic portion of the stress field behaves exactly as in the classical linear
theory of elasticity for isotropic materials. This property, which is evident intuitively,
was also derived rigourously by the author [20], As shown in Sec. 5 below, the incremental
elastic coefficient

K = K(pi) (3.13)
now depends on the initial pressure . The shape of the crack remains elliptical and
the volume "0 is given by an expression similar to (3.1), namely

V = ir(p — pi)c/K. (3.14)

The incremental elastic energy stored in the solid due to the incremental pressure p — Pi

W = i(P< + P)V. (3.15)

With the values (3.15) and (3.14) the energy balance equation is the same as (3.3).
We derive

p - p{ = (2SnK/7rc)1/2 (3.16)

where p is the critical propagation pressure while £„ and K are expressed by (3.11)
and (3.13). Note again that the dependence of an on p is to be considered as a separate
problem.

We now consider a more general case where Sn , <S22 , S33 are principal stresses
present initially along the x, y, z directions, the crack itself lying in the x, z plane and
extending to infinity along z. In addition we also assume that an initial shear stress
1S12 is present along the x and y directions. In such a case the behavior of the incremental
stress field is fundamentally different from that assumed in the foregoing analysis. As
shown below in Sec. 5, a medium initially isotropic becomes generally anisotropic. In
addition, certain new physical features, related to the existence of surface instability,
enter into play.

Under certain assumptions, however, it is possible to neglect these more sophisticated
features, thus providing an approximate preliminary analysis. Let

Pi — — (»Sii + S22 + S33) (3.17)

be the average hydrostatic component of the initial stress. We assume that p, + (Su ,
Pi + S22 , Pi + S33 and £12 are sufficiently small that the material remains isotropic
for incremental deformations. Moreover, the excess p + S22 of the pressure p of the
fluid in the crack should not exceed a magnitude beyond which a linear theory of incre-
mental deformations breaks down. Keeping these limitations in mind, we may proceed
as follows. As in Eqs. (3.1) and (3.14), the volume of the crack generated by the fluid
pressure is

•0 = t(P + S22)c/K. (3.18)
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We also evaluate

11 J " iidx = , (3.19)

where u is the relative slip (2.42) of the faces of the crack under application of a shear
load.

The increase in elastic energy due to the application of the fluid pressure p and the
disappearance of the tangential load S12 at the faces of the crack is

w = Up - S22)V - (3.20)

It is important to note that there is no coupling term between the tangential and
normal displacements. This follows from the fact that the load p — S22 is associated
with a displacement u which is an odd function of x on which Sl2 produces no work.
Similarly, the load S12 produces a normal displacement v which is also an odd function
of x on which p — S22 produces no work.

The energy balance equation is

p(dV/dc) - (dW/dc) = 2&n, (3.21)

where £n, is the energy for combined normal and shear separation of the crack surfaces.
Substitution of the values (3.18) and (3.20) yields

CV + S22)2 + Sf2 = 2&„,K/7rc. (3.22)

This is the condition for crack propagation. The energy S„, of combined separation
will in general be a function of SuS22S33S12 and c. In analogy with (3.11) and (3.12)
we may write

fifu = 2T7 -f- fi„s(»Siii , S22 , S33 , <S>i2 , c),

^n« = Ottna(SnS22^33^12)-

Again we must keep in mind the foregoing remark concerning the possible dependence
of a„, on p. The incremental elastic coefficient K = K(pt) may also be assumed to
depend on the average initial pressure p, .

In particular, if p = Si2 = 0 Eq. (3.22) becomes

S22 = (2S„K/(3.24)

This is the value of the critical tensile stress acting normally to the crack which produces
spontaneous crack propagation. Similarly, for p = S22 = 0 Eq. (3.22) becomes

S12 = (2S.Z/tt)1/2 (3.25)

which is the initial shear stress for spontaneous crack propagation. In this case S, is
the energy for pure shear separation.

A final remark is in order here regarding Eqs. (3.24) and (3.25). We have assumed
implicitly that we are dealing with a static propagation. Spontaneous propagation may
occur under dynamic conditions in which case plastic materials may become brittle,
with a corresponding drop in the values of S„ and S, as soon as the propagation starts.
The failure thus acquires a more or less explosive character, an occurrence which is not
infrequent in prestressed structures.
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4. Crack propagation in orthotropic media. In the preceding section the problem
of crack propagation under initial stress was analyzed in preliminary form for an isotropic
material. As was pointed out, under certain conditions the linear theory of elasticity
remains applicable. Under the same assumptions this preliminary analysis may be
extended to orthotropic media. Such a simplified preliminary treatment is useful in order
to bring out more clearly certain essential features which result from anisotropy and are
distinct from those brought out by the more elaborate treatment in Sec. 5. A separate
analysis for orthotropic media is also of particular importance because a medium orig-
inally isotropic acquires anisotropic properties under a non-hydrostatic state of initial
stress.

