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We introduce a geometric framework to calculate the
residual stress fields and deformations of nonlinear
solids with inclusions and eigenstrains. Inclusions
are regions in a body with different reference
configurations from the body itself and can be
described by distributed eigenstrains. Geometrically,
the eigenstrains define a Riemannian 3-manifold in
which the body is stress-free by construction. The
problem of residual stress calculation is then reduced
to finding a mapping from the Riemannian material
manifold to the ambient Euclidean space. Using this
construction, we find the residual stress fields of
three model systems with spherical and cylindrical
symmetries in both incompressible and compressible
isotropic elastic solids. In particular, we consider
a finite spherical ball with a spherical inclusion
with uniform pure dilatational eigenstrain and we
show that the stress in the inclusion is uniform
and hydrostatic. We also show how singularities
in the stress distribution emerge as a consequence
of a mismatch between radial and circumferential
eigenstrains at the center of a sphere or the axis of a
cylinder.
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1. Introduction
Classically, inclusions in an elastic body are pieces of elastic materials that have been inserted
into the material. For instance, in the simplest case a spherical elastic ball is compressed or
stretched to fit inside a given spherical shell. The problem is then to find the stress in the new ball
and the deformation of both materials. In general, the problem of inclusions is to combine two
different stress-free bodies and constrain them geometrically so that they create a new, possibly
residually stressed, body. This process is sometimes called shrink-fit as, typically, one of the
bodies is compressed to fit in the other one. More generally, we can consider a single body and
assume that the body undergoes a local change of volume described by general eigenstrains, the
particular shrink-fit problem corresponding to uniform dilatational eigenstrains. Physically these
eigenstrains can be generated by thermal expansions, swelling, shrinking, growth, or any other
anelastic effects.

In the linearized setting, Eshelby [1] calculated the stress field of an ellipsoidal inclusion with
uniform eigenstrains using superposition. For the special class of harmonic materials there are
some recent 2D solutions for inclusions [2–6]. Antman and Shvartsman [7] solved a 2D shrink-
fit problem for arbitrary anisotropic nonlinear solids. Basically, a stress-free annulus with inner
and outer radii Ri and Ro is expanded and then left to shrink down upon a stress-free disk of
radius Rd >Ri. They focused on the question of existence and uniqueness of solutions. However,
in the case of isotropic solids they observed that stress inside the disk is uniform. In terms of
eigenstrains, the shrink-fit problem consists of pure dilatational eigenstrain. In the nonlinear
case, as far as we know there are no explicit three-dimensional analytic solutions for inclusions.
However, the problem of inclusions with pure dilatational eigenstrains is closely related to the
problem of swelling in solids. In some recent works, Pence and his coworkers [8–11] presented
analytic solutions for swelling in cylindrical and spherical geometries for both incompressible
and compressible isotropic solids. The main motivation of these works was cavitation but one
can clearly see a close connection between the swelling models and our geometric formulation.
However, we should emphasize that our approach is more general and is not restricted to pure
dilatational eigenstrains.

Eshelby’s problem has been extended to finite bodies in recent years. In particular, Li, et al. [12]
calculated the stress field of a spherical inclusion centered at a finite ball. They observed that,
in general, stress inside the inclusion is not uniform. For a recent review of previous works on
inclusions in the framework of linearized elasticity see [13].

Inclusions in 3D nonlinear solids have been investigated numerically by Diani and Parks [14].
They calculated the stress field of an isotropic inclusion with pure dilatational eigenstrain in
an isotropic matrix made of the same material. Their finite element computations are based on
the multiplicative decomposition of deformation gradient into elastic and eigenstrain parts, i.e.
F =FeF∗. In their spherical inclusion problem F∗ = (1 + α)I, where I is the identity tensor. Note
that this implies that the material metric [15] is G = (1 + α)2I. In their numerical calculations for
α = 0.1, Diani and Parks [14] observed that in the inclusion the Cauchy stress is uniform and
hydrostatic. In this paper we revisit this problem for both arbitrary incompressible and certain
class of compressible isotropic elastic solids. We will show analytically that for this class of solids
the stress in the inclusion is uniform and hydrostatic. Owing to the equivalence between a general
theory of growth and the problem of inclusions, the computation of stress fields for some spherical
and cylindrical geometries in 2D and 3D has also been investigated in [16–20].

In this paper, we develop a geometric framework for the problem of inclusions. The basic idea
is that inclusions can be fully described by eigenstrains and that these eigenstrains define a 3-
dimensional Riemannian manifold in which the body is stress free. The body being residually
stressed means that this 3-manifold, which we call the material manifold, cannot be isometrically
embedded in R3. This geometric framework is identical to that used for calculating residual
stresses in the presence of nonuniform temperature distributions [15], bodies with bulk growth
[21], and bodies with distributed defects [22–24]. It should also be noted that this approach is
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general, i.e. it is not restricted to specific constitutive equations and/or geometry of the problem.
However, to be able to find exact solutions, we will present some symmetric problems in isotropic
elastic solids.

In this paper we first find the stress field of a ball made of an arbitrary incompressible isotropic
nonlinear solid with a spherically-symmetric eigenstrain distribution. In the case of an ellipsoidal
inclusion in an infinite linearly isotropic solid, Eshelby observed that stress in the inclusion
is uniform. Eshelby’s solution is based on superposition, which is not applicable in nonlinear
problems. To tackle the nonlinear problem we first find a 3-manifold in which the ball with
distributed eigenstrains is stress free. This is a Riemannian manifold with a metric that explicitly
depends on the eigenstrain distribution. Once the material manifold is known, our problem is
transformed to a classical nonlinear elasticity problem; that is we need to find a mapping from
the reference configuration described by the material 3-manifold to the current configuration
in the Euclidean ambient space. As a special example, we consider a spherical inclusion at the
center of the ball. We show that for any incompressible isotropic nonlinear elastic solid with pure
dilatational eigenstrain, the stress in the inclusion is uniform and hydrostatic. When the radial and
circumferential eigenstrains are not equal we show that stress inside the inclusion is nonuniform
and has a logarithmic singularity. We also extend our analysis to compressible solids. We show
that the stress inside an inclusion with pure dilatational eigenstrain is uniform and hydrostatic
when the ball is made of compressible materials of Types I, II, and III according to Carroll [25].
We also consider cylindrical inclusions in both finite and infinite circular cylindrical bars made of
arbitrary incompressible isotropic solids.

2. Geometric Nonlinear Elasticity of Residually-Stressed Bodies
Kinematics of nonlinear elasticity. We first review some basic concepts of geometric nonlinear
elasticity. A body B is identified with a Riemannian manifold B and a configuration of B is a
mapping ϕ ∶ B →S, where S is a Riemannian ambient space manifold [26,27] (see Fig. 1a). A
fundamental assumption in geometric nonlinear elasticity is that the body is stress-free in the
material manifold. Any possible residual stresses are described by the geometries of B and S.
The position of a material point X ∈ B in the ambient space S is given by x =ϕt(X) =ϕ(X, t). The
material velocity is defined as Vt(X) =V(X, t) = ∂ϕ(X,t)∂t . The material acceleration is defined

by At(X) =A(X, t) = ∂V(X,t)∂t . The deformation gradient – a central object that locally describes
deformation – is the tangent map of ϕ and is denoted by F =Tϕ. Hence, at each point X ∈ B, F
is a linear map F(X) ∶TXB→Tϕ(X)S. If {xa} and {XA} are local coordinate charts on S and B,
respectively, the components of F read

FaA(X) = ∂ϕa

∂XA
(X). (2.1)

F has the local representation F =FaA ∂a ⊗ dXA. Transpose of F is a linear map FT ∶TxS →TXB
and is defined as

⟪FV,v⟫g = ⟪V,FTv⟫G, ∀V ∈TXB, v ∈TxS. (2.2)

In components, (F T(X))Aa = gab(x)F bB(X)GAB(X). The right Cauchy-Green deformation
tensor is a linear map C(X) ∶TXB→TXB and is defined by C(X) =FT(X)F(X). Note that C♭

is the pull-back of the spatial metric, i.e. C♭ =ϕ∗g or in components CAB = (gab ○ ϕ)FaAF bB .
Eigenvalues of the right stretch tensor U =

√
C are called principal stretches. For an isotropic

body the strain energy function only depends on the principal stretches, i.e. W =W (λ1, λ2, λ3).

