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Let X be a reflexive Banach space, T and S two mappings of X into 
its conjugate space X*. We denote the pairing between w in X* and 
u in X by (w, u)> and weak convergence (in either -X" or X*) by —*, 
strong convergence (in either X or X*) by —>. 

By an eigenvalue problem for the pair (JT, 5), we mean the problem 
of finding an element u in X and a real number X such that 

(1) T{u) = \S(u), 

with u possibly satisfying additional normalization conditions. I t is 
our purpose in the present note to describe a way of applying a method 
of Galerkin type to such problems which works in particular for 
nonlinear elliptic boundary value problems of variational type. We 
obtain from it a general theorem on the existence of normalized eigen-
functions for the latter problem, and in the case of T and S odd 
operators, we obtain also an extremely general form of a theory of 
Lusternik-Schnirelman type guaranteeing the existence of infinitely 
many distinct normalized eigenfunctions. 

We consider first some restrictions that may be placed on the non
linear operator T. 

DEFINITION 1. T is said to satisfy condition (S) if for any sequence 
{uj} in X with u$-+u in X and (T(UJ) — T(U), Uj—u)-^Oi we have 
Uj—>u in X. 

DEFINITION 2. T is said to satisfy condition (S)0 if for each sequence 
{UJ} in X with uj-^u in X, T(u/)—±z in X*, and (T(wy), Uj)—>(z, u), 
we have Uj-*u in X. 

LEMMA 1. (a) If T satisfies condition (S), it satisfies condition (5)0. 
(b) If T is continuous and satisfies condition (5%, and if K is any 

compact set of X*, B any bounded closed set of X, then T~l(K)C\B 
is compact. 

(c) If T is continuous and satisfies condition (5)o, then the image 
under T of any bounded closed set B of X is closed in X*. 

PROOF OF LEMMA 1. PROOF OF (a). Suppose uj~-»uy T(uj)~~±z, and 
(T(uj), Uj)—^{z, u). Then 
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(T(uj) - T(u), u$ - u) = (Tim), «/) - (TM, u) - (T(u), uj - u) 

—> (0, #) — (0, w) — 0 = 0. 

Hence by the condition (5), Uj—^u. Q.E.D. 
PROOF OF (b). Let {ui} be a sequence in T~l(K)r\B. By passing to 

a subsequence, we may assume that Uj—>u in X, T(ui)—>z in 2£. Hence 
(T(ui), Uj)-*(z} u) and, by condition (5%, u^u. Hence ^G-B, and 
by the continuity of T% T(u)=z, i.e. uE.T~l(K)r\B. Q.E.D. 

PROOF OF (C). The conclusion of (b) implies that T is a proper con
tinuous map of B into X*. Hence it is a closed map of B into X* and 
T(B) is closed in X*. Q.E.D. 

We now give our principal methodological result. 

THEOREM 1. Let X be a separable reflexive Banach space, T and S 
two continuous bounded mappings of X into X* with T satisfying condi
tion (5)o and S a compact map of X into X*. Let {Xn} be an increasing 
sequence of finite dimensional subspaces of X whose union is dense in X, 
B a closed bounded subset of X. Suppose that for each n, there exists an 
element un of BC\Xn with the property that 

j*T(un) = Kj*S(un), 

where j n is the injection mapping of Xn into X, andj£ is the dual projec
tion of X* onto X£. Suppose that | Xn | is uniformly bounded. 

Then there exists an eigenfunction u of the pair (JH, S) in B, i.e. T(u) 
=\S(u), and for any weakly convergent subsequence un(jk)—*u of the 
sequence {un}, u is such an eigenfunction and Un^-^u. 

PROOF OF THEOREM 1. Since B is bounded and X is reflexive, the 
sequence {un} has a weakly convergent subsequence. We may replace 
the original sequence by this subsequence and assume that un—*u. 
I t suffices to show that \un] has a strongly convergent subsequence 
and that u is an eigenfunction of the pair (71, S). Since |X»| is uni
formly bounded, we may assume for our original sequence (again by 
passing to an infinite subsequence) that Xn—»A, and since 5 is compact, 
that S(un)-^w in X*. 

Let v be any element of Vm for some m, and consider n^m. Then, 

{Tunjv) = (TUn,jnV) = (j*T(un),v) = \n(jn*S(un),v) = \n(S(un),V). 

Hence 

(3T(«n), v) ~> \(w, v), (n —> + 00 ). 