Consider the problem in the context of the linear theory of elasticity for orthotropic
symmetry. The method outlined in Sec. 2 is based entirely on the validity of Eq. (2.3)
which itself is a consequence of a basic similarity law. Hence it should be valid for a
large class of homogeneous materials. In particular, it is applicable to orthotropic media
for which the stress-strain relations in plane strain are

^11 Cl 1 XX "I" Cl2@yy , Gyy C\2&xx "I" C226tjy ) G xy ^Q@xy • (4.1)

With the displacements u, v the strain components are

_ du _ dv_ _ I tdv_ du
C" ~ dz ' e"v ~ By ' e'° ~ 2 Ub + dy)■ (4.2)

Again, we may solve the problem of the halfspace for the region y < 0 by applying at
the surface (y = 0) the sinusoidally distributed stresses

crxy = t sin Ix, cTyv = q cos Ix. (4.3)

The corresponding surface displacements are of the form

u = U sin Ix, v = V cos Ix. (4.4)

The displacement amplitudes U and V are related to the stress amplitudes r and q by
the equations

T = (anU + a12V)Ql, q = a(12U + a22V)Ql, (4.5)

where

„ _ c„(ft + ft) „ _ CUft + ft)0A „ _ CtM - C„
11 + Q&& ' fl22 Cu + QAft ' °12 Cn + QfiA ' (4"b)

With positive values of the square roots the quantities ft and /32 are given by

ft = (m + [m2 - kT2)U\ (4 ?)
ft = (m - [m2 - k2]1/2)W2

where

2m = (1/QC22) [Ci 1C22 2QC12 C12] ? ^

k = {cjc22y\

The derivation of the values (4.6) of au is obtained in routine manner from the two-
dimensional theory of anisotropic elasticity. It may also be obtained as a particular
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case of the more general results established by the author for anisotropic elasticity with
initial stress [18] [20]. This amounts to putting equal to zero the initial stress in Eqs.
(5.14) below.

For our purpose we need the solution for the case where the shear stress at the surface
is put equal to zero (r = 0). Introducing this condition in Eqs. (4.5) yields

q = KJV (4.9)
with

-Ki = ((ana22 - a\2)/au)Q. (4.10)

With the value Ki instead of K the result is exactly the same as that of Eq. (2.3).
Similarly, we obtain the solution for the case where the normal stress is put equal

to zero (avy = q = 0) at the surface. For this case Eqs. (4.5) yield

r = KJ.U (4.11)

with

K2 = ((fXi iC/22 o.12) / a2^)Q. (4.12)

Note that we may shift the origin along x, thus replacing sin Ix by cos Ix. Eqs. (4.11)
and (4.12) are therefore valid for the shear distribution

<jxy = r cos Ix (4.13)

and the corresponding displacement

u — U cos Ix (4.14)

More explicitly, values of Ki and K2 are derived by substituting expressions (4.6) for
au taking into account the relations

(2(m + fc))1/2 = & + 0, , k = . (4.15)

We obtain

_ 2(m + k)kCuC22 — (C12k - Cu)2 n
V2(m + QC^Cn + Qk)

K2 = Ki/k.

It is interesting to verify that this result yields the value (2.4) of K for an isotropic
medium. In this case the elastic moduli are written

Cu = C22 = 2n + X, C12 = X, Q = H, (4.17)

where X and n are Lame's constants for isotropic elasticity. Expressions (4.16) become

Ki = K2 = (2(u + X)/(2M + X))/x. (4.18)

In terms of Poisson's ratio v and Young's modulus E we find

K, = K2 = K = E/2(1 - v2), (4.19)

which coincides with expression (2.4). Under an arbitrary distribution of the loads
Oyy and <jxy applied inside the crack, the width w and slip u are given as in Eq. (2.33)
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except that K must be replaced by Ki and K2 for normal and tangential loading respec-
tively.

The crack propagation analysis may now be carried out by following the same pro-
cedure as in the preceding section. The state of initial stress is represented by the com-
ponents $n , S22, S33 and S12 ■ The principal stress components Sn , S22, S33 are oriented
along x, y, z, which are also the directions of orthotropic symmetry. The hydrostatic
component (3.17) of these initial stresses may be large. However, their differences, as
well as the initial shear component S12, are sufficiently small that the foregoing results
derived from linear elasticity are not modified. The volume of the crack generated by
the fluid pressure p is obtained as in Eq. (3.18). Its value is

U = ir(p + S22)c2/K1 . (4.20)

The quantity p + S22 represents the excess fluid pressure over the initial compression
— S22 normal to the crack. As before, we must also assume that the magnitude of p + S22
does not exceed a limit beyond which linear elasticity is not applicable. We also need
the value It defined by Eq. (3.19). In this case it becomes

11 = ttS12c/K2. (4.21)

Eqs. (3.20) and (3.21) for energy balance are formally the same in this case. We derive
the crack propagation condition

(p + SnY/K, + Sl2/K2 = 2Zj*c (4.22)

(P + S22y + kS212 = (2&ns/irc)K1. (4.23)

The combined separation energy S„s is an expression of the form (3.23), while k
and Ki may be functions of the initial hydrostatic component p,- . The case p = 0
while $22 is positive represents a state of initial tension normal to the crack.