Material manifold of a body with eigenstrains. In classical elasticity one starts with a
stress-free configuration embedded in the ambient space and then makes this embedding time-
dependent (a motion), see Fig. 1a. In anelesticity, elastic bodies also have residual stress [28]. These
residual stresses can be described geometrically by positing that the stress-free configuration
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Figure 1. (a) In classical nonlinear elasticity, the reference configuration is a submanifold of the ambient space

manifold. The material metric is the induced submanifold metric. (b) For residually-stressed bodies, the material

manifold is a Riemannian manifold (B,G). Motion is defined by a time-dependent mapping from the Riemannian

material manifold (B,G) to the Riemannian ambient space manifold (S,g).

is a Riemannian manifold with a geometry explicitly depending on the anelasticity source(s),
see Fig. 1b. The ambient space is a Riemannian manifold (S,g) and hence the computation
of stresses requires a Riemannian material manifold (B,G) and a mapping ϕ ∶ B →S. For
example, in the case of non-uniform temperature changes and bulk growth [15,21] one starts
with a material metric G that specifies the relaxed distances of the material points. In the
case of distributed defects, the material metric is calculated indirectly [22–24]. When there are
eigenstrains distributed in a body, the material manifold has a metric that explicitly depends on
the eigenstrain distribution.

3. Examples of Elastic Bodies with Distributed Eigenstrains
In this section we consider three examples of inclusions in incompressible and compressible
isotropic nonlinear elastic solids. The first one is a spherical ball with a spherically-symmetric
distribution of dilatational eigenstrains. The next two examples are finite and infinite circular
cylindrical bars with cylindrically-symmetric eigenstrain distributions.

(a) Spherical Eigenstrain in a Ball
Consider a ball B of radius Ro made of a nonlinear elastic solid with a given spherically-
symmetric distribution of dilatational eigenstrains. Here we model an eigenstrain by the local
natural distances of material points, i.e. a Riemannian metric. For example, a change in
temperature changes the natural (relaxed) distances of material points in a solid [15]. In the case
of a ball with an inclusion, the natural distances in the inclusion and the matrix are different and
this induces a stress field.

A stress-free ball made of a nonlinear elastic solid is isometrically embedded in R3 and hence
natural distances between its material points are measured using the flat metric of R3, i.e. the
material metric has the following representation in the spherical coordinates (R,Θ,Φ): G0(X) =
G0(R) = diag(1,R2,R2 sin2Θ). To preserve the spherical symmetry we can have different radial
and circumferential eigenstrains as long as they are functions of R only. Therefore, we consider
the following material metric

G(X) =G(R) =
⎛
⎜⎜
⎝

e2ωR(R) 0 0

0 e2ωΘ(R)R2 0

0 0 e2ωΘ(R)R2 sin2Θ

⎞
⎟⎟
⎠
, (3.1)

where ωR and ωΘ are arbitrary functions. For the ball B with eigenstrains, given ωR(R) and
ωΘ(R), we are interested in the resulting residual stress field. We solve the problem for arbitrary
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ωR(R) and ωΘ(R) and then specialize the solution to the case of a spherical inclusion in which
radial and circumferential eigenstrains are constants. We use the spherical coordinates (r, θ, φ)
for the Euclidean ambient space with the flat metric g = diag(1, r2, r2 sin2 θ). In order to obtain the
residual stress field we embed the material manifold into the ambient space. We look for solutions
of the form (r, θ, φ) = (r(R),Θ,Φ), and hence detF = r′(R). We first restrict our attention to
incompressible solid for which

J =
√

detg

detG
detF = r2(R)

R2eωR(R)+2ωΘ(R)
r′(R) = 1. (3.2)

Assuming that r(0) = 0 this gives us

r(R) = (∫
R

0
3ξ2eωR(ξ)+2ωΘ(ξ)dξ)

1
3

. (3.3)

Physical components of the deformation gradient F̂aA are related to components of deformation
gradient as follows

F̂aA =√
gaa

√
GAAFaA no summation. (3.4)

Thus

F̂ =
⎛
⎜⎜⎜
⎝

R2

r2(R)
e2ωΘ(R) 0 0

0
r(R)
R e−ωΘ(R) 0

0 0
r(R)
R e−ωΘ(R)

⎞
⎟⎟⎟
⎠
. (3.5)

Therefore, the principal stretches are

λ1 =
R2

r2(R)e
2ωΘ(R), λ2 =λ3 =

r(R)
R

e−ωΘ(R). (3.6)

We know that for an isotropic material the strain energy function depends only on the principal
stretches, i.e. W =W (λ1, λ2, λ3) [29] (Note that here, for the sake of brevity, we do not write
explicitly the dependence of W on R that is needed to describe an inhomogeneity. For instance,
we will consider an inclusion with different energy-density functions at different locations in
the following. For such problems W explicitly depends on R.) Because of the symmetry of the
problem in the spherical coordinates (r, θ, φ) the Cauchy stress is diagonal and

σrr = λ1g
11 ∂W

∂λ1
− p(R)g11 = R2

r2(R)e
2ωΘ(R) ∂W

∂λ1
− p(R), (3.7)

σθθ = λ2g
22 ∂W

∂λ2
− p(R)g22 = e

−ωΘ(R)

Rr(R)
∂W

∂λ2
− p(R)
r2(R) , (3.8)

σφφ = 1

sin2Θ
σθθ. (3.9)

In the absence of body forces, the only non-trivial equilibrium equation is σra
∣a = 0 (p = p(R) is

the consequence of the other two equilibrium equations), where σra∣a denotes the r component
of the trace of the covariant derivative of the Cauchy stress [26]. This is simplified to read

σrr,r +
2

r
σrr − rσθθ − r sin2 θ σφφ = 0. (3.10)

Or
1

r′(R)σ
rr
,R + 2

r
σrr − 2rσθθ = 0. (3.11)

Therefore

σrr,R + R
2eωR(R)+2ωΘ(R)

r2(R) (2

r
σrr − 2rσθθ) = 0. (3.12)
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This then gives us p′(R) =h(R), where

h(R) = 2R

r2(R)e
ωΘ(R) (eωΘ(R) ∂W

∂λ1
− eωR(R) ∂W

∂λ2
) + 2R2ω′Θ(R)

r2(R) e2ωΘ(R)
∂W

∂λ1

+ 2R3

r4(R)e
4ωΘ(R) [1 +Rω′Θ(R) − R3

r3(R)e
ωR(R)+2ωΘ(R)] ∂

2W

∂λ2
1

−2eωΘ(R)

r(R) [1 +Rω′Θ(R) − R3

r3(R)e
ωR(R)+2ωΘ(R)] ∂2W

∂λ1∂λ2
. (3.13)

If at the boundary σrr(Ro) = −p∞, then

p(R) = p∞ + R
2
oe

2ωΘ(Ro)

r2(Ro)
∂W

∂λ1
∣
R=Ro

+ ∫
Ro

R
h(ξ)dξ. (3.14)

Once the pressure field is known, the stress tensor can be easily calculated.

