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Abstract This paper reports on the initial stages of a
project to simulate the nonlinear mechanical behavior of
an aging human face. A cross-section of the facial
structure is considered to consist of a multilayered
composite of tissues with differing mechanical behavior.
The constitutive properties of these tissues are incorpo-
rated into a finite element model of the three-dimen-
sional facial geometry. Relatively short time (elastic-
viscoplastic) behavior is governed by equations previ-
ously developed which are consistent with mechanical
tests. The long time response is controlled by the aging
elastic components of the tissues. An aging function is
introduced which, in a simplified manner, captures the
observed loss of stiffness of these aging elastic compo-
nents due to the history of straining as well as other
physiological and environmental influences. Calcula-
tions have been performed for 30 years of exposure to
gravitational forces. Progressive gravimetric soft tissue
descent is simulated, which is regarded as the main
indication of facial aging. Results are presented for the
deformations and stress distributions in the layers of the
soft tissues.

1 Introduction

Biomedical research is being influenced by mechanics in
a number of important ways. Examples are the use of
computer methods to simulate trauma (Snedeker et al.
2002), and surgical planning and surgical training using
virtual reality (Brett et al. 1995; Burdea 1996; Koch et al.
1996; Avis 2000; Szekely 2003). In most cases the goal of
simulations related to the face has been to produce
realistic animations of facial expressions (Parke 1982;
Lee et al. 1995; Koch et al. 1996; Zhang et al. 2004).

The objective of the present paper is to focus atten-
tion on the important role of realistic modeling of the
mechanical response of facial tissues to loads. Previous
research (Har-Shai et al. 1996, 1997) has considered
mechanical experiments to study the viscoplastic prop-
erties of the skin and the underlying supportive tissue
SMAS (superficial musculoaponeurotic system).
Mechanical constitutive equations were developed in a
simple one-dimensional form (Rubin et al. 1998) and in
a more general three-dimensional form (Rubin and
Bodner 2002). More specifically, the constitutive equa-
tions discussed there are in the class of elastic-visco-
plastic phenomenological equations which can model
the time-dependent, nonreversible material response
observed in most solids. In elastic-viscoplastic theory,
which is akin to nonlinear visoelasticity, the stress re-
sponse is determined by history-dependent variables
which are introduced through evolution equations ra-
ther than from hereditary integrals commonly used in
viscoelasticity.

With regard to the modeling of facial tissues, the
history-dependent variables and their associated evolu-
tion equations are introduced to model the main mac-
roscopic response caused by the microscopic
morphology of the tissues and relevant biological pro-
cesses. In general, the equations and the associated
material parameters are determined by comparing
predictions of the theory with macroscopic experimen-
tal data. A direct connection between microscopic
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biological processes and the material parameters of this
constitutive model remains illusive at this time. Never-
theless, a reasonable understanding of the mechanical
behavior of the composite tissue structure should be
helpful to guide new developments in clinical practice.

Regarding the aging of facial tissues, LaTrenta (2004,
pp 46–47) states that: ‘‘The most commonly held theory
is that facial aging is the result of progressive gravimetric
soft tissue descent . Over time, the soft tissues of the face
simply sag off the bones of the face, forming the dis-
tinctive wrinkles, furrows, folds, and eventual tissue
redundancy of the aged face. Gravimetric soft tissue
descent is complex, however, and encompasses several
distinct processes. One of the most important processes
is actinic damage or solar elastosis.... Wrinkles become
apparent in a woman’s skin in her mid-30s as estrogen
levels begin to decline from their peak. The dermis
begins to lose collagen and elastin... Fat, unlike muscle,
is supported solely by facial ligaments. After years of
being pulled and stretched, these facial ligaments never
regain their tautness.’’

In the proposed constitutive model, aging is charac-
terized by a reduction of stiffness of facial tissues. This
modeling approach is justified at the histological level by
tissue degradation processes. The dermis becomes atro-
phied during aging, with a reduction of the volume
fraction of glycosaminoglicans (specifically, the hyal-
uronic acid) and collagen fibers of types I, III and VII
(Craven et al. 1997; Fleischmajer et al. 1972). In par-
ticular, the dermal elastic fiber network (oxitalan fibers)
decreases significantly with age (Cotta-Pereira et al.
1978). In the face, these processes are accelerated by
damage due to sunlight exposure (photoaging) and are
complemented by solar elastosis, an accumulation of
truncated, disorganized elastic fibers in the dermis
(Craven et al. 1997). Progressive atrophy of superficial
fat occurs in the face at distinct locations (Donofrio
2000) which might contribute to the reduction of stiff-
ness of the SMAS (Har-Shai et al. 1998).