Incompressible medium. By assuming incompressibility the crack propagation
condition (4.22) is considerably simplified. For this case the stress-strain relations (4.1)
are replaced by

axx — <r = 2Nexx , auy — <r = 2Neyy , axy = 2Qexv . (4.24)

The condition of incompressibility is

exx + e„„ = 0; (4.25)

hence 2<r = axx + <ryv ■ Note that the left-hand side of Eqs. (4.24) is a two-dimensional
form of the stress-deviator which is not the same as its usual three-dimensional definition.
For the incompressible medium Eqs. (4.5) become

r = 2 (NQ)1/2IU, q = 2(NQ)l/2lV. (4.26)

Hence

an = a22 = 2(N/Q)1/2, a12 = 0, (4.27)

Kl = k2 = 2(NQ)1/2. (4.28)
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These results were derived earlier [16, 18, 20]. With the values (4.28) the crack propaga-
tion condition (4.23) becomes

(p + S22y + S212 = (4£„,/'7rc) (NQ)1/2. (4.29)

Except for the replacement of K = E/2(1 — v2) by 2(NQ)U2 it is exactly the same as
condition (3.22) for the isotropic medium.

It is of interest to point out that the case of incompressibility may also be derived
directly from expressions (4.16) following a procedure indicated by the author [18, 20].
We write

Cn = C22 = X + N, C12 = X - N, (4.30)

and substitute these values in Eqs. (4.1), imposing the condition that

* = X(e„ + e„) (4.31)

remains finite while X goes to infinity. This yields the stress-strain relations (4.24).
Moreover, when we substitute expressions (4.30) with X = °° into Eqs. (4.16) we obtain
the value (4.28) for Kx and K2 .

5. Application of the theory of incremental deformations. The foregoing results
were obtained by applying the linear theory of elasticity. However, beyond a certain
range of initial stress the validity of the linear theory breaks down and the analysis
must be based on the general theory of incremental deformations. Such a theory was
developed by the author [16, 17, 18, 19, 20] for an initially-stressed continuum.

We consider an orthotropic medium with directions of symmetry along the x, y, z
directions. The medium is initially stressed by three principal stresses <Su , S22 , S33
along the same directions. This includes the particular case of a medium which is isotropic
before application of the initial stresses. Small incremental deformations may be super-
imposed with displacements u, v in the x, y plane. This produces a state of incremental
plane strain defined by expressions (4.2). In addition, a rotation field is produced of
magnitude

w = %((dv/dx) - (du/dy)). (5.1)

Each small element of the medium is rotated by this amount. Initially the stresses on
this element are Sn , S22 , S33 . If the element is rotated rigidly by the amount oo about
the z direction the stresses remain unchanged. In other words, the stress components
referred to coordinate axes rotated along with the element retain the initial values
$n , S22, S33 ■ However, since the element is deformed the stresses increase by an amount
Sa which is also referred to the locally rotated axes. Because we restrict ourselves to
incremental plane strain we need only consider the incremental stress components
sn , s22 and S12. We have shown [16, 18, 20] that they are expressed in terms of the incre-
mental strains by the relations

Sll Bll@XX "I~ -^12&UV J ^22 B2\6Xz B226yy j Sl2 = 2Q&XJ/ , (5.2)

The existence of an elastic potential for incremental deformations requires that the
incremental elastic coefficients Z>,, satisfy the relation

B12 = Bn + P, (5.3)
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where

P = S22- Sn. (5.4)

Again we consider the analysis of the halfspace y < 0 with the normal stress S22
applied initially at the boundary y — 0. An incremental plane strain is thus produced
by applying additional tractions on this free surface. These tractions per unit initial
area are represented by the components Afx , A/„ along fixed directions x and y. In
terms of the deformations, it was shown [20] that Ajx and A/„ are expressed as follows:

A/x = A/j - S22(dv/dx), A/, = A/„ + S22exx , (5.5)

where

A/, = s12 + Pexy , A/„ = s22 . (5.6)

A physical interpretation of these expressions is obtained by assuming that a distributed
hydrostatic stress p(x) and a distributed tangential traction T(x) are applied at the
surface

A fx = p(dv/dx) + T, A/„ = -p(l + exx) — S22. (5.7)

Substitution into Eqs. (5.5) yields

A/* = (p + S22)(dv/dx) + T, A /„ = — (p + $22) (1 + e„). (5.8)

The quantity p + S22 is the incremental pressure. In the context of incremental deforma-
tions the product of this incremental pressure by dv/dx and exx is considered to be of a
higher order, and hence may be neglected. Under these conditions Eqs. (5.8) become

Afx=T, A/„ = — p — S22 . (5.9)

Physically we may look upon the system as one composed of the solid and an adjacent
fluid at a uniform pressure equal to — S22 . The forces Afx , A/„ are the additional trac-
tions applied to the solid at the interface. Note that substitution of the last of Eqs. (5.2)
into the first of Eqs. (5.6) yields

A fx = T = 2 Leta (5.10)

with

L = Q + • (5-11)

This coefficient which we have called the "slide modulus" has therefore a simple physical
meaning.