(i) Spherical Inclusion in a Ball

Let us consider the following ωR and ωΘ distributions

ωR(R) =
⎧⎪⎪⎨⎪⎪⎩

ω1 0 ≤R <Ri,
0 Ri <R ≤Ro,

, ωΘ(R) =
⎧⎪⎪⎨⎪⎪⎩

ω2 0 ≤R <Ri,
0 Ri <R ≤Ro,

(3.15)

where Ri <Ro. Thus

0 ≤R ≤Ri ∶ r(R) = e
1
3ω1+

2
3ω2R, (3.16)

Ri ≤R ≤Ro ∶ r(R) = [R3 + (eω1+2ω2 − 1)R3
i ]

1
3
. (3.17)

This means that for R ≤Ri

λ1 = e−
2
3ω1+

2
3ω2 =λ−2

0 , λ2 =λ3 = e
1
3ω1−

1
3ω2 =λ0. (3.18)

Note that
ω′Θ(R) = −ω2δ(R −Ri). (3.19)

Multiplication of a distribution and a smooth function is well defined. However, here eω(R), for
example, is not smooth and the product eω(R)δ(R −Ri) is indeterminate. We denote the sum of
products of all the terms with ω′Θ(R) byAδ(R −Ri). The unknown constantAwill be determined
after enforcing continuity of traction vector on the boundary of the inclusion. That is, we have

h(R) =Aδ(R −Ri) + ĥ(R), (3.20)

where

ĥ(R) = 2R

r2(R)e
ωΘ(R) (eωΘ(R) ∂W

∂λ1
− eωR(R) ∂W

∂λ2
)

+ 2R3

r4(R)e
4ωΘ(R) [1 − R3

r3(R)e
ωR(R)+2ωΘ(R)] ∂

2W

∂λ2
1

−2eωΘ(R)

r(R) [1 − R3

r3(R)e
ωR(R)+2ωΘ(R)] ∂2W

∂λ1∂λ2
. (3.21)

Note that for R <Ri
ĥ(R) = h0

R
, (3.22)

where

h0 = 2e−
2
3 (ω1+2ω2) (eω2 ∂W

∂λ1
− eω1 ∂W

∂λ2
) ∣
λ1=λ

−2
0 ,λ2=λ3=λ0

. (3.23)
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Note also that when ω1 ≠ω2, h0 ≠ 0. However, when ω1 =ω2 =ω0, λ0 = 1 and hence

h0 = 2e−ω0 (∂W
∂λ1

− ∂W
∂λ2

) ∣
λ1=λ2=λ3=1

. (3.24)

We know that [29], W (λ1, λ2, λ3) =W (λ2, λ1, λ3), and in particular W (x,1,1) =W (1, x,1).
Taking derivative with respect of x and evaluating at x = 1, we obtain

∂W

∂λ1
∣
λ1=λ2=λ3=1

= ∂W
∂λ2

∣
λ1=λ2=λ3=1

. (3.25)

Therefore, in this case h0 = 0. Note that

0 ≤R <Ri ∶ ∫
Ro

R
h(ξ)dξ =∫

Ri

R
ĥ(ξ)dξ +A + ∫

Ro

Ri
ĥ(ξ)dξ

=h0 ln(Ri
R

) +A + ∫
Ro

Ri
h̄(ξ)dξ, (3.26)

Ri <R ≤Ro ∶ ∫
Ro

R
h(ξ)dξ =∫

Ro

R
h̄(ξ)dξ, (3.27)

where

h̄(R) = 2R

r2(R) (∂W
∂λ1

− ∂W
∂λ2

) + 2R3

r4(R) (1 − R3

r3(R))
∂2W

∂λ2
1

− 1

r(R) (1 − R3

r3(R))
∂2W

∂λ1∂λ2
. (3.28)

Therefore

0 ≤R <Ri ∶ p(R) = p∞ + R2
o

r2(Ro)
∂W

∂λ1
∣
R=Ro

− h0 ln(Ri
R

) −A − ∫
Ro

Ri
h̄(ξ)dξ, (3.29)

Ri <R ≤Ro ∶ p(R) = p∞ + R2
o

r2(Ro)
∂W

∂λ1
∣
R=Ro

− ∫
Ro

R
h̄(ξ)dξ. (3.30)

Now the radial stress inside and outside of the inclusion has the following distributions

0 ≤R <Ri ∶ σrr(R) = e−
2
3 (ω1−ω2) ∂W

∂λ1
∣
λ1=λ

−2
0 ,λ2=λ3=λ0

− p∞ − R2
o

r2(Ro)
∂W

∂λ1
∣
R=Ro

+ h0 ln(Ri
R

) +A + ∫
Ro

Ri
h̄(ξ)dξ, (3.31)

Ri <R ≤Ro ∶ σrr(R) = R2

r2(R)
∂W

∂λ1
− p∞ − R2

o

r2(Ro)
∂W

∂λ1
∣
R=Ro

+ ∫
Ro

R
h̄(ξ)dξ. (3.32)

Continuity of traction vector on the boundary of the inclusion implies that σrr must be continuous
at R =Ri. Thus

A = e−
2
3 (ω1+2ω2) ∂W

∂λ1
∣
R=R+

i

− e−
2
3 (ω1−ω2) ∂W

∂λ1
∣
λ1=λ

−2
0 ,λ2=λ3=λ0

. (3.33)

Therefore, inside the inclusion radial stress has the following distribution

σrr(R) =h0 ln(Ri
R

) + σi, (3.34)

where

σi = e−
2
3 (ω1+2ω2) ∂W

∂λ1
∣
R=R+

i

− p∞ − R2
o

r2(Ro)
∂W

∂λ1
∣
R=Ro

+ ∫
Ro

Ri
h̄(ξ)dξ. (3.35)

It is seen that unless ω1 =ω2, there is a logarithmic singularity. Note that when W explicitly

depends on R, ∂W∂λ1
∣
R=R+

i

and ∂W
∂λ1

∣
R=R−

i

may not be equal.

In curvilinear coordinates, the components of a tensor may have different physical dimensions.
The following relation holds between the Cauchy stress components (unbarred) and its physical
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components (barred) [30]

σ̄ab = σab√gaagbb no summation on a or b. (3.36)

The nonzero physical Cauchy stress components read

σ̄rr = σrr,

σ̄θθ = r2σθθ = r(R)e−ωΘ(R)
R

∂W

∂λ2
− p(R),

σ̄φφ = r2 sin2 θ σφφ = σ̄θθ. (3.37)

Thus, for R <Ri

σ̄θθ(R) = σ̄φφ(R) = h0 ln(Ri
R

) + e
1
3 (ω1−ω2) ∂W

∂λ2
∣
λ1=λ

−2
0 ,λ2=λ3=λ0

−e−
2
3 (ω1−ω2) ∂W

∂λ1
∣
λ1=λ

−2
0 ,λ2=λ3=λ0

+ σi. (3.38)

Again, note that if ω1 ≠ω2 the stress in the inclusion is not hydrostatic and exhibits a logarithmic
singularity.

Proposition 3.1. Consider an isotropic and incompressible elastic ball subject to a uniform pressure on
its boundary sphere. Assume that there is a spherical inclusion at the center of the ball with uniform radial
and circumferential eigenstrains. Then, unless the radial and circumferential eigenstrains are equal, the
inclusion exhibits a logarithmic singularity. If the eigenstrains are equal, the stress in the inclusion is
uniform and hydrostatic.

Remark 3.1. Note that when the radial and circumferential eigenstrains are not equal, the linearized
eigenstrains would not be homogenous. Hence it is not surprizing that the stress inside the inclusion is
not uniform. Logarithmic singularities for the stress have also been observed in an isotropic linear elastic
perfectly-plastic body with a growing inclusion using the classical equations in [35]. In this case the
stress inside the inclusion is not uniform and has a logarithmic singularity [36]. Note that using either
Tresca or von Mises criterion everywhere inside the inclusion σ̄rr − σ̄θθ is constant. In our inclusion with
anisotropic eigenstrains we see that this quantity is constant inside the inclusion as well.

Goriely, et, al. [19] observed that when a solid sphere undergoes anisotropic bulk growth stress
becomes singular at the center of the ball and causes cavitation. In another study Moulton and Goriely
[20] showed that a thick spherical shell undergoing anisotropic growth builds up residual stresses that
resist anticavitation. In both these works there is a clear connection between anisotropy of growth and
unboundedness of stress at the center of the growing ball. Our calculations determine the nature of this
singularity.

