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One major drawback of a Coherent-Optical Orthogonal Frequency Division Multiplexing (CO-
OFDM) system is its sensitivity to fiber nonlinearity.  It has been shown that a Volterra series 
based nonlinear equalizer can compensate distortion introduced by the fiber nonlinearity.  One 
major disadvantage of Volterra series is its complexity which can be reduced by removing its 
“unimportant” coefficients.  The resulting Volterra system is called the sparse Volterra system.  
The Wiener-Hammerstein model is another popular nonlinear signal processing technique with a 
simpler structure.  In this thesis, the nonlinear distortion of a CO-OFDM system is investigated, 
and equalizers based on Volterra model, sparse Volterra model and Wiener-Hammerstein model 
are designed.  This is the first attempt to apply the Wiener-Hammerstein model to compensate 
nonlinear distortion in optical communication systems.  A comparison between predistorters and 
equalizers is also presented.  To the best of author’s knowledge, no such a study has ever been 
conducted for optical communication systems. 
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Chapter 1. Introduction 

 
 

Coherent Optical OFDM (CO-OFDM) is considered an enabling technology of the next 

generation optical communication system since it possesses the merits of both a coherent system 

and an OFDM system [1].  As a coherent system, the CO-OFDM system maintains both signal 

amplitude and phase [2], thus increasing bandwidth utilization. The coherent optical 

communication system makes full compensation of chromatic dispersion, after optical/electrical 

conversion, possible.  The OFDM modulation scheme also leads to a high spectral efficiency 

because of its partially overlapping subcarriers [1].  Moreover, the cyclic prefix code of the CO-

OFDM system makes the system more resistant to inter-symbol interference caused by chromatic 

dispersion and polarization mode dispersion (PMD) [1, 3]. 

One major concern people have about the CO-OFDM system is its vulnerability to fiber 

nonlinear effects such as self-phase modulation (SPM) and cross-phase modulation (XPM).  

Both of SPM and XPM are caused by the optical signal intensity fluctuation [4].  Since the 

OFDM system has a high peak to average power ratio (PAPR) [5], a CO-OFDM system has 

more severe SPM and XPM compared with traditional optical communication systems.  Because 

OFDM is a multi-carrier modulation scheme, the four-wave mixing (FMW) among subcarriers 

within one channel also causes concerns among researchers [6].  As a result, nonlinearity 

compensation is a crucial component of the CO-OFDM system.  In this thesis, we concentrate on 

intra-channel nonlinearity distortion of the CO-OFDM system caused by SPM and FWM among 

subcarriers and present several nonlinear signal processing schemes to compensate for intra-

channel nonlinearity.  

The Volterra model is a widely used nonlinear signal processing tool [7].  It has been used to 

model the optical communication system nonlinearity [8-12].  The Volterra model is also used to 

mitigate nonlinearity effects in optical communication systems [13] and design equalizers for 

optical systems with OOK and PSK modulation [6, 11, 14-16].  The nonlinear system 

identification based on Volterra models can be carried out in frequency domain or in time 

domain.  In this work, we focus on the time domain analysis of the nonlinear channel.  

The biggest disadvantage of a Volterra model based nonlinear compensator is its complexity.  

A considerable amount of Volterra model coefficients is usually required to model a nonlinear 

system.  Consequently, it may not be feasible to apply a Volterra model based compensator in 
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real-time signal processing applications [17].  One possible solution is to identify the most 

significant coefficients of a Volterra model and delete all of the insignificant coefficients from 

the Volterra model [17-18].  The resulting Volterra model is referred to as a sparse Volterra 

model by some researchers [19]. 

The pth-order inverse is an important Volterra model based equalization technique [20].  Many 

researchers have used the pth-order inverse theory as a tool for equalizers or predistorters design 

[20-23].  The difference between the equalizer and the predistorter is that the equalizer 

compensates the signal distortion at the receiver and the predistorter pre-compensates the signal 

at the transmitter.  A pth-order inverse Volterra equalizer is demonstrated to be capable of 

compensating the joint effects of inter-symbol interference, nonlinearities and noise at the 

receiver [20].  An issue associated with the equalizer is that the received signal is corrupted by 

noise, and the equalizer may amplify noise [20].  On the other hand, a pth-order inverse 

predistorter would vary the actual input signal to the nonlinear system, make the channel model 

inaccurate although the predistorters can circumvent the noise enhancement problems [21, 22] 

and compensate the nonlinear distortion before the addition of noise [21].  To fully explore the 

advantages and disadvantages of the pth-order inverse equalizer and the pth-order inverse 

predistorter, we carried out a thorough comparison about these two compensation techniques.  

To the best of author’s knowledge, it is the first time such a comparison has ever been conducted 

for the CO-OFDM system. 

An alternative way for nonlinear compensation is to use the Wiener-Hammerstein model.  

Wiener-Hammerstein model is one of the commonly used block-oriented nonlinear structures 

[24], which comprises a cascading connection of a linear system, a memoryless nonlinearity 

system and a second linear system.  This kind of nonlinear system has been used in the 

physiological system modeling [25], the power amplifiers modeling [26], the power amplifiers 

nonlinearity compensation [27], the acoustic echo cancellation [28, 29], the biological 

applications [30], and etc.  To the best of the author’s knowledge, it is the first time that the 

Wiener-Hammerstein model has ever been used in the optical communication system for fiber 

nonlinearity modeling and compensation.  The employment of Wiener-Hammerstein model in 

optical nonlinear distortion is accomplishable because many Wiener-Hammerstein models would 

have a corresponding Volterra model representation [24], and the Volterra model has been 

successfully demonstrated to be capable of compensating the fiber nonlinearity effect.  The 
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benefits of using a Wiener-Hammerstein model are that the number of coefficients would be 

significantly reduced and it has a simpler structure compared with the Volterra model. 

In this thesis, the nonlinear effect of a CO-OFDM system is investigated, and equalizers based 

on the linear model, conventional Volterra model, sparse Volterra model, and Wiener-

Hammerstein model are designed and tested.  The pth-order inverse theory is applied to design 

the Volterra inverse predistorter and Volterra inverse equalizer.  The distinctions between pth-

order Volterra inverse predistorter and pth-order Volterra inverse equalizer are investigated.  

The simulation results show that nonlinear equalizers outperform linear equalizers.  The sparse 

Volterra model has comparable performance to the conventional Volterra model.  Both the pth-

order Volterra inverse equalizer and the pth-order Volterra inverse predistorter can reduce the 

signal nonlinear distortion.  A pth-order Volterra inverse equalizer performance would be 

affected by the system launch power; however, the launch power would have limited 

performance on the pth-order inverse Volterra predistorter.  The Wiener-Hammerstein equalizer 

works better than the linear equalizer and has comparable performance to the Volterra equalizer 

with fewer coefficients.  The rest of this thesis is organized as follows:  

In chapter 2, the single channel and the wavelength division multiplexing (WDM) fiber optics 

systems are introduced.  The principles of coherent detection and direct detection are introduced.  

The nonlinearity effects, like self-phase modulation and cross-phase modulation are described.   

Chapter 3 reviews the Volterra model which will be used to model and compensate the signal 

nonlinear distortions.  It is also shown how the orthogonal search method can reduce the 

complexity of the Volterra model.  The obtained model is called the sparse Volterra model.  The 

pth-order inverse theory is discussed.  The Wiener-Hammerstein model is also explained in this 

chapter. 

In chapter 4, two adaptive signal processing algorithms, least mean square (LMS) and 

recursive least square (RLS) algorithms, are introduced.  These two algorithms will be used to 

determine the channel model and compensator coefficients in this study.  

In chapter 5, we describe how to model the optical transmission channel or compensate its 

nonlinear distortion using the conventional Volterra model, the sparse Volterra model and the 

Wiener-Hammerstein model.  The procedure of applying the pth-order inverse theory to design 

the Volterra inverse predistorter and Volterra inverse equalizer is provided.  The determination 

of equalizers based on adaptive signal processing algorithms is presented in this chapter as well.  
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In chapter 6, we describe the simulation setup in details.  The simulation is done using 

commercial software, OptiSystemTM.  The implementation of the nonlinear equalizers and the 

predistorters in the simulation setup are also discussed.   

Simulation results are included in Chapter 7.  The performance of different types of 

compensation schemes is presented and a detailed comparison between the equalizer and 

predistorter is provided. 

Chapter 8 concludes this thesis. 
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Chapter 2. Fiber Optics and Optical CO-OFDM 

 
 

The use of light for communication can be dated back to ancient times.  As the technology has 

been improved through generations, massive information can be transmitted as optical 

waveforms.  Comparing with other communication techniques, optical system enables a high bit 

rate signal transmission because of its ultra-high carrier frequency.  This chapter provides a 

concise overview of the fiber optics communication system including optical OFDM and fiber 

nonlinearity.  

2.1 Fiber Optics 

Fiber optics communication systems are lightwave systems which transmit information 

through optical fibers [3].  In the optical system, information modulates optical carriers [31]. 

Similar to other communication systems, optical communication components include a 

transmitter, a receiver, and a transmitting channel, as shown in Fig.2.1.  

 

Figure 2.1 Components of an optical communication system. 

 

The optical source can be the semiconductor laser or light-emitting diodes, which generates 

carrier waves at different frequencies.  The electrical signal entering the modulator can be pre-

coded by different schemes, for example On-Off Keying and PSK.  The modulator, like the 

commonly used Mach-Zehnder modulator, is used to modulate the optical carrier and convert 

electrical signals to optical signals.  The generated optical signals are transmitted through the 

optical fibers.  At the receiver, direct detection or coherent detection technique can be used to 
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convert the optical signals back to electrical signals and those obtained signals will be 

demodulated and recovered.  The detection techniques are described in details in section 2.2. 

Optical fibers can be classified into multimode fiber and single mode fiber (SMF) depending 

on the fiber’s core diameter.  In our study, we only analyze the signals passing through SMF 

since SMF can support long distance transmission.  When signals transmit through the fiber, they 

will undergo attenuation, chromatic dispersion and nonlinear distortion.  Fiber attenuation is 

caused by the fluctuation of the refractive index and imperfections in the fiber [32].  Optical 

amplifiers are used to compensate attenuation, but the optical amplifier would generate amplified 

spontaneous emission (ASE) noise, decreasing the optical signal to noise ratio (OSNR).  

Chromatic dispersion comes from the fact that optical signals at different wavelengths will 

propagate at different group velocities [32], resulting in the broadening of an optical pulse.  

Dispersion compensation fiber (DCF) and the electrical dispersion compensator are two common 

tools for the chromatic dispersion compensation.  In our study, DCF is used to compensate the 

chromatic dispersion in the transmission channel.  The signal distortion caused by the fiber 

nonlinearity is another challenge in optical communication system.  It will be discussed in the 

later sections.  