Age-dependent gravimetric descent is also related to
the increase in volume of deep fat and the accumulation
of fat around the eyes, in the cheeks and under the chin,
as well as to progressive lengthening of the musculature,
laxity of the ligaments and skeletal resorption (LaTrenta
2004). These processes were not considered in detail in
the present model. One other typical indication of face
aging that could not be simulated with the present model
is the formation of deep wrinkles and skin folds. Wrin-
kles evolve from mimetic lines such as those around the
eyes and the mouth. This process is related to localized
histological modifications, in particular actinic elastosis
and disappearance of oxitalan fibers (Contet-Audon-
neau et al. 1999), which might be influenced by the
concentration of stress and strain at these locations.

In this paper, the gravimetric descent of the facial
tissues is modeled by implementing the nonlinear con-
stitutive equations into the commercial finite element
computer code ABAQUS (Hibbit et al. 2002). Specifi-
cally, the constitutive equations in Rubin et al. (1998)

and Rubin and Bodner (2002), which were developed for
a relatively short time response to cyclic loading and
relaxation tests, are generalized to include an aging
function which captures the main effect of tissue deg-
radation (loss of stiffness) exhibited in long time
behavior. In particular, an aging (damage) quantity x is
proposed as a nonlinear function of an auxiliary aging
parameter a (see Fig. 1), which itself is determined by
integrating a rather simple evolution equation for its
time rate of change.

The three-dimensional finite element model of the
face is based on a range laser scan (Vannier et al. 1991)
of a young man. Kinematic boundary conditions are
defined from the description of face anatomy by Barton
(2001) and LaTrenta (2004). The facial tissue is modeled
as having four layers (skin, SMAS and superficial fat,
deep fat and mucosa, see Fig. 2). In the present exercise,
calculations have been performed for 30 years of expo-
sure to gravitational forces from the onset of aging (age
assumed to be about 30). This exposure period would
correspond to about 45 years of living (assuming the
face is in an erect position for 16 h per day). Such
exposure would cause progressive gravimetric soft tissue

Fig. 1 Plot of the assumed stiffness reduction factor due to aging as
a function of the aging parameter a

Fig. 2 Simple model of the tissue layers in the face
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descent, which is regarded as the main indication of
facial aging (LaTrenta 2004, p. 46). Results are pre-
sented for the deformations and stress distributions in
the layers of the soft tissues.

An outline of the paper is as follows. Section 2
describes the nonlinear constitutive equations and the
aging function which are used to model each of the facial
tissues. Section 3 discusses the procedure for determin-
ing the material constants so that the model matches
available mechanical experimental data. Section 4 briefly
discusses the numerical model of the face. Section 5
describes the main results and Sect. 6 presents conclu-
sions and possible directions for future research.

2 Constitutive equations

Rubin and Bodner (2002) developed nonlinear three-
dimensional constitutive equations for facial tissues
which are valid for arbitrarily large deformations and
which produce reasonable agreement with the experi-
mental data of Har-Shai et al. (1996). In that work, the
tissue was modeled as a composite material with a fully
elastic component and a dissipative component which
contains both elastic and viscous elements (similar to a
Maxwell model in viscoelasticity theory). The specific
(per unit mass) strain energy function w was specified in
the form

q0w ¼
l0

2q
expðqgÞ � 1½ �; ð1Þ

where q0 is the constant reference mass density, l0 is a
constant shear modulus and q controls nonlinearity.
Moreover, the function g was specified in an additive
form

g ¼ g1 þ g2 þ g3 þ g4; ð2Þ

with {g1, g2, g3} characterizing the response of the fully
elastic component and with g4 associated with the dis-
sipative component. Specifically, g1 characterizes the
fully elastic response to dilatation (volumetric changes),
g2 characterizes the fully elastic response to distortional
deformations and g3 characterizes the fully elastic
response to extension of specific fibers. The function g4
characterizes the response to elastic distortional defor-
mation of the dissipative component. It is noted that
the dissipative component is modeled using elastic-vi-
scoplastic constitutive equations which for low-stress
levels can produce nearly nondissipative elastic re-
sponse and for high-stress levels can produce dissipative
viscoplastic response. Consequently, the word ‘‘dissi-
pative’’ is used to describe the dissipative component
because that component has the potential to exhibit
dissipation even though it may respond essentially
elastically in some ranges of stress. For all stress levels,
the stress tensor is a function of elastic deformation
measures associated with both the fully elastic and the
dissipative components.

