
c© Birkhäuser Verlag, Basel, 2001
NoDEA
Nonlinear differ. equ. appl. 8 (2001) 481–497
1021–9722/01/040481–17 $ 1.50+0.20/0

Nonlinear eigenvalue problems for quasilinear
operators on unbounded domains

Eugenio MONTEFUSCO
Dipartimento di Matematica e Informatica
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1 Introduction and preliminary results

The growing attention for the study of the p-Laplacian operator ∆p in the last few
decades is motivated by the fact that it arises in various applications. For instance,
in Fluid Mechanics, the shear stress ~τ and the velocity gradient ∇pu of certain
fluids obey a relation of the form ~τ(x) = a(x)∇pu(x), where ∇pu = |∇u|p−2∇u.
Here p > 1 is an arbitrary real number and the case p = 2 (respectively p < 2,
p > 2) corresponds to a Newtonian (respectively pseudoplastic, dilatant) fluid.
The resulting equations of motion then involve div (a∇pu), which reduces to
a∆pu = adiv (∇pu), provided that a is constant. The p-Laplacian appears in the
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study of flow through porous media (p = 3/2, see Showalter-Walkington [24]) or
glacial sliding (p ∈ (1, 4/3], see Pélissier-Reynaud [20]). We also refer to Aronsson-
Janfalk [4] for the mathematical treatment of the Hele-Shaw flow of “power-law
fluids”. The concept of Hele-Shaw flow refers to the flow between two closely-
spaced parallel plates, close in the sense that the gap between the plates is small
compared to the dimension of the plates. Quasilinear problems with a variable
coefficient also appear in the mathematical model of the torsional creep (elastic for
p = 2, plastic as p → ∞, see Bhattacharya-DiBenedetto-Manfredi [5] and Kawohl
[18]). This study is based on the observation that a prismatic material rod sub-
ject to a torsional moment, at sufficiently high temperature and for an extended
period of time, exhibits a permanent deformation, called creep. The correspond-
ing equations are derived under the assumptions that the components of strain
and stress are linked by a power law referred to as the creep-law (see Kachanov
[16, Chapters IV, VIII], Kachanov [17], and Findley-Lai-Onaran [13]). A nonlin-
ear field equation in Quantum Mechanics involving the p-Laplacian, for p = 6,
has been proposed in Benci-Fortunato-Pisani [6]. Eigenvalue problems involv-
ing the p-Laplacian have been the subject of much recent interest (we refer only
to Allegretto-Huang [1], Anane [3], Drábek [9], Drábek-Pohozaev [11], Drábek-
Simader [12], Garćıa-Peral [15], Garćıa-Montefusco-Peral [14]).

Let Ω ⊂ RN be an unbounded domain with (possible noncompact) smooth
boundary ∂Ω. We assume throughout this paper that p, q and m are real numbers
satisfying 1 < p < q < p∗ = Np

N−p , if p < N (p∗ = +∞ if p ≥ N), q ≤ m < p(N−1)
N−p

if p < N (q ≤ m < +∞ when p ≥ N).
Let C∞

δ (Ω) be the space of C∞
0 (RN )-functions restricted on Ω.

We define the weighted Sobolev space E as the completion of C∞
δ (Ω) in the

norm

‖u‖E =


∫

Ω

(
|∇u(x)|p +

1
(1 + |x|)p

|u(x)|p
)
dx




1/p

.

Denote by Lp(Ω; w1), Lq(Ω; w2) and Lm(∂Ω; w3) the weighted Lebesgue spaces
with weight functions wi(x) = (1 + |x|)αi (i = 1, 2, 3), and the norms defined by

‖u‖p
p,w1

=
∫

Ω
w1|u(x)|p dx, ‖u‖q

q,w2
=
∫

Ω
w2|u(x)|q dx

and

‖u‖m
m,w3

=
∫

∂Ω
w3|u(x)|m dS,

where −N < α1 < −p if p < N (α1 < −p when p ≥ N), −N < α2 < qN−p
p −N

if p < N (−N < α2 < 0 when p ≥ N), and −N < α3 < mN−p
p −N + 1 if p < N

(−N < α3 < 0 when p ≥ N).
We shall use in our paper the following embedding result.
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Theorem A Under the above assumptions on p, q and m, the space E is compactly
embedded in Lq(Ω; w2) and also in Lm(∂Ω; w3).

