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The author has recently made a number of mathematical studies of the effects of
electrostatic surface stresses on the equilibrium of menisci and on wave motions at the
surface of highly conducting fluids. One aspect of such problems which is of interest is that
electrostatic boundary conditions can be applied in different ways, and one may contrast
the effects on wave motion when electric fields are produced by insulated charged con-
ductors or by conductors with maintained electrical potentials. A discussion of the
problem for linearized theory has recently been given by the author [1], and so far as
small-amplitude waves are concerned, there is no difference between these two cases.
However, it seems inconceivable that such a similarity could extend into wave motions
which are not small, and the following work takes the analysis of plane wave motion to a
higher order, with a view to showing how the differing electrostatic conditions do produce
different effects.

In Sec. 2 a discussion is given for waves of permanent form, which shows that the
behavior of the electric field begins to differ in these two cases in the second-order effects,
and that the difference is reflected in different phase velocities. The other features of the
wave motion, such as the surface elevation, are indistinguishable at this stage of approxi-
mation, and it seems that differences in these features only begin to appear in third- or
higher-order approximations.

In Sec. 3 a similar analysis is given for unstable standing waves. Similar second-order
differences appear in the electric field, but the effect is now simply to change the mean level
of the fluid pressure. The growth rate and the surface elevation are indistinguishable in the
second-order analysis.

2. Propagation of progressive waves without change of form. We consider the prop-
agation of waves on a conducting fluid of height a with a conducting plate at a distance b
above the surface. The undisturbed free surface of the fluid is at z = 0, the conducting
plate at z = b, and the fluid is supported on a conducting plate at z = —a. In the first place
let the upper plate be maintained at a fixed potential V = V0 above the fluid for which V =
0.

We study a plane progressive wave of wave length 2ir/k travelling without change of
form in the horizontal * direction with phase velocity U. We shall refer the analysis to the
Newtonian frame moving with speed U relative to the boundaries, in which the wave
disturbance is steady, and steady-state equations apply.

* Received August 12, 1976: revised version received February 14. 1977. The author wishes to acknowledge
the support of the National Research Council of Canada during the preparation of this paper.
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Let the electrostatic potential in the air space be 0 and the velocity potential in the fluid
U. The surface elevation z = t](x) due to waves will be a periodic function of wavelength
2tr/k, having components of the form

sin
cos mkx, where m is an integer,

but no constant terms since the mean level of the surface cannot change when the fluid is
incompressible.

In terms of a small parameter e which we shall identify later, we write

0 = 0o + t<Pi + f202 + • • ■ , (1)

V = z>h + t2Vi + ' ■' , (2)

n = + en, + t2n2 + • • ■ , (3)

where 0O = V0z/b, the undisturbed electrostatic potential.
In the chosen frame of reference the fluid has a mean velocity U in the x direction, where

U = U0 + tUx + e2U2 + ■■■ (4)

with the notation that the fluid velocity v = grad S2, ft0 = ~U0x.
The solution of the problem to all orders in e will satisfy the following conditions:

/' 27T/k T) dx = 0,
0

(ii) V20 = 0,

(iii) V2fi = 0,

(iv) 8Q./dz = 0 at 2 = ~a, implying that
diljdz = dilz/ 8 z = 8U3/8z = • • • = 0 at z = —a.

(v) For steadiness dil/dn, representing the normal velocity of the fluid, is zero at z
= V-

(vi) The normal stress is continuous at the free surface.

The electrostatic boundary conditions may be of different forms. In (a) and (b) below
we consider two cases in turn, the first in which the potentials of the conducting surfaces
are kept fixed, and the second when the charge is kept fixed.

(a) Oscillations at fixed potentials. Here the electrostatic condition will be

(vii) 0 = 0o at z = b, which implies that 0i = 02 = 03 = ■ •1 = 0 at z = b.
(viii) 0 = 0 at z = 7).
Starting with condition (v), if \p is the inclination of the surface to the horizontal,

drj/dx = tan and the condition is

S^Ldji_80L=
8x dx 8z K)

The condition is exact provided we take d$l/8x and 8i1/dz at z = ??. To express it
correctly in powers of e we write
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dSL \ 8 / dfi\ tf 82 / <90\ \ 8v
8x)0 ^ 8z\ 8x)o 2! 8z2 V dx/0 J dx

in which the suffix 0 denotes that the derivatives of U refer to z = 0. It is necessary to
substitute for tj from (2) and equate to zero the coefficients of successive powers of 6. We
find these conditions, up to the terms in e2, to be

£l° : 77 = 0, (6)

dt] 1 dftj <92Q0 „
-rj = 0, (7)dx dz dz(f2)

/ dflA drjl / dft0\ dr\2 dQ2 d2&i
\ dx J dx \ dx J dx dz 7,1 dz2e'': \Tt)w + \!£)i?-l>7-*-JF = «> (8)

where it is now implied that the derivatives of 12, and later of 0, refer to z = 0 without
writing in the suffix 0 throughout.