Wavelength Division Multiplexing (WDM) technology can increase the bandwidth utilization 

of the fiber.  In a WDM system, signals at different wavelengths travel in the same fiber [32], as 

illustrated in Fig.2.2.  In each channel, different electrical signals modulate carriers with different 

wavelengths.  Different wavelengths are coupled by a multiplexer and transmit through the fiber.  

At the receiver, those wavelengths are separated by the de-multiplexer and are demodulated 

separately.  

 

Figure 2.2 Block diagram for WDM system. 

  



7 
 

2.2 Principles of OFDM 

In this study, we use the OFDM technique to modulate the electrical signal.  In a multicarrier 

modulation system (MCM), the data stream is parsed into several parallel sub-streams and each 

sub-stream modulates one subcarrier.  A MCM signal at transmitter can be written as [3]: 

                    
   

  
     

(2.1)                          
(2.2)                             
(2.3)    is the subcarrier waveform and     is the information at the kth subcarrier.    is the number of 

subcarriers, and    is the corresponding frequency of the subcarrier.     is the symbol period, and  (t) is the pulse shaping function.  If we sample      in Eq. 2.1 with sampling period of     , the 

mth sample can be represented as [3]: 

                      
    

(2.4) 

OFDM is a special class of MCM.  In an OFDM system, different subcarrier carrier frequencies 

are chosen so that each subcarrier is orthogonal to each other.  Because of the orthogonality of 

the OFDM subcarrier, we will have           

 (2.5) 

Substituting Eq. 2.5 into Eq.2.4, we get Eq.2.6 [3]: 

                       
    

 (2.6) 
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We can see    is the inverse Fourier transforms of input signal     .  At the receiver, assuming 

perfect synchronization, after sampling with sampling period 
   , the received signals become      .  The recovered signals       would be the Fourier transforms of the received signal      . 

                            
    

 (2.7) 

By evaluating Eq. 2.6, it is obvious that OFDM signal is a summation of several subcarriers.  

As a result, OFDM signal would have a higher peak to average power ratio (defined in Eq. 2.8) 

than single carrier signals.  

                                          
(2.8) 

 For the RF OFDM system, the power amplifier gain will saturate at high input power, causing 

nonlinear signal distortion [3], while for the optical OFDM system, the currently used optical 

amplifier is linear with its input signal power.  However, the optical fiber nonlinearity is more 

severe under high input signal power.  The nonlinearity effect in optical OFDM systems is an 

important drawback. 

Since OFDM is a multicarrier system, when passing through a dispersive channel, different 

subcarrier will transmit at different group velocities, causing dispersions.  To reduce the 

dispersion effect, a cyclic prefix or zero padding is usually added in the modulation block. 

WDM optical OFDM is a WDM system, which uses OFDM as the electrical modulation 

scheme.  In each channel, the signal is modulated by the OFDM technique.  The OFDM signals 

from each channel modulate an optical carrier of different wavelength using a pair of Mach-

Zehnder modulators (MZM).  Those signals are multiplexed and then transmitted through the 

same fiber.  At the receiver, the signals are de-multiplexed and detected separately. 

2.3 Optical Detection Techniques 

The optical signal is converted to electrical signal by photo-detectors.  The detection technique 

is described in this section.  After the OFDM modulation, the baseband electrical signal      is 
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transformed to the optical domain by a pair of MZMs.  The resulting optical domain signal 

becomes:                          
(2.9) 

where      and      are the angular frequency and phase of the launch laser at the transmitter. 

After passing through the optical channel, whose impulse response is      , the output optical 

signal becomes the convolution of input signal      and      .                                

(2.10) 

where   denotes the convolution symbol.  At the receiver, a hybrid coherent detection technique 

is used to convert the optical signals to the electrical signals.  The in-phase (I) component and the 

quadrature (Q) component are the real part and imaginary part of the signals respectively.  The 

main purpose of the coherent detection is to linearly recover I and Q channels, and to reduce the 

noise [3].  Compared with traditional direct detection techniques, coherent detection can fully 

recover the phase and amplitude information, enabling an accurate signal recovery.  The 

coherent detection components consist of a 2×4 90 degree optical hybrid and two pairs of photo-

detectors, as seen in Fig.2.3.     is the incoming signal, and    is the local oscillator (LO) laser 

signal, which can be written as Eq.2.11, where      and      are the angular frequency and 

phase of the LO laser at the receiver.                      
(2.11) 

 

Figure 2.3 Coherent detection block diagram. 
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After the optical hybrid conversion, the output signals      from the four ports are as following 

[3]:               

(2.12)               

(2.13)                

(2.14)                 

(2.15) 

Based on the square law detection, the corresponding I channel photocurrent I1-2 and the Q 

channel photocurrents I3-4 would become [3]:                                       

(2.16)                                      

(2.17)                                      
(2.18)                                      

(2.19) 

Because of balanced detection, I and Q components become:                        

(2.20)                        

(2.21) 

The combination of I and Q photocurrent gives the complex signal: 
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(2.22) 

Substituting Eq. 2.10 and Eq.2.11 into Eq. 2.22                                

(2.23)                

(2.24)                

(2.25)      and       are the frequency offset and phase offset between the transmitter and receiver 

laser respectively.  Apparently, after coherent-detection the signal is a linear replica of the 

incoming complex signal [3], and the phase and amplitude of the incoming signal can be well 

maintained.  At the receiver, if we apply the direct detection technique, the optical signal is 

detected by the photo-detection based on the square law detection, as shown in Fig.2.4.  The 

output signal magnitude is proportional to the received optical signal power (Eq. 2.26); however, 

the signal phase information cannot be maintained.  

 

Figure 2.4 Direct detection block diagram.            

(2.26) 

2.4 Fiber Nonlinearities  

Fiber nonlinearities can be classified into two categories.  One is the Kerr nonlinearities and 

the other is stimulated scattering [3].  Kerr effect is the electrical perturbation on the material 

refractive index [33].  The refractive index of the material in the direction of electric field can be 

expressed by:             

(2.27) 
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where I is the light intensity.       is the refractive index.       is the nonlinear refractive index of 

the fiber (Kerr coefficient) and is positive for most materials.  Since the refractive index is a 

function of the light intensity, a high launch power laser modulated by electrical signals would 

result in more variance in the refractive index and cause higher nonlinearity.  Nonlinear 

Schrödinger (NLS) equation in Eq.2.28 is often used to model the fiber nonlinearity effect on the 

pulse propagating in optical fibers [34].                              

(2.28) 

where        is the slowly varying complex envelope at position z in the fiber and time t.     is 

the second-order dispersion parameter, describing the group velocity dispersion.    is defined as 

the fiber nonlinearity coefficients.    is the attenuation coefficient.   

   In this work, we mainly focus on the self-phase modulation and cross-phase modulation caused 

by the Kerr nonlinearities.  Self-phase modulation (SPM) is the most influential nonlinear effect 

in single channel optical transmission, which can cause the spectrum broadening.  The total 

nonlinear phase shift caused by SPM based on the NLS equation can be described in Eqs.2.29-

2.31, where    is the launch power.       is the fiber effective area.         is the effective fiber 

length.     is the reference wavelength.  L is the fiber transmission length and    is the fiber 

nonlinear index.  It is apparent that with higher launch power, at longer transmission distance the 

phase shift due to SPM becomes more severe. 

               

(2.29) 

              

(2.30)             

(2.31) 
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In a WDM system, the cross-phase modulation (XPM) appears.  For a certain channel, besides 

its own signal power, the signal phase shift of that particular channel after fiber transmission 

length L is also affected by the power of other channels.  For a WDM system, the phase shift in 

the mth channel can be represented by, 

                           
        

(2.32) 

where         is the pulse shape in the mth channel.  Apparently, the phase shift in WDM 

system is more severe than a single channel transmission.  Another important nonlinear effect is 

the four-wave mixing (FWM).  It is defined as when three optical signals with different carrier 

frequencies          interact, they tend to generate new frequency as described by Eq.2.33.  

FWM usually happens in a WDM system.  It may also exist in a single channel OFDM system, 

since its subcarriers occupy different frequencies.  Each subcarrier may interact with others and 

generate new frequencies.               

(2.33) 
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Chapter 3. Modeling Techniques 

 
 

In nonlinear systems, the outputs are nonlinear functions of input signals.  In many cases, the 

linear model is not accurate enough to model the nonlinear channel.  To solve this problem, 

researchers resort to different nonlinear filters and use them to model the channel and 

compensate the nonlinear distortions. 

3.1 Linear Model 

If we consider the optical channel as a linear time-invariant system, its input-output relation 

can be represented by the following equation: 

                   
      

(3.1)      is the filter input signal,   is the filter coefficient and       is the filter output signal.      is the linear filter memory length.  However, a linear filter is insufficient to model 

nonlinear fiber effects like the Kerr effects.  Therefore, a nonlinear optical channel model is 

necessary and the popular nonlinear filters Volterra model and Wiener-Hammerstein model are 

studied in this thesis. 

3.2 Volterra Model 

For a continuous-time Volterra model, its output signal y(t) can be represented by the sum of 

linear, quadratic, cubic and higher-order convolution integrals of input signal x(t) [7]. The input-

output relations of a continuous-time Volterra system can be described as [7]: 

                     
                                       

                                        
                

(3.2)                   is the jth order Volterra kernel.  For a causal system, for any     ,                  =0.  Similarly, a causal discrete-time Volterra filter can be written as [7]: 
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(3.3) 

A discrete nonlinear bandpass channel can be represented by a complex Volterra model whose 

input and output are signals’ complex envelopes.  Because of the bandpass nature [35], the even 

order terms in the Volterra transfer function will not generate in-band frequency components 

[36].  Thus, the even order terms in the bandpass Volterra series can be ignored.  The third order 

bandpass Volterra model would be sufficient enough to model the nonlinear optical fiber channel.  

In our following simulation, we will represent the optical nonlinear channel using the causal, 

truncated, discrete time third-order bandpass Volterra system as follows [36, 37]: 

                    
    

                                        
    

 
    

 
     

(3.4) 

N is the memory length, and ( )* denotes the complex conjugate.  x(n) and y(n) are the complex 

envelopes of input signal and model’s output signals at time n.  h1[ ] and h3[ ] are the linear and 

cubic Volterra kernels respectively. The total number of coefficients L would equals to (N+1)+ 

(N+1)
3.  Notice that the Volterra series is a linear combination of Volterra kernels.  As a result, 

when a Volterra model is used to model a nonlinear system, the Volterra kernels can be updated 

using the least mean square (LMS) or the recursive least square (RLS) methods, which will be 

described in the next chapter.  

