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1. Introduction

The passage of a swift charged particle through a solid gives rise to a wake of induced

electron density behind the particle. Figure 1 shows how the wake would look to an observer

in the solid, behind the projectile. It is

calculated for a proton penetrating an

electron gas having the density of the 1
valence electrons in gold, assuming linear

response of the medium.

The induced potential associated ; 0 . _-
with the wake is responsible for the .--'-1o_:__ -;r

energy loss of the particle, and for many 0._2|-

effects that have captured recent interest. _ _

These include, among others, vicinage _ o.o6

effects on swift ion clusters, emission of _ o.o3____electrons from bombarded solids, forces on -_ _i
; 0

swift ions near a surface, and energy shifts
in electronic states of channeled ions. -0.o3 , , • _.... , ,

-10 0 10

Furthermore, the wake has a determining x _,_,

influence on the spatial distribution, and Fig. 1. The wake of induced density for a
character, of energy deposition in the proton in gold, treated as an electron gas and

medium. (For reviews, see references assuming linear response.

[1],[2],[3]). Previous theoretical studies of

these phenomena (with the one exception mentioned below [4]) have employed a linear

wake, i.e., one that is proportional to the charge of the projectile, eZ. However, in most

experiments that measure these effects, the conditions are such that the wake must include

higher-order terms in Z. The purpbse of this study is to analyze the nonlinear wake, to

understand how the linear results must be revised.

"The _niruKI mmMM_t has been
authonKI by a contractor of the U.S.
Gowmnm_t under contract No, DIE-

AC05-840R21400. Accordka_. lt_ U,S. i1_

I:ttroyalty-fr_ _ to _ or reproduce
the _ form of ttY_lcontrd_on, o_
allow others to do so, for U.S. Government

..I_IB-I_IIEIUTIONOF THIS DOCUMENT I$ l,J_l,_-r=m v'



2

The stopping power is given by the gradient of the induced potential at the position of

the ion, multiplied by the charge of the latter. Therefore, the linear wake gives a stopping

power proportional to Z2, while the first nonlinear term in the wake produces a Z3 term. The

latter is commonly called the Barkas [5] correction. Its value was first estimated by Ashley,

Ritchie, and Brandt [6], from a classical treatment of distant collisions of a charged particle

with a harmonically bound electron. Their result was subsequently confirmed in a quantum

mechanical treatment of the harmonic oscillator by Hill and Merzbacher [7].

The first treatment of a nonlinear wake was performed by Faibis et al. [4]. These

workers calculated the Coulomb wake, i.e., the induced density (and potential) due directly to

Coulomb scattering of independent, noninteracting electrons from a charged projectile.

Sung and Ritchie [8] applied many-body perturbation theory to the Fermi electron gas,

using a random phase approximation (RPA). There resulted expression,,. %r the second-order

wake and for the Barkas correction. Numerical evaluation was discussed, but computations
were not carried out.

Recently, Esbensen and Sigmund [9],[10] have extended Lindhard's self-consistent,

linear treatment of the electron gas [11 ] to second order in an external disturbance, deriving

formulae for the nonlinear wake and the Barkas effect for several model systems. The results

for the Fermi gas are identical to those of Sung and Ritchie [8]. Computations were

presented for both the nonlinear wake potential and the Barkas correction in an electron gas.

However, because of the complexity of the formulae, it was necessary to ignore Fermi motion

of the electrons, thus specializing the numerical results to a static electron gas.

Only within the last year were calculations finally carried out, by Pitarke et al. [12],
[13] for the Barkas correction in the RPA for a Fermi gas. The basic formulae used are

equivalent to those of references [8] and [9]. Numerical evaluations of the second-order wake

in this theory have not yet been achieved.

2. Hydrodynamieal Model

The application of hydrodynamics should prove fruitful in this problem, for various

reasons. First, it is simpler than the RPA, and should therefore enable one to carry out

calculations that--as mentioned abovenhave not been possible in the RPA. Second, a close

connection exists between hydrodynamics and density functional theory, as discussed below.

Finally, new insights might emerge.

The system of interest is a fluid of electrons on a uniform background of positive

charge that neutralizes the total charge. This fluid flows steadily past a point charge eZ fixed

at the origin. Isentropic, irrotational flow is assumed. The mass density and the velocity art

described by continuous functions of position, p(i9 and _7(r-')= -(v_) respectively, where _V

is the velocity potential. The classical Lagrangian density, _, is given by the expression [14]
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,_ = p--_---_p(v_)2- pU-p_ ' (1)

where U(_ and _[p] : _'(p,Vp) are respectively the potential energy and the internal energy
per unit mass.