Here, the effects of specific fibers are neglected
(g3=0) due to lack of experimental data and the func-
tion g2 is modified (relative to Rubin and Bodner 2002)
to model the reduction in elastic stiffness caused by
distortional deformations of the elastic component using
an aging term x. Due to this modification, the elastic
component of the present model is referred to as an
‘‘aging elastic’’ component rather than a ‘‘fully elastic’’
component. Except for this modification, most of the
details of the following developments can be found in
Rubin and Bodner (2002). Specifically, the functions {g1,
g2, g3, g4} are taken in the forms

g1 ¼ 2m1 ðJ� 1Þ � 1nðJÞ½ �; g2 ¼ ð1� xÞm2ðb1 � 3Þ;
g3 ¼ 0; g4 ¼ a1 � 3; ð3Þ

where J is the dilatation, b1 and a1 are measures of the
elastic distortions of the elastic and dissipative compo-
nents, and m1, m2 are material constants. Details of the
independent variables in the theory will be presented in
Eqs. 7–19 after presenting the constitutive equations for
the stresses. Next, the constitutive equation for the
Cauchy stress T is hyperelastic with T obtained by a
derivative of w and T being separated additively into
three components

T ¼ Tð1Þ þ Tð2Þ þ Tð4Þ; Tð1Þ ¼ �m1l
1

J
�1

� �
I; ð4a; bÞ

Tð2Þ ¼ ð1� xÞm2lJ
�1 B0 � 1

3
ðB0 � IÞI

� �
;

Tð4Þ ¼ lJ�1 B0de �
1

3
ðB0de � IÞI

� �
; (4c, d)

where l is a nonlinear shear modulus, and B¢ and B¢de
are tensorial measures of elastic distortion of the elastic
and dissipative components. In these equations, T(1)

characterizes the elastic response to dilatation, T(2)

characterizes the aging elastic response to distor-
tional deformations, and T(4) characterizes the dissipa-
tive response to distortional deformations. Also,
AÆB=tr(ABT) denotes the inner product between two
second-order tensors A and B.

From Eq. 4a it can be seen that the pressure p becomes

p ¼ � 1

3
T � I ¼ m1l

1

J
� 1

� �
; ð5Þ

where the bulk modulus m1l is defined in terms of the
nonlinear shear modulus l

l ¼ l0 expðqgÞ: ð6Þ

The total dilation J is determined by the standard
evolution equation

_J ¼ JD � I; ð7Þ

where a superposed dot denotes material time differen-
tiation, and D is the symmetric part of the velocity
gradient L=Æ¶v/Æ¶x
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D ¼ 1

2
ðLþ LTÞ: ð8Þ

In Eq. 4c, B¢ is a unimodular second order tensor
(Flory 1961)

det ðB0Þ ¼ 1; ð9Þ

which is a measure of total distortional deformation,
and is determined by the evolution equation

_B0 ¼ LB0 þ B0LT � 2

3
ðD � IÞB0: ð10Þ

This equation is purely kinematical and can be
obtained by differentiating the expression

B0 ¼ J�2=3B ð11Þ

where B is the left Cauchy-Green deformation tensor.
Also, the scalar b1 in (2.3) is a measure of total distor-
tional deformation given by

b1 ¼ B0 � I: ð12Þ

In Eq. 4d, the dissipative component is modeled using
equations similar to those for viscoplasticity. Specifi-
cally, B¢de is a unimodular second order tensor

detðB0deÞ ¼ 1; ð13Þ

which is a measure of the elastic distortional deforma-
tion associated with the dissipative component, and is
determined by the evolution equation

_B0de ¼ LB0de þ B0deL
T � 2

3
ðD � IÞB0de � CAd ð14Þ

Also, the scalar a1 in Eq. 3 is given by

a1 ¼ B0de � I ð15Þ

Equation 14 is a generalization of Eq.10 with the rate
of inelastic deformation being controlled by the term C
Ad. In particular, when C Ad vanishes, Eq. 14 has the
same form as Eq. 10 and the dissipative component re-
sponds elastically. Moreover, the tensor Ad controls the
direction of inelastic deformation rate and is specified by
the form

Ad ¼ B0de �
3

B0de
�1 � I

� �
I ð16Þ

which ensures that B¢de remains unimodular Eq. 13.
The scalar function C in the evolution Eq. 14 requires

a constitutive equation which is specified by

C ¼ C1 þ C2 _e½ � exp � 1

2

b
bde

� �2n
" #

; ð17Þ

similar to that of Bodner and Partom (1975). In
this equation, {C1, C2, n} are non-negative material
constants, bde is the magnitude of the deviatoric tensor
B00de

bde ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
B00de � B00de

r
; B00de ¼ B0de �

1

3
ðB0de � IÞI; ð18Þ

e is the equivalent total distortional strain determined by
the evolution equation

_e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
D0 �D0

r
; D0 ¼ D� 1

3
ðD � IÞI; ð19Þ

and b is a measure of hardening of the dissipative
component characterized by the evolution equation

_b ¼ r1r3 þ r2 _e
r3 þ _e

� �
Cbde � r4b

r5 : ð20Þ

with {r1, r2, r3, r4, r5} being material constants. Using the
discussion in Rubin (1994), it can be shown that these
constitutive equations are properly invariant under
superposed rigid body motions. Also, it is noted that the
term C2 _e in Eq. 17 was introduced in Rubin and Bodner
(2002) to cause the constitutive response to be consistent
with the observations on soft tissues which indicate that
hysteresis loops to the same stress levels are nearly
independent of strain rate over a wide range of rates
(Fung 1993, p. 281).