(ii) Comparison with the linear solution

It is of interest to compare our results with the classical linear solution. To do this, we assume
that p∞ = 0, ω1 =ω2 =ω0 and consider a neo-Hookean solid and compare the residual stress field
with that of the linear elasticity solution when ν = 1/2. For a neo-Hookean material we have W =
µ
2 (λ2

1 + λ2
2 + λ2

3 − 3), and hence

σrr = µR4

r4(R)e
4ωΘ(R) − p(R), (3.39)

σθθ = µ

R2
e−2ωΘ(R) − p(R)

r2(R) , (3.40)

σφφ = 1

sin2Θ
σθθ. (3.41)
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Therefore, A = (e−4ω0 − 1)µ and we have

0 ≤R ≤Ri ∶ σrr(R) =µe−4ω0 − µ R4
o

r4(Ro)
+ ∫

Ro

Ri
h̄(ξ)dξ, (3.42)

Ri ≤R ≤Ro ∶ σrr(R) =µ R4

r4(R) − µ
R4
o

r4(Ro)
+ ∫

Ro

Ri
h̄(ξ)dξ. (3.43)

Note that

h̄(R) = − 2µ

r(R) [1 − R3

r3(R)]
2

=O(ω2
0). (3.44)

Thus

∫
Ro

Ri
h̄(ξ)dξ =∫

Ro

Ri
O(ω2

0)dξ =O (∫
Ro

Ri
ω2

0dξ) =O(ω2
0). (3.45)

We now have the following asymptotic expansion (for small ω0) for the radial stress inside and
outside the inclusion.

0 ≤R ≤Ri ∶ σrr(R) = −4µω0 [1 − (Ri
Ro

)
3

] +O(ω2
0), (3.46)

Ri ≤R ≤Ro ∶ σrr(R) = −4µω0 [(Ri
R

)
3

− (Ri
Ro

)
3

] +O(ω2
0). (3.47)

Since the leading terms are identical to the linear elasticity solution [14,31], we recover the classical
result in this limit.

(iii) Limit of a single point defect

For a ball of radius Ro made of an incompressible linear elastic solid with a single point defect at
the origin [32]

σrr = −4µC

R3
(1 − R

3

R3
o
) , (3.48)

where C = δv
4π and δv is the volume change due to the point defect. In our example the change in

volume due to the inclusion of radius Ri is

δv = 4π

3
R3
i (e3ω0 − 1). (3.49)

Next, we keep δv constant while shrinking the inclusion. Note that for R >Ri

r(R) = [R3 + (e3ω0 − 1)R3
i ]

1
3 = [R3 + 3

4π
δv]

1
3

. (3.50)

Therefore, we have

σrr(R) =µ R4

r4(R) − µ
R4
o

r4(Ro)
+ ∫

Ro

R
h̄(ξ)dξ = −4µC

R3
(1 − R

3

R3
o
) +O(δv2). (3.51)

That is, we recover the stress field of a single point defect with strength δv.

(iv) Zero-stress spherically-symmetric eigenstrain distributions

Next we determine those spherically-symmetric eigenstrain distributions that leave a stress-free
ball stress free. Here we are interested in the local nature of incompatibilities; other stresses may
arise due to global constraints. In the spherical coordinates (R,Θ,Φ), R ≥ 0, 0 ≤Θ ≤ π, 0 ≤Φ < 2π,
having the material metric (3.1) is equivalent to having the following orthonormal coframe field
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(see [33] and [22] for an introduction to Cartan’s moving frames and applications to residual stress
calculations.)

ϑ1 = eωR(R)dR, ϑ2 = eωΘ(R)RdΘ, ϑ3 = eωΘ(R)R sinΘ dΦ. (3.52)

We now calculate the Levi-Civita connection 1-forms. The material connection being metric
compatible means that the matrix of connection 1-forms is anti-symmetric, i.e.

ω = [ωαβ] =
⎛
⎜⎜⎜
⎝

0 ω1
2 −ω3

1

−ω1
2 0 ω2

3

ω3
1 −ω2

3 0

⎞
⎟⎟⎟
⎠
. (3.53)

Using Cartan’s first structural equations T α = dϑα + ωαβ ∧ ϑβ and knowing that the Levi-Civita
connection is torsion free we have the following set of equations for the three unknown
connection 1-forms ω1

2, ω
2
3, and ω3

1.

dϑ1 + ω1
2 ∧ ϑ2 − ω3

1 ∧ ϑ3 = 0, (3.54)

dϑ2 − ω1
2 ∧ ϑ1 + ω2

3 ∧ ϑ3 = 0, (3.55)

dϑ3 + ω3
1 ∧ ϑ1 − ω2

3 ∧ ϑ2 = 0. (3.56)

Hence, after a simple calculation

ω1
2 = −e−ωR(R)

1 +Rω′Θ(R)
R

ϑ2, ω2
3 = −e−ωΘ(R)

cotΘ

R
ϑ3, ω3

1 = e−ωR(R)
1 +Rω′Θ(R)

R
ϑ3.

(3.57)
Using Cartan’s second structural equations Rαβ = dωαβ + ωαγ ∧ ωγβ we obtain the following
Levi-Civita curvature 2-forms

R1
2 = −e−2ωR [ω′′Θ + 1

R
(2ω′Θ − ω′R) + ω′Θ(ω′Θ − ω′R)]ϑ1 ∧ ϑ2, (3.58)

R2
3 = −e−2ωR [ 1

R2
(1 − e−2ωΘ+2ωR) + ω′Θ (ω′Θ + 2

R
)]ϑ2 ∧ ϑ3, (3.59)

R3
1 = −e−2ωR [ω′′Θ + 1

R
(2ω′Θ − ω′R) + ω′Θ(ω′Θ − ω′R)]ϑ3 ∧ ϑ1. (3.60)

The spherically-symmetric dilatational eigenstrain distribution is impotent (zero stress) if and
only if the Riemannian material manifold is flat (this condition is sufficient only for simply-
connected bodies). This means that for ωR and ωΘ to be stress free they must satisfy the following
system of nonlinear ODEs.

ω′′Θ(R) + 1

R
(2ω′Θ(R) − ω′R(R)) + ω′Θ(R)(ω′Θ(R) − ω′R(R)) = 0, (3.61)

1

R2
(1 − e−2ωΘ(R)+2ωR(R)) + ω′Θ(R) (ω′Θ(R) + 2

R
) = 0. (3.62)

Surprizingly, these two equations are compatible, in the sense that the former is a derivative of the
latter. Therefore, a general solution for the stress-free problem is provided by an arbitrary ωR(R)
and

ωΘ(R) = ln

⎡⎢⎢⎢⎢⎣

K ± ∫
R

0 eωR(ρ) dρ

R

⎤⎥⎥⎥⎥⎦
. (3.63)

As long as ωR is analytic at R = 0, there is a well-behaved solution for the solid ball with K = 0,
and ωΘ /=ωR given by

ωΘ(R) = ln

⎡⎢⎢⎢⎢⎣

∫
R

0 eωR(ρ) dρ

R

⎤⎥⎥⎥⎥⎦
, (3.64)

otherwise, the solution is only well-defined on a spherical shell. In the special case of ωR(R) =
ωΘ(R) =ω(R), we have

ω(R) =ω(Ro) + ln(Ro
R

)
2

. (3.65)
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For a solid ball this solution is unbounded.