The potential energy per unit mass U is given by the product of the charge-to-mass

ratio -elm and the electrical potential. It consists of two terms, one from the external potential

(due directly to the projectile charge) and one from the induced potential in the fluid itself, as
follows

(e)2 P(F/)-P°['_-;"/id3r/
o'(o= f , (2)

where Po, the density at large distances, is subtracted from p to account for the background of

positive charge.

The Euler-Lagrange equations of _ are obtained by requiring that

f atf ,, xnlr)d3r - 0 (3)
q

for fixed n(_ and _(_ at times t_ and t:, where the inner integral extends over all space.

There result two equations: the continuity equation,

an _ V.(p V_) = O, (4)&

and the Bernoulli equation,

o, 2 - 7-;T 8p
where la is the chemical potential, a constant. In the present case, steady flow past a

stationary point particle of charge Ze, both an/at and O_r/at vanish identically, and U,xt is

given by -(elm)(Ze/r).

Up to this point, the theory is entirely classical. Furthermore, no property of the

e!ectron except the charge-to-mass ratio has entered the equations. Is it reasonable to apply

sucii a theory to a (quantum mechanical) electron gas? The answer is: Yes, at least in

principle. The above two Euler-Lagrange equations of the hydrodynamical model can be

derived from time-dependent density-functional theory, by considering an adiabatic
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perturbation of the ground state of the system [15]. In the context of density functional

theory, g[n] is the electronic energy (excluding the potential energy U) per unit mass, as a

functional of the (exact) single-particle density n(r-'). The description of the fluid as a

quantum-mechanical gas of electrons must evidently be embodied in g[n]. Although the

exact functional is not known in advance, many useful results have been achieved by suitable

approximations for g[n].

The first application of hydrodynamics to a system of electrons was Bloch's derivation [16]
of a formula for the stopping power of many-electron atoms. Close collisions were treated

the same as in Bethe-Bloch theory, while hydrodynamics was assumed to apply to large-

impact-parameter collisions. The Thomas-Fermi energy functional, equal to the kinetic-energy
per unit mass of a degenerate Fermi gas,

'rr (n) - (3_:2)2/3n _43 (6)
10m 2

was assumed, where n(rO= p(r-')/m is the number density. Bloch worked with the linearized

equations, obtained from Eq,s. (4), (5), and (6) by expanding n and _ about their initial

values, and retaining only the terms that are linear in the disturbance. Since then,

hydrodynamical models (using various forms of the internal-energy functional) have been

applied numerous times to atoms and to the inhomogeneous electron gas, mainly in studies of

collective modes [17], [18].

In the calculations [19] reported here, the Thomas-Fermi-Weizs_icker (TFW) functional
is employed:

(vn)2
g'rrn,(n, vn) - 3_2 (3_2)_4an 2/3+ _----- (7)

10m 2 8m 2 n 2 ,

in which the first term is the kinetic energy (per unit mass) of a degenerate Fermi gas, while

the second one is the gradient correction proposed by von Weizs_icker [20]. This functional

when used in atomic structure calculations has been shown to produce an electron density that

satisfies the proper cusp condition at the nucleus (r = 0) and has the correct asymptotic form

as r goes to infinity [21]. Similarly, it leads to a static response function having the correct

values at wave number k = 0 and (asymptotically) as k ---) _ [22].

3. Calculations and Discussion

We have made a first set of calculations of the nonlinear wake and of the Barkas

correction to the stopping power using this model [19]. The electron density and the velocity



potential are formally expanded in powers of Z, and the Euler-Lagrange equations for _ are

solved numerically for both the lst- and 2nd-order parts of the density and the velocity

potential. The Z2 and Z3 terms in the stopping power are then computed.

First, consider the linear-response stopping power. We find [19] that energy-loss

functions Im(-1/e[rz,k]) in the TFW

hydrodynamical model and the RPA
I ' I 1-' '"" I ' I '

essentially agree at both k/k_. <<1 and Proto, etoppirlgpower 1ti Ilrloor reeporlse

k/kF >>1, where kp is the Fermi wave *'= _ Hydrodynomloul model

"_ I I- _N --- Random-phase approx.number. Furthermore, Im(-1/e[0_,k])

satisfies Bethe's generalized oscillator- _ ,.=

strength sum rule for all k. These

conditions suffice to guarantee [23] that the _ ,.1

stopping power (in linear response)

approaches that of the RPA with increasing
0,0 I , I . I i I

velocity, above the Fermi velocity. This is 1., ,., 3.0 ,.0 5.0
VELOCITY (0. u.)

borne out in Figure 2, where the two

theories are compared for an electron gas Fig. 2. Comparison of stopping powers from
the TFW hydrodynamical model and the RPA,

of r,= 2.07 a.u. [24] (Fermi velocity is
considering only linear response.