3.3 Sparse Volterra Model  

Usually, to model a highly distorted transmission with a Volterra model, a comparatively long 

memory length and high filter order would be chosen.  However, an increase in memory length N 

or filter order will increase the number of kernels exponentially, resulting in complicated 

calculations.  Moreover, the estimation of Volterra kernels may lose accuracy since distortion 
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will take place when estimating a large number of unwanted kernels [17].  As a result, it is 

necessary to remove the unwanted kernels to simplify the structure in practical applications.  

To get a compact Volterra structure with the orthogonal search approach [17-18], the filter 

coefficients are updated and searched in the orthogonal domain, making the search process more 

straightforward.  The detailed procedure is described as following.  The nonlinear equation Eq. 

3.4 can be expressed by [17]: 

                    
    

(3.5) 

where L is the total number of Volterra kernels,    is the linear or cubic input terms, and    is the 

corresponding Volterra kernels. To represent Eq.3.5 in a vector form: 

               
    

 (3.6) 

where,                          

                                 

                          

 

( )
 T demotes transpose.  Since each coefficient    carries different weights, our goal is to identify 

the most important kernels and ignore the rest. We will solve this problem in the orthogonal 

domain.  In orthogonal domain, Eq.3.6 is equivalent to  

               
    

 (3.7) 

Where,   is the orthogonalized matrix of vectors  .     is the orthogonal Volterra coefficients 

corresponding to   .  Since matrix   is orthogonal, the coefficients    can be updated by [17]: 
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(3.8) 

A simplified model needs to be constructed so that    approaches output Y with the minimum 

number of terms, which is equivalent to minimizing the normalized mean square error (NMSE) 

of the model.  

                                                  
    

(3.9)                
   (3.10) 

In Eq.3.9, we find that the problem is simplified to identify the most significant    among the L 

coefficients which contributes to a large     in Eq.3.10. The orthogonalization procedure of 

converting   to   can be completed by the modified Gram-Schmidt method.  According to [17-

18, 38], the modified Gram-Schmidt method is summarized as following.  
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One problem associated with the modified Gram Schmidt method is that   may lose 

orthogonality due to the intensive cancellation happened in line prob [39].  One way to solve this 

problem is to define a value  and if ||b||2 ≤ ε||a||2, a reorthogonalization is needed [39].  The 

pseudo code above is then modified as [39]: 
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   When the input matrix is rank deficient, some vectors are linearly dependent.  Those linear 

dependent vectors can be easily identified by evaluating the value of b.  If the value b is small, 

then the row of R and the related column    will be set to zero.  Suppose the linear dependent 

vector indexes are k, and linear independent vector indexes are j, Eq.3.6 would become:                        

(3.11) 

Assume that M is the rank of the input matrix (M ≤ L), the number of “valid” coefficients would 

be M, with the rest of coefficients set equal to zero.  The kernels of the sparse Volterra model are 

constructed from these M coefficients.  Since         (m ≠n) and        , Eq. 3.8 and 

Eq.3.10 can be revised as:          
   

(3.11)           

(3.12) 

Each time, the coefficient    which generates the biggest   , is selected and             .  The search process ends once the NMSE meets the pre-determined value.  To construct 
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sparse Volterra models, the orthogonal coefficients, will still have size of L with all the 

unimportant coefficients set to zero.  Also the upper triangle matrix       , the     row which 

corresponding to the unimportant coefficient index   is also set to zero.  The back substitution 

method shown below is then used to determine the sparse Volterra model kernels [38].  The 

resulting sparse Volterra model will have less non-zero kernels than the “full” Volterra model. 

end for
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In the back substitution algorithm above, if         ,     will be set to be zero correspondingly. 

3.4 Pth-order Inverse of Volterra Series 

People have used the nonlinear model based on Volterra series to analyze dispersion, 

attenuation and SPM effect in optical fibers.  A compensator can be designed based on the 

inverse system of the existing nonlinear channel model.  However, for some nonlinear systems, 

their inverse doesn’t exist, while others possess an inverse system only for a restricted range of 

input amplitudes [40].  The pth-order inverse can be used to obtain an inverse system of a 

nonlinear channel in which the input amplitude range is not restricted.  

To understand the pth-order Volterra inverse method, we write an Mth-order Volterra series as 

[40]: 

                       
    

(3.13) 

and   

                                        
    

 
     

         is the system operator and    is the ith-order Volterra operator.  The pth-order inverse of the 
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nonlinear system   is defined as a pth-order nonlinear system when connected in tandem with  , will result in a system, in which the second through the pth-order Volterra operators of the 

system are zero [40]. As shown in Fig.3.1,   is the pth-order Volterra inverse system of the 

nonlinear system  , and   represents the cascading system. 

 

Figure 3.1 Nonlinear system   connected with its inverse system   (post inverse system). 

 

   The pth-order Volterra inverse  can be written as in Eq.3.15, where    is the ith-order 

Volterra inverse operator and the system   can be written as in Eq. 3.16, where    is the ith-

order Volterra operator of system  .  

 

                  
    

(3.15) 

                            
       

(3.16) 

   Our goal is to obtain the third order Volterra inverse of the bandpass Volterra system whose 

second order Volterra operator is ignored.  The first and the third inverse Volterra operator can 

be derived as:         

(3.17)             

(3.18) 

To summarize, the third order Volterra inverse K would be:                                     
(3.19) 

The pth-order inverse   followed by the nonlinear system   is referred to as the pth-order pre-

inverse system, and the pth-order inverse   following the nonlinear system   is referred to as 
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the pth-order post-inverse system.  As shown in reference 40, the pth-order pre-inverse of a 

system   is the same as the pth-order post inverse of  .  We can design predistorters or 

equalizers based on the pth-order inverse theory to compensate nonlinear distortion in an optical 

communication system. 

3.5 Wiener-Hammerstein model 

In this section, the complex Wiener-Hammerstein model is used to represent the discrete 

nonlinear bandpass channel.  In this model, the first subsystem is the FIR filter. The second 

subsystem is the nonlinear polynomial filter, and the third subsystem is another FIR filter.  The 

configuration of the channel modeling performed by a Wiener-Hammerstein model is shown in 

Fig.3.2. 

 

Figure 3.2 Wiener-Hammerstein system for channel modeling. 

 

   After passing through the first FIR filter, the input-output relation in a discrete and time 

invariant form is displayed as following, where      is the first FIR filter memory length. 

                    
    

(3.20) 

Because the nonlinear optical channel is assumed to be bandpass, only the odd order terms in 

the “sandwiched” nonlinear subsystem can generate nonzero output and the even order terms is 

neglected.  In the Wiener-Hammerstein model, the center nonlinear subsystem order would 

determine its equivalent Volterra system order; Several researchers has proved that a third order 

Volterra model is sufficient to model the nonlinear optical channel; As a result, the center 

nonlinear filter order is set at three.  The output signal after passing through the center nonlinear 

filter is written as:                              
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(3.21) 

 The relationship between the output signals      and the input signals      of the second FIR 

filter is represented by Eq.3.22, where      is the second FIR filter memory length. 

 

                    
    

(3.22) 
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Chapter 4. Adaptive Algorithms 

 
 

The adaptive Least Mean Square (LMS) and Recursive Least Square (RLS) algorithms are two 

most popular adaptive signal processing algorithms.  Since the Volterra series is a linear 

combination of Volterra kernels as shown in Chapter 3, both LMS and RLS can be used to 

determine the coefficients of a Volterra series based nonlinear channel model or the compensator.  

The linear and nonlinear subsystem coefficients of the Wiener-Hammerstein model can be 

updated by the joint normalized LMS (joint NLMS) algorithm.  Without losing generality, we 

use a linear filter to explain LMS algorithm and use a Volterra nonlinear filter to explain the RLS 

algorithm.  Their detailed description is given below.  

4.1 Least Mean Square (LMS) Algorithm 

For an adaptive linear filter with L number of coefficients, its output signal      at certain time 

n can be represented as the follows:  

                    
    

(4.1)      is the filter input signal,       is the tap coefficient at time n.  We can express all the 

coefficients       and the input signals      in a vector form, as shown in Eq.4.2 and 4.3:  

                                         
(4.2)                                         

(4.3) 

The desired output vector D is:                           
(4.4) 

Assume we use the linear filter to model an unknown system.  At time n, the difference      between the desired signal      and the filter output      is: 
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(4.5) 

The problem we have to solve is to update the adaptive filter coefficients in Eq.4.2 to minimize         .  The coefficients vector can be updated by the gradient of the mean square error as 

shown in Eq. 4.6, where   is the step size.                           
(4.6) 

Since       is a function of filter coefficients, the gradient of the mean square error can be 

estimated as follows                                    
       

   
   
                                         

   
  
 

                              

 (4.7) 

Suppose the coefficients vector needs to be estimated is   , the recursive equation for updating 

the filter coefficients can be summarized as in Table 1. 
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Table 1. LMS algorithm summary for real signal. 

 

For complex input signals, the coefficients       can be written in vector form as: 

                                       

(4.8) 

The recursive equation for updating the filter coefficients can be summarized as in Table 2.  

 

Table 2 LMS algorithm summary for complex signal. 

 
   

4.2 Recursive Least Square (RLS) Algorithm  

In a Volterra model, although the output signal is a polynomial combination of current and past 

input symbol,     , its output symbol is linearly dependent on the Volterra filter kernels.  The 

input-output relations of a complex third order adaptive Volterra model at time n can be 

     

                  

                  

Initialization: 

Update procedure (n=1, 2, 3…): 

Estimation error: 

Coefficients update: 

  is a small positive number 

     

                     

                         

Initialization: 

Update procedure (n=1, 2, 3…): 

Estimation error: 

Coefficients update: 

  is a small positive number 
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represented by Eq.4.9, where       are the linear kernels and the            are the third order 

kernels at time n. 

                  
                                     

   
 

   
 

    

(4.9) 

The RLS method converges faster than the LMS method at the expense of increasing 

computational complexity.  In this section, we demonstrate how the RLS algorithm can be used 

to update the Volterra model coefficients.  We use a third order Volterra filter to model an 

unknown system.  In the Volterra model, the input vector is given in Eq.4.10 and the desired 

output vector D as shown in Eq.4.4.                                                                        (4.10) 

The coefficients vector is:                                                                       

(4.11) 

L is the total coefficient number.  The difference between desired output and estimated output 

can be expressed by:                                  
(4.12) 

The objective of least square algorithm is to minimize the cost function: 

                  
    

(4.13) 

where    is the exponential weighting factor or forgetting factor, which can track the slow 

statistical variations of the channel [36].  It is a positive constant with value close to, but less 

than one [36, 42].  A special case is      , which corresponds to infinite memory [42], and can 

be used in a stationary environment [42].  The correlation matrix   of the input signal and the 

cross-correlation vector   between the filter input and the desired output signals can be defined 

as following: 
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(4.14)            
                   

(4.15) 

The optimal value of      which minimizes the cost function can be obtained from:                       
(4.16) 

The correlation matrix in Eq.4.14 and the cross-correlation vector in Eq.4.15 can be reorganized 

as following: 

                
                                           

(4.17) 

                
                                           

(4.18) 

We can use the matrix inversion lemma methods to get the inverse matrix of     [42]. 