This theorem is a consequence of Theorem 2 and Corollary 6 of Pflüger [22].
Furthermore, with the same proof as in Pflüger [21, Lemma 2], one can show

Lemma 1 The quantity

‖u‖p
b =

∫
Ω
a(x)|∇u|p dx+

∫
∂Ω
b(x)|u|p dS

defines an equivalent norm on E.

2 The main results

Consider the problem{−div (a(x)|∇u|p−2∇u) = λf(x)|u|p−2u+ g(x)|u|q−2u in Ω,

a(x)|∇u|p−2∇u · n+ b(x)|u|p−2u = h(x, u) on ∂Ω,
(A)

where n denotes the unit outward normal on ∂Ω, 0 < a0 ≤ a ∈ L∞(Ω), while
b : ∂Ω → R is a continuous function satisfying

c

(1 + |x|)p−1 ≤ b(x) ≤ C

(1 + |x|)p−1 ,

for some constants 0 < c ≤ C.
Problems of this type arise in the study of physical phenomena related to

equilibrium of anisotropic continuous media which possibly are somewhere “per-
fect” insulators, cf. Dautray-Lions [7].

We assume that f and g are nontrivial measurable functions satisfying

0 ≤ f(x) ≤ C(1 + |x|)α1 and 0 ≤ g(x) ≤ C(1 + |x|)α2 , for a.e. x ∈ Ω.

The mapping h : ∂Ω × R → R is a Carathéodory function which fulfills the
assumption

(A1) |h(x, s)| ≤ h0(x) + h1(x)|s|m−1,

where hi : ∂Ω → R (i = 0, 1) are measurable functions satisfying

h0 ∈ Lm/(m−1)(∂Ω; w1/(1−m)
3 ) and 0 ≤ hi ≤ Chw3 a.e. on ∂Ω.

We also assume

(A2) lims→0
h(x, s)

b(x)|s|p−1 = 0 uniformly in x.
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(A3) There exists µ ∈ (p, q] such that

µH(x, t) ≤ th(x, t) for a.e. x ∈ ∂Ω and every t ∈ R.

(A4) There is a nonempty open set U ⊂ ∂Ω with H(x, t) > 0 for (x, t) ∈
U × (0,∞), where H(x, t) =

∫ t

0
h(x, s) ds.

Our first result asserts that under the above hypotheses, problem (A) has at
least a solution.

By weak solution of problem (A) we mean a function u ∈ E such that, for
any v ∈ E,

∫
Ω
a(x)|∇u|p−2∇u∇v dx+

∫
∂Ω
b(x)|u|p−2uv dS

= λ

∫
Ω
f(x)|u|p−2uvdx+

∫
Ω
g(x)|u|q−2uvdx+

∫
∂Ω
h(x, u)vdS.

Define

λ̃ := inf
u∈E; u 6=0

(∫
Ω a(x)|∇u|p dx+

∫
∂Ω b(x)|u|p dS∫

Ω f(x)|u|p dx

)
.

Our first result is

Theorem 1 Assume that the conditions (A1)–(A4) hold. Then, for every λ < λ̃,
problem (A) has a nontrivial weak solution.

In the special case h(x, s) ≡ 0 we are able to show also a multiplicity result
for problem (A). The statement is the following

Theorem 2 Assume h(x, s) ≡ 0. Then, for every λ < λ̃, problem (A) possesses
infinitely many solutions.

Next we prove the existence of an eigensolution to the following eigenvalue
problem{−div (a(x)|∇u|p−2∇u) = λ

(
f(x)|u|p−2u+ g(x)|u|q−2u

)
in Ω,

a(x)|∇u|p−2∇u · n+ b(x)|u|p−2u = λh(x, u) on ∂Ω.
(B)

We stress that for the next existence result of the paper we drop the assumptions
(A2) and (A4). By weak solution of problem (B) we mean a function u ∈ E such
that, for any v ∈ E,∫

Ω
a(x)|∇u|p−2∇u · ∇v dx+

∫
∂Ω
b(x)|u|p−2uv dS

= λ

[∫
Ω
f(x)|u|p−2uvdx+

∫
Ω
g(x)|u|q−2uvdx+

∫
∂Ω
h(x, u)vdS

]
.