0.9 a.u.). Note from the figure that for

velocity v<0.9 a.u., the hydrodynamical model predicts zero stopping power. This is because

low-energy electron-hole excitations, which are responsible for low-velocity electronic

stopping, are not contained in this model.

Figure 3 shows stopping powers of

an electron gas with r, = 2 a.u. in the

hydrodynamical model, for protons and ,.51 , . , . , . ,
F /% Hydrodynamlaal model

antiprotons. The dashed curve is the linear I- / _Proton 1"="2•.-, 0.4

t , \
result. The Barkas correction is seen to be _ [u.o.,,...!,d \

= . ! "-, \substantial, even for Z = ±l.
w 0.3

In Figure 4, the Barkas corrections *-o
Z 0.:! ' "_

from four calculations are compared for ,.r" ' "',....
r, = 2 [25]. The short-dashed curve is the _ ,.1

Ashley-Ritchie-Brandt formula [6], with

Jackson and McCarthy's value [26] for the *'* ' ' ' ' ' ' ' '1,0 s.O 3.0 4.0 5.D

minimum impact parameter. The oscillator WLOCWW(,.,.)

frequency is set equal to the plasmon Fig. 3. Proton and antiproton stopping in an

frequency of the electron gas, and the result electron gas in the TFW hydrodynamical
model, including the Barkas correction.is multiplied by 2 as suggested by Lindhard
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[10]. The long-dashed curve is taken from

the static-gas calculation of Esbensen and "t • , • , • , .
_ _ Thl= theory

=. I1 N _ t . ---- Pltarke, et al. -

Sigmund [9]. Note that this calculation and _, *'= _ \ \.., ,,,m --. E,b,,,,, _ S1_m,,d

twice the Ashley-Ritchie-Brandt one agree J="=' _\\ "_\ ...... == .,.J.y. ,t ,J. .
over most of the velocity range covered in o

the figure. The medium-dashed curve is the -= _,_Llk . _

RPA result of Pitarke and coworkers [13]. _ I___. _

The above theories agree for velocities _ ,.1
O

greater than 2 a.u. Finally, the solid curves

are the present TFW hydrodynamical values. *'* .... "- '1.0 2.0 3.0 4.0 B.O

(The Z2 term is shown in order to indicate wt.oc_ (,.,.)

the relative importance of the Barkas Fig. 4. Comparison of Barkas corrections to

correction.) In the neighborhood of its proton stopping power from various theories,

maximum, the present result resembles the as functions of velocity. See text.
RPA one.

A comparison of the four theories is [\ " ' " ' ' '
Bark== Corrmatlon for Proton=

shown in Figure 5, for r, = 2 [25], at 7 l _ to-=
velocities of 2-5 a.u. The present results _ ,.oaF. \ --'rh), th,,ry -

1_. \ .... Pltarke, et al.

clearly lie above the others in this velocity _ k _ X --" Elbenmln& Slgmund ,
\ _ N _.- 2 x /_hley, et ,1.

O ',_,. '_ o Medenwaldt. lit ol. (Exp.) !
range, whereas the latter appear to approach , "',
a common curve. Also shown (circles) are _" '

o 1
the experimental values of the Barkas = "'_%.,, "......2 o =
correction for protons in Si, calculated as "'_*_""----_'_"_J'_

I I *__'*'" " " ='_"" "

half the difference between the stopping o.,o= = ,

powers of protons and antiprotons [27]. vct.ocm"(,.,.)

(Counting only the four valence electrons, Si Fig. 5. Comparison of Barkas corrections to

has rs = 2.01). Note that the proton stopping power from various theories,
as functions of velocity. The circles arehydrodynamical results are consistent with
experimental results for Si. Tee text.

the experiment. However, this comparison

with experiment is questionable, since it neglects the inner-shell electrons. When the RPA

result is averaged over the local electron density n(r--) in Si, using a local plasmon

approximation, it increases substantially and comes into agreement with these experimental
values [13].

We have seen that the RPA and TFW hydrodynamics both give the correct stopping

power for the electron gas in the high-velocity, nonrelativistic limit. Thus it is surprising that
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the Z 3 effects in the two theories differ so much in the same limit. It is not obvious which is

the better result. This question is under investigation.
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