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1 Introduction and preliminary results

The growing attention for the study of the p-Laplacian operator A, in the last few
decades is motivated by the fact that it arises in various applications. For instance,
in Fluid Mechanics, the shear stress 7 and the velocity gradient V,u of certain
fluids obey a relation of the form 7(z) = a(z)V,u(z), where Vyu = |Vul[P~2Vu.
Here p > 1 is an arbitrary real number and the case p = 2 (respectively p < 2,
p > 2) corresponds to a Newtonian (respectively pseudoplastic, dilatant) fluid.
The resulting equations of motion then involve div (aV,u), which reduces to
aApu = adiv (Vpu), provided that a is constant. The p-Laplacian appears in the
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study of flow through porous media (p = 3/2, see Showalter-Walkington [24]) or
glacial sliding (p € (1,4/3], see Pélissier-Reynaud [20]). We also refer to Aronsson-
Janfalk [4] for the mathematical treatment of the Hele-Shaw flow of “power-law
fluids”. The concept of Hele-Shaw flow refers to the flow between two closely-
spaced parallel plates, close in the sense that the gap between the plates is small
compared to the dimension of the plates. Quasilinear problems with a variable
coefficient also appear in the mathematical model of the torsional creep (elastic for
p = 2, plastic as p — 00, see Bhattacharya-DiBenedetto-Manfredi [5] and Kawohl
[18]). This study is based on the observation that a prismatic material rod sub-
ject to a torsional moment, at sufficiently high temperature and for an extended
period of time, exhibits a permanent deformation, called creep. The correspond-
ing equations are derived under the assumptions that the components of strain
and stress are linked by a power law referred to as the creep-law (see Kachanov
[16, Chapters IV, VIII], Kachanov [17], and Findley-Lai-Onaran [13]). A nonlin-
ear field equation in Quantum Mechanics involving the p-Laplacian, for p = 6,
has been proposed in Benci-Fortunato-Pisani [6]. Eigenvalue problems involv-
ing the p-Laplacian have been the subject of much recent interest (we refer only
to Allegretto-Huang [1], Anane [3], Drédbek [9], Drabek-Pohozaev [11], Drébek-
Simader [12], Garcia-Peral [15], Garcia-Montefusco-Peral [14]).

Let @ ¢ RY be an unbounded domain with (possible noncompact) smooth
boundary 0f2. We assume throughout this paper that p, ¢ and m are real numbers
satisfyingl<p<q<p*:NN—fp,ifp<N(p*:+ooifp2N),q§m<p%\’i:;)
if p< N (¢ <m < +oo when p > N).

Let C$°(Q) be the space of C§° (RN )-functions restricted on Q.

We define the weighted Sobolev space E as the completion of C§°(€2) in the
norm

1/p

Julls = /(Wwww+u;hmmuw>w

Q

Denote by LP(; wq), L1(Q; we) and L™(99; ws) the weighted Lebesgue spaces
with weight functions w;(x) = (1 + |z])* (i = 1,2,3), and the norms defined by

K e =/Qw1IU(:1?)|pd$7 [ e =/QwQIU(93)\qu

and

Jull e, = [ waluto)™ s,
o0

where —N < a1 < —pif p < N (aq < —p when p > N), —N<a2<q¥—N
ifp<N(—N<a2<Owhenp2N),and—N<a3<m¥—N—|—1ifp<N
(=N < a3 <0 when p > N).

We shall use in our paper the following embedding result.
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Theorem A Under the above assumptions on p, g and m, the space E is compactly
embedded in LI(SY; wa) and also in L™ (08); ws).

This theorem is a consequence of Theorem 2 and Corollary 6 of Pfliiger [22].
Furthermore, with the same proof as in Pfliiger [21, Lemma 2], one can show

Lemma 1 The quantity

Hu||f’=/a(x)\vu|pdx+/ b(a)|ul? dS
Q o0

defines an equivalent norm on E.

2 The main results

Consider the problem

{ —div (a(z)|VulP~*Vu) = Af(z)|[ulP""u + g(x)|u|"u in Q, )

a(x)|VulP~2Vu - n + b(z)|[ulP~?u = h(x,u) on 99,

where n denotes the unit outward normal on 9Q, 0 < ag < a € L*(f), while
b: 00 — R is a continuous function satisfying

c C
Tyt =" = T

for some constants 0 < ¢ < C.

Problems of this type arise in the study of physical phenomena related to
equilibrium of anisotropic continuous media which possibly are somewhere “per-
fect” insulators, cf. Dautray-Lions [7].