Assume a positive definite matrix A can be expressed as:                 
(4.19) 

Where,   and   are positive definite M-by-M matrices.    is the N-by-M positive-definite 

matrix and   is an M-by-N matrix.  The inverse matrix of   can be calculated as:                          
(4.20) 

If we let  ,  , C and D equivalent to following: 
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(4.21) 

Substituting Eq. 4.21 to Eq.4.20, we can get:                                                                  
(4.22)  

Let the inverse correlation matrix            , and then we have: 

                                  
(4.23) 

where      is the gain vector, and  

                                    
(4.24) 

The procedure of updating estimate of Volterra filter coefficient vector       with the RLS 

algorithm can then be derived and is summarized in Table 3 [36, 42]. 
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Table 3 RLS algorithm summary. 

 

  

     

    

                                 

                  

                

                                

Initialization: 

             is L L identity matrix 

  is a small positive constant 

Update procedure (n=1, 2, 3...): 

Gain Vector: 

Estimation error: 

Coefficients update: 

Correlation matrix inverse: 
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Chapter 5. Channel Estimation and Compensators Design 

 
 

In this chapter, we will introduce different nonlinearity compensation methods based on the 

Volterra and Wiener-Hammerstein models.  The first method is to represent the nonlinear 

transmission channel by the pth-order Volterra model, and then design the equalizer and 

predistorter based on its pth-order Volterra inverse system.  The second approach is to determine 

the Volterra series based equalizer using the adaptive signal processing method.  The third 

approach is to design the equalizer based on the Wiener-Hammerstein model using the adaptive 

signal processing method.  Linear equalizer is also included in simulations for comparison.  The 

estimation and compensation process is performed in the electrical domain, since an electronic 

signal processor is more affordable and convenient.  

5.1 Compensator Design Based on Transmission Channel Model 

The discrete-time model of the optical communication system is shown in the diagram 

below. 

 

Figure 5.1 A nonlinear optical channel model. 

 

The nonlinear channel includes the MZM, single mode fiber, amplifier, dispersion compensation 

fiber, optical filter and the photo-detector.  The input signal to the channel is represented by      , which is a sequence of complex valued 16-QAM encoded OFDM signals.  The output 

signal      is the 16-QAM encoded OFDM signals after passing through the nonlinear channel.  
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Both RLS and LMS algorithm can be used to update the coefficients of the linear model and the 

nonlinear model, and both algorithms can give very close results.  Without losing generality, we 

use the LMS algorithm to determine linear filter and the Wiener-Hammerstein filter coefficients 

and the RLS algorithm to determine the Volterra filter coefficients. 

5.1.1 Compensator Design Based On the Linear Inverse Model 

To demonstrate that a nonlinear equalizer can compensate the nonlinearity better than a 

linear equalizer, first of all, we use the linear model to model the optical channel.  A discrete 

adaptive linear model is given in Eq.5.1. 

                    
         

             
(5.1) 

The total number of coefficients L is set at 30.         is the linear filter coefficients at time n.       is the difference between the linear filter estimation output       and the actual system 

output signal     .  The input data to the linear filter can be expressed by the matrix as shown in 

Eq. 5.2, in which        when n<=0.  
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(5.2) 

The coefficients vector for linear model is in Eq. 5.3:                                     

(5.3)      is the ith column ( i=1,2,3…M ) in Eq.5.2 
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(5.4) 

The system desired output vector is:                             
(5.5) 

The output signals      at time n would equals to following equation:                   

(5.6) 

There are two modes in the data transmission: training mode and compensation mode.  The 

channel estimation is performed in the training mode.  At the transmitter, a pre-determined 8192 

bits training sequence is encoded into a 16 QAM format and then modulated by the OFDM 

modulation scheme.  The resulting signals are denoted by     , which is a complex valued 

signal representing the I and Q component of the OFDM signal.  At the receiver, the received 

signal after coherent detection can be sampled and saved, and the signals are represented by     . 

We update the linear model coefficients vector    in the training mode using the procedure as 

shown in Table 2 in section 4.1.  The total number of coefficients is set at 30 (L=30).  The filter 

coefficients vector    is initialized to be zero.  The variable   is a small positive number.  Once 

the coefficients vector    is obtained, the system output signal,     , can be compensated by the 

inverse linear system.  The inverse of the linear channel model can be represented by the 

following equation: 

                           
      

(5.7) 



33 
 

In the compensation mode, we pass the received signals      through the linear inverse filter 

shown in Eq.5.7.  The inverse filter output signal       should approximate the actual system 

input signal     . 

5.1.2 Compensator Design based on pth-order Volterra Inverse Model 

The discrete-time nonlinear optical system can be modeled by a bandpass Volterra model in 

the form of Eq.5.8 whose coefficients can be updated adaptively.  The variables,      and     , 

are the input and output signals indicated in Fig.5.1.  The variable,   (n), is the Volterra model 

output and      is the estimation error.  The block diagram for the bandpass Volterra model is 

shown in Fig.5.2.  We can use those linear and cubic kernels to characterize the nonlinear 

system.  

                  
                                     

   
 

   
 

        
            

 (5.8) 

 

Figure 5.2 Third order Volterra model for optical nonlinear channel. 

 

M is the total estimation sequence length.  The numbers of linear and cubic kernels are calculated 

as following.         

(5.9) 
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 (5.10) 

The total number of coefficients is:         

  (5.11) 

The input data matrix is shown in Eq. 5.12, in which        for n<=0.  
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(5.12) 

The estimate of model coefficients vector    can be represented by: 
                                                                       

(5.13) 

The system desired output vector is:                             
(5.14) 

The variable      denotes the ith column of the matrix  :             

(5.15) 

The output signals at time n would equals to following equation:                          

(5.16)  

Similar to the discussion in section 5.1.1, the channel estimation is performed in the training 

mode, as shown in Fig.5.3.  
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Figure 5.3 Channel estimation process (training mode). 

 

The memory length we choose for the Volterra model is two.  As a result, N=2 and the total 

number of coefficients is 30.  We update the coefficients vector    using the procedure 

summarized in Table 3 in the training mode.  First, we initialize the coefficients vector to 0 and 

initialize matrix  .  I is a       identity matrix and        .  We set    , after training 

data set of 8192 bits is sent, the nonlinear channel model is determined and the obtained model is 

used to design the equalizer with the pth-order inverse method.  To get the Sparse Volterra 

model, we can use the algorithm described in Section 3.3 to obtain the most significant kernels of 

the previously determined full Volterra channel model.  Only the significant kernels are 

determined with RLS algorithm after the first training model (the training sequence might be sent 

out periodically).  Similarly, a pth-order inverse Sparse Volterra equalizer can be designed base 

on the pth-order Sparse Volterra model. 

The pth-order inverse system based on the Volterra model can be found using the pth-order 

inverse method described in section 3.4.  Since the second order Volterra operator is not 

presented due to system’s bandpass nature, the third order operator of the pth-order inverse 

system can be simplified as follows.               

(5.17) 

The detail procedure for getting the pth-order inverse system based on the Volterra series is 

summarized in Table 4. 
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Table 4 Pth-order inverse summary for the third order Volterra series. 

 

To compensate the distorted signal using the pth-order Volterra inverse system, we process 

the received distorted signal      as described in Table 4.  The output signal       should also 

approximate the original sending signals     .  The development of pth-order inverse system 

based on the Sparse Volterra model follows the same procedure as the Full Volterra model. 

As indicated in reference 40, the pth-order pre-inverse is identical to the pth-order post-

inverse.  Therefore, the procedure summarized in Table 4 can be used to design either the pth-

order inverse equalizer or the predistorter.  Fig.5.4 shows the pth-order pre-inverse   in tandem 

with the nonlinear system   .  

 

Figure 5.4 Tandem connection of the pth-order pre-inverse K and the nonlinear system H. 

 

However, as shown in reference 21, the pth-order inverse predistorter changes the nonlinear 

system input.  As a result, the nonlinear model based on which the pth-order inverse predistorter 

is designed might not be accurate after the predistorter is introduced since the nonlinear system 

                       
      

                                   
   

 
   

 
    

                       
      

                

Stage 1: Linear Inverse (n=1: M): 

Stage 2: Cubic Operator (n=1: M): 

Stage 3: Linear Inverse (n=1: M): 

State 4: Final output (n=1: M): 
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characteristics might depend on the input signal.  To alleviate this problem, while designing a 

pth-order inverse predistorter, we need to conduct the channel modeling in several iterations.  

Once the pth-order inverse predistorter is designed and used to change input signal, the system 

model needs to be re-determined based on pth-order predistorter output and resulting system 

output.  The new pth-order inverse predistorter is then deigned based on the new nonlinear 

system model.  The detailed design procedure of a pth-order Volterra predistorter is shown in 

Table 5:  

Table 5 Predistorter design based on the pth-order pre-inverse Volterra system. 

 

In the compensation mode, at the transmitter, we pass the input signal      through the pth-

order inverse predistorter.  Then the predistorted signal modulates the optical carrier and is 

launched into the optical channel.  

5.2 Adaptive Equalizer Design Based on Inverse Channel Estimation 

Section 5.1 describes the transmission channel estimation and the compensator design based 

on the transmission channel model.  In this section, the equalizer design based on the inverse 

channel estimation is presented. 

The inverse channel estimation/equalizer design is carried out in the training stage.  The 

desired equalizer output is the transmitted signal, while the input to the equalizer is the distorted 

signal at the receiver.  The nonlinear channel is the same as the diagram presented in Fig.5.1.  A 

pre-determined training sequence is sent and the distorted received signals are saved.  The linear 

and nonlinear equalizers coefficients can be obtained by LMS or RLS. 

                                                                      

Stage 1:  Initialize the transmission channel coefficients vector                 .  The 

length of    is 30.  Perform channel estimation as described in section 5.1.2. 

Stage 2:  Develop pth-order inverse system based on the obtained Volterra channel model. 

Stage 3:  Perform channel estimation as described in section 5.1.2 based on the predistorter 

output and the corresponding nonlinear channel output.  Update the model coefficients vector: 

Stage 4:  Develop pth-order inverse system based on the new Volterra model. 

Stage 5:  Go back to Stage 3.  End if the predistorter performance does not vary a lot. 
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Fig.5.5 shows the equalizer coefficients update process in the training mode for the equalizer 

design.        is the equalizer output signal.       is the difference between the equalizer output 

and the desired output.  After the training stage, the obtained linear model, Volterra model, and 

Wiener-Hammerstein model based equalizers are used to compensate the distorted output in the 

compensation mode.  Fig.5.6 demonstrates the compensation mode, in which the linear or 

nonlinear equalizer is used to compensate the nonlinear signal distortions. 