Since this is true for each v in the dense union of the spaces Vm and 
since the sequence {T(un)\ is bounded, it follows that T(un)-*kw. 
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On the other hand, by the same argument, 

(T(Un), Un) = \n(S(un), w) - » X(w, v). 

Applying the condition (5)0 for JH, we see that un—>u. Since T and 
S are continuous, T(un)—^T(u)t S(un)-^w. Hence 

T(u) = lim T(un) = \w = -S(u). 
n Q.E.D. 

The special interest of the conditions (S) and (5)0 is that they are 
satisfied by quasi-linear elliptic differential operators in generalized 
divergence form under extremely weak hypotheses on the operators. 

THEOREM 2. Let Gibe a bounded open set in Rn for which the Sobolev 
Imbedding Theorem is valid, A and B two differential operators on fl 
of the form 

A(u) = 22 ( - 1 ) M £ M « ( # , u, Du, • • • , Dmu), 
la ls«» 

B(u) = 22 (-îyu&Bfiix, « , • • • , D™u). 
| /3 |gm-l 

For each a and /3, let Aa(x, £) and B$(x, £) be continuous in x and 
Lebesgue measurable in £. Suppose that for a given exponent p with 
1 <p< + co, V is a closed subspace of the Sobolev space Wm*p(Q,) and 
for u and v in V, we set 

a(u, v) = 22 (Aa(%, u, Du, • • • , Dmu), Dav), 
\a\zm 

b(u, v) = 22 (-fyfo u> Du, • • • , £>m^), Z)^), 
l /3 |St»- l 

(wi/ft (w, v)—fçiwv). Suppose that the following three conditions are 
satisfied : 

(1) There exists a constant c0 and functions ca in Lp'(iï) such that 

| B » ( * , Ö | g«ü(») + «o E U*h*> 
\4>\**m 

where 

9«* < P*qal, q<* = max(l, np{np — n + p(m — | a | ))~1), 

pf1 = max(0, w (̂w — p(m — | <A | ))~1). 

(2) For*={fo: | j 8 | S » - l } f f = { f « : | a | = m } , s*/ 4«(*f ^, f) 
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= A (x, £) where £ = [^, f ] . Then for every x in Q, ^, f and f ' with f T^f', 

E [iia(*,*,r) - i4«(*,*,ni(r« - fa) > o. 
(3) There exist positive constants c\ and c% such that 

77&e» : (a) The form a{uyv) is well defined for all u and v in V and there 
exists an unique element T(u) in V* such that a(u, v) = (T(u), v) for all 
v in V and a given element u in V, Similarly, b(u, v) is well defined for 
u and v and b(u, v) = (S(u), v) for all v in V and a given u in V, when 
S(u)EV*. 

(b) T is a bounded continuous mapping of V into V* which satisfies 
condition (S). 

(c) S is a compact mapping of V into V*. 

The proof of Theorem 2 and the details of further applications of 
these arguments will be given in another paper. 

Let us consider, however, the application of Theorems 1 and 2 
to the "self-adjoint" case, i.e. when A and B are the Euler-Lagrange 
operators of multiple integral variational problems. 

THEOREM 3. Let T and S be the derivatives of two C\ f unctions f and 
g on V, respectively, where T is bounded and satisfies condition (S)0 

and S is compact. Let c be a constant such that on the level set Mc 

= {u\f(u) = c}, (T(u), u)>0, while Mc is bounded. Suppose that 
g(u)>0for u in MC} that (S(u), u)>0 on Mc, and that for each set B 
on Mcfor which g(u)>e>0, (S(u)y u)>d(e)>0. 

Then g assumes its maximum at a point u0 of MCf and T(u0) =\S(u0) 
for some X>0. 

PROOF OF THEOREM 3. F is assumed as in Theorem 1 to be a sep
arable reflexive Banach space. We choose an increasing sequence Vn 

of finite dimensional subspaces whose union is dense in V and with 
MCC\ Vn having their union dense in Mc. Let ƒ„ and gn be the restric
tions of ƒ and g to Vn. Then MCC\ Vn is the c-level set of fn and ƒ„' 
=Jn*r , gn' = j n *S. Since (ji (u),u)= (T(u)y u)>0on MCC\ Vnt McC\ Vn 

is a manifold. The function g is C1 on this compact manifold and as
sumes its maximum mn on MCC\ Vn at a point un which satisfies the 
condition T(un) = \nS(un). Since g(un) = mn—^m = $upUGMcg(u), 
(S(un), un) è</o>0 for all n. Hence, since 

\n = (T(un),Un)/(S(Un)}Un), 
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X„ is uniformly bounded. If we apply Theorem 1, we obtain the con
clusion that for an infinite subsequence, un{k)-^u, where u is an eigen-
function T(u) =\S(u). Since g is continuous, g(un^k))--^g(u) ~m. Since 
Mc is closed, u(~Mc. Q.E.D. 