We assume that f and g are nontrivial measurable functions satisfying

0< f(z) <C+|z[)* and 0<g(z) <C(1+|z[)**, forae. z€Q.

The mapping h : 92 x R — R is a Carathéodory function which fulfills the
assumption

(A1) |h(z, )| < ho(x) + ha(x)]s[™ 1,
where h; : 9Q — R (i = 0,1) are measurable functions satisfying

ho € Lm/(m_l)(ﬁQ; wé/(km)) and 0<h; < Cpws a.e. on Of.

We also assume

(A2) lim, o ; Mz, s)

W = 0 uniformly in z.
x)|s
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(A3) There exists p € (p, g] such that
pH(x,t) < th(xz,t) for a.e. x € 9Q and every ¢t € R.

(A4) There is a nonempty open set U C 0Q with H(x,t) > 0 for (x,t) €
¢
U x (0,00), where H(z,t) = / h(z,s)ds.
0

Our first result asserts that under the above hypotheses, problem (A) has at
least a solution.

By weak solution of problem (A) we mean a function u € E such that, for
any v € E,

/a(x)\VuV’*zVqu d:L'Jr/ b(x)|ulP2uv dS
Q o0

= P2 q—2
)\/Qf(:c)|u| uvd:c+/Qg(:c)|u| uvdw+/ h(z,u)vdS.

Ele)
Define

Se it (fﬂa(m”v“'pd“fmb(x)u|pd5>.

we Bt Jor F@)ul? da
Our first result is

Theorem 1 Assume that the conditions (A1)~(A4) hold. Then, for every A < X,
problem (A) has a nontrivial weak solution.

In the special case h(x,s) =0 we are able to show also a multiplicity result
for problem (A). The statement is the following

Theorem 2 Assume h(x,s) = 0. Then, for every A\ < A, problem (A) possesses
infinitely many solutions.

Next we prove the existence of an eigensolution to the following eigenvalue
problem

{ —div (a(z)|VulP2Vu) = X (f(z)|ulP~2u + g(z)|u|??u) in Q,
a(x)|Vu|P"2Vu - n + b(x)|uP~*u = M\h(z,u) on 0.

We stress that for the next existence result of the paper we drop the assumptions
(A2) and (A4). By weak solution of problem (B) we mean a function v € F such
that, for any v € F,

(B)

/ a(x)|Vu|P~*Vu - Vv dx —|—/ b(x)|ulP~2uv dS
Q oN

= [/Q f (@) |u|P~2uvdx +/Qg(x)|u\q_2uvdx + /69 h(:mu)vdS] .

‘We prove
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Theorem 3 Assume that the hypotheses (A1) and (A3) hold. Let d be an arbitrary
real number such that 1/d is not an eigenvalue \ in problem (B), and satisfying

d> =. (2.1)

Then there exists p > 0 such that for allr > p > p, the eigenvalue problem (B)
has an eigensolution (u, \) = (u4, A\g) € E x R for which one has

1 1
d+r2ually' ™" d + p|uglly "

Mg €

3 Problem (A)

Throughout this section we use the same notations as was previously done in the
case of problem (A).
The energy functional corresponding to (A) is defined as F : E — R

F(u)zl/a(x)wuwdﬁl/ b(x)\uvﬂds—i/ F@)|ul? do
PJa P Joa P Ja
- H(x,u)dS — }/ g(x)|u|? dx
a0 q.Ja

where H denotes the primitive function of h with respect to the second variable.
By Lemma 1 we have || - ||, ~ || - ||z We may write

Flu) = %Hullf - % / @)l de - /B Hiau)ds - g / o)l da.

Since p < ¢ < p*,—N < a; < —p and —N < az < q% — N we can apply
Theorem A and we obtain that the embeddings E C LP(Q; wy) and E C LY
(©; wo) are compact. So the functional F is well defined.

We denote by Np = h(z,u(z)), Ng = H(z,u(x)) the corresponding
Nemytskii operators.

Lemma 2 The operators
Ny, : L™(09; wg) — L™ =D (00 wy/T™™), Ny : L™(09; ws) — L' (09)
are bounded and continuous.

Proof. The proof follows from Theorem 1.1 in [10]. O
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Our hypothesis A < A implies the existence of some Cy > 0 such that, for every
ve kR

[olly = [ f@)|vPdz = Collvp.
Q

Lemma 3 Under assumptions (Al)—(A4), the functional F' is Fréchet differen-
tiable on E and satisfies the Palais-Smale condition.