As before we assume a sinusoidal distribution of Afx and A/„ by putting

A fx = T = t sin Ix, A/„ = — p — S22 = q cos Ix. (5.12)

The surface displacements u and v are sinusoidal of the form (4.4). The relations between
r, q and U, V were derived in the more general case of a plate of thickness h oscillating
at a frequency a [19, 20]. By putting h = and a = 0 in these more general results
we derive the solution for the static problem of the halfspace. The required relations are

t = (anU + al2V)lL, q = (al2U + a22V)lL (5.13)
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where

<3-11 = [-B11(/3l + p2)]/(Bn + L/3ifi2), a-22 = [B22(l3i + ^2)^1^2]/(-B11 + L/3i^2),

®i2 = (B21P1P2 Bn) / (Bu + (5.14)

The quantities ft and ft are given in terms of m and k by the same expressions as (4.7);
however, the values of 2m and k are now

2m = zzb[BuB22 _ 1(2821 + p)~ B2i]' k = [fii (* ~ 1 (5.15)

In the plate theory the thickness h appears only in two parameters, zx = ft tanh (fftIK)
and z2 = ft tanh (^ftZ/i) (see page 325 of the author's book [20], also [18]). For the
halfspace h = 00 we obtain Zi = & , z2 = /32 . Note also that expressions (5.14) for the
coefficients are obtained by cancelling the common factor /3, — /32 in the numerator
and denominator which appears in the limiting values after substituting h = 00 in the
more general plate theory.

In order to analyze crack propagation we proceed exactly as in the preceding section.
Consider first the case r = 0, we find

q = KJV (5.16)
with

Ki = ((cij iCt22 ol2) / (5.17)

Next we consider the case q = 0. We find

r = IC2IU (5.18)

with

K2 ~ ((^11^22 ^12)/^22)^• (5.19)

Introducing expressions (5.14) for a{j , we derive

2(m + k)kBuB22 - (B21k - Bu)2 , fr
Kl = (2(m + W'BUBn + Lk) ' K2 ~ Kl/k■ (5"20)

We apply these results to crack propagation in a medium with the initial principal
stresses Su , S22, S33. In addition we assume the presence of an initial shear stress SI2.
However, the latter is considered as an incremental perturbation which does not modify
the values of the coefficients in the stress-strain relations (5.2). The crack is produced
by injection of a fluid under a uniform pressure p. This amounts to applying constant
values

Afx = T = -S12 , Afv = -v ~ S22 . (5.21)

The first equation expresses the fact that cancellation of the tangential initial stress
1S12 at the faces of the crack amounts to applying a constant tangential traction T = S12.

In order to express energy balance we remember that we may consider the system
composed of the solid and the adjacent fluid as a system initially in equilibrium. The
fluid is initially at the pressure — S22 and the solid is under the initial stress Su , S22 ,
S33, S12. The additional tractions (5.21) are then applied at the interface. The additional
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potential energy generated in the solid-fluid, system by the tractions (5.21) is

W' = J(P + - JSw1l, (5.22)
where V is the volume of the crack and 11 the total integrated slip expressed by Eqs.
(4.20) and (4.21) after introducing new values (5.20) for Ki and K2 . The second term
in Eq. (5.22) is the loss of potential energy due to the cancellation of S12 . The energy
balance equation is now

(p + S22)(dV/dc) - (dW'/dc) = 2Sns. (5.23)

We derive the crack propagation condition

(p + S22)2 + kSf2 = (2 SMtc) (5.24)

where k and Kl are given by Eqs. (5.20). The only difference in the condition (4.23)
derived previously lies in the values of k and Kx .

The width and slip distribution of the crack with an arbitrary increment load dis-
tribution p(x) + S22 and T(x) are given by an expression similar to Eq. (2.33) with
suitable coefficients (5.20) replacing K.

6. Discussion of some special cases. We shall now discuss some particular applica-
tions which are based on the more general theory of incremental deformations as devel-
oped in the preceding section. For example we shall consider the case of a material
isotropic for finite deformations and that of an orthotropic incompressible material.
The latter case brings out more simply certain qualitative properties due to the initial
stress which are related to the phenomenon of surface instability.

