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Abstract. In this paper, we discuss the effects of nonlinear electrodynamics (NED) on non-rotating
black holes, parametrized by the field coupling parameter β and magnetic charge parameter P in
detail. Particularly, we survey a large range of observables and physical properties of the magnetically
charged black hole, including the thermodynamic properties, observational appearance, quasinormal
modes and absorption cross sections. Initially, we show that the NED black hole is always surrounded
by an event horizon and any magnetic charge is permissible. We then show that the black hole gets
colder with increasing charge. Investigating the heat capacity, we see that the black hole is thermally
stable between points of phase transition. Introducing a generalized uncertainty principle (GUP) with
a quantum gravity parameter λ extends the range of the stable region, but the effect on temperature
is negligible. Then we compute the deflection angle at the weak field limit, by the Gauss-Bonnet
theorem and the geodesic equation, and find that even at the first order, the magnetic charge has a
contribution due to the "field mass" term. Small changes of the charge contributes greatly to the
paths of null geodesics due to the P 2 dependence of the horizon radius. Using a ray-tracing code, we
simulate the observational appearance of a NED black hole under different emission profiles, thin disk
and spherical accretion. We find that the parameter P has a very strong effect on the observed shadow
radius, in agreement with the deflection angle calculations. We finally consider quasinormal modes
under massless scalar perturbations of the black hole and the greybody factor. We find that the charge
introduces a slight difference in the fundamental frequency of the emitted waveform. We find that
the greybody factor of the NED black hole is strongly steepened by the introduction of increasing
charge. To present observational constrains, we show that the magnetic charge of the M87∗ black
hole is between 0 ≤ P ≤ 0.024 in units of M, in agreement with the idea that real astrophysical
black holes are mostly neutral. We also find that LIGO/VIRGO and LISA could detect NED black
hole perturbations from BHs with masses between 5M� and 8.0 · 108M�. We finally show that for
black holes with masses detected with LIGO so far, charged NED black holes would deviate from
Schwarzschild by 5 ∼ 10 Hz in their fundamental frequencies.
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1 Introduction

According to Einstein’s theory of general relativity, massive objects warp the fabric of space-time
[1]. Black holes (BHs) are strange regions where gravity is strong enough to bend light, warp space
and even produce so-called singularities in spacetime [2]. The spacetimes formed by black holes can
be perturbed by other black holes, especially by compact objects, such as neutron stars and other
black holes. In 2016, Laser Interferometer Gravitational-Wave Observatory (LIGO) detected the
first observation of gravitational waves, which had emanated from the coalescence two black holes,
moreover, LIGO even realized the “ring down”: which is the last part of the waveform emitted after
the merger of binary black holes, consisting of a few rapidly fading oscillations [4, 5]. Another big
advance in black hole observations is the image of the shadow of the black hole which is surrounded
by a “photon ring”. The Event Horizon Telescope (EHT) collaboration imaged the shadow of the
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black hole on the center of the elliptical galaxy Messier 87* in 2019 by reporting a bright ring of
emission surrounding circular dark region. These experiments provide us a number of enlightening
answers to probe general relativity, understanding the properties of black holes and also test the other
modified theories [6]. Recently EHT measured the polarization of M87*, a signature of magnetic
fields, crucial to understanding the launching energetic jets from its core [7].

One of the biggest problem in general relativity is the singularities which lay at the beginning
of the universe and also at center of a black hole. On the other hand, Maxwell’s equations are
known to exhibit singularities which cause the divergence problems in Maxwell’s theory. To solve
the divergence of self-energy of a point charge in Maxwell’s theory, Born and Infeld introduced the
Born–Infeld electrodynamics in 1934 [8]. Afterwards, in 1936, W. Heisenberg and H. Euler proposed
the Euler–Heisenberg electrodynamics, in which the self-coupling of the electromagnetic field (EM)
induced by virtual electron-positron pairs for energies below the electron mass is present, and this can
be seen as an effective field theory which is the first picture of the vacuum polarization effect present
in the Quantum Electrodynamics [9]. Such extensions of the Maxwell electrodynamics theories, often
called "Nonlinead Electrodynamics" (NEDs), usually come as actions derived from string theories or
other theoretical frameworks encompassing gravity and other fields [12, 13]. The solutions of NED
coupled with general relativity have been studied in various papers [14–34].