We prove
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Theorem 3 Assume that the hypotheses (A1) and (A3) hold. Let d be an arbitrary
real number such that 1/d is not an eigenvalue λ in problem (B), and satisfying

d >
1
λ̃
. (2.1)

Then there exists ρ > 0 such that for all r > ρ ≥ ρ, the eigenvalue problem (B)
has an eigensolution (u, λ) = (ud, λd) ∈ E × R for which one has

λd ∈
[

1
d+ r2‖ud‖m−p

b

,
1

d+ ρ2‖ud‖m−p
b

]
.

3 Problem (A)
Throughout this section we use the same notations as was previously done in the
case of problem (A).

The energy functional corresponding to (A) is defined as F : E → R

F (u) =
1
p

∫
Ω
a(x)|∇u|p dx+

1
p

∫
∂Ω
b(x)|u|p dS − λ

p

∫
Ω
f(x)|u|p dx

−
∫

∂Ω
H(x, u) dS − 1

q

∫
Ω
g(x)|u|q dx

where H denotes the primitive function of h with respect to the second variable.
By Lemma 1 we have ‖ · ‖b ' ‖ · ‖E . We may write

F (u) =
1
p
‖u‖p

b − λ

p

∫
Ω
f(x)|u|p dx−

∫
∂Ω
H(x, u) dS − 1

q

∫
Ω
g(x)|u|q dx.

Since p < q < p∗,−N < α1 < −p and −N < α2 < qN−p
p − N we can apply

Theorem A and we obtain that the embeddings E ⊂ Lp(Ω; w1) and E ⊂ Lq

(Ω; w2) are compact. So the functional F is well defined.
We denote by Nh = h(x, u(x)), NH = H(x, u(x)) the corresponding

Nemytskii operators.

Lemma 2 The operators

Nh : Lm(∂Ω; w3) → Lm/(m−1)(∂Ω; w1/(1−m)
3 ), NH : Lm(∂Ω; w3) → L1(∂Ω)

are bounded and continuous.

Proof. The proof follows from Theorem 1.1 in [10]. ¨
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Our hypothesis λ < λ̃ implies the existence of some C0 > 0 such that, for every
v ∈ E

‖v‖p
b − λ

∫
Ω
f(x)|v|pdx ≥ C0‖v‖p

b .

Lemma 3 Under assumptions (A1)–(A4), the functional F is Fréchet differen-
tiable on E and satisfies the Palais-Smale condition.

Proof. Denote I(u) = 1
p‖u‖p

b , KH(u) =
∫

∂Ω
H(x, u) dS, KΨ(u) =

∫
Ω

Ψ(x, u) dx

and KΦ(u) =
∫

Ω
Φ(x, u) dx, where Φ(x, u) = 1

pf(x)|u|p and Ψ(x, u) = 1
q g(x)|u|q.

Then the directional derivative of F in the direction v ∈ E is

〈F ′(u), v〉 = 〈I ′(u), v〉 − λ〈K ′
Φ(u), v〉 − 〈K ′

Ψ(u), v〉 − 〈K ′
H(u), v〉,

where

〈I ′(u), v〉 =
∫

Ω
a(x)|∇u|p−2∇u∇v dx+

∫
∂Ω
b(x)|u|p−2uv dS,

〈K ′
H(u), v〉 =

∫
∂Ω
h(x, u)v dS,

〈K ′
Ψ(u), v〉 =

∫
Ω
g(x)|u|q−2uv dx,

〈K ′
Φ(u), v〉 =

∫
Ω
f(x)|u|p−2uv dx.

Clearly, I ′ : E → EF is continuous. The operator K
′
H is a composition of the

operators

K
′
H : E → Lm(∂Ω; w3)

Nh→ Lm/(m−1)(∂Ω; w1/(1−m)
3 ) l→ EF

where 〈l(u), v〉 =
∫

∂Ω uv dS. Since

∫
∂Ω

|uv| dS ≤
(∫

∂Ω
|u|m′

w
1/(1−m)
3 dS

)1/m′ (∫
∂Ω

|v|mw3 dS

)1/m

,

then l is continuous, by Theorem A. As a composition of continuous operators,

K
′
H is continuous, too. Moreover, by our assumptions on w3, the trace operator

E → Lm(∂Ω; w3) is compact and therefore, K
′
H is also compact.