(b) Spherical Eigenstrain in a Compressible Ball
In this section we release the incompressibility constraint for the problem of a ball with a
spherically-symmetric eigenstrain distribution. For an isotropic solid instead of considering the
strain energy density as a function of the principal invariants of C one can assume that W
explicitly depends on the principal invariants of U, i.e. W = Ŵ (i1, i2, i3), where

i1 =λ1 + λ2 + λ3, i2 =λ1λ2 + λ2λ3 + λ3λ1, i3 =λ1λ2λ3. (3.66)

Carroll [25] rewrote the Cauchy stress representation for an isotropic elastic solid in terms of the
left stretch tensor which in our geometric framework is written as

σ = ( i2
i3

∂Ŵ

∂i2
+ ∂Ŵ
∂i3

)g♯ + 1

i3

∂Ŵ

∂i1
V♯ − ∂Ŵ

∂i2
V−1. (3.67)

Or in components

σab = ( i2
i3

∂Ŵ

∂i2
+ ∂Ŵ
∂i3

) gab + 1

i3

∂Ŵ

∂i1
V ab − ∂Ŵ

∂i2
(V −1)

ab
. (3.68)

Note that in components

bab =V amV bngmn, cab = (V −1)
am

(V −1)
bn
gmn, (3.69)

where b♯ =ϕ∗(G♯) and c♭ =ϕ∗(G) and in components bab =FaAF bBGAB and cab =
(F−1)A a (F−1)B b GAB [26]. Carroll [25] considers a special class of compressible materials for
which Ŵ (i1, i2, i3) = u(i1) + v(i2) +w(i3), where u, v, and w are arbitrary C2 functions. For this
class of materials

σ = ( i2
i3
v′(i2) +w′(i3))g♯ +

u′(i1)
i3

V♯ − v′(i2)V−1. (3.70)

In the case of a ball with a spherically-symmetric and isotropic eigenstrain distribution ωR(R) =
ωΘ(R) =ω(R), we have

λ1 = r′(R)e−ω(R), λ2 =λ3 =
r(R)e−ω(R)

R
. (3.71)

Thus

i1 = e−ω(R) (r′(R) + 2r(R)
R

) , i2 = e−2ω(R) (2r(R)r′(R)
R

+ r
2(R)
R2

) , i3 =
r′(R)r2(R)e−3ω(R)

R2
.

(3.72)
A simple calculation gives us

V♯ =
⎛
⎜⎜⎜
⎝

r′(R)e−ω(R) 0 0

0 e−ω(R)
Rr(R)

0

0 0 e−ω(R)
Rr(R) sin2Θ

⎞
⎟⎟⎟
⎠
, V−1 =

⎛
⎜⎜⎜⎜
⎝

eω(R)
r′(R) 0 0

0 Reω(R)
r3(R)

0

0 0 Reω(R)
r3(R) sin2Θ

⎞
⎟⎟⎟⎟
⎠
.

(3.73)
Hence, the non-zero stress components read

σrr(R) = R
2u′(i1)
r2(R) e2ω(R) + 2Rv′(i2)

r(R) eω(R) +w′(i3), (3.74)

σθθ(R) = Ru′(i1)
r3(R)r′(R)e

2ω(R) + v′(i2)(
R

r3(R) +
1

r2(R)r′(R)) e
ω(R) + w

′(i3)
r2(R) , (3.75)

σφφ(R) = 1

sin2Θ
σθθ(R). (3.76)



12

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

The equilibrium equation (3.10) is simplified to read

R2

r2

d

dr
(u′e2ω) + 2R

r

d

dr
(v′eω) + dw

′

dr
= 0. (3.77)

We first work with a harmonic material [34] for which v(i2) = c2(i2 − 3) and w(i3) = c3(i3 − 1),
where c2 and c3 are constants (Class I materials according to Carroll [25]). In this case the above
ODE is reduced to

d

dr
(u′e2ω) + 2c2r

R

d

dr
(eω) = 0. (3.78)

This equation can be solved for the eigenstrain distribution (3.15) when ω1 =ω2 =ω0. For both
R <Ri and R >Ri, we have d

dru
′(i1) = 0, which implies that i1 is constant in each interval. Note

that for R <Ri, i1 = e−ω0 (r′(R) + 2r(R)
R ) and for R >Ri, i1 = r′(R) + 2r(R)

R . Thus, we have

0 ≤R ≤Ri ∶ r(R) =C1R + C2

R2
, (3.79)

Ri ≤R ≤Ro ∶ r(R) =C3R + C4

R2
, (3.80)

which is identical to Carroll [25]’s solution in each interval. For r(R) to be bounded at R = 0 we
must have C2 = 0 and continuity of r(R) at Ri implies that C4 = (C1 −C3)R3

i . Thus, the only
remaining unknowns are C1 and C3. These will be determined using continuity of traction at Ri
and the boundary condition σrr(Ro) = −p∞, namely

e2ω0u′(3e−ω0C1)
C2

1

+ 2c2e
ω0

C1
= u

′(3C3)
C2

1

+ 2c2
C1

, (3.81)

u′(3C3)
R2
o

r2(Ro)
+ 2c2Ro
r(Ro)

+ c3 = −p∞, (3.82)

where r(Ro) =C1Ri (RiRo )
2
+C3Ro [1 − (RiRo )

3
]. Note that the radial stress inside the inclusion

has the following value

σrr(R) = u
′(3C3e

2ω0)
C2

1

+ 2c2e
ω0

C1
+ c3 = σi, (3.83)

i.e. the radial stress is uniform inside the inclusion. It is straightforward to show that the physical
components of σθθ and σφφ are uniform inside the inclusion as well and are equal to σi.

Proposition 3.2. Consider a spherical ball of radius Ro made of a harmonic solid, subject to a uniform
pressure on its boundary sphere. Assume that there is a spherical inclusion of radius Ri at the center of the
ball with pure dilatational eigenstrain. Then, the stress inside the inclusion is uniform and hydrostatic.

Remark 3.2. For Class II and III materials according to Carroll [25], u(i1) = c1(i1 − 3),w(i3) = c3(i3 −
1) and u(i1) = c1(i1 − 3), v(i2) = c2(i2 − 3), respectively. For Class II materials, we have

0 ≤R ≤Ri ∶ r2(R) =C1R
2 + C2

R
, (3.84)

Ri ≤R ≤Ro ∶ r2(R) =C3R
2 + C4

R
. (3.85)

For Class III materials we have

0 ≤R ≤Ri ∶ r3(R) =C1R
3 +C2, (3.86)

Ri ≤R ≤Ro ∶ r3(R) =C3R
3 +C4. (3.87)

Imposing r(0) = 0 in both cases C2 = 0 and hence inside the inclusion r(R) =αR, where α is a constant.
This is identical to what we saw for harmonic materials. Therefore, the above proposition holds for materials
of Types II and III as well.
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(c) Cylindrical Eigenstrain in a Finite Cylindrical Bar
Let us consider a circular cylindrical bar of initial length L and radius Ro. We assume a
cylindrically-symmetric distribution of eigenstrains. In the cylindrical coordinates (R,Θ,Z), we
assume that the eigenstrains in the R, Θ and Z directions are different, in general. The metric of
the material manifold is assumed to have the following form

G =
⎛
⎜⎜
⎝

e2ωR(R) 0 0

0 R2e2ωΘ(R) 0

0 0 e2ωZ(R)

⎞
⎟⎟
⎠
, (3.88)

where ωR(R), ωΘ(R), and ωZ(R) are arbitrary functions. We use the cylindrical coordinates
(r, θ, z) for the Euclidean ambient space with the metric g = diag(1, r2,1). In order to obtain the
residual stress field, we embed the material manifold into the ambient space and look for solutions
of the form (r, θ, z) = (r(R),Θ, βZ), where β is a constant to be determined. The deformation
gradient reads F = diag(r′(R),1, β) and hence detF = βr′(R). For an incompressible solid, we
have

J =
√

detg

detG
detF = βr(R)

ReωR(R)+ωΘ(R)+ωZ(R)
r′(R) = 1. (3.89)

Assuming that r(0) = 0 this gives us

r(R) = (∫
R

0

2ξ

β
eωR(ξ)+ωΘ(ξ)+ωZ(ξ)dξ)

1
2

. (3.90)

The physical deformation gradient reads

F̂ =
⎛
⎜⎜⎜
⎝

R
βr(R)

eωΘ(R)+ωZ(R) 0 0

0
r(R)
R e−ωΘ(R) 0

0 0 βe−ωZ(R)