Before the outstanding discovery of black hole shadow made by EHT [6], many scientists had
tried to figure out how the observational appearance of a black hole surrounded by luminous material
would be [10]. In 1979 Luminet drew the luminous accretion disk around the black hole by hand
[11]. Afterwards, Falcke et al. created a ray-tracing code to figure out the images of Sgr A* using
different value of spin and inclination angles [35], and Falcke termed it the “shadow of the black
hole”. Basically the hot, optically thin accretion flows create radiation around the black hole and
the gases around the black hole behave like optically thin medium to its own radiation. The shadow
of a black hole is caused by gravitational light deflection. The intensity of the deflected light rays
leading to a dark interior and bright ring which can be observed from the distant observers. So far,
there are numerous works in literature which study the shadows of the black holes [36–67] as well as
gravitational lensing of black holes [69–99].

Gravitational waves radiated by perturbed black holes are dominated by quasinormal modes
(QNMs), oscillations with complex frequencies. In addition, after perturbation, black holes experi-
ence three stages such as inspiral, merger and ringdown phases. The ringdown phase equals to the
quasinormal modes (QNMs) of the remnant BH. QNM frequencies depend only on the parameters
of the black hole and also the parameters of the corresponding fields [101–110]. To check the devia-
tions from general relativity, it is crucial to investigate QNM frequencies of black holes in alternative
theories of gravity [111–115]. On the other hand, studying null geodesics is related to the classical
scattering problem for the rays coming from infinity with a critical impact parameter. Moreover, in
the seminal paper by S. Hawking, it was shown that black holes are indeed gray because of emitted
quantum radiation, known as Hawking radiation [116]. At the event horizon, the black hole radiates
similarly with black body radiation, however generated initial radiation varies during the traveling
through the spacetime geometry [117], hence a distant observer at infinity detects a different spec-
trum than the original one, which is called greybody factor, a frequency- and geometry-dependent
quantity. This is also thought as a filter of the initial Hawking radiation [118, 119].

Near-horizon regions of black holes are expected to exhibit strong electrodynamic and grav-
itational fields. Linear Maxwell electrodynamics break down in strong field regions and nonlinear
effects become relevant [9]. NED models coupled to Einstein gravity give a venue for studying such
effects, of which we chose to investigate the recently introduced ‘double-logarithmic’ nonlinear elec-
trodynamics (DL-NED hereafter) by Gullu et al. [120]. Such NED theories are expected to obey
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particular criteria regarding limiting cases, such as [120] (i) recovery of the Maxwell theory in the
weak-field limit, (ii) providing finite and closed form expressions for the fields and self-energy of
point particles, (iii) charged black hole solutions that reduce to the Reissner-Nordström case when
nonlinearity parameters are turned off. These are fully satisfied by the DL-NED theory. Furthermore,
astrophysical black holes carrying electric charge are expected to quickly neutralize [68]. Symmet-
ric formulations of Maxwell theory and extended NED models include the hypothetical magnetic
monopole and hence have magnetically charged black hole solutions. Such solutions, on the other
hand, sustain the magnetic charge and quickly tend toward extremality by Hawking radiation [100].
The DL-NED model is advantageous as the magnetic solution has the desirable property that the
black hole is always non-extremal. This makes the DL-NED model of particular interest as cosmic
censorship is not violated, with no modifications to Einstein gravity.

The main aim of the paper is to probe physical properties the DL-NED black hole using the null
geodesics, shadow and quasinormal modes. As NED models couple gravity to electrodynamics, the
curvature generated by charge terms are expected to have significant contributions to paths of null
geodesics. This should, in turn, affect the morphology of the observed shadow. In particular, it will
be more interesting to investigate the corresponding light intensity of the shadow, especially spherical
accretions, which can be classified into static and infalling. Moreover, to test the effects of the NED
on the black hole, perturbative effects can also be investigated with varying charge. The charge term
contributes to the Regge-Wheeler potential, directly affecting the ringdown phase of a black hole
merger signal. We wish to determine if and how the signal would be affected by the presence of a
magnetic charge, as any difference would allow for probing of the theory with the gravitational wave
detections and simulations of mergers.