Material with finite isotropy. The general theory is applicable to this case and the
incremental elastic coefficients appearing in Eqs. (5.2) may be evaluated quite simply
from the finite stress-strain relations. The following results were derived in earlier work
(see the author's book [20, p. 332] and [17]). An isotropic material is strained along
principal directions x, y, z with finite extension ratios X:, X2, X3. Because of the property
of isotropy the corresponding principal stresses are expressed by a single function
F(\i , X2 , X3). They are

Sn = F(\i , \2 , X3), $22 = F (\2 , X3 , Xi), S33 = F(\3 , Xi , X2). (6.1)

Isotropy requires that the function F must satisfy the identity

F(\ 1 , X2 , X3) = F(\i , X3 , X2). (6.2)

The incremental elastic coefficients are then given by

Bn = X^SuM,), B12 = X2(dS„/dX2)

B21 — \1(dS22/d\1) j B 22 — \2{d S22/d\2).

Relation (5.3) between B12 and B2i , which is a consequence of the existence of an elastic
potential, imposes an additional condition on the function F. It must satisfy the relation

(d/dX2)(\2Sn) = (a/3X1)(X1(S22). (6.4)

As for the slide modulus L, we have shown (see [17] or the author's book [20, p. 93])
that its value is

L = (Sn - S22)(\l/(\l - Xj)). (6.5)
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With these results it is possible to evaluate the coefficients (5.20), and hence to obtain
the crack propagation condition (5.24) along one of the principal directions in terms
of a given state of finite initial strain. As already pointed out, an initial shear stress S12
may be introduced without modifying the values of the coefficients.

Orthotopic incompressible material. We shall discuss the case of an incompressible
medium, orthotropic along x, y, z with principal initial stresses Su , S22 , S33 along the
same directions. It was shown [16], [17] (see also the author's book [20, p. 101]) that in
this case the incremental stress-strain relations become

sn — s = 2Nelx , s22 — s = 2Nevv , s12 = 2Qexv , (6.6)

with the condition e„ + evy = 0. Relations (5.13) retain the same form, but the coeffi-
cients a,-, determined by Eq. (5.14) are considerably simplified. They become [16, 20]

a„ = (2 (m + k))1/2, a12 = k — 1, a22 = k(2(m + fc))1/2, (6.7)

(6.8)

with

m = (2M/L) - 1, M = N + \P,
k = (1 - (P/L))1/2, L = Q + iP.

By introducing expressions (6.7) into the values (5.17) and (5.19) we obtain

K1 = 2 K2 = KJk, (6.9)

where

2k(m -)- 1) + k? — 1
* (2(m + m'"  (6'I0)

Surface instability and crack propagation. According to the basic equation (5.22),
a decrease in the value of Ki corresponds to a smaller value of the fluid pressure p
required for crack propagation. On the other hand an initial state of stress, for which
Ki = 0, represents a surface instability of the half space. For the incompressible material
Eq. (6.9) shows that surface instability occurs if

2k (m + 1) + A;2 - 1 = 0. (6.11)

Eq. (6.11) and the corresponding phenomenon of surface instability were discussed
extensively in earlier work ([16], see also the author's book [20, p. 204]). It was shown
that it occurs under a critical value of the compressive stress P = — active in a
direction parallel to the crack. Hence a compressive stress in this direction lowers
the value of Ki and therefore tends to weaken the crack. On the other hand, a tensile
stress along the same direction increases the value of Ki and tends to strengthen the
crack. Note that in the case of a triaxial initial stress the same conclusion holds provided
the compressive stress is replaced by P = S22 — Sn ■ The stress S22 acting initially on
the surface is obtained physically by applying a fluid pressure —S22 . It is interesting
to compare two different cases. In the first the crack propagation is entirely due to the
injection of a fluid with excess pressure p + <S22 while <S'12 = 0. The crack propagation
condition (5.22) becomes

Cp + S22)2 = 2&n,Kl/irc. (6.12)
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As we approach surface instability tends to vanish and the excess pressure p + S22
required for crack propagation tends to zero.

On the other hand, in the presence of an initial shear stress S12 and an excess pressure
maintained at zero value (p + S22 = 0) the stress propagation condition (5.22) becomes

kS212 = 2S„sK1/ttc. (6.13)

A study of surface instability [16], [20] shows that when it is approached (hence when
Ki tends to zero) the value of k becomes small. However, the value Ki = 0 is obtained
before k vanishes. Since k and Kx both diminish at the same time, Eq. (6.13) shows that
the effect of initial stress on crack propagation is much less pronounced for this case.
The same conclusions regarding the qualitative influence of initial stress on crack strength
remain valid for the more general case of a compressible material. According to Eq. (5.20)
the condition Ki = 0 for surface instability is

2(m + k)kBnB22 - (B21k - Bn)2 = 0. (6.14)

When this condition is approached the crack is weakened, while it is strengthened in
the opposite direction. Eq. (6.14) for surface instability is equivalent to the result
derived in the context of dynamics for surface waves in a halfspace with initial stress [19]
(see also the author's book [20, p. 334]). Surface instability is derived for zero value of
the frequency.