Set ϕ(u) = f(x) |u|p−2u. By the proof of Lemma 2 we deduce that the
Nemytskii operator corresponding to any function which satisfies (A1) is bounded
and continuous. Hence Nh and Nϕ are bounded and continuous. We note that

K
′
Φ : E ⊂ Lp(Ω; w1)

Nϕ→ Lp/(p−1)(Ω; w1/(1−p)
1 )

η→ EF
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where 〈η(u), v〉 =
∫
Ω uv dx. Since

∫
Ω

|uv| dx ≤
(∫

Ω
|u|p/(p−1)

w
1/(1−p)
1 dx

)(p−1)/p(∫
Ω

|v|p w1 dx

)1/p

,

it follows that η is continuous. But K
′
Φ is the composition of three continuous

operators and by the assumptions on w1, the embedding E ⊂ Lp(Ω; w1) is com-
pact. This implies that K

′
Φ is compact. In a similar way we obtain that K

′
Ψ is

compact and the continuous Fréchet differentiability of F follows.
Now, let un ∈ E be a Palais-Smale sequence, i.e.,

|F (un)| ≤ C for all n (3.1)

and

‖F ′(un)‖EF → 0 as n → ∞. (3.2)

We first prove that {un} is bounded in E. Remark that (3.2) implies that

|〈F ′(un), un〉| ≤ µ · ‖un‖b for n large enough.

This and (3.1) imply

C + ‖un‖b ≥ F (un) − 1
µ

〈F ′(un), un〉. (3.3)

But

〈F ′(un), un〉 =
∫

Ω
a(x)|∇un|p dx+

∫
∂Ω
b(x)|un|p dS − λ∫

Ω
f(x)|un|p dx−

∫
Ω
g(x)|un|q dx−

∫
∂Ω
h(x, un)un dS.

We have

F (un) − 1
µ

〈F ′(un), un〉 =
(

1
p

− 1
µ

)(
‖un‖p

b − λ

∫
Ω
f(x)|u|pdx

)

−
(∫

∂Ω
H(x, un) dS − 1

µ

∫
∂Ω
h(x, un)un dS

)
−
(

1
q

− 1
µ

)∫
Ω
g(x)|un|q dx).

By (A3) we deduce that∫
∂Ω
H(x, un) dS ≤ 1

µ

∫
∂Ω
h(x, un)un dS. (3.4)

Therefore

F (un) − 1
µ

〈F ′(un), un〉 ≥
(

1
p

− 1
µ

)
C0‖un‖p

b . (3.5)
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Relations (3.3) and (3.5) yield

C + ‖un‖b ≥
(

1
p

− 1
µ

)
C0‖un‖p

b .

This shows that {un} is bounded in E.
To prove that {un} contains a Cauchy sequence we use the following inequal-

ities for ξ, ζ ∈ RN (see Diaz [8], Lemma 4.10):

|ξ − ζ|p ≤ C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), for p ≥ 2 (3.6)

|ξ − ζ|2 ≤ C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)(|ξ| + |ζ|)2−p, for 1 < p < 2. (3.7)

Then we obtain in the case p ≥ 2:

‖un − uk‖p
b =

∫
Ω
a(x)|∇un − ∇uk|p dx+

∫
∂Ω
b(x)|un − uk|p dS

≤ C(〈I ′(un), un − uk〉 − 〈I ′(uk), un − uk〉)
= C(〈F ′(un), un − uk〉 − 〈F ′(uk), un − uk〉

+λ〈K ′
Φ(un), un − uk〉 − λ〈K ′

Φ(uk), un − uk〉
+〈K ′

H(un), un − uk〉 − 〈K ′
H(uk), un − uk〉

+〈K ′
Ψ(un), un − uk〉 − 〈K ′

Ψ(uk), un − uk〉)
≤ C(‖F ′(un)‖F

E + ‖F ′(uk)‖EF + |λ| ‖K ′
Φ(un) −K

′
Φ(uk)‖EF

+‖K ′
H(un) −K

′
H(uk)‖EF + ‖K ′

Ψ(un) −K
′
Ψ(uk)‖EF)‖un − uk‖b.