This paper is composed as follows: in section 2, we briefly review the black holes in the Double
Logarithmic Nonlinear Electrodynamics theory. In section 3, we review and thermodynamics of
the DL-NLED-BH and introduce corrections with a generalized uncertainty principle. In section 4,
we compute the weak deflection angle of our spacetime in two distinct methods: using the Gauss-
Bonnet theorem and the geodesic equation with a power series. In section 5, we investigate the
visual appearances of an accretion disk around the DL-NED spacetime. We present the appearance
of an optically and geometrically thin accretion disk, along with a spherically infalling accretion and
investigate the effects of the theory parameters (P, β). In section 6, we compute the quasinormal
modes of our black hole under a perturbation by a massless scalar field using the WKB method. To
demonstrate the signal to be observed, we numerically solve the Regge-Wheeler equation and provide
plots in the time-domain. We extract the quasi-normal modes from this signal using the Prony method
and compare the results. We provide the ranges of masses of DL-NED black hole LISA and LIGO
could detect. Finally, in 7, we compute the rigorous lower bounds on the greybody factor and compute
the absorption cross section. We present how charge effects the size of the cross section for high
frequencies. We conclude the paper by reviewing our findings and discuss the possible observational
implications.

2 Brief Review of Black Holes in Double-Logarithmic Nonlinear Electrodynamics
(BH-DL-NED)

2.1 Field equations for DL-NED Theory

The Born-Infeld-like Double-Logarithmic Nonlinear Electrodynamics Lagrangian [120, 122] is given
by
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Le =
1

2β

[(
1−

√
−2βF

)
ln
(

1−
√
−2βF

)
+
(

1 +
√
−2βF

)
ln
(

1 +
√
−2βF

)]
, (2.1)

in which F = FµνF
µν is the full contraction of the electromagnetic field tensor, which is the

exterior derivative of the gauge potential A, given as F = dA, with components in a chart are given
as Fµν = ∂µAν − ∂νAµ and the electric field and magnetic field are static and depend only on the
radial coordinate. Taking the convectional Einstein-Hilbert Lagrangian Lg = R − 2Λ, with Λ as the
cosmological constant and assuming minimal coupling, we construct the action as

I =

∫
d4x
√
−g
(

1

2κ
Lg + Le

)
, (2.2)

where κ = 8πG andG is Newton’s constant in four dimensional spacetime. The usual ’variation
of this action’ recipe yields the field equations for the theory, detailed in [122]:

Gνµ − Λδνµ = κT νµ , (2.3)

where G is the usual Einstein tensor Gνµ = Rνµ − 1
2δ
ν
µR and the energy-momentum tensor is

defined to be

T νµ ≡ Lδνµ − 4LFFµλF νλ. (2.4)

2.2 Solving the Magnetic Part

With the assumption Er = 0, Bianchi identity implies Br = P
r2

and thus F = 2P 2

r4
, in which P is the

magnetic monopole charge. Solving the field equations (2.3) for the spherically symmetric and static
ansatz

ds2 =− f (r) dt2 +
1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2), (2.5)

yields [122]

f(r) = 1− 2GM

r
+

Λ

3
r2 − 4κP 2

r2
0

arctan

(
r2

0

r2

)
+

2κP 2

3r4
0

ln

(
r4 + r4

0

r4

)
+

4
√

2κP 2

3r0r

[
arctan

(
1−
√

2r

r0

)
− arctan

(
1 +

√
2r

r0

)]

+
2
√

2κP 2

3r0r
ln

(
r2 +

√
2r0r + r2

r2 −
√

2r0r + r2

)
,

where r2
0 := 2P

√
β. At the r →∞ asymptotic limit, the metric function takes the form

f(r) = 1− 2GM

r
+

2κP 2

r2
− 4
√

2κπP 2

3r0r
+

Λ

3
r2, (2.6)

which is essentially a RN-dS like solution with extra term of order −1 in r. It can be absorbed
into the Schwarzschild-like term by defining it as a contribution to the ADM mass, as MADM =
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M + 2
√

2κπP 2

3Gr0
, which can be interpreted as a "field mass" [122]. For the rest of the paper, we assume

Λ = 0, in this asymptotically flat setting, we obtain two horizons: the Cauchy horizon rc ("inner
horizon") and the event horizon rh ("outer horizon"):

rc = GM −
√
G2M2

ADM − 2κP 2, (2.7)

rh = GM +
√
G2M2

ADM − 2κP 2. (2.8)

Note that the charged black holes become extremal when the square root term becomes imagi-
nary: we get a naked singularity. This happens when the charge P satisfies the following equation:

√
2κP

G
− 2
√

2P 2πκ

3Gr0
−M = 0, (2.9)

which never has real roots for reasonable values of M, β pairs, so that the BH never becomes
extremal, distinguishing our magnetic solution from the extended Maxwell magnetic black hole. Par-
ticularly, small magnetically charged Reissner-Nordstrom black holes rapidly evaporate to extremal-
ity [68]. Such small black holes could have formed in the early universe [121]. If so, possible naked
singularities or at least extremal black holes could be astrophysically feasible. As shown, our mag-
netic solution 2.6 would not allow naked singularities, even in such extreme cases. This respects
the well-known weak cosmic censorship conjecture [3] which makes this model (2.1) interesting to
study.