7. Crack propagation between dissimilar media. We shall analyze the case of two
adjacent orthotropic media with directions of elastic symmetry along x, y, z. The lower
medium occupies the halfspace y < 0. The upper medium occupies the halfspace y > 0.
There is complete adherence at the interface y = 0. Principal initial stresses <S'U , S22, S33
along x, y, z are present in the lower medium. In the upper medium similar initial stresses
S'n , $22 , S33 are also present. For reasons of equilibrium the component S22 normal
to the interface is the same in both media, but Sn and S33 may be different from
and S33 . The problem of crack propagation will be analyzed by applying the more
accurate theory of incremental deformations of Sec. 5.

Consider first the lower halfspace. The incremental stress-strain relations (5.2) are
applicable. As already explained in Sec. 5 we may reason on a physical model composed
of this halfspace and fluid at the pressure — S22 occupying the other halfspace. Additional
tractions Afx and A/„ are then applied to the lower halfspace at the interface. We assume
a sinusoidal distribution and write as before

A fx = t sin Ix, A/„ = q cos Ix. (7.1)

The corresponding displacements at y = 0 are

u = U sin Ix, v = V cos Ix. (7.2)

Eqs. (5.13) are valid, i.e.

t = (auU + a12V)lL, q = (a12U + a22V)lL, (7.3)

where ai; are given by expressions (5.14).
Similarly, equal and opposite surface tractions —Afx and —A/„ are applied at a

solid-fluid interface of the upper medium. The displacements at the interface are now

u' = U' sin Ix, v' = V' cos Ix (7.4)
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with

r = (-a'nU' + a[2V')IL', q = (a'12U' - a'22V')lL'. (7.5)

These equations are the same as derived earlier ([16] [18] [19] [20]). The coefficients L'
and a'ij are given by the same expressions (5.11) and (5.14) where the elastic coefficients
are replaced by those of the upper medium and P is replaced by

P' = S22 - S'tl . (7.6)

We now invert Eqs. (7.3) and (7.5). They become

UlL = Anr + A12q, VIL = A12T + A22q (7.7)

and

We derive

U'lL' = -A'nr + A'12q, V'lL' = A'l2r - A'22q. (7.8)

m = + %u\ , (-AI2 Ali\nrr + \~l ~ ~l/ j
177 f ^12^ . /^22 , ^ 22\Vl = [~l ~ irr + [t + ir)q'

(7.9)

where

U = U - U', V = V - V'. (7.10)
By inversion, Eqs. (7.9) are written

r = (DnU + D12V)l, q = (D12U + D22V)l (7.11)

By taking into account expressions (7.1), (7.2), (7.4) and (7.10), Eqs. (7.11) may be
written

Afx = WnU sin Ix + ID12V sin Ix, ^ ^

A/„ = ID12U cos Ix + ID22V cos Ix.

A similar set of equations is obtained by shifting the origin of x replacing Ix by Ix — (ir/2).
This amounts to the substitution for sin Ix and cos Ix respectively of — cos Ix and sin Ix.
Hence

A/x = —IDuUi cos Ix — ID12Vi cos Ix,

A/„ = lDl2Ul sin Ix + W22V1 sin Ix.

Adding expressions (7.12) and (7.13), we obtain

Afx = lDnu(l, x) — D12(d/dx)v(l, x),

A/„ = D12{d/dx)u(l, x) + W22v(l, x)

where

u(l, x) = U(l) sin Ix — Ui{l) cos Ix,

v{l, x) = V(l) cos Ix + "K^Z) sin Ix,

(7.13)

(7.14)

(7.15)
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with U, Ui , V, Vi denoting arbitrary functions of I. We now introduce the functions
ip{x, y) and 4>(x, y) defined by the Fourier integrals in the region y > 0:

\p(x, y) = [ u(l, x)e~tv dl, <f>(x, y) = [ v(l, x)e~l" dl. (7.16)
Jo Jo

They vanish at y = oo and satisfy Laplace's equation

(<d'#/dx2) + (d^/dy2) = 0, {d2<j>/dx2) + (d^/dy2) = 0. (7.17)

According to Eqs. (7.16) the corresponding values of the displacement differences
(at y = 0)

u = u — u', v — v — v', (7.18)

u = ip(x, 0), v = <t>(x, 0). (7.19)

From Eqs. (7.14) we derive the corresponding values of Afx and A/„ :

A/* = —Dn(dip/dy) — D12(d<}>/dx), (7 20)

A/„ = D12(d\p/dx) — D22(d<j>/dy),

where the values are taken at y = 0.
The problem of determining u and v for a given distribution of tractions Afz and A/„

is solved if we can find the functions and <j>. This may be accomplished by introducing
two analytic functions Zi(z) and Z2(z) of z = x + iy and putting

u = \p — j v = 4> = Z2 Z% , (7.21)

where the asterisk denotes the complex conjugate quantities. By introducing the complex
derivatives