For condition (viii) we have

+ r,\'8l)0+ 2i\lFl +
and using (1) and (2) we find the following conditions up to the order e2:

= 0, (9)

0.+ J7i^ = 0, (10)cz

2 • i , 500 , 50! n ,, , ,ej2 . 02 + 7/2 — + Jj! — = 0. (II)

In condition (vi) the dynamic pressure p in the fluid is given by Bernoulli's equation

p + j p(grad 0)2 = constant,

where p is the density. Thus, allowing for surface tension, electrical, and gravitational
contributions to the stress we have the condition

<Pr)
_1_
87T * U

at z = rj- This condition is to be treated as shown previously. The algebra is lengthy and
will be omitted here. The results are as follows, up to terms of order e2:

(8± \ + T   Pgv - y (grad U)2 = constant,\8n / ( ^ ^ J 2

e °: —' 8tt
(f&Y_ £ (ilk) = constant, (12)V 8z J 2 \ 8x J

, 1 <90o 8(f)i m(Prji /d£20 \/ \ „ /1 -i\
:iririr+rd?--'f'-" (l3)
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1 j( <90 i V . ? d<p o / d<t> 2 *9201 dllx dtp i\ /g0o Y1
' ' 8ir l\ dz / dz \ dz 7,1 dz2 d* dx / \ dz ) \dx ' \

The solution to order e° is the undisturbed state given by 120 = ~U0x, 0O = V0z/b.
For €1 terms we designate

77, = cos &.x. (15)

This implies that« has the dimension of length, being the amplitude of this component of
the surface elevation. Condition (11) is then 0, = (-V0/b) cos kx at z = 0. Hence

V0 sinh k (z — b) cos kx ....
^~~b  i^hTb ' (l6)

Also (7) gives dSlJdz = kU0 sin kx at z = 0, and the solution for J2, becomes

r> _ ir s'n kx cosh k (z + a)
sinh ka ' (17)

The remaining condition (13) then shows that

pk (/02coth ka ~ Tk2 - pg + j-2 ^ coth kb = 0, (18)
47TO

which gives us the value of £/0. A term of the form (/,jc could have been added to S2, in
(17), but then (13) requires Ui = 0.

We turn now to the conditions of order e2. Using (15), (16), (17), we find that
conditions (8) and (11) are, respectively,

~d~z~ ~cR~ ^0 cot'1 ^a s'n ^X =

V v V k
02 H r-2- + coth kb (1 + cos zkx) = 0. (20)b lb

After some reduction (14) becomes

<9^2 , T cPrh
8x1 dx2 ^1,2 ' 4xb dz

. . 8^12 , rj. d2T/2 V0 d 02 , . /-> i \pUo —J + T —J - pgV2 + -—r — = I + m cos 2kx, (21)

where

_ (pk'Uo

and

m= [<^f^~i^){coth2ka-3)-

Since t]2 can have no mean part we write

tj2 = r cos 2kx + s sin 2kx. (22)



NONLINEAR EFFECTS 349

Also let

at z = 0.
02 = « + |8 cos 2kx + 7 sin 2 kx

= \x + n cos 2kn + v sin 2kx

Solutions for 02 and are then

(/>2 = a (l - I") - S'n^n^22kb ^ ^ C0S 2/c* + 7 Si" (23)

02 = Xx + (ji cos 2kx + 7 sin 2kx). (24)

Eqs. (22), (23), (24) can then be used to satisfy (19), (20) and (21) at z = 0, by ensuring
that the coefficients of sin 2kx, cos 2kx, and the constant terms are zero in each. Eq. (19)
gives

2U0r ~ 2y tanh 2ka = U„ k coth ka, (25)

2Uos + 2\i tanh 2ka = 0. (26)

From (20), we find

Eq. (21) is satisfied when

a = —-^r coth kb, (27)