Since F ′(un) → 0 and K
′
Φ, K ′

Ψ, K ′
H are compact, we can assume, passing

eventually to a subsequence, that {un} converges in E.
If 1 < p < 2, then we use the estimate

‖un − uk‖2
b ≤ C ′|〈I ′(un), un − uk〉

−〈I ′(uk), un − uk〉|(‖un‖2−p
b + ‖uk‖2−p

b ). (3.8)

Since ‖un‖b is bounded, the same arguments lead to a convergent subsequence. In
order to prove the estimate (3.8) we recall the following result: for all s ∈ (0,∞)
there is a constant Cs > 0 such that

(x+ y)s ≤ Cs(xs + ys) for any x, y ∈ (0,∞). (3.9)

Then we obtain

‖un − uk‖2
b =

(∫
Ω
a(x)|∇un − ∇uk|p dx+

∫
∂Ω
b(x)|un − uk|p dS

) 2
p

≤ Cp

[(∫
Ω
a(x)|∇un − ∇uk|p dx

) 2
p

+
(∫

∂Ω
b(x)|un − uk|p dS

) 2
p

]
.

(3.10)



Vol. 8, 2001 Nonlinear eigenvalue problems for quasilinear operators 489

Using (3.7), (3.9) and the Hölder inequality we find∫
Ω
a(x)|∇un − ∇uk|p dx =

∫
Ω
a(x)(|∇un − ∇uk|2) p

2 dx

≤ C

∫
Ω
a(x)((|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un − ∇uk))

p
2

(|∇un| + |∇uk|) p(2−p)
2 dx

= C

∫
Ω
(a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un − ∇uk))

p
2

(a(x)(|∇un| + |∇uk|)p)
2−p
2 dx

≤ C

(∫
Ω
a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un − ∇uk) dx

)p
2

(∫
Ω
a(x)(|∇un| + |∇uk|)p dx

)2−p
2

≤ C̃p

(∫
Ω
a(x)|∇un|p dx+

∫
Ω
a(x)|∇uk|p dx

)2−p
2

(∫
Ω
a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un − ∇uk) dx

) p
2

≤ Cp

[(∫
Ω
a(x)|∇un|p dx

) 2−p
2

+
(∫

Ω
a(x)|∇uk|p dx

)2−p
2
]

×
(∫

Ω
a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un − ∇uk) dx

)p
2

≤ Cp

[∫
Ω
a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un − ∇uk) dx

]p
2

(‖un‖
(2−p)p

2
b + ‖uk‖

(2−p)p
2

b ).

Using the last inequality and (3.9) we have the estimate

(∫
Ω
a(x)|∇un − ∇uk|p dx

) 2
p

≤ C ′
p

(∫
Ω
a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un − ∇uk) dx

)

(‖un‖2−p
b + ‖uk‖2−p

b ). (3.11)
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In a similar way we can obtain the estimate

(∫
∂Ω
b(x)|un − uk|p dS

) 2
p

≤ C
′
p

(∫
∂Ω
b(x)(|un|p−2un − |uk|p−2uk)(un − uk) dx

)

(‖un‖2−p
b + ‖uk‖2−p

b ). (3.12)

It is now easy to observe that inequalities (3.10), (3.11) and (3.12) imply the
estimate (3.8). The proof of Lemma 3 is complete. ¨

Proof of Theorem 1. We have to verify the geometric assumptions of the Mountain-
Pass Theorem. We first show that there exist positive constants R and c0 such
that

F (u) ≥ c0, for any u ∈ E with ‖u‖ = R. (3.13)

By Theorem A we obtain some A > 0 such that

‖u‖q
q,w2

≤ A‖u‖q
b for all u ∈ E.

This fact implies that

F (u) =
1
p
(‖u‖p

b − λ‖u‖p
p,w1

) − 1
q

∫
Ω
g(x)|u|q dx

−
∫

∂Ω
H(x, u) dS ≥ C0

p
‖u‖p

b − A

q
‖u‖q

b −
∫

∂Ω
H(x, u) dS.

By (A1) and (A2) we deduce that for every ε > 0 there exists Cε > 0 such that

1
q
|g(x)||u|q ≤ εb(x)|u|p + Cεw3(x)|u|m.

Consequently

F (u) ≥ C0

p
‖u‖p

b − A

q
‖u‖q

b −
∫

∂Ω
(εb(x)|u|p + Cεw3(x)|u|m) ds

≥ C0

p
‖u‖p

b − A

q
‖u‖q

b − εc1‖u‖p
b − CεC2‖u‖m

b .

For ε > 0 and R > 0 small enough, we deduce that for every u ∈ E with ‖u‖b = R,
F (u) ≥ c0 > 0, which yields (3.13).