Proof. Denote I(u) = %||u||’g, Kp(u) = H(z,u)dS, Kg(u) = / U(x,u)dr
0 o

and K¢ (u) = / ®(x,u) dz, where (z,u) = %f(x)|u|p and ¥(z,u) = %g(x)|u|q.
Q

Then the directional derivative of F' in the direction v € F is

(F'(u),v) = (I'(u), v) = MEg(u), v) = (Ky (u), v) = (K (u),v),

where

(I’(u),v}:/Qa(m)|Vu|p72Vqudx+ b(x)|ulP~?uwv ds,

-
(Ki(w,0) = | nawps

o) = [ gl uods
(K} (u),v) = /Q F(@)|ulP?u da.

Clearly, I' : E — E* is continuous. The operator K}I is a composition of the
operators

l

Ky o E = L™(0%; ws) ™5 L™/ "0 (00; wy/ ™) L

where (I(u),v) = [, uvdS. Since

1/m’ 1/m
/ luv| dS < </ lu|™ wé/(l_m) dS) </ || ws dS) ,
a0 a0 a0

then [ is continuous, by Theorem A. As a composition of continuous operators,

ro, . .
K, is continuous, too. Moreover, by our assumptions on ws, the trace operator

E — L™(09Q; ws) is compact and therefore, K;I is also compact.

Set p(u) = f(z)|u[P~2u. By the proof of Lemma 2 we deduce that the
Nemytskii operator corresponding to any function which satisfies (A1) is bounded
and continuous. Hence N and N, are bounded and continuous. We note that

Ky B C LP(Q; wy) e 12/ (0= 1/ 0=9)) 1, p



Vol. 8, 2001 Nonlinear eigenvalue problems for quasilinear operators 487

where (n(u),v) = [, uvdz. Since

(p—1)/p 1/p
/ luv| da < </ ‘U|P/(P—1) w}/(l—p) dl‘) </ |U‘P wy dx> ’
Q Q Q

it follows that 7 is continuous. But K:I, is the composition of three continuous
operators and by the assumptions on w;, the embedding E C LP(€); w;) is com-
pact. This implies that K,'i, is compact. In a similar way we obtain that K:I, is
compact and the continuous Fréchet differentiability of F' follows.

Now, let u,, € E be a Palais-Smale sequence, i.e.,

|F(up)| < C for all n (3.1)
and
| F' (un)|| g« — 0 as n — oo. (3.2)
We first prove that {u,} is bounded in E. Remark that (3.2) implies that
[(F" (tn), un)| < o~ |[unllp for n large enough.

This and (3.1) imply

€t talls = Fl) = P (). ). (33)
But
(F' (), wn) = /Qa(x)|Vun|pdx+/aQ b(@)|unl? dS — A
/Qf(m)\unV’ dx — /Qg(x)|un|q dx — /89 h(x, up)un dS.
We have
1 1 1
Flun) = P ) = (3= 1) (luall = A [ oluas )
1 1 1
- ( . H(z,u,)dS — i oo h(z, up)uy, dS) - (q - #> /Qg(m)|un|qu).
By (A3) we deduce that
1
- H(z,u,)dS < M /BQ h(x, up)un dS. (3.4)

Therefore

Flua) = 2 (1), 1) 2 (; _ ;) Collunll. (3.5)
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Relations (3.3) and (3.5) yield

1 1
C+ Jlunllo = < - ) Collunlly-
p

This shows that {u,} is bounded in E.
To prove that {u,} contains a Cauchy sequence we use the following inequal-
ities for £,¢ € R™ (see Diaz [8], Lemma 4.10):

€ = CIP < C(lglP~2e = [CP 2O (E — ¢), forp>2 (3.6)
€ — ¢ < CUeP~2e = [CP2O(E = Qe +1¢D*P, forl<p<2. (3.7

Then we obtain in the case p > 2:

lwn — uil)) = / a(z)|Vu, — Vugl? dz + / b(x)|un — ugk|? dS
Q 00

< C’(<I/(un),un - uk> - <I/(uk)=un — Uug))

= C({F'(upn), un — ug) — (F' (ug), un — ug)

MK (), i — ug) — Mg (ur), un — ui)

(K gy ()t — i) — (K gy (), — )

(K (tn), tn — ug) — (K (wg), up — ug))

< CIF (un) 1+ I () [ mx + 1M 1K (wn) = K ()|

’