⎞
⎟⎟⎟
⎠
. (3.91)

Thus, the principal stretches are

λ1 =
R

βr(R)e
ωΘ(R)+ωZ(R), λ2 =

r(R)
R

e−ωΘ(R), λ3 = βe−ωZ(R). (3.92)

The nonzero Cauchy stress components read

σrr = R

βr(R)e
ωΘ(R)+ωZ(R) ∂W

∂λ1
− p(R), (3.93)

σθθ = e−ωΘ(R)

Rr(R)
∂W

∂λ2
− p(R)
r2(R) , (3.94)

σzz = βe−ωZ(R)
∂W

∂λ3
− p(R). (3.95)

In the absence of body forces, the only non-trivial equilibrium equation reads σra
∣a = 0 (p = p(R)

is the consequence of the other two equilibrium equations), which is simplified to read

σrr,r +
1

r
σrr − rσθθ = 0. (3.96)

Or

σrr,R + Re
ωR(R)+ωΘ(R)+ωZ(R)

βr(R) (1

r
σrr − rσθθ) = 0. (3.97)
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This then gives us p′(R) = k(R), where

k(R) = eωZ(R)

βr(R) (eωΘ(R) ∂W
∂λ1

− eωR(R) ∂W
∂λ2

) + R(ω′Θ(R) + ω′Z(R))eωΘ(R)+ωZ(R)

βr(R)
∂W

∂λ1

+Re
2ωΘ(R)+2ωZ(R)

β2r2(R)
⎡⎢⎢⎢⎣
1 +R(ω′Θ(R) + ω′Z(R)) − R

2eωR(R)+ωΘ(R)+ωZ(R)

βr2(R)
⎤⎥⎥⎥⎦
∂2W

∂λ2
1

+e
ωZ(R)

βR

⎡⎢⎢⎢⎣
R2eωR(R)+ωΘ(R)+ωZ(R)

βr2(R) − (1 +Rω′Θ(R))
⎤⎥⎥⎥⎦

∂2W

∂λ1∂λ2

−Rω
′

Z(R)eωΘ(R)

r(R)
∂2W

∂λ1∂λ3
. (3.98)

Assuming that at the boundary σrr(R0) = −p∞, we have

p(R) = Ro
βr(Ro)

eωΘ(Ro)+ωZ(Ro)
∂W

∂λ1
∣
R=Ro

+ p∞ − ∫
Ro

R
k(ξ)dξ. (3.99)

The radial stress is now written as

σrr(R) = R

βr(R)e
ωΘ(R)+ωZ(R) ∂W

∂λ1
− Ro
βr(Ro)

eωΘ(Ro)+ωZ(Ro)
∂W

∂λ1
∣
R=Ro

− p∞ + ∫
Ro

R
k(ξ)dξ.

(3.100)
Note that β is not known and will be determined using boundary conditions. Next we consider a
cylindrical inclusion in the bar and calculate its stress field.

(i) A Cylindrical Inclusion in a Finite Cylindrical Bar

For the cylindrical bar, we consider the following ωR, ωΘ , and ωZ distributions

ωR(R) =
⎧⎪⎪⎨⎪⎪⎩

ω1 0 ≤R <Ri,
0 Ri <R ≤Ro,

, ωΘ(R) =
⎧⎪⎪⎨⎪⎪⎩

ω2 0 ≤R <Ri,
0 Ri <R ≤Ro,

, ωZ(R) =
⎧⎪⎪⎨⎪⎪⎩

ω3 0 ≤R <Ri,
0 Ri <R ≤Ro,

(3.101)
where Ri <Ro. Therefore

0 ≤R ≤Ri ∶ r(R) = 1√
β
e

1
2 (ω1+ω2+ω3)R, (3.102)

Ri ≤R ≤Ro ∶ r(R) = 1√
β

[R2 + (eω1+ω2+ω3 − 1)R2
i ]

1
2
. (3.103)

Note that for R <Ri

λ1(R) = λ̄1 =
1√
β
e

1
2 (−ω1+ω2+ω3), λ2(R) = λ̄2 =

1√
β
e

1
2 (ω1−ω2+ω3), λ3(R) = λ̄3 = βe−ω3 . (3.104)

Note also that ω′Θ(R) = −ω2δ(R −Ri), ω′Z(R) = −ω3δ(R −Ri) and hence k(R) =Bδ(R −Ri) +
k̂(R), where

k̂(R) = eωZ(R)

βr(R) (eωΘ(R) ∂W
∂λ1

− eωR(R) ∂W
∂λ2

)

+Re
2ωΘ(R)+2ωZ(R)

β2r2(R)
⎡⎢⎢⎢⎣
1 − R

2eωR(R)+ωΘ(R)+ωZ(R)

βr2(R)
⎤⎥⎥⎥⎦
∂2W

∂λ2
1

+e
ωZ(R)

βR

⎡⎢⎢⎢⎣
R2eωR(R)+ωΘ(R)+ωZ(R)

βr2(R) − 1
⎤⎥⎥⎥⎦

∂2W

∂λ1∂λ2
, (3.105)

and B is an unknown constant that will be determined after enforcing the continuity of the
traction vector on the boundary of the inclusion. For R <Ri, k̂(R) =h0/R, where

h0 =
e

1
2 (−ω1−ω2+ω3)

√
β

(eω2 ∂W

∂λ1
− eω1 ∂W

∂λ2
) ∣
λ̄1,λ̄2,λ̄3

. (3.106)
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Note that h0 = 0 only if ω1 =ω2. Now we have

0 ≤R <Ri ∶ ∫
Ro

R
k(ξ)dξ =∫

Ri

R
k̂(ξ)dξ +B + ∫

Ro

Ri
k̂(ξ)dξ

=h0 ln(Ri
R

) +B + ∫
Ro

Ri
k̄(ξ)dξ, (3.107)

Ri <R ≤Ro ∶ ∫
Ro

R
k(ξ)dξ =∫

Ro

R
k̄(ξ)dξ, (3.108)

where

k̄(R) = 1

βr(R) (∂W
∂λ1

− ∂W
∂λ2

) + R

β2r2(R) [1 − R2

βr2(R)]
∂2W

∂λ2
1

+ 1

βR
[ R2

βr2(R) − 1] ∂2W

∂λ1∂λ2
.

(3.109)
Therefore

0 ≤R <Ri ∶ p(R) = p∞ + Ro
βr(Ro)

∂W

∂λ1
∣
Ro

− h0 ln(Ri
R

) −B − ∫
Ro

Ri
k̄(ξ)dξ, (3.110)

Ri <R ≤Ro ∶ p(R) = p∞ + Ro
βr(Ro)

∂W

∂λ1
∣
Ro

− ∫
Ro

R
k̄(ξ)dξ. (3.111)

Now radial stress inside and outside the inclusion has the following distributions

0 ≤R <Ri ∶ σrr(R) = e
1
2 (−ω1+ω2+ω3)

√
β

∂W

∂λ1
∣
λ̄1,λ̄2,λ̄3

− p(R), (3.112)

Ri <R ≤Ro ∶ σrr(R) = R

βr(R)
∂W

∂λ1
− p(R). (3.113)

Continuity of traction vector on the boundary of the inclusion implies that σrr must be continuous
at R =Ri. Thus

B = e
1
2 (−ω1+ω2+ω3)

√
β

(e−ω2−ω3 ∂W

∂λ1
∣
R=R+

i

− ∂W
∂λ1

∣
λ̄1,λ̄2,λ̄3

) . (3.114)

The physical component σ̄θθ reads

0 ≤R <Ri ∶ σ̄θθ(R) = e
1
2 (ω1−ω2+ω3)

√
β

∂W

∂λ2
∣
λ̄1,λ̄2,λ̄3

− p(R), (3.115)

Ri <R ≤Ro ∶ σ̄θθ(R) = r(R)
R

∂W

∂λ2
− p(R). (3.116)

The axial stress has the following expressions inside and outside the inclusion.