We verify in what follows the second geometric assumption of the Mountain-
Pass Theorem, namely

∃v ∈ E with ‖v‖ > R such that F (v) < c0. (3.14)
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Choose ψ ∈ C∞
δ (Ω), ψ ≥ 0, such that ∅ 6= suppψ ∩ ∂Ω ⊂ U . From

1
q g(x)|u|q ≥ c3s

µ − c4 on U × (0,∞) and (A1) we claim that

F (tψ) =
tp

p
(‖ψ‖p

b − λ‖ψ‖p
p,w1

) − 1
q

∫
Ω
g(x)|tψ|q dx−

∫
∂Ω
H(x, tψ) dS

≤ tp

p

(‖ψ‖p
b − λ‖ψ‖p

p,w1

)− c3t
µ

∫
U

ψµ dS + c4|U | − tq

q

∫
Ω
w2ψ

q dx.

Since q ≥ µ > p, we obtain F (tψ) → −∞ as t → ∞. It follows that if t > 0 is
large enough, F (tψ) < 0, so v = tψ satisfies (3.14).

By the Ambrosetti-Rabinowitz Theorem, problem (A) has a nontrivial weak
solution.

Next we prove the second existence result about problem (A).

Proof of Theorem 2. In order to show the claim we want to apply a classical tool
in critical point theory, precisely we will use the Ljusternik-Schnirelmann theory
(see [23]). Consider the even functional

J(v) =
1
p

∫
Ω
a(x)|∇v|p dx+

1
p

∫
∂Ω
b(x)|v|p dS − λ

p

∫
Ω
f(x)|v|p dx,

on the closed symmetric manifold

M =
{
v ∈ E :

∫
Ω
g(x)|v|q = 1

}
.

Note that M is only a C1-manifold, since we have assumed 1 < p < q. By our
hypotheses on f , g, b and h (note that (A1)–(A4) are easily satisfied), Lemma 3
and Theorem 5.3 in [25], we have that J |M possesses at least γ(M) pairs of critical
points (where γ(M) stands for the genus of M).

Now we have to estimate γ(M). Since g 6≡ 0 there exists an open set ω ⊂ Ω
such that g(x) ≥ δ > 0 on ω. By the properties of the genus it follows that
γ(ω) ≥ γ(B), where B is the unit ball of W 1,p

0 (ω) ⊂ E, but it is well known that
the genus of the unit ball of a infinite dimensional Banach space is infinity, so
γ(M) = ∞. Hence there exists a sequence {vn} ⊂ E, such that any vn (and also
−vn) is a constrained critical point of J on M .

By the Lagrange multipliers rule we obtain that there exists a sequence
{λn} ⊂ R such that

∫
Ω
a(x)|∇vn|p dx+

∫
∂Ω
b(x)|vn|p dS − λ

∫
Ω
f(x)|vn|p dx = λn

∫
Ω
g(x)|vn|q dx.
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Since vn ∈ M , using our assumption λ < λ̃ we find

λn = ‖vn‖p
b − λ

∫
Ω
f(x)|vn|p dx > 0,

so we can apply the usual scaling. Setting un = λ
1/(q−p)
n vn, we have that un

satisfies for any n the equation

∫
Ω
a(x)|∇un|p dx+

∫
∂Ω
b(x)|un|p dS = λ

∫
Ω
f(x)|un|p dx+

∫
Ω
g(x)|un|q dx,

so the claim is proved.

4 Problem (B)
We start with the following auxiliary result.

Lemma 4 Under assumption (A1), if q ≤ m, there exists a number ρ > 0 such
that for each ρ ≥ ρ the function

v 7→ ρ2

m
‖v‖m

b − 1
p
‖v‖p

p,w1
− 1
q

∫
Ω
g(x)|v|q dx−

∫
∂Ω
H(x, v) dS, v ∈ E,

is bounded from below on E.