Another remark must be made, which will come in handy later on. When we study the DL-NED
metric in Eq. 2.5 under the normalization that rH = 1, we see that the metric becomes more and
more Schwarzschild-like with increasing charge.

3 Thermodynamics of a BH-DL-NED

3.1 Semiclassial thermodynamics of a BH-DL-NED

The thermodynamics of the magnetic solution of the DL-NED theory is considered in [122] by use
of Smarr relation. Here we consider the usual approach using the metric function. The Hawking
temperature of a black hole with a spherically symmetric metric, akin to (2.5), is given by [116]

TH = f ′(r)
2

∣∣∣∣
r=rH

, which is simply

TH = −κP
2

πr3
H

+
2GM + 4

√
2κπP 2

3r0rH

4πr2
H

, (3.1)

where rH itself goes like P 2. We see that with increasing charge, the black hole gets colder, as
shown in Fig. 1.

This correctly approaches the Schwarzschild temperature at P = 0, TSch = 1
4πrSch

The Hawking-
Bekenstein entropy of a spherically symmetric spacetime is given by the area law

S = πr2
H , (3.2)

which should be increasing with increasing P , as shown in Fig. 2. The interesting part of black
hole thermodynamics is the consideration of the stability of the black hole by computing its heat
capacity. The heat capacity is given by
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Figure 1. The Hawking temperature versus
the magnetic charge P, with M = 1, β = 1.

Figure 2. The Entropy versus the magnetic
charge P, with M = 1, β = 1.

Cp = TH
∂S

∂TH
= TH

(
∂S

∂r

)
r=rH

(
∂TH
∂r

)−1

r=rH

, (3.3)

where the subscript P indicates that the charge is fixed. The analytical expression for the heat
capacity is not very instructive, so we refer the reader to the graphical analysis. Here we consider the
value of the heat capacity with fixed parameters of the theory (P, β) and varying the event horizon
rH . The following graphs 3 show that we have a positive region of heat capacity between the type-1
transition point (Cp = 0) and the type-2 point ( Cp → ∞). This analysis agrees fully with [122],
which verifies the accuracy of the classic approach.

3.2 Thermodynamics of a BH-DL-NED with a generalized uncertainty principle (GUP)

In this section we analyze the effects of considering a quantum correction to the usual black hole
thermodynamics. These types of corrections are considered previously for various of black holes
[123–127]. We consider an uncertainty principle of the form

∆x∆p ≥ ~

(
1 +

λ2l2p
~2

∆p2

)
, (3.4)

where lp is the Planck length and λ is a dimensionless parameter, associated with a quantum
gravity theory. Following the authors in [128], we obtain a GUP-corrected temperature of the form

TGUP = TH

(
1 +

λ2l2p
2r2
H

)−1

. (3.5)

This essentially damps the temperature at higher values of the magnetic charge parameter, but
is vastly overshadowed by the small magnitude of the Planck length |lp| ∼ 10−35. The corrections to
the entropy are computed by integrating of the first law of black hole thermodynamics dM = TH dS:

SGUP =

∫
1

TGUP
dM = πr2

H + λ2l2p log rH , (3.6)

where we also obtain the so-called logarithmic term. Finally, the heat capacity is considered:

CGUP = TGUP
∂S

∂TGUP
= TGUP

(
∂S

∂r

)
r=rH

(
∂TGUP
∂r

)−1

r=rH

, (3.7)
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which is also lengthy and does not provide intuitions about the behaviour of the heat capacity.
From numerical solutions we observed that the stable region is slightly widened by the quantum
gravity parameter λ. To verify the validity of our calculations, we found that the CGUP correctly
reduces to its semiclassical part with the limit λ→ 0 and to the Schwarzschild case CSch = −2πr2

H

with P = 0.

Figure 3. The heat capacity versus the ra-
dius of the event horizon for the usual and
the GUP cases, given at fixed P = 0.7. The
heat capacity turns negative around r = 0.8.
As shown, the introduction of the GUP cor-
rections greatly influences the size of the
stable region, albeit strongly dependent on
the choice of parameter λ.

Figure 4. The variation of deflection angle
δα with respect to the impact parameter b,
for increasing charge P in increments of 0.1,
from left to right. The curves begin at the
critical impact parameter bc associated with
their charges. P = 0 Schwarzschild case is
given as the leftmost one. We correctly ob-
serve that the deflection angle vanishes with
increasing impact parameter.