 

Figure 5.5 Inverse system determination process (training mode). 

 

 

Figure 5.6 Equalizer compensation mode. 

 

The Volterra model based equalizer coefficients can be determined in the training mode.  The 

orthogonal search method discussed in section 3.3 is used to derive the Sparse Volterra model 

based equalizer from the full Volterra model based equalizer.  The adaptive filter algorithm 

needs to be modified to derive the Wiener-Hammerstein model based equalizer and the rest of 

this section is dedicated to the determination of a Wiener-Hammerstein model based equalizer. 

   The input-output relations of an adaptive Wiener-Hammerstein model consisting of the first 

FIR filter, the nonlinear filter and the second FIR filter is given in Eqs.5.18-5.20. 

                     
    

(5.18) 
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(5.19) 

                     
    

(5.20) 

where      is the first FIR filter memory length,       is the second FIR filter memory 

length and      is the Wiener-Hammerstein model input. 

The difference between desired signal      and the filter output      can be represented by:                   
(5.21) 

The coefficients can be represented in a vector form as shown in Eqs.5.22~5.24:                                

(5.22)                     

(5.23)                                

(5.24) 

The input signals of the first FIR filter, the nonlinear filter and the second FIR filter are shown in 

Eqs.5.25~5.27.                               

(5.25)                         

(5.26)                               

(5.27) 

The output signal after the first FIR filter, the nonlinear filter and the second FIR filter can be 

calculated by:                

(5.28)                
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(5.29)                

(5.30) 

The memory length for both linear filters is 1.  We use the joint normalized LMS (joint 

NLMS) algorithm to update the linear and nonlinear subsystem coefficients of the Wiener-

Hammerstein model jointly [41].  The NLMS method needs to be modified for the complex 

Wiener-Hammerstein model determination [43].  The detailed procedure is summarized in Table 

6 [41, 43].  The difficulty in the Wiener-Hammerstein model coefficients estimation is that the 

coefficients update is dependent among each subsystem [41].  The estimation is very sensitive to 

the coefficients initial condition and the step size.  To solve this problem, we perform the update 

procedure in several iterations, making the current coefficients vector as the next estimation 

starting point, as shown in Table 6.  
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Table 6 LMS for the Wiener-Hammerstein model coefficients update. 

 

  

                     

                                                                                                                                                                                                                                                                                                                                                                                                                                      

 

Initialization: 

  is a positive small constant. 

Loop: Update procedure (n=1, 2, 3...): 

  ,   ,   ,   are positive small constant. 

Go back to Loop (end after several iterations) 
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Chapter 6.Simulation System 

 
 

    The CO-OFDM system is numerically simulated by a commercial optical simulation tool, 

OptiSystem 8.0.  The simulation diagram is illustrated in Fig.6.1.  

 

Figure 6.1 Block diagram for numerical simulation of CO-OFDM system. 

 

   The transmission bit rate is 100Gbit/s.  On the transmitter side, the bit stream is generated using 

a pseudo random binary sequence generator, and the data is mapped by a 16-QAM encoder.  The 

16-QAM encoders with Gray coding has three different amplitude levels, as shown in Fig. 6.2.  

 

Figure 6.2 16-QAM encoders with Gray coding. 
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   The information stream is further parsed into 128 low speed parallel data subcarriers and 

present to an Inverse Fast Fourier Transform (IFFT) IFFT processor.  Finally, cyclic prefix is 

added to ensure correct data recovery.  A baud rate of 25 Gbaud/s OFDM in-phase and 

quadrature parts are then filtered by low pass filters, and their spectra are shown in Fig.6.3.  The 

resulting electrical signal then modulates optical carrier using a pair of Mach-Zehnder 

modulators.  The resulting optical signal spectrum is shown in Fig.6.4.  The laser line width is set 

at 1 MHz, with adjustable launch powers and no phase offset. 

 

Figure 6.3 I/Q channel RF OFDM spectrum. 

 

Figure 6.4 Optical OFDM spectrum after a pair of MZMs. 
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   The optical channel consists of 10 spans of 80 km SMF, with attenuation=0.2 dB/km, 

dispersion =16 ps/nm/km and nonlinearity coefficients =2.09 /w/km.  Fiber dispersion is fully 

compensated by a 16 km of DCF in each span which has 0.6 dB/km attenuation, -80 ps/nm/km 

dispersion and 6.4 w/km nonlinearity.  The combined SMF and DCF attenuation is balanced by a 

4 dB noise figure optical amplifier in each loop.  As shown in Fig. 6.5, after transmitting through 

800km of optical fibers, the signal spectrum becomes very noisy.  Optical Signal to Noise Ratio 

(OSNR) is measured at the end of the transmission channel.  

 

 

Figure 6.5 Optical OFDM spectrum after 800 km of optical fiber transmission. 

 

   Amplified spontaneous emission (ASE) noise is reduced by an optical filter at the receiver. The 

LO laser is assumed to be perfectly aligned with the power set at -2dBm and line-width equals to 

1MHz.  The I/Q components of the OFDM signal is recovered by a 2×4 90 degree optical hybrid 

and a pair of photo-detectors.  Photo-detector noise, such as thermal noise, shot noise, dark 

current and ASE noise are included in the simulation.  Electrical amplifiers are included to adjust 

the received signal intensity.  The converted OFDM RF signal is demodulated using FFT 

processor and the guarding interval is removed.  The obtained signals are then fed into a QAM 
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decoder.  The bit error ratio (BER) is calculated at the end of the receiver.  The starting and 

ending OFDM symbols are ignored in the BER calculation. 

   The equalizer of the optical channel can be in the form of a linear filter, Volterra model, or 

Wiener-Hammerstein model.  The predistorter based on the pth-order inverse theory is in the 

form of a Volterra model.  The compensation is done in MatlabTM.  For the equalizer, the 

MatlabTM compensation component is located after the photo-detector and before the OFDM 

demodulator.  The desired output is the data saved after OFDM modulating, and the received 

output is the data saved before the OFDM demodulation.  For the predistorter, the MatlabTM 

component is located after the OFDM modulator and before the MZM modulation.  A training 

sequence is first sent to obtain the equalizer tap weights.  Once the tap-weights are obtained, the 

coefficients are used in the MatlabTM component to compensate different bit sequences.  The 

modeling and equalizer design tasks are implemented with MatlabTM based on data generated by 

the OptiSystem. 

   In the WDM system, 5 channels of 100Gb/s 16-QAM OFDM signals are transmitted, with 

100GHz channel spacing.  In each channel, the modulation parameter has the same settings as 

the single channel system.  The five optical carrier frequencies are set at 192.9THz, 193.0THz, 

193.1THz, 193.2THz and 193.3THz respectively.  The bit stream for each channel is different. 

The transmission length is reduced to 9×80km. The signal spectrum of the five-channel WDM 

CO-OFDM system at the transmitter is shown in Fig. 6.6. 

 

Figure 6.6 Five channel WDM CO-OFDM signal at the transmitter. 
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   At the receiver, each channel is extracted by bandpass optical filters with different center 

frequencies.  Then, the obtained optical signal in each channel is converted back to an electrical 

signal by photo-detectors separately.  BER is calculated at the end of receiver.  Only the central 

channel performance is evaluated. 
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Chapter 7.Results and Discussions 

 
 

To evaluate the nonlinear effect of the optical fiber, we assume a dispersion fully-compensated 

fiber transmission system whose diagram was described in Chapter 6.  The signal constellation 

after 800 km fiber transmission, with different launch power is shown in Fig.7.1.  According to 

the SPM formula, there is no doubt that a higher launch power would lead to a larger 

nonlinearity distortion.  As shown in Fig.7.2, when the fiber transmission distance increases, the 

distortion increases.  This simulation result is consistent with the discussions in section 2.4 that 

the phase shift caused by fiber nonlinearity is positively related with  fiber transmission length.  

A)  B)  C) 

Figure 7.1 Output signal constellation of 16 QAM OFDM system after 800km transmission with 

different launch power. A) 1dBm, B) 3dBm, C) 5dBm. 

A)  B)  C) 

Figure 7.2 Output signal constellation of 16 QAM OFDM system at 3dBm launch power with 

after different transmission length. A) 400km, B) 800km, C) 1200km. 

 

7.1 Equalization by Full Volterra and Sparse Volterra System 

This section describes the system performance with full Volterra equalizer and Sparse Volterra 

equalizer.  The full Volterra equalizer coefficients are determined with a training sequence and 

the RLS algorithm.  The sparse Volterra equalizer is derived based on the full Volterra equalizer.   

For comparison purpose, the adaptive linear equalizer is also included in the simulation to 



48 
 

evaluate the performance of the nonlinear equalizers.  The received signal constellation diagram 

after 800 km of fiber transmission, with 2 dBm launch power is shown in Fig.7.3.  Due to SPM, 

ASE noise and photo-detector noise, the constellation diagram has become scattered and has 

phase and amplitude distortions.  The linear kernels account for the attenuation and the 

dispersion effect of fiber, while the third order kernels can account for the interaction between 

ASE noise and signal and nonlinear distortion [13].  Since linear equalizer has no nonlinear 

terms, its capability of removing the phase noise introduced by fiber nonlinearity is restricted.  

As shown in the constellation diagram in Fig.7.3, there is no doubt that nonlinear equalizers 

outperform the linear equalizer.  The sparse Volterra equalizer with only 8 kernels and full 

Volterra equalizer with 30 kernels have comparable performance as shown in Fig. 7.3.  

 

Figure 7.3 Output signal constellation of 16 QAM OFDM system (A) w/o equalizer, (B) with 

linear equalizer (C) with full Volterra equalizer, (D) with sparse Volterra equalizer. 

 

The Monte Carlo simulations are conducted to evaluate the equalizer effectiveness on the 

OFDM system after 800 km transmission under different launch power.  The resulting BER plot 

is shown in Fig.7.4.  At low launch power, the OFDM system with or without compensation 

have similar BER, and full Volterra equalizer appears to have similar performance as the linear 

equalizer.  The reason is that, under low input power level, the transmission fiber can be modeled 
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as a linear filter [13], the linear dispersion is the dominating factor (which is fully compensated 

by DCF in the simulation diagram) and the fiber nonlinearity effect is weak.  The low OSNR at 

the receiver accompanied with the low launch power also limits the performance of nonlinear 

equalizer.  When launch power increases, the system BER decreases at the first and then 

increases when launch power is higher than the “optimal” launch power.  As illustrated in Fig.7.4, 

OFDM systems with (or without) different equalizers have different “optimal” launch power and 

BER values.  The OFDM system with the nonlinear equalizer can take higher launch power and 

reach lower BER. 

The BER increase under high launch power is caused by a larger SPM and ASE noise.  