For small values of bde relative to b, it follows from
Eq. 17 that the exponential term causes the rate of
inelastic deformation to be vanishingly small so the
dissipative component responds essentially elastically.
On the other hand, when bde attains values on the order
of b, then the magnitude of the inelastic response is
controlled by the constants {C1, C2}. The sharpness of
the transition between elastic and dissipative response is
controlled by the constant n.

The evolution Eq. 20 for the hardening parameter b
models two main effects. The first term on the right-
hand-side of Eq. 20 causes an increase in b due to
inelastic deformation rate. The second term on the right-
hand-side of Eq. 20 causes b to recover to the value zero.
This overall response attempts to model effects of fluid
flow in the tissue, the fluid being expelled when the tissue
is deformed (hardening) and the fluid being imbibed by
the tissue over time as the tissue returns to its nearly
unstressed state (recovery of hardening). Specifically, the
constant r1 controls the rate of hardening during relax-
ation tests ð _e ¼ 0Þ; the constant r2 controls the rate of
hardening during loading (large values of _eÞ; and the
constant r3 controls the value of strain rate _e associated
with the transition between these two responses. In this
regard, it should be emphasized that this particular
functional form for hardening is quite simplistic and can
be modified when additional experimental data is
available. Also, the constants r4, r5 control the rate and
shape of recovery of hardening.

The functional dependence on the total strain rate _e in
Eq. 17 and Eq. 20 attempts to capture differences in the
observed responses to loading and relaxation tests.
Specifically, for loading with large values of _e (i.e.
C2 _e� C1 and _e� r3Þ the evolution Eq.14 characterizes
nearly rate-independent response. On the other hand,
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during relaxation tests (with _e ¼ 0Þ the evolution Eq.14
characterizes viscoplastic rate-dependent response.
Moreover, the transitions between these two types of
response depend mainly on the constants {C2, r3}.

The main modification in Eq. 3, relative to the
constitutive equations of Rubin and Bodner (2002), is
the presence of the aging (damage) term x which causes
the stiffness of the elastic response to distortional
deformation (see g2 in Eq. 3) to decrease with increas-
ing x. Consistent with information in the medical lit-
erature, damage due to aging of the tissues is
considered to be nonreversible. Most models for dam-
age of materials propose an evolution equation for the
time rate of change of a damage variable like x which
is a highly nonlinear function of x and stress. Here, an
alternative procedure is proposed which improves the
stability of the numerical integration of the aging
model. Specifically, the aging quantity x is taken to be
a function of an auxiliary aging parameter a which
produces a generic S-like curve (see Fig. 1)

x ¼ xðaÞ ¼ ð1� a1Þ
a2ð3a=2Þa3

1� a2 þ a2ð3a=2Þa3
� �

;

0 � a1 � 1; 0 � a2 � 1; a3 � 0;

ð21Þ

where {a1, a2, a3} are material constants and a is
determined by an evolution equation. This functional
form has been chosen so that x is bounded by zero and
the value (1–a1)

0 � x � 1� a1;xð0Þ ¼ 0;xð1Þ ¼ 1� a1: ð22Þ

Also, it can be shown that

dx
da
¼ 3ð1� a1Þa2a3ð3a=2Þa3�1

2½1� a2 þ a2ð3a=2Þa3 �2
0; ð23Þ

which indicates that x is a monotonically increasing
function of a. Next, the aging parameter a is determined
by the relatively simple evolution equation

_a ¼ C3eþ C4; ð24Þ

where {C3, C4} are additional material constants, with
C3 controlling the dependence on strain and C4 con-
trolling the dependence on other physiological and
environmental effects of aging. Also, the factor 3/2 in
Eq. 21 was chosen for convenience and could be ad-
justed by changing the values of {C3, C4}.

With regard to more standard formulations of dam-
age (e.g. Bodner and Chan 1986) it is noted that Eqs. 21,
23 and 24 could be combined to obtain an evolution
equation directly for the damage parameter x which is
independent of the auxiliary parameter a. However, the
resulting equation would be a highly nonlinear function
of x which could cause difficulties in numerical inte-
gration. In contrast, the procedure used here embeds
most of the nonlinearity in the functional form Eq. 21
for x(a) and leaves a rather simple evolution equation
Eq. 24 for a. Thus, this procedure of specifying x as a

function of an auxiliary parameter a may be useful for
other constitutive equations that include continuum
damage parameters.