Z[ = (dZi/dz), Z2 = (dZ2/dz), (7.22)

Eqs. (7.20) may be written in the form

iAfk = M^Z] - MtjZ'j* (7.23)
where Afx = Afl , Afv = Af2 and Mkj are the elements of the matrix

Dn iDl2

il) 12 J-^2'2 -

It'is Hermitian, since

[Mki] = (7.24)

Mki = M?k . (7.25)

The matrix is also positive definite. This can be shown by considering the sinusoidal
displacements corresponding to Eqs. (7.12). The energy input into the system over one
wavelength is

| £T/' (AfxU sin Ix + AfyV cos Ix) dx = | (DUU2 + 2D12UV + D22V2). (7.26)

Note that this represents the energy input by the interfacial forces Afx and A/„ into
a solid-fluid system represented by the two solids and a fluid at the pressure — S22 in
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between. We may assume that the fluid is connected to a large reservoir so that its
pressure remains constant. If the magnitude of the initial stresses is below the critical
value of surface instability of either the lower or upper medium, expression (7.26) is
positive definite. Hence

Du > 0 D22> 0, DnD22 - D\2 > 0. (7.27)

Until now the functions Zx and Z2 were defined in the upper halfspace y > 0. They
may be extended to the total plane by analytical prolongation. The values in the upper
halfspace at a point 2 are denoted by Z\ . In the lower halfspace at the symmetric point z*
we define Zj as

Zr = -Z-*. (7.28)

In addition, it is assumed that on the x axis in the range |x| > c we have

Z; = ZJ . (7.29)
This insures that the functions Z, defined by Z+t and Z~ are analytical throughout except
along a cut |a:| < c, y = 0, where they may be discontinuous. From (7.28) and (7.29)
we derive

z;+z;*= 0; (7.30)
hence

u = v = 0 for \x\ > c, y = 0. (7.31)

This corresponds to the problem of a crack along \x\ < c. From Eq. (7.28) we derive
for y = 0

(dZJ/dx) = -(dZ;*/dx) = ~(dZ;*/dx) (7.32)

Z'* = -Z'r. (7.33)

Hence Eqs. (7.28) may be written

iAfk = MkiZ'+ + (7.34)

This equation may be simplified by diagonalizing the matrix [Mki\. This requires the
solution of the equations

Mk% = KMk& . (7.35)

The characteristic equation is quadratic with two characteristic roots k = and k = k2
and corresponding values £,■ = £|., ^ of the characteristic vector. Since Mki is positive
definite the roots kx and k2 are real and positive. A fundamental property of the charac-
teristic solution is obtained by writing Eq. (7.35) in the form

(1/k)Mk& = MUf ■ (7.36)

This shows that the two characteristic roots and the corresponding vectors satisfy the
relations

= l/*i , £ = (7.37)
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The characteristic vectors also satisfy orthogonality relations

Mkm* = Mtm* = 0 (7.38)
and may be normalized so as to satisfy the equations

— 1 (no summation for p). (7.39)

From Eqs. (7.35) and (7.39) we derive

= k„ (no summation for p). (7.40)

We now introduce the transformation

= £3. (7.41)

with two new holomorphic functions and d2 . With this substitution Eqs. (7.34)
lead to

Mk,a:**: + = mi*Afk. (7.42)

Taking into account the orthogonality property (7.38), the normalization (7.39) and
Eq. (7.40) we obtain

3,+ + = itjl*Afk , ?>2 + K2a2" = i£*Afk . (7.43)

The values of Ki and k2 may be written explicitly by solving the characteristic equation.
We find

«. = 1/k2 = (1 + «)/(l - a), a = \D12\/(DnD22)1/2. (7.44)

According to the inequalities (7.27) we have 0 < a < 1. Hence kj > 1. Solving Eqs.
(7.43) is a classical Hilbert problem. The solution is

_ x,(z) r
L x;m - Z) ai> (7 45)

= xm r ,t
*2 2ir JX+2(t)(t - z) al)

with Xi(z) and X2(z), holomorphic functions except on the cut (y = 0, \x\ < c), where
they satisfy the condition

-ki = x;/x;, -k2 = -(i/Kl) = x2/x2. (7.46)

Since Z1 and Z2 vanish as 1/z at infinity, 1>1 and d2 vanish as 1 /z. Therefore the functions
X.! and X2 must be chosen to vanish as 1/z. As follows from the remark in the subsequent
paragraph, this insures uniqueness for the solutions and <f>. The required values of
Xi and X2 are

X, = (z - cy1/2~iy(z + c)-1/2 + <T (7 47)

X2 = (z- c)~1/2+iy(z + c)-1/2-'\

with

y = (1/2*) log * . (7.48)
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A particular branch of the functions must be chosen defined by values

z — c = Ti exp (idi), z + c = r2 exp (id2) (7.49)

where 6i and 02 are between zero and 2t. This insures that XL and X2 behave like 1 /z
at infinity.