P + + -TT coth kb = 0, (28)
b 2.b

7 + -y— 0. (29)

"£^ = /, (30)

2/cpt/oM + 4&27i + pgs - 2^7 coth 2kb = 0, (31)

2kp V0v + 4A:27> - pgr - 2k V$ COt,h 2/cA = m. (32)
47T b

Eqs. (25)—(32) may now be solved for the unknown coefficients a, (3, 7, X, y, /• and 5.
The coefficients of most interest are those which give rise to the mean changes to this
order, namely a and A. Eq. (23) shows that there is a second-order change in the mean
electrostatic field given by

_ VJc coth kb (. z\
02   2b I1 ~ J)' (33)

Thus to the order e2 the mean electric field is raised to

^{1 + y>th^},
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and this is accompanied by additional charge on the upper plate of amount

VJct*
87vb2

coth kb.

The coefficient A measures the second-order change in the phase velocity of the wave.
We have

V0 (pk2U02 V02k2\ ... V02k coth kb
vb2 a \Pu= 1 + TZIi « = —T2- - TZZn cosech2 ka -4tt b2 \ 4 \6irb2) 8 irb3

This gives rise to an additional phase velocity — 8Q2/8x = -A, so that to order t2 the
phase velocity of the wave is

" " - W. - S)cosech'k" - kb>- (34)

When V0 = 0 this reduces to the Stokes [2] result, and it is noticeable that the electrostatic
effect is to increase this speed in the e2 terms.

(b) Charge-maintained oscillations. The above analysis shows that when the poten-
tials of the conducting surfaces are fixed a change in the mean charge density of order £2
occurs. If the conductors are insulated this change cannot occur, and we might then expect
that there will occur a change of order e2 occurring the potential difference between the
fluid and the plate instead.

When the conducting plate at z = b is insulated, conditions (vii) and (viii) must now be
replaced so that

(ix) 0! = c, , <t>2 = C2, 03 = c3 , • • • at z = b,

where Ci , c2, c3 ■ ■ ■ are constants. This represents the condition that the potential at the
plate is constant, but not necessarily unchanged in the wave motion. Further, c, , c2 , c3
■ ■ ■ must be such that the total charge per wavelength is unchanged to all orders in e.

(x) Similarly, we have <p = constant at z = 77, with the same condition of invariance on
the total charge per wavelength.

We shall trace through the changes in the previous analysis when (ix) and (x) apply
instead of (vii) and (viii), without repeating all the steps in full.

The boundary conditions on now become 0! = Cj at z = b, and, instead of (10) +
Tjj (8it)0/8z) = dx , say, at z = 0, where d, is a constant. Evidently if d, ^ c, , a uniform
electric field of order t would be present, which would give a change in the mean surface
charge density of order e, which is inadmissible. Hence dx = C[ and we may without loss of
generality let Ci = dx = 0 on the basis that the fluid potential remains unchanged.
Assuming 77, again as in (15), this leaves the solution (16) for^ unchanged. Eq. (17) for S2x
is also unchanged.

As boundary conditions for 02 we now have 02 = c2 at z = b, and 02 + ??2 (<90o/dz) +
Tit (8<t>i/8z) = d2 at z = 0 instead of (11), where d2 is another constant. Condition (19)
remains unchanged, but for (20) we now have

^2 + coth kb{ 1 + cos 2kx) = d2 at z = 0.
b 2.0

Eqs. (21) and (22) are unaltered, so now
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V V k(j>2 = d2 —{r cos 2kx + s sin 2kx) —coth kb{ 1 + cos2kx) at 2 = 0.

No change in the mean value of <p2 can occur between z = 0 and z = b in this case, since
there can be no change in mean charge density. Hence

j ^o k , . -a2 —rt~ coth kb = c2 .lb

With the fluid at earthed potential, we take d2 = 0 and c2 = {-V0k/2b) coth kb. Thus

02 = ^ coth kb — ^ ^ cos ^x + ^ s'n

which shows a mean loss in potential difference (e2V0k/2b) coth kb, to the order e2. The
solution for given by (24) is unaltered, and (22), (24) and (35) must now be used to
satisfy the conditions (19), (20) and (21) at z = 0. We find that Eqs. (25), (26), (28), (29),
(31) and (32) are unaltered. But (30) is changed because d<t>2/dz now has no constant
component, so that now

„,/x=/ = _J (pk2U02 V02k2 \
0 sinh2 ka V 4 167rb2)

The second-order contribution to the phase velocity is therefore lower, and we have

,, ,, e2 fpk2U02 V2k2 \ ,,, ^ J ,U = U0 — — ,, I cosech2 ka, to order e2.p Uq \ 4 167to /

We note that, otherwise, the solution for /?, 7, n, v, r, s remains the same as in case (a), so
that, for example, there is no distinction at this order between the surface elevation or the
motion of the fluid in the wave, as seen relative to the rest frame in each case.