Next, using the above constitutive equations and the
conservation of mass

qJ ¼ q0; ð25Þ

which gives an expression for the current mass density q,
it can be shown that the rate of material dissipation D

D ¼ T �D� q _w � 0; ð26Þ

requires

D ¼ T �D� q _w

¼ 1

2
lJ�1 CAd � Iþm2ðb1 � 3Þ _x½ � � 0; ð27Þ

which is satisfied for all processes since {l0, m2, C} are
nonnegative.

The material constants {l0, q, m1, m2} control the
elastic response of the tissue. More specifically, q con-
trols nonlinear elastic effects through the strength of the
exponential function and it has insignificant influence
for small deformations (with l � l0). Consequently, the
remaining elastic constants can be identified by consid-
ering small deformations. The constant l0 controls the
elastic shear modulus of the dissipative component and
the elastic moduli of the other components have been
normalized by l0. Thus, the small deformation bulk
modulus k1 of the tissue is given by

k1 ¼ m1l0: ð28Þ

The small deformation shear modulus of the aging
elastic component is given by (1�x)m2l0. Thus, the
aging function x tends to reduce the magnitude of this
shear modulus as x and a increase (see Fig. 1). The
material constants {a1, a2, a3} control the shape of the
aging function Eq. 21. From Eq. 22 and Eq. 23 it is
clear that x smoothly changes from the value 0 to its
maximum value 1�a1 as the aging parameter a in-
creases. This means that the small deformation shear
modulus of the fully aged elastic component becomes
a1m2l0, which is reduced from the young tissue value of
m2 l0 by the constant a1. The constant a2 controls the
extent of this transition when a=2/3, since

x ¼ ð1� a1Þa2 for a ¼ 2

3
: ð29Þ

Also, the transition becomes sharper as the value of
a3 is increased. As noted earlier, the value of a=2/3 in
Eq. 21 was chosen for convenience but could be adjusted
by changing the factor 3/2 in Eq. 21. Furthermore, the
evolution Eq. 24 for the aging parameter a models the
effect of straining on the inhomogeneous evolution of
aging by the constant C3. It is well known that exposure
to sun causes aging of skin but quantifying the cumu-
lative effect of a time-dependent history of sun exposure
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is difficult. In principle, within the context of the pro-
posed model, the parameter C4 could be a specified
function of time to model time-dependent, but spatially
uniform, effects of aging.

Of course, initial conditions must be specified for all
quantities determined by evolution equations. For the
calculations considered here, it is assumed that the
material is initially in a stress-free state and these initial
conditions are specified by

J ¼ 1; B0 ¼ I; B0de ¼ I; e ¼ 0; b ¼ 0; a ¼ 0 for t ¼ 0:

ð30Þ

3 Determination of the material constants

The constitutive equations presented in the previous
section attempt to model a number of mechanical and
physiological processes. It was shown by Rubin et al.
(1998) that the experimental data of Har-Shai et al.
(1996) for cyclic loading and relaxation tests on rela-
tively fresh excised samples of SMAS and skin can be
modeled using elastic-viscoplastic constitutive equations
without a fully elastic component for distortional
deformations. However, as indicated by Rubin and
Bodner (2002), the presence of such a fully elastic
component is required to cause these tissues to return to
their unstressed shapes when unloaded for sufficient
time. This means that the relatively short time response
to distortional deformations is dominated by the elastic-
viscoplastic component while the long time relaxation
response is dominated by the aging elastic component
characterized by time-dependent stiffness reduction.

Although the experiments (Har-Shai et al. 1996) re-
vealed many important aspects of the inelastic response
of these tissues, they were limited to uniaxial tension
tests and they cannot provide sufficient data to deter-
mine all the material constants. Moreover, unlike met-
als, the response of biological tissues does not separate
into nearly independent regions dominated by either
elastic or viscoplastic responses. Typically, the response
of these biological tissues involves regions which are
influenced by both fully elastic and elastic-viscoplastic
material constants simultaneously. This means that it is
not possible to determine unique values for a full set of
material constants with limited experimental data.

The actual facial tissues are complicated layered
composite structures of epithelium, connective tissues,
muscle tissues, and fat. In the simulations described in
the next section, the face is modeled using four layers of
tissues (see Fig. 2). Typically, surgical procedures for
separating SMAS from skin cause the SMAS strip to
include portions of the surrounding fat layers. There-
fore, the SMAS layer identified in Fig. 2 is denoted as
SMAS and superficial fat. Under the SMAS is a layer of
deep fat followed by an additional layer of mucosa. It is
noted that the thicknesses indicated in Fig. 2 are
approximate.