THEOREM 4. Let V be a separable reflexive Banach space, T and S 
two continuous mappings of V into F* with T bounded and satisfying 
condition (S)0f S compact. Suppose that T and S are the derivatives of 
two Cl functions ƒ and g on V, and suppose that on the level set Me 

= {u\f(u)=c}, (T(u), u)>0. Suppose that Mc is invariant under the 
involution w(u) = —u, and that g(—u)~g(u) on Mc. Suppose further 
that Mc is intersected exactly once by each ray through the origin, that 
g(u)>0 for u in MC, that (S(u), u)>0 on MC and that g(u) and 
(S(u), u) go to zero together on Mc. Suppose finally that f or each €>0, 
there exists a finite dimensional subspace V€ of V such that outside the 
e-neighborhood of V€, g(u)<e. For each f, let 

hj = sup^-oatar.jif^ày minueK g(u)} 

where the supremum is taken over compact subsets K of Mc whose image 
in MC/T has Lusternik-Schnirelman category §y. 

Then: 
(a) For each j , hj is well defined and there exists u3- in Mc with 

T(uj) = XySOy), (Xy > 0), ƒ(«,) = c, g(u,) « hh 

while Xy—>+ °°, hj—»0. 
(b) Suppose that dim(F„) à j . Then we can define 

hj,n = supp^&t(K,Me)zj,KciVnnimueE: g(u)} 

and for eachj^n, there exists Uj,n in Vn such that 

jnT(Ujtn) =iw«S'(%,n), f(Uj,n) — C, g(Uj,n) — hj,n. 

(c) For any fixed j and any infinite subsequence ^ x A o - ^ y as &—> <», 
Uj is an eigenfunction satifsying the condition of part (a) and 
Uj,n(k)-^Uj. 

PROOF OF THEOREM 4. Since ƒ*' =j*T, so that (fn(u), u)>0 on 
Mcr\Vn, the latter is a manifold for each n, and (Mcr\Vn)/Tr is 
homeomorphic to P**""1, which has Lusternik-Schnirelman category n. 
The conclusions of (b) then follow from the classical Lusternik-
Schnirelman theory on finite dimensional manifolds (Lusternik [7], 
Vainberg [8]). The conclusion of (a) will follow from that of part (c) 
so that it suffices to prove (c). 
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PROOF OF (C). We may assume without loss of generality that 
Uj^—^Uj as w—>oo. Since giuj^ — hj^—thj as/—>+°° where hj>0 for 
each j , it follows that (5(wy,w), Uj>n)'^do>0 for all n. Hence Xy|W 

= (JP(%,W) , Ujin)(S(Ujtn), Uj,n)~~l is uniformly bounded. Applying 
Theorem 1, we find that Uj,n—*Uj. Hence f(uj) ==limn f(Uj,n) =c. Since 
g(uj) =limn g(ujtn)=hj, and since by Theorem 1, u3 is an eigenfunc
tion of the pair (T, 5), our conclusion follows. Q.E.D. 

REMARKS. (1) The result of Theorem 4 combined with Theorem 2 
generalizes the writer's results in [4] under weaker regularity and 
boundedness hypotheses on the Aa and makes no explicit use of the 
theory of infinite dimensional manifolds. 

(2) An earlier at tempt to weaken the regularity hypotheses of [4] 
was made by M. Berger [ l ] using an infinite dimensional argument. 
His argument in [ l ] contains a number of serious errors and gaps 
which make it doubtful that the argument can be carried through 
(cf. the review by C. W. Clark in Math. Reviews). 

(3) A recent paper with a similar title by S. Hildebrandt [6] has no 
intersection with the present paper since it concerns linear operators 
depending nonlinearly on X, not nonlinear operators depending lin
early on X. However, the methods of the present paper can be used 
to combine Hildebrandt's results with those given here and extend 
them to nonlinear operators. 
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