3. Unstable standing waves. When the phase velocity U0 is imaginary, wave propa-
gation without change of form becomes impossible, and progressive waves with phase of
the form exp i(kx ± cct) change to the form exp (ikx ± at) where a is real. The most
natural form of wave function to study in this case is of the form J{x) exp (ct), where again
j{x) is a periodic function with wavelength 2ir/k. The approach to this problem must
change because there will not exist a frame of reference in which the motion is steady.
There is then no advantage in changing the frame of reference from the natural one in
which the fluid is at rest in the absence of the wave. However, there is the complication in
this case that the wave motion is now unsteady. As in Sec. 2, we shall consider the growth
of the wave in the different electrostatic conditions, but without repeating steps which are
the same as in Sec. 2.

We may again write expansions for 0,7/ as (1) and (2), with 0O = Voz/b, but (3) we now
write as

0 = + t2Q2 + €3fi3 + • • • . (37)

The terms in 0 are now unsteady.
Conditions (i), (ii), (iii), (iv) and (vi) remain, but (v) now becomes

(xi) (4 / = normal velocity of the surface.
\ dn /J=,v
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As in Sec. 2 we make a distinction between the electrostatic conditions under sub-
sections (a) and (b).

(a) Waves at fixed potentials. Conditions (vii) and (viii) will apply in this case.
Condition (xi) may be written

fecos*-^isin^"cos^

or

f8U _ 8$_ =
\ dz 8x 8x /

81
dt

Now we suppose that the wave growth occurs on a time scale c where

c = c0 + ecj + e2c2 + • * •, (38)

and write t = cr where 8/8t ~ 1. Then

/ 80. 8rj 8Q \ _ 8r]
V 8z 8x 8x ) 8t(c„ + ec, + t2c2+•■•)(—- — ^rj = — at z=rj

To order «2 this becomes

,39,

8U i (8U2 i 82ili 8ih\_ 8rj2
f2: c>-TT + c°{lt + ̂ -8t-l^lZ)=17- m

Conditions (39), (40) replace (7) and (8). The equations (9), (10) and (11) for condition
(viii) remain unchanged. But the stress condition (vi) now takes a different form because
there is a contribution to the pressure from the unsteadiness of the fluid motion. We have

P = fit) - Mgrad Uf - p(8tt/8t).
When this is put in the surface stress condition, and when we allow for the expansion

of c in powers of e, , we find to order e2:

c°: (4r0 = constant (41)
87r \ 8z /

r1. - (t 82Vl rr I • ' 8<^° 8^l\ 8<■ c'\TJs~m' + 4;-e7^7)->>-fr "■ (42)
, IT f „ p //aa.V ,/saMe- httJ+ lirJi

I 1 S( Hh V , 1 , s2<t> 1 _ dt) 1 _501 \ /500 Y 8lh Y U
8x \\ dz / dz \ dz T'1 dz2 dx 8x ) \ dz / V dx / //

J. „ /t _ ,1 ^0O 50! \ dfi2 5212, a ,,,,,
+ Cl V J? - pgVi ~87~8T)~ PTT~ PVl d7d7 ~ (43)

Eqs. (41), (42) and (43) replace (12), (13) and (14).
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For the first-order solution let

Vi = g(r) cos kx. (44)

It follows from (10) that 0, = (~V0/b) g(r) cos kx at z = 0. Thus

J. _ v» , x sinh &(z - 6) ,
sinh lib coitx (45)

Also following from (39) and (44) we find

^ _ g'(r) cosh k(z + a) cos kx
kc0 sinh ka ' (46)

where g'(r) = dg/dr, g"(r) = d2g/dT2, etc. Eq. (42) gives

g"(r) = kc02 tanh ka coth kb - Tk2 - pg g(r).