The material constants are separated into three sets.
One set of seven constants (Table 1)

k1;m2f g; C3;C4f g; r3; r4; r5f g; ð31Þ

are specified here to exhibit physically reasonable
response characteristics of the model where experimental
data is not available, one set of three constants (Table 2)

a1; a2; a3f g; ð32Þ

which characterize the aging function, and one set of
seven constants (Table 3)

l0; qf g; C1;C2; nf g; r1; r2f g; ð33Þ

which have been determined by the available experi-
mental data (Har-Shai et al. 1996).

More specifically, it is assumed that under load the
deep fat will continue to flow and so the effect of dis-
tortional deformation on the elastic component was
eliminated by taking m2 = 0 for this tissue. Since the
deep fat does not contain the septa, which are present in
the superficial fat, it is reasonable to expect that the deep
fat will be weaker than the SMAS and superficial fat.
However, due to lack of experimental data, the other
material constants Eq. 31 not including m2, and Eq. 33

Table 1 Material constants set to exhibit specific response char-
acteristics of the model for SMAS and superficial fat, and skin

SMAS and superficial fat, and skin

k1 (GPa) 2.2
m2 8.0 E�4
C3 (s

�1) 0.8 E�8
C4 (s

�1) 0.1 E�9
r3 1.0 E�8
r4 1.0 E�4
r5 1.0

Table 2 Material constants for the aging function for both SMAS
and superficial fat, and skin

SMAS and superficial fat, and skin

a1 0.1
a2 0.8
a3 1.0 E+1

Table 3 Material constants determined by available experimental
data for SMAS and superficial fat, and skin

SMAS and superficial fat skin

l0 (MPa) 3.7 1.7
q 2.5 E+1 3.6 E+1
C1 (s

�1) 5.0 E�3 5.0 E�3
C2 (s

�1) 2.0 E+1 1.0 E+1
n 1.0 0.5
r1 0.2 2.0 E+1
r2 1.3 2.5
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of the deep fat were taken to be the same as those of
SMAS and superficial fat. In the absence of experi-
mental data, the material constants of the mucosa were
taken to be the same as those of skin.

Here, it is assumed that the volumetric response of
each tissue is close to that of water so that the constant
m1 is specified by Eq. 28 with the bulk modulus k1 of
water given in Table 1. For the fully aged tissue the
stiffness to distortional deformation of the aging elastic
component is controlled by the value a1m2. The experi-
mental data in Har-Shai et al. (1996) is for tissues that
were excised from older patients undergoing plastic
surgery and which are assumed for the present purposes
to be fully aged. No experimental data for correspond-
ing young tissue is available, so the effect of aging on the
small deformation shear modulus m2l0 of the elastic
component for young tissue is speculated to be ten times
its value a1m2l0 for fully aged tissue. This assumption
determines the value of a1 in Table 2. Figure 1 plots the
stiffness reduction factor (1�x) due to aging using the
values of the constants {a1, a2, a3} in Table 2. Assuming
that the starting point of the simulation is around
30 years of age, taking a=1 to correspond to 30 years of
exposure to gravity and other aging effects, and assum-
ing that the face is in an erect position for 16 h per day,
the period 0 £ a £ 1 corresponds approximately to ages
30–75.

Once the value of a1 is set, the value of m2 controls
the shear modulus of the aging elastic component due to
distortional deformation. This value was specified by
simulating the response of the face (described in detail in
the next section) to gravity assuming that all tissues are
fully hyperelastic (i.e., ignoring the dissipative compo-

nents in each tissue). The value of m2 in Table 1 was
specified to produce a reasonable value for the gravi-
metric descent of a point in the jowl region of the face.

The constants {q, C2, n, r4, r5} were specified to have
the same values as those given by Rubin and Bodner
(2002). Then, the remaining constants {l0, C1, r1, r2} in
Eq. 3 were determined by matching the experimental
data of Har-Shai et al. (1996), using the procedure dis-
cussed by Rubin and Bodner (2002). Specifically, the
response to uniaxial stress was simulated with P11 being
the engineering stress (force per unit reference area; first
Piola-Kirchhoff stress) and e11 being the engineering
strain (change in length per unit reference length). For
the simulations in Figs. 3 and 4 the full nonlinear
equations have been solved and the tissues have been
taken to be fully aged so that x was set to the value
(1�a1). Also, the strain rates associated with these tests
are recorded in Table 4.

Figure 3 shows that the theoretical results for fully
aged tissues (x=1�a1) match the experimental data
quite well for both the cyclic loading and relaxation tests
of Har-Shai et al. (1996). The results in Fig. 4 compare
simulations of these tests for fully aged tissues
(x=1�a1) with simulations of the response of young
tissues (x=0). It is interesting to note that the short-time
cyclic responses of these tissues are nearly unaffected by
the factor of ten difference in magnitude of the shear
modulus of the elastic component due to aging. From
Fig. 4d it can be seen that the simulated aging process
influences the relaxation of the skin to some extent. In
particular, it can be seen that young skin maintains its
tension more than aged skin, even in these short-time
simulated relaxation tests.