0 ≤R <Ri ∶ σzz(R) = βe−ω3 ∂W

∂λ3
∣
λ̄1,λ̄2,λ̄3

− p(R), (3.117)

Ri <R ≤Ro ∶ σzz(R) = β ∂W
∂λ3

− p(R). (3.118)

We observe that all the nonzero components of Cauchy stress have a logarithmic singularity. Note
that the constant β depends on the axial boundary conditions.

Proposition 3.3. Consider a finite isotropic and incompressible elastic cylinder subject to a uniform
pressure on its boundary cylinder. Assume that there is a cylindrical inclusion at the center of the bar
with uniform radial and circumferential eigenstrains. Unless these strains are equal, the radial stress field
exhibits a logarithmic singularity. If the eigenstrains are equal, the stress inside the inclusion is uniform
but not necessarily hydrostatic.

Remark 3.3. Note that similar to the spherical inclusion, when the eigenstrain inside the inclusion is
pure dilatational, the stress inside the inclusion would be uniform even if the ball is made of compressible
materials of Types I, II, or III.
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(d) Cylindrical Inclusions in an Infinite Cylindrical Bar
We now consider an infinite circular cylindrical bar with a cylindrically-symmetric distribution
of eigenstrains, i.e. a plane strain problem. The material metric in the cylindrical coordinates
(R,Θ,Z) reads

G =
⎛
⎜⎜
⎝

e2ωR(R) 0 0

0 R2e2ωΘ(R) 0

0 0 1

⎞
⎟⎟
⎠
. (3.119)

We assume that the bar is made of an arbitrary incompressible, isotropic solid. We know
that for an isotropic solids strain energy density is only a function of the principal stretches,
i.e. W =W (λ1, λ2, λ3 = 1). Note that the deformation gradient is given by F = diag(r′(R),1,1).
Incompressibility implies that

r′(R) = R

r(R)e
ωR(R)+ωΘ(R). (3.120)

Assuming that r(0) = 0 we obtain

r(R) = (∫
R

0
2ξeωR(ξ)+ωΘ(ξ)dξ)

1
2

. (3.121)

The principal stretches read

λ1 = r′(R)e−ωR(R) = R

r(R)e
ωΘ(R), λ2 =

r(R)
R

e−ωΘ(R), λ3 = 1. (3.122)

The symmetry of the problem dictates that in the spherical coordinates (r, θ, z) the Cauchy stress
is diagonal. Hence, we have [29]

σaa =λa
∂W

∂λa
gaa − pgaa, no summation on a. (3.123)

Therefore, the nonzero stress components read

σrr = ReωΘ(R)

r(R)
∂W

∂λ1
− p(R), (3.124)

σθθ = e−ωΘ(R)

Rr(R)
∂W

∂λ2
− p(R)
r2(R) , (3.125)

σzz = ∂W

∂λ3
− p(R). (3.126)

The equilibrium equation (3.96) gives the ODE p′(R) =h(R) for p = p(R), where

h(R) = 1

r(R) (eωΘ(R) ∂W
∂λ1

− eωR(R) ∂W
∂λ2

) + Rω
′

Θ(R)eωΘ(R)

r(R)
∂W

∂λ1

+Re
2ωΘ(R)

r2(R) [1 +Rω′Θ(R) − R2

r2(R)e
ωR(R)+ωΘ(R)] ∂

2W

∂λ2
1

− 1

R
[1 +Rω′Θ(R) − R2

r2(R)e
ωR(R)+ωΘ(R)] ∂2W

∂λ1∂λ2
. (3.127)

If at the boundary σrr(Ro) = −p∞, then

p(R) = p∞ − Roe
ωΘ(Ro)

r(Ro)
∂W

∂λ1
∣
R=Ro

− ∫
Ro

R
h(ξ)dξ. (3.128)

Once the pressure field is known, all the stress components can be easily calculated.
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(i) A Cylindrical Inclusion in an Infinite Cylindrical Bar

We consider the following ωR and ωΘ distributions

ωR(R) =
⎧⎪⎪⎨⎪⎪⎩

ω1 0 ≤R <Ri,
0 Ri <R ≤Ro,

, ωΘ(R) =
⎧⎪⎪⎨⎪⎪⎩

ω2 0 ≤R <Ri,
0 Ri <R ≤Ro,

(3.129)

where Ri <Ro. Thus

0 ≤R ≤Ri ∶ r(R) = e
1
2 (ω1+ω2)R, (3.130)

Ri ≤R ≤Ro ∶ r(R) = [R2 + (eω1+ω2 − 1)R2
i ]

1
2
. (3.131)

This means that for R ≤Ri, λ1 = e
1
2 (ω2−ω1) =λ0, λ2 = e

1
2 (ω1−ω2) =λ−1

0 , λ3 = 1. Note that ω′Θ(R) =
−ω2δ(R −Ri) and hence h(R) =Cδ(R −Ri) + ĥ(R), where

ĥ(R) = 1

r(R) (eωΘ(R) ∂W
∂λ1

− eωR(R) ∂W
∂λ2

) + Re
2ωΘ(R)

r2(R) [1 − R2

r2(R)e
ωR(R)+ωΘ(R)] ∂

2W

∂λ2
1

− 1

R
[1 − R2

r2(R)e
ωR(R)+ωΘ(R)] ∂2W

∂λ1∂λ2
, (3.132)

and C is an unknown constant that will be determined after enforcing the continuity of the
traction vector on the boundary of the inclusion. Note that for R <Ri, ĥ(R) = h0

R , where

h0 = e−
1
2 (ω1+ω2) (eω2 ∂W

∂λ1
− eω1 ∂W

∂λ2
) ∣
λ1=λ0,λ2=λ

−1
0 ,λ3=1

. (3.133)

Thus

0 ≤R <Ri ∶ ∫
Ro

R
h(ξ)dξ =∫

Ri

R
ĥ(ξ)dξ +C + ∫

Ro

Ri
ĥ(ξ)dξ

= h0 ln(Ri
R

) +C + ∫
Ro

Ri
h̄(ξ)dξ, (3.134)

Ri <R ≤Ro ∶ ∫
Ro

R
h(ξ)dξ =∫

Ro

R
h̄(ξ)dξ, (3.135)

where

h̄(R) = 1

r(R) (∂W
∂λ1

− ∂W
∂λ2

) + R

r2(R) [1 − R2

r2(R)]
∂2W

∂λ2
1

+ R

r2(R) [1 − r
2(R)
R2

] ∂2W

∂λ1∂λ2
. (3.136)

Therefore

0 ≤R <Ri ∶ p(R) = p∞ + Ro
r(Ro)

∂W

∂λ1
∣
R=Ro

− h0 ln(Ri
R

) −C − ∫
Ro

Ri
h̄(ξ)dξ, (3.137)

Ri <R ≤Ro ∶ p(R) = p∞ + Ro
r(Ro)

∂W

∂λ1
∣
R=Ro

− ∫
Ro

R
h̄(ξ)dξ. (3.138)

Now the radial stress inside and outside of the inclusion has the following distributions

0 ≤R <Ri ∶ σrr(R) = e
1
2 (ω2−ω1) ∂W

∂λ1
∣
λ1=λ0,λ2=λ

−1
0 ,λ3=1

− p∞ (3.139)

− Ro
r(Ro)

∂W

∂λ1
∣
R=Ro

+ h0 ln(Ri
R

) +C + ∫
Ro

Ri
h̄(ξ)dξ, (3.140)

Ri <R ≤Ro ∶ σrr(R) = R

r(R)
∂W

∂λ1
− p∞ − Ro

r(Ro)
∂W

∂λ1
∣
R=Ro

+ ∫
Ro

R
h̄(ξ)dξ. (3.141)
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The continuity of traction vector on the boundary of the inclusion dictates that σrr must be
continuous at R =Ri and hence