Ky (un) = Ky (ur) || g + [ Ky (un) = Ky (ur)] gx) [ tn = uglo-

+ + +

Since F'(u,) — 0 and KC,P, Ky, K} are compact, we can assume, passing
eventually to a subsequence, that {u,} converges in E.
If 1 < p < 2, then we use the estimate

[l = uklly < O (), 1 — )
— (1 (i) — i) (el + e[ 7)- (3-8)

Since ||uy || is bounded, the same arguments lead to a convergent subsequence. In
order to prove the estimate (3.8) we recall the following result: for all s € (0, 00)
there is a constant Cs > 0 such that

(x+y)" <Cs(z®+y°)  forany z,y € (0,00). (3.9)

Then we obtain

ltn — ugl? = (/ a(z)| Vg, — Vuk|pdx+/ b() | —uk|pdS> '
Q o0

, [( [ e, - vuk|pdx)i o ([ - Wsﬂ |

(3.10)

IN
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Using (3.7), (3.9) and the Holder inequality we find

/ a(z)|Vu, — Vug|P de = / a(z)(|Vu, — Vugl?)? dz
Q Q

< c/ a(2)((|[Vun P2V, — |Vur|P "2 Vug) (Vu, — Vug)) 2
Q

p(2—p)

(|[Vun| + [Vug|) ™z dx

e / (@(@) (V|2 Vi — VP2 Ve (Vi — Vuug))
Q

(a(@)(|Vun| + [Vug )PV =" da

IS

2

<c ( / (@) (| Vit P2V — |Vetg P2V ) (Vi — Vg dx)
Q

2—p

2

(/Q o) (V] + Vg ])? dx)

2—p

2

<é, ( /Q o(2)| V| da + /Q a(x)|Vuk|pdx>

wls

/ a(x)(|Vun P2V, — |Vur|P2Vug) (Vu, — Vuyg) dx)
Q

7 N\

(/Q a(z)|Vu,[? dm) a n (/Q P dm)gzp]

y ( / a(2)([Vttn P2V, — [Vatg =2V ) (Vi — Vi) dm)
Q

<T,

(NS}

Wk

<T, { / a(2)([Vitn P2V, — [Vitg P2V ) (Vi — Vg da:]
Q

(2—217)1) (2—2p)p
(unlly =+ llunll, =)

Using the last inequality and (3.9) we have the estimate

(/Q ()| Vi — Vaug|? dx)i

<C, </ a(2)(|Vun [P Vu, — |Vug|P~2Vug)(Vu, — Vuy,) dx)
Q

(leanlly ™ + [kl ) (3.11)
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In a similar way we can obtain the estimate

(/m b(@)|un —uk|pdS>g

< 0y ([ el ~ ) — ) )
o0

2— 2—
(unlly™ + lJuxlly™)- (3.12)

It is now easy to observe that inequalities (3.10), (3.11) and (3.12) imply the
estimate (3.8). The proof of Lemma 3 is complete. |

Proof of Theorem 1. We have to verify the geometric assumptions of the Mountain-
Pass Theorem. We first show that there exist positive constants R and ¢y such
that

F(u) > co, for any u € E with ||u]| = R. (3.13)
By Theorem A we obtain some A > 0 such that

flulld ., < Alul|f forallue E.

q,w2

This fact implies that

1 1
P = S(lf = Alulf) = 3 [ gl do
p q.Ja
A
- [ Hewds = Ll - Sl - [ Hewds.
1)9] p q a0

By (Al) and (A2) we deduce that for every € > 0 there exists C. > 0 such that

1
glg(af)IIUI" < eb(a)|ul’” + Cews(x)|ul™.

Consequently
Co A -
mmz——w%ffmmf/<wmwmwuumm>@
p q o0
Cy A m
> Ul = Sl calully - C-Callul

For ¢ > 0 and R > 0 small enough, we deduce that for every u € E with ||ul|, = R,
F(u) > ¢o > 0, which yields (3.13).

We verify in what follows the second geometric assumption of the Mountain-
Pass Theorem, namely

Jv € E with [jv]| > R such that F(v) < co. (3.14)
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Choose ¢ € C5°(Q2), ¥ > 0, such that 0 # suppy N9 C U. From
%g(m)wq > 38" —e¢q on U x (0,00) and (Al) we claim that

v 1 )
F(t9) = S0l = Al lE.0,) - / g(@)tp|? du /mmx,twms

IN

tP t4
g = Al ) — st [ s o] = [ wpr
p U q Ja

Since ¢ > u > p, we obtain F(ty) — —oo as t — oco. It follows that if ¢ > 0 is
large enough, F'(t1)) < 0, so v = t1) satisfies (3.14).