Fig. 3 Comparison of the
theoretical results for aged
tissues with the experimental
data for cyclic loading and
relaxation tests. First Piola-
Kirchhoff (engineering) stress
P11 versus engineering strain
e11
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4 Numerical modeling of the face

A three-dimensional finite element model of a face was
created using a triangulated surface obtained from a
range laser scan (Vannier et al. 1991) of a young man. A
multilayered structure made of three-dimensional ele-
ments was shaped according to the geometry of the tri-
angulated surface (see Fig. 5) in order to model the
layers of soft tissues of the anterior part of the head.
Figure 5 also indicates the fixation points of the SMAS
and deep fat layers using bold dots at the nodes of the
element mesh. The skin and mucosa were not fixed at
these nodes. Moreover, the nodes of all tissues at the
model boundaries of the head and neck were fixed.
These fixation regions correspond to the foundations
described by Barton (2001) and LaTrenta (2004).
Zygomatic ligaments, buccal-maxillary and mandibular
ligaments, as well as platysma-auricolar ligaments sup-
port the facial tissues and counteract gravitational loads.

As mentioned previously, the facial tissue is modeled
by four layers shown in Fig. 2. The four tissue layers are
attached at their respective interfaces with no slip. The
overall soft tissue thickness, which is approximately

constant over the present face model, does not reflect the
variation in facial tissue thickness known for different
face locations. This simplification has been adopted here
in order to facilitate the creation of a three dimensional
multilayered FEM (finite element model) model. Mor-
phological data from medical imaging techniques could
be used in future simulations in order to improve the
realism of the geometrical model in terms of the thick-
ness of the overall tissue composite as well as the
thickness of each layer.

As noted in the literature (Rubin et al. 1998; Saulis
et al. 2002), the SMAS acts as the firmer elastic foun-
dation of the more viscous skin. One of the observations
in the classical paper of Mitz and Peyronie (1976) is that
superficial to the SMAS are fat lobules interwoven with
fibrous septa which connect the SMAS with the dermis.
A recent study of the elastic behavior of filament bundles
appears in Gardel et al. (2004). The effective behavior of
the SMAS therefore includes that of the filaments held in
place by the fat lobules. In this regard, a simplistic
mechanical interpretation of the facial structure is that
the relatively coarse facial muscles activate the SMAS
which transfers the motion to the smooth skin by the
septa filaments held in place by the viscous fat lobules.
In particular, the composite of fat lobules, septa and
dermis tend to mask ripples due to muscle contractions
leading to smooth facial expressions.

These constitutive equations have been implemented
into the FEM program ABAQUS 6.3 (Hibbit et al.
2002). Specifically, special attention was focused on
implementing the equations so that (i) they would be
incrementally invariant under superposed rigid body
motions, and (ii) the algorithm for integration of the
evolution equation of the internal variables would con-

Fig. 4 Comparison of the
theoretical results for aged
tissues with those for young
tissues for cyclic loading and
relaxation tests. First Piola-
Kirchhoff (engineering) stress
P11 versus engineering strain
e11

Table 4 Strain rates for the experimental data

SMAS and
superficial fat _e11 (s�1)

Skin _e11 (s�1)

Cycle 1 ±2.0 E�2 ±1.0 E�2
Cycle 2 ±5.0 E�3 ±2.5 E�3
Cycle 3 ±1.0 E�3 ±5.0 E�4
Loading and unloading
in relaxation cycles

±5.0 E�3 ±2.5 E�3
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verge without imposing severe restrictions on time
stepping (Papes 2004). This FEM program is used for all
of the present simulations of the face. The numerical
mesh consists of 3840 nodes corresponding to 11520
degrees of freedom.

5 Results

Calculations were performed for 30 years of gravity
loading and the initial and final meshes for these cal-
culations are shown in Fig. 5. Extensive gravimetric soft
tissue descent can be observed in the cheek and jowl
regions. Figure 6 shows the vertical displacement of the
point A indicated in Fig. 5 as a function of time. In
particular, it can be seen that after the initial rapid drop
caused by sudden application of the gravitational load,
point A remains stable until the reduction of elastic
stiffness due to aging becomes significant.

Figure 7 shows distributions of the maximum prin-
cipal Cauchy stress in both the skin and SMAS layers at
early (shortly after the tissues equilibrate the gravity
load) and final stages of the calculation. It can be
observed that in the final state the magnitude and extent
of the high-stress regions in the SMAS layer are larger
than those in the skin layer. This tends to confirm that
the SMAS acts as the firmer elastic foundation of the
more viscous skin (Rubin et al. 1998; Saulis et al. 2002).
Figure 8 shows the final distribution of the aging
parameter a in the skin and SMAS layers. Comparison
of Figs. 7 and 8 shows that the stresses and the aging
parameter a are highest near the fixation points of the
platysma-auricolar ligaments (see Fig. 5) which support
the tissue. Moreover, it is observed that the jowls droop
around the fixation points of the mandibular ligaments.