Proof. The growth condition for h implies∣∣∣∣
∫

∂Ω
H(x, v) dS

∣∣∣∣ ≤
∫

∂Ω

(
h0(x)|v| +

1
m
h1(x)|v|m

)
dS

≤
(∫

∂Ω
h

m
m−1
0 w

1
1−m

3 dS

)m−1
m

‖v‖Lm(∂Ω;w3) + Ch‖v‖m
Lm(∂Ω;w3)

≤ C0 + C‖v‖m
b , v ∈ E,

with constants C0,C > 0. One obtains also that

1
q

∣∣∣∣
∫

Ω
g(x)|u|q dx

∣∣∣∣ ≤ C2‖v‖q
b ≤ C0 + C‖v‖m

b , v ∈ E,

with constants C0,C > 0. Clearly, we can choose now the positive number ρ as
desired. ¨
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In view of Lemma 4 one can find numbers b0 > 0 and α > 0 such that

ρ2

m
‖v‖m

b +
2
m
b0 − 1

p
‖v‖p

p,w1
− 1
q

∫
Ω
g(x)|v|q dx

−
∫

∂Ω
H(x, v) dS ≥ α > 0, v ∈ E. (4.1)

With b0 > 0 and ρ > 0 as above we consider numbers r > ρ ≥ ρ and a
function β ∈ C1(R) such that

β(0) = β(r) = 0, β(ρ) = b0, (4.2)

β′(t) < 0 ⇐⇒ t < 0 or ρ < t < r, (4.3)

lim
|t|→+∞

β(t) = +∞. (4.4)

Lemma 5 Assume that conditions (A1) and (A3) are fulfilled. Then, for any
d > 0 satisfying (3), the functional J : E × R → R defined by

J(v, t) =
t2

m
‖v‖m

b +
2
m
β(t) − 1

p

∫
Ω
f(x)|v|p

−1
q

∫
Ω
g(x)|v|q dx−

∫
∂Ω
H(x, v) dx+

d

p
‖v‖p

b (4.5)

is of class C1 and satisfies the Palais-Smale condition.

Proof. The property of J to be continuously differentiable has been already jus-
tified in the proof of Theorem 1.

In order to check the Palais-Smale condition let the sequences {vn} ⊂ E and
{tn} ⊂ R satisfy

|J(vn, tn)| ≤ M, ∀n ≥ 1 (4.6)

J ′
v(vn, tn) = t2n ‖vn‖m−p

b I ′(vn)−K ′
Φ(vn)−K ′

H(vn)−K ′
Ψ(vn)+dI ′(vn) → 0, (4.7)

J ′
t(vn, tn) =

2
m

(tn‖vn‖m
b + β′(tn)) → 0 (4.8)

where I, KΦ, KH , KΨ have been introduced in the proof of Lemma 3.
From (4.1), (4.2), (4.5) and (4.6) we infer that

M ≥ t2n
m

‖vn‖m
b +

2
m
β(tn) − 1

p
‖vn‖p

p,w1
− 1
q

∫
Ω
g(x)|vn|q dx

−
∫

∂Ω
H(x, vn) dx+

d

p
‖vn‖p

b

≥ t2n − ρ2

m
‖vn‖m

b +
2
m

(β(tn) − β(ρ)) +
d

p
‖vn‖p

b .



494 Eugenio Montefusco and Vicenţiu Rădulescu NoDEA

Condition (4.4) in conjunction with the inequality above yields the boundedness
of {tn}.

Let us check the boundedness of {vn} along a subsequence. Without loss of
generality we may admit that {vn} is bounded away from 0. From (22) we deduce
that the sequence {tn‖vn‖m

b } is bounded. Therefore it is sufficient to argue in the
case where tn → 0. From (4.6) it turns out that

1
p
‖vn‖p

p,w1
+
∫

Ω
H(x, vn)dx+

1
q

∫
∂Ω
g(x)|vn|qdx− d

p
‖vn‖p

b

is bounded. By (4.7) we deduce that

1
‖vn‖b

(−〈K ′
Φ(vn), vn〉 − 〈K ′

H(vn), vn〉 − 〈K ′
Ψ(vn), vn〉 + d‖vn‖p

b) → 0.

Then, for n sufficiently large, assumption (A3) allows us to write

M + 1 + ‖vn‖b ≥ d

(
1
p

− 1
µ

)
‖vn‖p

b +
(

1
µ

− 1
q

)
‖vn‖q

Lq(Ω,w2)

+
∫

∂Ω

(
1
µ
h(x, vn)vn −H(x, vn)

)
dS +

(
1
µ

− 1
p

)
‖vn‖p

p,w1

≥
(

1
p

− 1
µ

)(
d‖vn‖p

b − ‖vn‖p
p,w1

) ≥
(

1
p

− 1
µ

)(
d− 1

λ̃

)
‖vn‖p

b .