C = e−
1
2 (ω1+ω2) ∂W

∂λ1
∣
R=R+

i

− e
1
2 (ω2−ω1) ∂W

∂λ1
∣
λ1=λ0,λ2=λ

−1
0 ,λ3=1

. (3.142)

Therefore, the radial stress inside the inclusion has the following distribution

σrr(R) =h0 ln(Ri
R

) + σi, (3.143)

where

σi = e−
1
2 (ω1+ω2) ∂W

∂λ1
∣
R=R+

i

− p∞ − Ro
r(Ro)

∂W

∂λ1
∣
R=Ro

+ ∫
Ro

Ri
h̄(ξ)dξ. (3.144)

We conclude that the radial stress has a logarithmic singularity unless ω1 =ω2. Inside the inclusion
the other two stress components have the following distributions

σ̄θθ = h0 ln(Ri
R

) + σi

+[e
1
2 (ω1−ω2) ∂W

∂λ2
− e

1
2 (ω2−ω1) ∂W

∂λ1
] ∣
λ1=λ0,λ2=λ

−1
0 ,λ3=1

, (3.145)

σzz = h0 ln(Ri
R

) + σi + [∂W
∂λ3

− e
1
2 (ω2−ω1) ∂W

∂λ1
] ∣
λ1=λ0,λ2=λ

−1
0 ,λ3=1

. (3.146)

Proposition 3.4. Consider an infinite isotropic and incompressible elastic circular cylinder subject to
uniform pressure on its boundary cylinder. Assume that there is a cylindrical inclusion at the center of the
bar with uniform radial and circumferential eigenstrains. Unless these strains are equal, the stress field has
a logarithmic singularity. If the eigenstrains are equal, then the stress inside the inclusion is uniform and
hydrostatic.

Remark 3.4. Note that when the radial and circumferential eigenstrains are equal the stress inside the
inclusion would be uniform hydrostatic even if the bar is made of compressible materials of Types I, II, or
III.

A multi-layered cylindrical inclusion. We can generalize the previous example to the case
when the eigenstrain is piecewise constant in the cylindrical bar. Let R0 =Ri <R1 < ... <Rn =Ro
and assume that

ωR(R) =ωΘ(R) =ω0 +
n−1

∑
k=0

(ωk+1 − ωk)H(R −Rk). (3.147)

Thus

ω′Θ(R) =
n−1

∑
k=0

(ωk+1 − ωk)δ(R −Rk). (3.148)

Using incompressibility, for Rk ≤R ≤Rk+1 we have

r(R) =
⎡⎢⎢⎢⎢⎣
e2ωkR2 +

k

∑
j=1

(e2ωj−1 − e2ωj)R2
j−1

⎤⎥⎥⎥⎥⎦

1
2

. (3.149)

In the same interval

λ1 =
R

r(R)e
ωk , λ2 =

r(R)
R

e−ωk , λ3 = 1. (3.150)

Note that in p′(R) = h(R) there are n delta distributions on the right hand side with indeterminate
coefficients, i.e.

h(R) = ĥ(R) +
n−1

∑
k=0

Akδ(R −Rk). (3.151)



19

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Knowing that σrr(Rn) = −p∞, we have

p(Rn) = p∞ + Rne
ωn−1

r(Rn)
∂W

∂λ1
∣
Rn
. (3.152)

Denoting the jump in a quantity by J.KR = (.)R+ − (.)R− , it can be shown that

JσrrKRk =
Rk

r(Rk)
(eωk ∂W

∂λ1
∣
R+
k

− eωk−1 ∂W
∂λ1

∣
R−
k

) − JpKRk = 0. (3.153)

It is straightforward to show that Ak = JpKRk and hence

Ak =
Rk

r(Rk)
(eωk ∂W

∂λ1
∣
R+
k

− eωk−1 ∂W
∂λ1

∣
R−
k

) . (3.154)

Therefore

Rk <R <Rk+1 ∶ p(R) = p∞ + Rne
ωn−1

r(Rn)
∂W

∂λ1
∣
Rn

−
n−1

∑
j=k+1

Aj − ∫
Rn

R
ĥ(ξ)dξ. (3.155)

Having the pressure field, all stress components are easily calculated.

(ii) Zero-stress cylindrically-symmetric eigenstrain distributions

Next, we find the impotent cylindrically-symmetric eigenstrain distributions. In the cylindrical
coordinates (R,Θ,Z), having the material metric (3.119) is equivalent to having the following
orthonormal coframe field

ϑ1 = eωR(R)dR, ϑ2 = eωΘ(R)RdΘ, ϑ3 = dZ. (3.156)

To calculate the Levi-Civita connection 1-forms we use Cartan’s first structural equations.
Knowing that the Levi-Civita connection is torsion free we find the three unknown connection
1-forms ω1

2, ω
2
3, and ω3

1 as

ω1
2 = −e−ωR(R)

1 +Rω′Θ(R)
R

ϑ2, ω2
3 =ω3

1 = 0. (3.157)

Using Cartan’s second structural equations, we obtain the following Riemann curvature 2-forms

R1
2 = −e−2ωR [ω′′Θ + 1

R
(2ω′Θ − ω′R) + ω′Θ(ω′Θ − ω′R)]ϑ1 ∧ ϑ2, R2

3 =R3
1 = 0. (3.158)

The Riemannian material manifold is flat if and only if

ω′′Θ(R) + 1

R
(2ω′Θ(R) − ω′R(R)) + ω′Θ(R)(ω′Θ(R) − ω′R(R)) = 0. (3.159)

Given ωΘ , ωR must satisfy the following linear ODE for the eigenstrain distribution to be zero
stress.

[ω′Θ(R) + 1

R
]ω′R(R) =ω′′Θ(R) + ω′Θ(R)2 + 2

R
ω′Θ(R). (3.160)

The general solution of this equation for a given ωR(R) is

ωΘ(R) =C1 − ∫
R

0

⎛
⎝

1

ζ
− eωR(ζ)

C2 + ∫
ζ

0 eωR(ρ) dρ

⎞
⎠
dζ. (3.161)

When ωΘ =ωR =ω, the solution is simply

ω(R) =C1 +C2 lnR. (3.162)

For a solid bar to have an invertible material metric at R = 0 we must have C2 = 0, i.e. a uniform
eigenstrain is the only zero-stress cylindrically-symmetric eigenstrain distribution.
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4. Conclusion
In this paper we developed a general framework to compute residual stress fields induced by
general eigenstrains and inclusions. As examples, we first computed the stress field of a ball with
a spherically-symmetric distribution of dilatational eigenstrains. We assumed that the ball is made
of an arbitrary incompressible isotropic solid. As a particular example, we looked at a spherical
inclusion at the center of a finite ball. Assuming that the ball is made of an incompressible
solid and that the eigenstrain in the inclusion is purely dilatational we showed that stress in
the inclusion is hydrostatic. When the radial and circumferential eigenstrains are not equal we
showed that the stress inside the inclusion is non-homogeneous and has a logarithmic singularity.
We also looked at a special class of compressible materials (materials of Types I, II, and III
according to Carroll [25]). We showed that when the eigenstrain in a spherical inclusion is purely
dilatational, the stress in the inclusion is again uniform and hydrostatic. We also considered finite
and infinite circular cylindrical bars with cylindrically-symmetric distributions of eigenstrains
and obtained similar results for their residual stress fields.

The geometric framework used for the inclusion problem is rigorous, general, and flexible.
On the formal side it provides a direct geometric interpretation for the notion of incompatibility
and the generation of residual stress. On the practical side, geometric tools provide a systematic
method to compute residual stress and deformations created by eigenstrains. It is clear from the
procedure described here that all semi-inverse problems can be treated along these lines as long as
the eigenstrains respect the underlying symmetry of the deformations (in our case, spherical and
cylindrical shells are locally deformed into spherical or cylindrical shells). The analysis presented
here also provides the starting point for a generalized homogenization computation for a material
with a dilute distribution of inclusions with given eigenstrains in order to compute effective
material properties.
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