Figure 9 shows the time history of the hardening
parameter b at the point B indicated in Fig. 5 in the skin
layer. The sudden application of the gravitational load

causes b to increase due to stretching of the skin. Then,
recovery of b occurs as it returns to near zero value. The
period (about 1–10 years) in which b remains near zero
corresponds to the period shown in Fig. 6 where gravi-
metric descent is minimal and the region (about 0–0.4) of
a in Fig. 1 where the aging process is nearly inactive.
For the period (about 10–30 years) the value of b again
increases and subsequently decreases due to recovery.
This corresponds to the region (about 0.4–0.8) of a in
Fig. 1 where most of the aging occurs. It also corre-
sponds to the period shown in Fig. 6 where most of the
gravimetric descent occurs. This response of the hard-
ening parameter b is determined in the model by the
constants {r1, r2, r3, r4, r5}. In particular, the value of r3
in Table 1 adopted here was specified in the previous
work (Rubin and Bodner 2002) primarily to be small
enough to separate the response to short-time cyclic
loadings (with finite _eÞ from that of relaxation tests (with
vanishing _eÞ: In that work the effect of aging over a long
time period of 30 years was not considered. Therefore,
one direction of future experimental work could attempt
to quantify the interactions of aging and hardening

Fig. 6 Vertical displacement of the point A indicated in Fig. 5 as a
function of time

Fig. 5 Initial and final meshes
for 30 years of gravity loading.
Also, the points associated with
fixation ligaments are indicated
on the initial mesh
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Fig. 7 Early and final
distributions of the maximum
principal Cauchy stress in both
the skin and SMAS layers

Fig. 8 Final distributions of the
aging parameter a in the skin
and SMAS layers
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during long-time response which would lead to appro-
priate modifications of the evolution Eq. 20, the func-
tional form Eq. 21, and the evolution Eq. 24.

6 Conclusions and future research

It is obvious, that the model proposed in this work cannot
reproduce all the complex phenomena that characterize
the aging process of a human face. Nevertheless, the
present results demonstrate the feasibility of three-
dimensional mechanical analyses of the face with a FEM
computer code utilizing constitutive relations which re-
flect the highly nonlinear elastic-viscoplastic behavior of
facial soft tissues. In this work, emphasis has been placed
on the physical realism of the mechanical response of the
tissue. In particular, most of the important material
constants in the constitutive equations have been deter-
mined to match short-time cyclic loading and relaxation
tests (Har-Shai et al. 1996, 1997; Rubin et al. 1998; Rubin
and Bodner 2002). It has been shown that this short-time
response is dominated by the dissipative viscoplastic re-
sponse of the tissue, whereas the long-time response to
gravity loading is controlled by the stiffness of the aging
elastic components in the tissues. For the derived material
constants, the short-time response of both young and
aged tissues are nearly identical. Therefore, the repre-
sentation of both elastic and viscoplastic behavior is re-
quired for the computational model to be useful for
practical purposes, such as providing a quantitative
assessment of alternative surgical procedures.

Three main features characterize the present three-
dimensional face analysis with respect to previous models
for face simulations: (i) the facial tissue is modeled as a
multilayered structure, (ii) the short-time mechanical
behavior of the SMAS and skin tissue layers is based on
experimental data frommechanical tests on excised tissue
samples, and (iii) the procedure developed for treating
aging effects leads to consistent and reasonable predic-
tions. These characteristics support the use of the present
approach for possible future research, such as:

1. Additional studies of the role of the different tissue
layers in the mechanical behavior of the face. The
results of the present calculation highlighted the role
of SMAS as the supportive tissue.

2. Further investigations of face aging mechanisms, for
example, the dependence on the histories of straining
and physiological and environmental effects.

3. The study of the influence of time dependent load
induced extension of the retaining ligaments (relaxa-
tion of the fixation points) and possible remodeling of
the tissues on the long time aging process.

4. Comparison of different procedures for cosmetic
surgery with respect to short time results and lon-
gevity. Layer separation and stretching procedures as
well as suturing techniques can be simulated with
three dimensional or simplified two dimensional
FEM models.

5. Investigation of the role of detailed anatomical data
for fixation ligaments on modeling the results of
different surgical procedures.

6. Use of active contractile elements in the FEM model
to simulate the effects of muscles on facial expres-
sions.

7. Investigation of the wrinkling in the forehead region
and near the eyes caused by muscle lengthening and
loss of muscle tone (LaTrenta, 2004).
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