Peddanarappagari and Brandt-Pearce have shown that at a higher input signal power, for a fixed 

input pulse width, the detector output pulse width increases with higher peak pulse power and 

makes the system more sensitive to nonlinearity distortion [9].  As a result, the low order 

nonlinear equalizer with a short memory span is not able to fully compensate the nonlinear 

channel.  Ideally, a better result can be obtained by increasing the filter order and memory length 

of the Volterra equalizer.  However, the resulting increased equalizer implementation complexity 

might not be acceptable. 

We repeat the Monte Carlo simulation to calculate the BER of OFDM systems with the full 

Volterra equalizer and the sparse Volterra equalizer and the resulting BER curves are shown in 

Fig.7.5. As indicated in Fig.7.5, sparse Volterra and full Volterra equalizer have similar 

performances although the sparse Volterra equalizer has fewer coefficients.  
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Figure 7.4 BER of 16 QAM OFDM system w/o compensation and with linear/nonlinear 

compensation as a function of fiber launch power. 

 

 

Figure 7.5 BER of 16 QAM OFDM system with full Volterra/sparse Volterra equalization as a 

function of fiber launch power. 

 

Fig.7.6 shows the BERs of OFDM systems with no compensation and with linear, full Volterra, 

and sparse Volterra equalizers at different OSNR under 0dBm launch power.  Additional ASE 
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noise is added at the end of transmission to set different OSNR values.  It is not surprising that 

with the increase of OSNR, the system would have a better performance.  The outperformance of 

nonlinear compensators becomes more evident with the increase of OSNR, since the signal 

becomes less distorted and the estimation becomes more accurate.  The sparse Volterra and full 

Volterra equalizers have similar performance as shown in Fig.7.6 as well. 

 

Figure 7.6 BER of 16 QAM OFDM system w/o compensation and with linear/nonlinear 

equalization as a function of OSNR (fixed launch power). 
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Figure 7.7 Optimal fiber transmission distance at 10-3 BER vs. launch power with and w/o 

compensation. 

   Simulations are also conducted to investigate reach limits of different OFDM systems under 

different launch power to guarantee 10-3 BER and the results are included in Fig.7.7.  At lower 

launch power, the OFDM system with linear/nonlinear compensator can transmit similar 

distance as the OFDM system without compensation. The maximum reach of the OFDM 

system occurs at the same launch power in Figs.7.4 and 7.5 which gives the lowest BER value. 

With the nonlinear equalization, the OFDM system can approach 1000km transmission 

distance at 0dBm launch power.  As shown in Fig.7.7, the OFDM system with nonlinear 

compensator can take higher launch power and reach longer distance.  At launch power higher 

than the “optimal” launch power, the linear and nonlinear equalizers can support less 

transmission length because of high fiber nonlinearity.  
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Figure 7.8 BER of a 5 channel WDM 16-QAM OFDM system w/o compensation and with 

linear/nonlinear compensation as a function of fiber launch power. 

The BER vs. (launch power/per channel) simulation is conducted for 5-channel WDM CO-

OFDM systems with or without compensation.  The transmission distance is reduced to 9×80km 

instead of 10×80km.  The BER of the center wavelength is calculated and simulation results are 

shown in Fig.7.8.  Comparing Fig.7.8 with Fig.7.4, one can see that, even with shorter 

transmission distance, the BER performance of the WDM CO-OFDM system is still worse than 

the single channel CO-OFDM system.  The reason is that, in the WDM system, XPM leads to 

amplitude distortion and timing jitters [44].  Furthermore, XPM is proportional to the optical 

power [34].  With increased total launch power, the BER of WDM CO-OFDM system increases 

due to the higher fiber nonlinearity.  The WDM CO-OFDM system with linear or nonlinear 

compensator show similar tendency as shown in Fig.7.8.  The nonlinear equalizer still shows a 

better performance, indicating that the Volterra equalizer can be used to compensate intra-

channel nonlinearity in a WDM system.  The sparse Volterra equalizer also functions well with 

fewer equalizer taps. 
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7.2 Equalization by pth-order Volterra Inverse System 

To design the pth-order Volterra inverse equalizer, we need to get the pth-order Volterra 

channel model at first.  This can be accomplished by transmitting a predetermined training 

sequence and estimating the dependence of channel output signals on the training sequence [21]. 

We used a third-order bandpass Volterra model with memory length of two to model the CO-

OFDM system.  For comparison purpose, we also use a finite-impulse response (FIR) linear filter 

to model the same system and then design the equalizer based on the linear inverse of the FIR 

filter.  

 

Figure 7.9 NMSE of different channel model of the CO-OFDM system versus launch power 

after 800km of transmission. 

Figure 7.9 shows the normalized mean square error (NMSE) of the different channel models.  

NMSE quantizes the difference between model output and the actual system output.  The smaller 

the NMSE value is, the more accurate the channel model would be.  Overall speaking, the 

nonlinear Volterra model gives a better NMSE than the linear model.  The sparse Volterra model 

is derived based on the full Volterra model.  And the sparse Volterra model which has fewer 

coefficients has similar NMSE as the full Volterra model.  At lower launch power, linear and 

Volterra models have comparable NMSE because the large signal noise prohibits accuracy 

channel modeling.  When input power increases, the nonlinear models outperform linear model.  
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However, when the launch power is too high (>2dBm), Volterra model modeling precision 

deteriorates; since the signal is severely distorted by high fiber nonlinearity under high launch 

power and a Volterra model with higher order might be necessary.  However, the Volterra model 

still handle the modeling better than the linear model. 

After obtaining the pth-order full and sparse Volterra models and the linear model, we can 

design the pth-order inverse Volterra equalizer based on the Volterra models.  The linear 

equalizer is simply the inverse system of the linear model.  The design of pth-order inverse 

sparse Volterra equalizer follows the same procedure as the full Volterra model. After the 

equalizers have been designed, the system performance before and after different kinds of 

equalization are studied and compared.  

 

Figure 7.10 Received signal constellation of 16 QAM OFDM systems under 0 dBm launch 

power. (A) w/o equalizer, (B) with linear inverse equalizer (C) with pth-order full Volterra 

inverse equalizer, (D) with pth-order sparse Volterra inverse equalizer. 

 

Figure 7.10 shows the received signal constellations of the CO-OFDM system without 

compensator, with linear compensator, with nonlinear compensator based on full Volterra model, 

and with nonlinear compensator based on sparse Volterra model.  A 216 bit pseudo-random 

sequence different from the training sequence is used to evaluate the equalizer performance.  The 

transmission distance is 800km and the launch power is 0 dBm.  The number of coefficients of 

the linear model, full Volterra model, and sparse Volterra model are 30, 30, and 18 respectively.  

 

A) B)   

C) D)   
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Similar to the constellation diagram shown in section 7.1, the nonlinear compensators can rotate 

and condense received signal constellations.  The pth-order Volterra inverse equalizer gives a 

better constellation than the linear filter because the nonlinear filter can compensate the 

nonlinear distortions.  Pth-order inverse equalizer based on sparse Volterra model delivers 

performance similar to the pth-order inverse equalizer based on the Full Volterra model with 

fewer coefficients.  

 

Figure 7.11 BER versus launch power of the CO-OFDM system with or without compensation 

after 800km transmission. 

The bit error rate (BER) of the CO-OFDM system without/with different compensators vs. 

launch power is illustrated in Fig.7.11.  When launch power is low, the linear and nonlinear 

compensators do not improve the CO-OFDM system performance because the models based on 

which the equalizers are designed are not accurate.  When launch power is higher than 3dBm, 

the equalizers can improve the CO-OFDM system performance and the BER of CO-OFDM 

system with compensation begins to decrease.  When launch power is higher than 0dBm, the 

system BER begins to increase because the CO-OFDM system becomes highly nonlinear under 

high input power, a nonlinear compensator with higher order is necessary.  The “optimal” launch 

power for the CO-OFDM system with compensation is between 1 and 0 dBm.  Fig.7. 11 also 

shows that when launch power is higher than 1dBm, the nonlinear compensators outperform the 
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linear compensator.  This observation is consistent with Fig.7.9 which shows that when launch 

power is higher than 1dBm, the nonlinear models outperform linear model.  Fig.7.11 also 

demonstrates that the nonlinear compensator based on full Volterra and sparse Volterra models 

has similar performance. 

 

Figure 7.12 Maximum transmission length of the OFDM system with or without compensation 

as a function of launch power. 

 

Figure 7.12 illustrates the maximum possible transmission length achieved by the CO-OFDM 

system with/without compensation while maintaining 10-3 BER.  At lower launch power, the 

fiber transmission length for the system without compensation is slightly higher than the system 

with compensation.  The explanation is that the linear/nonlinear equalizers based on inaccurate 

channel models generated under high noise cannot compensate channel distortion.  The linear 

filter and nonlinear filter has similar performance at launch power less than -2 dBm since the 

nonlinear effect is weak at low launch powers.  When launch power increases, the system with a 

nonlinear compensator has a better performance.  However, under high launch powers the 

nonlinear effect is severe, the nonlinear compensator with higher order is necessary and the 

maximum reach of the optical system with nonlinear compensator decreases although the 

nonlinear compensator still outperforms linear compensator.  
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7.3 Compensation by pth-order Volterra Inverse Equalizer and Predistorter 

In this section, we present the results of the pth-order Volterra inverse predistorter and 

equalizer.  The difference between the predistorter and equalizer is studied and discussed. 

Because the pth-order Volterra inverse predistorter is applied to the signals before entering the 

nonlinear channel, when the pth-order Volterra inverse is used, the actual input to the nonlinear 

system is changed.  

Transmitter Receiver 

 I channel Q channel I channel Q channel 

1  

 

 

 

 

 

 

 

2  

 

 

 

 

 

 

 

3  

 

 

 

 

 

 

 

1. w/o compensation 
2. with equalization 
3. with predistorter compensation 

Figure 7.13 Electrical signal spectrum of the OFDM system without compensation, with 

equalization at the receiver and with predistortion at the transmitter. 
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   Figure 7.13 compares the I/Q channel spectrum of the OFDM system without compensation, 

with equalizer compensation and with predistorter compensation.  At the transmitter, the I/Q 

channel spectrum without compensation and with pth-order Volterra inverse equalization are 

identical.  After applying the pth-order inverse equalizer, the signal spectrum at the receiver has 

a noticeable change at around 90GHz.  In contrast, the pth-order Volterra inverse predistorter 

would change the signal spectrum at the transmitter and the signal spectrum at the receiver is 

similar to the spectrum without compensation.  The performance difference between the 

predistorter and the equalizer is evaluated by the BER results later. 

 

Figure 7.14 BER of the CO-OFDM system without equalization or with linear equalizer, pth-

order Volterra inverse equalizer, pth-order full Volterra inverse predistorter, pth-order sparse 

Volterra inverse predistorter at difference launch power. 