By the Ambrosetti-Rabinowitz Theorem, problem (A) has a nontrivial weak
solution.

Next we prove the second existence result about problem (A).

Proof of Theorem 2. In order to show the claim we want to apply a classical tool
in critical point theory, precisely we will use the Ljusternik-Schnirelmann theory
(see [23]). Consider the even functional

J(v) = l/ﬂa(xﬂVi}\pdu’ch ]1) /zm b(z)|v|P dS — %/Qf(x)|v|p dx,

p

on the closed symmetric manifold

M:{veE:/Qg(a:)Mq:l}.

Note that M is only a C'-manifold, since we have assumed 1 < p < ¢. By our
hypotheses on f, g, b and h (note that (Al)—(A4) are easily satisfied), Lemma 3
and Theorem 5.3 in [25], we have that J|p; possesses at least v(M) pairs of critical
points (where (M) stands for the genus of M).

Now we have to estimate y(M). Since g # 0 there exists an open set w C
such that g(z) > 6 > 0 on w. By the properties of the genus it follows that
v(w) > 4(B), where B is the unit ball of Wy (w) C E, but it is well known that
the genus of the unit ball of a infinite dimensional Banach space is infinity, so
v(M) = co. Hence there exists a sequence {v,} C E, such that any v, (and also
—vy,) is a constrained critical point of J on M.

By the Lagrange multipliers rule we obtain that there exists a sequence
{An} C R such that

/Qa(:c)|an|p dz + /aQ b(x)|v,|P dS — )\/Qf(z)h)n\p dzx = )\n/Qg(x)\funP dz.
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Since v, € M, using our assumption A < A we find
A= lonllf =2 [ f@)onlda >0,
Q

)\i/(q—l’)

so we can apply the usual scaling. Setting u,, = vy, we have that u,

satisfies for any n the equation

/ a(z)|Vuy,|? dz +/ b(x)|u,|P dS = )\/ f(@)|un|? dz —l—/ g(x)|un|? dz,
Q o0 Q Q
so the claim is proved.

4 Problem (B)

We start with the following auxiliary result.

Lemma 4 Under assumption (Al), if ¢ < m, there exists a number p > 0 such
that for each p > p the function

2
P m 1 P 1/ q
vie —|o|lgr = =P, — = [ g(x)|v|? de — H(z,v)dS, veeE,

is bounded from below on E.

Proof. The growth condition for h implies

H(z,v) dS‘ < /m <h0(:1:)|v| + ;hl(x)mm) ds

m—1

_m _ _1 m
< ([ ngmurmas) "
o

< Co+Clo|, weE,

o0

L @9ws) T Crllvl Tm (00:uws)

with constants Cp, C' > 0. One obtains also that

/Q g(@)[u]? da

with constants Cy,C > 0. Clearly, we can choose now the positive number p as
desired. O

1

. < Collvlly < Co + Clolly", veE,
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In view of Lemma 4 one can find numbers by > 0 and a > 0 such that

—2
p 2 1 1/
o™+ Zpe — ZllollP — = a4
ol + —bo p”v“p,un . Qg(fv)lvl x
— | H(z,v)dS>a>0, veE. (4.1)
oN

With by > 0 and p > 0 as above we consider numbers r > p > p and a
function 8 € C(R) such that

B(0) = B(r) =0, B(p) = bo, (4.2)
B'(t) <0 < t<Oorp<t<r, (4.3)
|t\1_ifiloo B(t) = +oo. (4.4)

Lemma 5 Assume that conditions (Al) and (A3) are fulfilled. Then, for any
d > 0 satisfying (3), the functional J : E x R — R defined by

2
Tt = ol + =00 =3 [ sl

1 d
! / g(@)]? dz / H(z,v) dz+ L] (4.5)
qJa o0 p

is of class C' and satisfies the Palais-Smale condition.

Proof. The property of J to be continuously differentiable has been already jus-
tified in the proof of Theorem 1.