By (3), this establishes the boundedness of {vn} in E.
In view of the compactness of the mappings K ′

Φ, K
′
H , K

′
Ψ (see the proof of

Lemma 3), by (4.7) we get that

(d+ t2n ‖vn‖m−p
b ) I ′(vn)

converges in E∗ as n → ∞. The boundedness of {tn} and {vn} ensures that
{I ′(vn)} is convergent in E∗ along a subsequence. Assume that p ≥ 2. Inequality
(3.6) shows that

‖un − uk‖p
b ≤ C

[∫
Ω
a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk) · (∇un − ∇uk) dx

+
∫

Γ
b(x)(|un|p−2un − |uk|p−2uk)(un − uk) dΓ

]
= C〈I ′(un) − I ′(uk), un − uk〉 ≤ C‖I ′(un) − I ′(uk)‖∗

b‖un − uk‖b if p ≥ 2.

Consequently, if p ≥ 2, {vn} possesses a convergent subsequence. Proceeding in
the same way with inequality (3.7) in place of (3.6) we obtain the result for
1 < p < 2. ¨

In the proof of Theorem 3 we shall make use of the following variant of the
Mountain Pass Theorem (see Motreanu [19]).



Vol. 8, 2001 Nonlinear eigenvalue problems for quasilinear operators 495

Lemma 6 Let E be a Banach space and let J : E × R → R be a C1 functional
verifying the hypotheses

(a) there exist constants ρ > 0 and α > 0 such that J(v, ρ) ≥ α, for every
v ∈ E;

(b) there is some r > ρ with J(0, 0) = J(0, r) = 0.
Then the number

c := inf
g∈P

max
0≤τ≤1

J(h(τ))

is a critical value of J , where

P := {g ∈ C([0, 1];E × R); g(0) = (0, 0), g(1) = (0, r)} .

Proof of Theorem 3. We apply Lemma 6 to the function J defined in (4.5). It is
clear that assertion (a) is verified with ρ > 0 and α > 0 described in Lemma 4 and
(4.1). Due to relation (4.2), condition (b) in Lemma 6 holds. Lemma 5 ensures
that the functional J satisfies the Palais-Smale condition. Therefore Lemma 6
yields a nonzero element (u, t) ∈ E × R such that

J ′
v(u, t) = (d+ t2‖u‖m−p

b ) I ′(u) −K ′
Φ(u) −K ′

H(u) −K ′
Ψ(u) = 0, (4.9)

J ′
t(u, t) =

2
m

(t‖u‖m
b + β′(t)) = 0. (4.10)

From (4.10) it follows that
tβ′(t) ≤ 0. (4.11)

Combining (4.11) and (4.3) we derive that if t 6= 0, then u 6= 0 and

ρ ≤ t ≤ r. (4.12)

Therefore for each d in (3) such that 1/d is not an eigenvalue in (B) and each
r > ρ ≥ ρ we deduce that there exists a critical point (u, t) = (ud, td) ∈ E × R+
of J , where t = td verifies (4.12). Consequently, relation (4.9) establishes that
ud ∈ E is an eigenfunction in problem (B) where the corresponding eigenvalue is

λd =
1

d+ t2d ‖ud‖m−p
b

,

with t = td satisfying (4.12). This completes the proof.
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[3] A. ANANE, Simplicité et isolation de la première valeur propre du
p-laplacien, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725–728.

[4] G. ARONSSON, U. JANFALK, On Hele-Shaw flow of power-law fluids,
European J. Appl. Math. 3 (1992), 343–366.

[5] T. BHATTACHARYA, E. DIBENEDETTO, J. MANFREDI, Limits as
p → ∞ of ∆pup = f and related extremal problems, Rend. Sem. Mat. Univ.
Pol. Torino, Fascicolo Speciale, 1989, 15–68.

[6] V. BENCI, D. FORTUNATO, L. PISANI, Solitons like solutions of a Lorentz
invariant equation in dimension 3, Rev. Math. Phys. 10 (1998), 315–344.

[7] R. DAUTRAY, J.-L. LIONS, Mathematical Analysis and Numerical Methods
for Science and Technology, Vol. 1: Physical Origins and Classical Methods,
Springer-Verlag, Berlin, 1985.

[8] J.I. DIAZ, Nonlinear Partial Differential Equations and Free Boundaries.
Elliptic Equations, Research Notes in Mathematics, 106, Pitman, Boston-
London-Melbourne 1986.
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