The values (7.45) and Eqs. (7.41) determine Zl and Z2 by integration. In principle
we may therefore determine the shape of the crack for constant values of Afx A/„ .
By the same reasoning as previously we may derive a crack propagation condition of
the type (5.24). However, in this case attention should be called to the following remarks.
First, we note that the values (7.47) contain a factor of the type

(z — c)~'y(z + c)'7 = exp [iy log (r2/rO + y(0! - 02)]. (7.50)

Near the crack tip, i.e. near the points z = c, z — —c this factor oscillates violently.
As already shown by Erdogan [11], this behavior also occurs for the case of two dissimilar
isotropic media and involves interpenetration of the two faces of the crack. However,
in practice it may be disregarded, since it occurs in an extremely small region where
the linear theory breaks down.

A second remark concerns another type of interpenetration. If a constant distribution
of tangential forces Afx is applied to the faces, the normal displacement of the faces
produces a s-shaped curve with an inflection at x = 0. However, the amplitudes are
not the same if the materials are dissimilar so that there is interpenetration of the two
faces. This will not occur, however, if simultaneously a normal force A/„ of sufficient
magnitude is also applied.

Uniqueness of solution. The \p and cj> as defined by expressions (7.16) vanish at
infinity in the halfplane y > 0. The argument developed in the last paragraph of Sec. 2
is applicable here and shows that ip and </> vanish as 1 /z. This also implies uniqueness
under the conditions ip(x, 0) = 4>(x, 0) = 0 for |a:| > c while Afx and A/„ of Eqs. (7.20)
are given functions of x for \x\ < c. To show this, consider two functions \]/ and two
functions </> satisfying the same boundary conditions, and denote the differences of these
functions by \J/d and <j>d . They satisfy Eqs. (7.20) with Afx = A/„ = 0. Hence for |z| < c
on the x axis we derive

A,#, ^ + D„(i, f - *, + D,a, - 0. (7.51)
On the other hand, applying Green's and Stokes' theorems we may write

// (F\ + F2) dxdy = J F3 ds, (7.52)

where

"■ - + <#chhdfa (d^Y
12 dy dx + 22\dx ) '

"• - D-(f)' - 2D»f t+ (7'53)
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The counterclockwise contour C is composed of the x axis and an infinite half circle in
the halfplane y > 0 centered at the origin. The domain A lies inside this contour. The
derivatives along the outward normal at C and along the arc s are denoted by d/dn
and d/ds. The value of the contour integral is zero. This follows from the fact that \f/d
and 4>d vanish as 1 /z on the half circle and in addition on the x axis <j)d = \f/d = 0 for
|x| > c, while for \x\ < c the integrand vanishes according to Eq. (7.51). Hence the
surface integral of Eq. (7.52) also vanishes. Because of the inequalities (7.52) the quad-
ratic forms F1 and T\ are positive-definite. Therefore the functions 4>d and <f>d must be
constants and, in addition, equal to zero, since they vanish at infinity. We have thus
shown that under the assumed boundary conditions any two solutions must be identical.

Simplified cases. It can be seen that considerable formal complications arise if
7 0 in expressions (7.47). This is due to the coupling term D12 in Eqs. (7.20). If the
materials are such that

Aia/L = A'JL\ (7.54)
then DI2 = 0 and y = 0. In this case the oscillatory behavior disappears. From Eqs.
(7.9) and (7.11) we also write

1/A. = (An/L) + {A'JL'),
1 /D22 = (A„/L) + (A'22/U).

Under these conditions the integrands in Eqs. (7.45) are identical to expression (2.19)
except for the coefficient K and the difference in sign, which is due to the negative value
(2.18) of <rv„ . In practice it may also happen that Eq. (7.54) is approximately valid.
The solution is thus drastically simplified and becomes the same as for an homogeneous
medium, with the substitution of the values (7.55) of Dn and D22 in place of |/f2 and \KX.
Condition (5.24) for crack propagation becomes in the present case

(P + S22)2/2D22 + S\2/2Du = 2S„s/7rc. (7.56)

There is a case where the condition Dl2 = 0 is always rigorously verified. This is
for two orthotropic incompressible materials if the initial stress in each material satisfies
the conditions

P = S22- Sn = 0, P' = S22 - S[, = 0. (7.57)

According to Eqs. (6.7) and (6.8) it follows that a12 = a'12 = 0; hence, also, Di2 = 0.
We derive

111.1
Dn D22 2 (NQ)W2 + 2 (N'Q'y* (7'5^

where N, Q and N', Q' are the coefficients in the incremental stress-strain relations (6.6)
for each of the two materials. The crack propagation condition is obtained by substituting
the values (7.58) in Eq. (7.56). Conditions (7.57) are also verified for zero values of the
initial stresses or if we neglect the effect of initial stress on incremental deformations.
The problem is then similar to the one treated in Sec. 4. The drastic simplification of the
theory in this case is worth noting.
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