In order to check the Palais-Smale condition let the sequences {v,} C E and
{t,} C R satisfy

| J(Un,tn)] < M, Vn>1 (4.6)

J{;(Umtn) = ti an”;n_pll(vn) _K</I>(Un) _K}I(Un)_K@(Un)+dll(vn) — 0, (4.7)
2 m

Tt = 2 (bl + B(t)) = 0 (48)

where I, K¢, Ky, Ky have been introduced in the proof of Lemma 3.
From (4.1), (4.2), (4.5) and (4.6) we infer that

M>t?’|| Hm+26(t) 1|| |
2y = _Z
- m b m n pvn

1
=2 [ g@lon do
q4Jo

d
— H(z,v,) dz+ —||v, |}
a0 p

2 —p? 2 d
> my = - - 18
> 2P o o (B(t) = B(e)) + ol
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Condition (4.4) in conjunction with the inequality above yields the boundedness
of {t,}.

Let us check the boundedness of {v,} along a subsequence. Without loss of
generality we may admit that {v,} is bounded away from 0. From (22) we deduce
that the sequence {t,||v,||7"} is bounded. Therefore it is sufficient to argue in the
case where t, — 0. From (4.6) it turns out that

1 d )
ot / H(, vn)de + / 9(@)nlidz — Ljon 2
Q q Joq P

is bounded. By (4.7) we deduce that
1

[[on s

1
=[|vn,
p

(—(Kg(vn),vn) — (K (vn), vn) — (K (vn), vn) + d””ﬂ“?) -

Then, for n sufficiently large, assumption (A3) allows us to write

1 1
M+1+ vnb>d(> vnp+<) v ||%,
[[onll P [[onlly B onll74 (,05)

1 1 1
—|—/ <hx,vnvn—Hx,v”)dS—|—<—> VB 0,
o\ (,vn) (2, vn) i vnllp,

1 1 1 1
- —— ) (dllvall} = llvnll? . 2(—)<d—> v}
(p u)( lonlly = onllps) = { 5 = 5 ) lonls

By (3), this establishes the boundedness of {v,} in E.
In view of the compactness of the mappings Kj, K}, Ky (see the proof of
Lemma 3), by (4.7) we get that

Y

(d+t5 lvally"™") I (vn)

converges in E* as n — oo. The boundedness of {t,} and {v,} ensures that
{I'(v,)} is convergent in E* along a subsequence. Assume that p > 2. Inequality
(3.6) shows that

un —ully <C {/ a(@)(|Vun P2 Vu, — |Vug [P 2Vuy) - (Vu, — Vug) do

/b (P2 — [ue|P~2u) (1 — ug) dT
un) = I'(ug), un —ug) < O (up) = I'(ug) |3 llun —uglp ifp> 2.

Consequently, if p > 2, {v,} possesses a convergent subsequence. Proceeding in
the same way with inequality (3.7) in place of (3.6) we obtain the result for
l<p<2 O

In the proof of Theorem 3 we shall make use of the following variant of the
Mountain Pass Theorem (see Motreanu [19]).
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Lemma 6 Let E be a Banach space and let J : E x R — R be a C' functional
verifying the hypotheses

(a) there exist constants p > 0 and o > 0 such that J(v,p) > «, for every
veFE;

(b) there is some r > p with J(0,0) = J(0,7) = 0.
Then the number

°= b gga, J(h(r)

is a critical value of J, where

P:={g€C(0,1; E x R); g(0) = (0,0), g(1) = (0,7)}.

Proof of Theorem 3. We apply Lemma 6 to the function J defined in (4.5). Tt is
clear that assertion (a) is verified with p > 0 and a > 0 described in Lemma 4 and
(4.1). Due to relation (4.2), condition (b) in Lemma 6 holds. Lemma 5 ensures
that the functional J satisfies the Palais-Smale condition. Therefore Lemma 6
yields a nonzero element (u,t) € E' x R such that

Ty(ut) = (d+ 2 [ully" ) I'(u) — Kg(u) — Kpy (u) — Ky (u) =0, (4.9)

Ji(u, t) = — (t[lulli" + B'(£)) = 0. (4.10)

2
m
From (4.10) it follows that

t3'(t) <0. (4.11)

Combining (4.11) and (4.3) we derive that if ¢ # 0, then u # 0 and
p<t<r. (4.12)

Therefore for each d in (3) such that 1/d is not an eigenvalue in (B) and each
r > p > p we deduce that there exists a critical point (u,t) = (ug,tq) € E x Ry
of J, where t = ty verifies (4.12). Consequently, relation (4.9) establishes that
ug € E is an eigenfunction in problem (B) where the corresponding eigenvalue is

1

N =—F—-">—
d+ 15 Jually ™

with ¢ = t4 satisfying (4.12). This completes the proof.
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