 

The pth-order Volterra inverse equalizer and predistorter effectiveness is evaluated by the 

Monte Carlo simulations of CO-OFDM system BER performance.  The comparison of BER 

versus launch power of the OFDM system with or without compensation is shown in Fig.7.14.  

The transmission distance is 800km.  For the system with or without compensation, the BER has 

a parabolic tendency and the BER will reach a minimum point at certain launch power.  The 
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lowest BER occurs at around -3dBm for the system without compensation.  With the pth-order 

Volterra inverse equalization, the system’s lowest BER occurs around 0dBm.  Different from an 

equalizer, the system with the pth-order Volterra inverse predistorter maintains an almost 

constant BER value at different launch powers.  We also design the pth-order sparse Volterra 

inverse predistorter and it has similar performance with the pth-order full Volterra inverse 

predistorter with fewer coefficients. 

To explain the reason why the pth-order Volterra inverse predistorter can maintain constant 

BER under different launch power, we compare the actual power of input signal entering the 

optical fiber under different launch power.  For the system with the pth-order Volterra inverse 

equalizer, since the equalization is performed at the receiver, the power of the signals entering 

the fiber won’t be affected by the equalizers and would increase with the increase of launch 

power.  However, the pth-order Volterra inverse predistorter changes signals at the transmitter 

and it acts like a power regulator.  As a result, for the system with a pth-order inverse 

predistorter, its input signal power changes slightly, maintaining a nearly constant level when the 

laser launch power increases from -4dBm to 3dBm.  

 

Figure 7.15 Signal power entering the fiber of CO-OFDM systems with pth-order Volterra 

inverse equalizer and with pth-order Volterra inverse predistorter under different launch power. 
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Figure 7.16 OSNR of the CO-OFDM system with pth-order Volterra inverse equalizer and with 

pth-order Volterra inverse predistorter under different launch power. 

 

The OSNR at the end of transmission is calculated and shown in Fig. 7.16.  The OSNR of the 

system with the pth-order inverse equalizer increases as the launch power increases, while the 

OSNR of the system with the pth-order inverse predistorter increases slightly.  This is because 

the signal power after predistorter will be maintained to around the same level at different launch 

power, so the OSNR at the end of transmission does not change significantly.  
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Figure 7.17 Maximum fiber transmission length versus launch power of the OFDM systems 

without compensation with pth-order inverse equalizer and pth-order Volterra predistorter. 

 

Fig.7.17 shows the simulation results of CO-OFDM systems’ maximum possible transmission 

length under different launch power to guarantee a 10-3 BER.  The system without compensation 

and with pth-order Volterra inverse equalizer shows a trend similar to the Fig.7.7. The maximum 

fiber transmission length of the system with pth-order Volterra inverse predistorter remains 

around 800km under different launch power.  This result is in consistent with the results shown 

in Fig.7.15 and Fig.7.16. 

7.4 Equalization by Wiener-Hammerstein Equalizer 

Figure.7.18 delineates the received signal constellation of the CO-OFDM system with linear 

equalizer, Volterra equalizer and Wiener-Hammerstein equalizer and without compensation.  

The launch power is 0dBm, and the fiber transmission distance is 800km.  The number of kernels 

for linear equalizer, Volterra equalizer and Wiener-Hammerstein equalizer are 30, 30 and 6 (2 

for the first FIR filter, 2 for the polynomial filter and 2 for the second FIR filter).  Without 

compensation, the constellation diagram in Fig.7.18 becomes scattered due to SPM, ASE noise 

and photo-detector noise.  The linear equalizer can improve the constellation; however, since the 
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linear equalizer only consists of linear kernels, its ability in removing amplitude and phase noise 

is inadequate.  Nonlinear Volterra equalizer can improve the constellation quality better than the 

linear equalizer because its nonlinear kernels can compensate the fiber nonlinear distortions.  The 

difference in the constellation after Volterra equalizer and Wiener-Hammerstein equalizer 

compensation is marginal; however, the Wiener-Hammerstein equalizer is more preferable since 

this type of equalizer has fewer numbers of coefficients and is easier to implement. 

 
 

Figure 7.18 Received signal constellation of 16 QAM OFDM system. (A) w/o equalizer, (B) 

with linear equalizer (C) with Volterra equalizer, (D) with Wiener-Hammerstein equalizer. 

 

   The BER results in Fig.7.19 make a comprehensive comparison between the Volterra equalizer 

and Wiener-Hammerstein equalizer.  The number of transmission bit is 217.  In general, with the 

launch power increasing, the system BER decreases initially until the launch power passes the 

“optimal” launch power point.  Equalization would improve the system BER at different launch 

powers and the nonlinear equalization outperforms the linear equalization.  At lower launch 

powers (around -4dBm~-2dBm), where the fiber nonlinear effect is weak, the BER difference of 

system with linear and nonlinear equalization is less significant.  At extremely low launch power 

(-4dBm), the OFDM systems with and without compensation have roughly similar BER values 
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due to noise enhancement.  At high launch powers, the system BER increases due to the 

increasing in phase and amplitude noise caused by the fiber nonlinearity.  The Wiener-

Hammerstein equalizer has comparable performance with the Volterra equalizer at lower launch 

powers.  However, the difference between Wiener-Hammerstein equalization and Volterra 

equalization becomes more noticeable with the increase of launch power, because the Wiener-

Hammerstein only has six coefficients and its corresponding Volterra model has fewer terms 

than the conventional Volterra model in our simulation.  An improved Wiener-Hammerstein 

equalizer should be achieved by increasing the cascading FIR filter memory length or the 

polynomial nonlinear filter order at the cost of system complexity.  

 
Figure 7.19 BER of 16 QAM OFDM system w/o compensation and with linear/nonlinear 

compensation as a function of launch power. 

 

The BERs of OFDM system with or without compensation at different OSNR under 0dBm 

launch power is displayed in Fig.7.20.  The ONSR is measured at the end of transmission and the 

OSNR value is altered by adding ASE noise of various power levels.  The increase in ASE noise 

level would decrease the OSNR, causing the system BER to increase.  Nonlinear equalization 

outperforms the linear equalization and the advantage of using nonlinear equalization becomes 

more obvious at higher OSNR due to the noise reduction.  Wiener-Hammerstein equalizer has 

comparable performance as the Volterra equalizer at different OSNR with less implementation 
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complexity.  

 

 
Figure 7.20 BER of 16 QAM OFDM system w/o compensation and with linear/nonlinear 

compensation as a function of OSNR (fixed launch power). 
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Chapter 8.Conclusions 

 
 

Since the OFDM system has a large signal envelope fluctuation, the Optical OFDM system is 

more vulnerable to the fiber nonlinearity effect than conventional optical communication 

systems.  As a result, nonlinearity compensation is a crucial component of the CO-OFDM 

system.  In this thesis, we concentrated on intra-channel nonlinearity of the CO-OFDM system 

caused by SPM and FWM among subcarriers.  We performed the numerical simulation on the 

CO-OFDM system and evaluated performances of different nonlinear electrical compensation 

techniques.  The linear compensator was included in our study for comparison purpose.  

First, we studied the nonlinear distortions in the single channel and the WDM CO-OFDM 

systems.  We used a third order Volterra model with memory length two to obtain the inverse 

system model.  The tap weights of the Volterra model based equalizer were adaptively updated 

by the RLS algorithm in the training mode.  Then, the nonlinear distortions were compensated by 

the obtained Volterra model in the data transmission mode.  The numerical simulation result 

shows that the Volterra equalizer has the ability of compensating the intra-channel nonlinear 

effect and outperforms the linear equalizer.  The nonlinear compensator does not perform as well 

in the WDM system as in the single channel system.  The reason is that the WDM system 

introduces extra nonlinear effect such as XPM, which cannot be easily solved by using a 

nonlinear electrical domain equalizer only.  

Secondly, a conventional Volterra model might have a large number of coefficients, the 

implementation of such a Volterra system might not be practical and the estimation accuracy 

deteriorates due to a large number of “unimportant” coefficients.  To solve this problem, it is 

necessary to reduce the number of coefficients of a Volterra system.  We used the modified 

Gram-Schmidt method to identify the most important kernels in the Volterra model and ignored 

the unimportant ones.  The simplified Volterra model is termed as the sparse Volterra model.  

Our results show that the sparse Volterra system and full Volterra system have comparable 

performance although the sparse Volterra system usually has fewer coefficients.  

Thirdly, we applied the pth-order inverse theory to design the equalizer.  To design the pth-

order Volterra inverse equalizer, we need to get the pth-order Volterra channel model at first.  

This can be accomplished by transmitting a known training sequence to derive the channel 

model.  We chose the Volterra channel order to be three, and set its memory length to be two.  
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The resulting third order Volterra inverse equalizer can compensate nonlinear distortions up to 

the third order. We also used the pth-order sparse Volterra channel model to design the pth-order 

sparse Volterra inverse equalizer.  The simulation results show that the equalizer design based on 

the pth-order inverse theory is capable of compensating the intra-channel nonlinear distortion for 

a signal channel CO-OFDM system.  The pth-order inverse equalizer based on the sparse 

Volterra model delivers performance similar to the pth-order inverse equalizer based on the Full 

Volterra model with fewer coefficients.  

Fourthly, according to the pth-order inverse theory, a pth-order pre-inverse is equivalent to the 

pth-order post-inverse.  We designed a pth-order Volterra inverse predistorter based on the pth-

order pre-inverse theory.  The simulation results show that the predistorter acts as a power 

regulator and the power level of the signal entering the nonlinear channel is maintained to be the 

same at different launch powers.  The BER and the maximum transmission fiber length of the 

CO-OFDM system with pth-order inverse predistorter remain roughly constant under different 

launch power.  

Finally, we used the Wiener-Hammerstein model to design the equalizer.  Compared with the 

Volterra model, the Wiener-Hammerstein model has simpler structure and fewer coefficients.  

The coefficient number of the Wiener-Hammerstein model based equalizer used in our 

simulation is six (2 for the first FIR filter, 2 for the nonlinear filter and 2 for the second FIR 

filter).  The equalizer coefficients were adaptively updated by the joint NLMS algorithm in the 

training mode.  The system BER shows that the equalizer based on the Wiener-Hammerstein 

model compensate the signal nonlinear distortions and can work better than the linear equalizer.  