The appropriate form of solution is to let c0 be determined by the equation

V02kkc02 tanh ka coth kb - Tk2 - pg = 1, (47)
. 4irb2

so that g"(r) = g(r). The condition for instability in linear form, is that c2 > 0; that is,

coth kb > Tk2 + pg.

For the t2 terms we have from (11)

02 + V2 + coth kbg2(r)( 1 4- cos 2kx) = 0, (z = 0). (48)

We note that r)2 can be of the form

Qin
2 kx,sin

cos

with no mean part. Hence the mean part of the last term of (48) must be matched by a
mean part of 02 at z = 0. Now (40) becomes, after substitution,

— c0 — kgg' coth ka cos 2kx — — cos kxg'(r) = 0. (49)
8t 8z 00 Co

Since ft2, like , can contain only terms in * of the form

2 kx,sin
cos

the cos kx term in (49) is unbalanced, and therefore c, = 0, so that

4^ - c0 = kgg' coth ka cos 2kx. (50)
OT OZ

The last condition of order e2 is (43) which becomes, after substitution,

A2
8x2 ~ pgv2 ~ To TT + JTb i^t) = if? {(coth2 ^ + 1) + (1 - coth2 ka) cos 2kx)
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—^\&wb2 ^C0t^2 ~ ') + (cot^2 kb ~ 3) cos 2kx] + P^2 (1 + cos 2kx), at 2 = 0.

(51)

Eq. (51) shows that has a component which is a function of r only which must be
used to match the terms independent of x on the right-hand side of (51). This does not
affect the velocity distribution, but does represent a change in the mean pressure to the
second order.

We shall confine our discussion at this stage to the mean components, which are of
most interest. Clearly from (48) a second-order mean electric field arises from the require-
ments that

02 = g2(T) coth kb at z = 0,

(J)2 = 0 at z = b.

This solution is therefore

hXo fJ2(v-2 - 2b g2(r) coth kb (| - 1

and represents an increase in the mean field to

y {' + coth kb}-

From (51) we find that the mean part of 8SXJdr is given by

_p(g'f , lL1I Pgg" V02k2g2(r)c0 J . , , L , 2 coth kbP~ f— (coth2 ka + 1) + ~z— -  1, ,,—Scoth2 kb + —— 8t 4 c0 2 c0 I67rb2 ( kb

(52)

Thus the right-hand side of (52) represents the increase in mean pressure to the second
order.

For the parts of the second-order solution periodic in x we again write r]2, 4>2, in
terms of

sin
cos 2kx with the coefficients r, s, 0, >, v

as used in Sec. 2. But here these coefficients are functions of r. The periodic parts of <j>2 and
U2 follow as in (23) and (24). The equations for the coefficients are now

/3 + -^ r + ^ coth kb[g(r)]2 = 0, (53)

7+yi=0, (54)

~ 2kc0n tanh 2ka — khgg' coth ka = 0, (55)
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ds
- 2 kcav tanh 2ka = 0, (56)

4k2Tr - pgr - -£-&L _ coth 2kb
c0 dr 47to

- } () _ coth2A:a) +  Y±K4c^2 (1 coth ka)+ 2c, !67r/?22 (1 -coth2*a) + (coth2 kb - 3), (57)

-4A:27s - pgs - — 2ky coth 2kb = 0. (58)
c0 dr 4xb

(b) Charge-maintained oscillations. The changes needed to apply the alternative bound-
ary conditions on 0 follow much as in Sec. 2. It is easily seen that (45) for <p still holds, with
the proviso that the fluid is at earthed potential. Also, Eq. (46) for Oj and the equation for
g(r) are unchanged. With the same significance for c2 and d2 as in Sec. 2, we now have

g2(T) coth kb ~ c2,2b
or, with d2 = 0,

c2 = -coth kb £2(t).

Thus the mean loss of potential is (t2V0/2b)[g(r)]2 coth kb in this case. Eqs. (48) and
(49) remain. So also does (51), though now, since d(p2/dz has no mean part, the equation
for the mean pressure change is now

-It = '-gW'"+"+ % - <»>
The increase in mean pressure in (59) as compared with (52) is due directly to the absence
of electrostatic stress at the free surface arising from the mean part of <p2. Eqs. (53)—(58)
for the periodic coefficients remain unaltered, and we see that the form of the free-surface
is again the same to order e2 in both cases (a) and (b). As a final remark we note thatg(r)
has been left unspecified. Its particular form is determined by the initial conditions.
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