The Wiener-Hammerstein equalizer has comparable performance with the Volterra equalizer, but 

the Wiener-Hammerstein equalizer has fewer coefficients and is easier to implement.   
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Appendix 

 
 

Linear equalizer implementation Matlab code (LMS): 

load -ASCII 'Isd.txt' 
load -ASCII 'Irec.txt' 
load -ASCII 'Qsd.txt' 
load -ASCII 'Qrec.txt' 
out=Isd(1:end,2)'+j*Qsd(1:end,2)'; 
x=Irec(1:end,2)'+j*Qrec(1:end,2)'; 
order=30; 
w=zeros(1,order)'; 
bufferlen=length(w); 
in=[zeros(1,bufferlen-1), x]; 
beta=0.005; 
for k=1:length(in)-bufferlen+1 
    buffin=in(k+bufferlen-1:-1:k).'; 
    filter_out=w'*buffin; 
    error(k)=out(k)-filter_out; 
    w=w+2*beta*conj(error(k))*(buffin); 
end 
output = filter(w',1,x); 
 
 

Linear equalizer implementation Matlab code (RLS): 

function [output,w]=EqualizerLinearFunction(in,desiredout) 
%% linear filter 
order=30; 
w=zeros(order,1); 
bufferlen=order; 
X=[zeros(1,bufferlen-1), in]; 
delta=0.0002; 
lamda=1; 
C=(1/delta)*eye(bufferlen); 
for k=1:length(in)-bufferlen+1 
    memorybuff=X(k+bufferlen-1:-1:k).'; 
    error(k)=desiredout(k)-w'*memorybuff; 
    p=C*memorybuff/(lamda+memorybuff'*C*memorybuff); 
    w=w+p*error(k)'; 
    C=(1/lamda)*(C-p*memorybuff'*C); 
end 
output = filter(w',1,in); 
 

 

Full Volterra equalizer implementation Matlab code (RLS): 

function [output,w,U]=EqualizerFullVolFunction(in,desiredout) 
%% Full Volterra 
L=length(in); 
taps=3;   
X=[zeros(1,taps-1) in]; 
N=taps-1; 
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order=3;  
coeflen=0; 
for l=1:(order+1)/2 
    coeflen=coeflen+taps^(2*l-1); 
end 
w=zeros(coeflen,1); 
delta=0.0007; 
lamda=1; 
C=(1/delta)*eye(coeflen); 
U=zeros(coeflen,L); 
for i=1:L 
    index1=1; 
    index3=1; 
    index5=1; 
    for m1=N:-1:0 
        U1(index1)=X(m1+i); 
        index1=index1+1; 
    end 
    for m1=N:-1:0 
        for m2=N:-1:0 
            for m3=N:-1:0 
                U3(index3)=X(m1+i)*X(m2+i)*X(m3+i)'; 
                index3=index3+1; 
            end 
        end 
    end 
    U(:,i)=[U1  U3].'; 
    error(i)=desiredout(i)-w'*U(:,i); 
    k=C*U(:,i)/(lamda+U(:,i)'*C*U(:,i)); 
    w=w+k*error(i)'; 
    C=(1/lamda)*(C-k*U(:,i)'*C); 
end 
output=w'*U; 
 

 

Sparse Volterra equalizer implementation Matlab code part I (RLS): 

%% Sparse Volterra orthogonal search 
u=U.'; 
coeflen=30; 
[v,R]=GramSchmidtReorthogFunction(u); 
y=desiredout.'; 
for i=1:coeflen 
    s(i)=v(:,i)'*y; 
    delta(i)=s(i)^2/(y'*y); 
end 
d=y.'; 
maximum=max(abs(delta)); 
index=find(abs(delta)==maximum); 
S=zeros(size(s)); 
S(index)=s(index); 
ind=1; 
NMSE(1)=norm(in.'-y)/norm(y); 
recordindex(1)=index; 
while ind<4; 
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    ind=ind+1; 
    for i=1:coeflen 
        if find(recordindex==i)~=0 
            delta(i)=0; 
        end 
    end 
    maximum=max(abs(delta)); 
    index=find(abs(delta)==maximum); 
    recordindex(ind)=index; 
    S(index)=s(index); 
end 
[w]=BackSubstitutionFunction(R,S); 
rin=1; 
for i=1:coeflen 
    if w(i)~=0 
        Significantindex(rin)=i; 
        rin=rin+1;  
    end 
end 
 

 

Sparse Volterra equalizer implementation Matlab code part II (Gram-Schmidt with 

reorthogonalization) [39]: 

function [Q,R] =GramSchmidtReorthogFunction(Q) 
%Modified Gram-Schimt orthogonalization 
[m,n] = size(Q); 
R = zeros(n); 
for j = 1:n, 
    t = norm(Q(:,j)); 
    nach =1; 
    while nach, 
        for i = 1:j-1, 
            x = Q(:,i)'*Q(:,j); 
            R(i,j) = R(i,j) + x; 
            Q(:,j) = Q(:,j)- x*Q(:,i); 
        end 
        b = norm(Q(:,j)); 
        if b>10*eps*t && b<t/10 
            nach =1; 
            t=b; 
        else 
            nach = 0; 
            if b<10*eps*t 
                b=0; 
            end 
        end 
    end 
    R(j,j) = b; 
    if b*eps~=0 
        b =1/b; 
    else 
        b=0; 
    end 
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    Q(:,j) = Q(:,j)*b; 
end 
 

 

Sparse Volterra equalizer implementation Matlab code part III (Back substitution): 

function [w]=BackSubstitutionFunction(R,s) 
% back substitution 
n = length( s ); 
w = zeros( n, 1 ); 
for i=n:-1:1 
    w(i) = s(i); 
    for j=(i + 1):n 
        w(i) = w(i) - R(i, j)*w(j); 
    end 
    if R(i,i)~=0 
        w(i) = w(i)/R(i, i); 
    end 
end 
 

 

Sparse Volterra equalizer implementation Matlab code part IV(Coefficients update by RLS): 

function 
[output,w]=EqualizerSparseCoefUpdateFunction(in,desiredout,Significantindex) 
%% Sparse Volterra Coefficients update 
coeflen=30; 
L=length(in); 
w=zeros(coeflen,1); 
taps=3;   
X=[zeros(1,taps-1) in]; 
delta=0.0007; 
lamda=1; 
C=(1/delta)*eye(coeflen); 
U=zeros(coeflen,L); 
N=taps-1; 
for i=1:L 
    index1=1; 
    index3=1; 
    for m1=N:-1:0 
        U1(index1)=X(m1+i); 
        index1=index1+1; 
    end 
    for m1=N:-1:0 
        for m2=N:-1:0 
            for m3=N:-1:0 
                U3(index3)=X(m1+i)*X(m2+i)*X(m3+i)'; 
                index3=index3+1; 
            end 
        end 
    end 
     
    U(:,i)=[U1  U3].'; 
    for q=1:coeflen 
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        if find( Significantindex==q)~=0; 
        else  U(q,i)=0; 
        end 
    end 
     
    error(i)=desiredout(i)-w'*U(:,i); 
    k=C*U(:,i)/(lamda+U(:,i)'*C*U(:,i)); 
    w=w+k*error(i)'; 
    C=(1/lamda)*(C-k*U(:,i)'*C); 
end 
output=(w'*U); 
 

 
Linear Inverse Matlab code: 

function [output]=PthOrderInverseFunctionLinear(w,desiredout) 
% Inverse System of the Linear Filter 
L=length(desiredout); 
filterorder=length(w); 
linear(1:filterorder-1)=0; 
w=w'; 
for i=1:L 
    sum=0; 
    for k=2:filterorder 
        sum=sum+w(k)*linear(i+filterorder-k); 
    end 
    linear(i+filterorder-1)=(desiredout(i)-sum)/w(1); 
end 
output=linear(filterorder:end); 
 

 

Pth-order Volterra Inverse Matlab code: 

function [output]=PthOrderInverseFunction(w,desiredout) 
% Inverse System of the Nonlinear Filter by pth-Order Inverse 
w=w'; 
linear(1)=0; 
linear(2)=0; 
L=length(desiredout); 
%% Nonlinear Inversion 
for i=1:L 
     
    linear(i+2)=(desiredout(i)-w(2)*linear(i+1)-w(3)*linear(i))/w(1); 
     
end 
rlinear=linear(3:end); 
  
%% Cubic Inversion 
% The first stage of cubic inverse 
X=[0 0  rlinear]; 
U1=zeros(27,L); 
% The second stage of cubic inverse 
N=2; 
for i=1:L 
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    index3=1; 
    for m1=N:-1:0 
        for m2=N:-1:0 
            for m3=N:-1:0 
                U3(index3)=X(m1+i)*X(m2+i)*X(m3+i)'; 
                index3=index3+1; 
            end 
        end 
    end 
    U1(:,i)= U3.'; 
end 
out=w(4:end)*U1; 
%The third stage of cubic inverse 
cubicout(1)=0; 
cubicout(2)=0; 
for i=1:L 
    cubicout(i+2)=(out(i)-w(2)*cubicout(i+1)-w(3)*cubicout(i))/w(1); 
end 
rcubic=cubicout(3:end); 
%% The total output 
output=rlinear-rcubic; 
 

 

Wiener-Hammerstein model Matlab code: 

load -ASCII 'Isd.txt' 
load -ASCII 'Irec.txt' 
load -ASCII 'Qsd.txt' 
load -ASCII 'Qrec.txt' 
r=Isd(1:4:end,2)'+1i*Qsd(1:4:end,2)'; 
input=Irec(1:4:end,2)'+1i*Qrec(1:4:end,2)'; 
  
M1=2; 
u=[ 
    0.0003 
    0.0003 
    ]; 
in=[zeros(1,M1-1), input]; 
N=2; 
v=[ 
    0.0003 
    0.0003 
    ]; 
M2=2; 
z=zeros(1,M1-1); 
w=[ 
    0.0003 
    0.0003]; 
b=zeros(1,M2-1); 
xn=zeros(M1,M2); 
yn=zeros(N,M2); 
av=0.002; 
au=0.002; 
aw=0.002; 
min=0.4; 
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delta=0.0024; 
for m=1:14 
    for k=1:length(input) 
        x=in(k+M1-1:-1:k).'; 
        y=u.'*x; 
        y1=[y y^2*y' ].'; 
        z(k+M2-1)=v.'*y1; 
        Z=z(k+M2-1:-1:k).'; 
        d=w.'*Z; 
        e=r(k)-d; 
        a=[1 y'*2*y].'; 
        b=v.'*a; 
        xn(:,k+1)=b*x; 
        X=[ xn(:,k+1) xn(:,k)]; 
        p=X*w; 
        yn(:,k+1)=y1; 
        Y=[ yn(:,k+1) yn(:,k)]; 
        q=Y*w; 
        u=u+(au/(norm(p)^2+delta))*conj(p)*e; 
        v=v+(av/(norm(q)^2+delta))*conj(q)*e; 
        w=w+(aw/(norm(z)^2+delta))*conj(Z)*e; 
        error(k)=e; 
    end 
end 
for k=1:length(input) 
    x=in(k+M1-1:-1:k).'; 
    y=u.'*x; 
    y1=[y y^2*y' ].'; 
    z(k+M2-1)=v.'*y1; 
    Z=z(k+M2-1:-1:k).'; 
    output(k)=w.'*Z; 
end 
 