4 Weak Deflection Angle

In this section we present the calculation of the deflection angle of a null geodesic in the DL-NED
spacetime, and compare two approaches to the matter: the Gauss-Bonnet theorem with the optical
metric method, provided by Gibbons and Werner [69], and the null geodesics method, using the
Lagrangian approach.

4.1 Calculation of weak deflection angle using Gauss-bonnet theorem

For null geodesics ds2 = 0, and so the metric (2.5) can be written as

dt2 = γijdx
idxj =

1

f2
dr2 +

r2

f
(dθ2 + sin2 θdφ2), (4.1)

where i, j ∈ {1, 2, 3} and γij is the optical metric. The coordinate θ can be chosen to be π
2 and

all derivatives of θ vanish by the virtue of the Euler Lagrange equations of the associated Lagrangian
of (2.6). Then the motion is constrained to a plane and it suffices to consider motion in (r,φ) plane.
We calculate the Gaussian curvature K of the optical metric in this plane by calculating the Ricci
scalar and dividing by 2:
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K =
2GM + 4

√
2P 2πκ
3R2

0

r3
+
−3G2M2 − 6P 2κ− 8P 4π2κ2

3R4
0
− 4
√

2GMP 2πκ
R2

0

r4

+
12GMP 2κ+ 8

√
2P 4πκ2

R2
0

r5
− 8P 4κ2

r6

(4.2)

Now for the Gauss-Bonnet Theorem [69], we consider a collection of objects (D,χ, g) to be a
subset of a compact, oriented surface, with Euler characteristic χ and a Riemannian metric g giving
rise to a Gaussian curvature K. Define ∂D : R → D be the piecewise smooth boundary of D with
geodesic curvature κ and let αi be the ith exterior angle. Then the Gauss Bonnet theorem states that∫∫

D
K dS +

∫
∂D

κ dt+
∑
i

αi = 2πχ(D). (4.3)

Let S be a source and let observer be stationed at O. Let D to be bounded by a geodesic C, and
another boundary C1 to be perpendicular to C at S and O. Then the

∑
i αi = αS + αO = π, and

χ(D) = 1 as D is isomorphic to a 2-circle.
The geodesic curvature κ along a path γ is defined as k(γ) = |∇γ̇ γ̇| This vanishes on C by

definition, and so all that remains to consider is κ(C1). The radial component of this is κ(C1)r =
γ̇φ∂φγ̇

r + Γrφφγ̇
φγ̇φ. Over cosmological distances, γ ∼ r = constant so the first term vanishes, and

the second term evaluates to 1
r . By a change of variables dt → r dφ the boundaries of the integral

over ∂D becomes the sum of the exterior angles plus the deflection angle δα.
Then (4.3) becomes

δα = −
∫∫

D
K dS. (4.4)

By using the weak deflection limit, we can set integration bounds r : b/ sinφ < r < ∞ and
φ : 0 < φ < π, where b is the impact parameter. The computation of the integral gives

δα =
4GM + 8

√
2P 2πκ
3R2

0

b
−

3
4G

2M2π + 3
2P

2πκ+ 2P 4π3κ2

3R4
0

+
√

2GMP 2π2κ
R2

0

b2
(4.5)

where we can recover the well-known Schwarzschild deflection angle 4GM
b at the P → 0 limit.

4.2 Calculation of weak deflection angle using geodesics method

For the geodesic method, we consider the Lagrangian associated with (2.6):

2L = −f(r)ṫ2 +
1

f(r)
ṙ2 + r2(θ̇2 + sin2 θφ̇2), (4.6)

where ẋ := dx
dλ and λ is an affine parameter along curves γ. There are two cyclic coordinates

(t, φ) and hence two conserved quantities L := r2φ̇ and E := −2f(r)ṫ, where we employed the
freedom to choose θ = π

2 . The equation for the radial coordinate of the geodesic can be converted to
an equation of motion of type u(φ), where u = r−1, by use of the conserved quantity L and the chain
rule, to give

d2u

dφ2
+

u

f(u)
+

1

2

d

du

1

f(u)
= 0, (4.7)
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where the last term vanishes as gtt = 1
grr

for our metric. To solve this analytically, we propose
a power series method in powers of M

b , where M is the total ADM mass with the field term, and
b := L

E is the impact factor. We consider terms up to order 2:

u(φ) =
M

b
cosφ+

(
M

b

)2

u1(φ) +

(
M

b

)3

u2(φ), (4.8)

where the first term is the straight path of the null geodesic, and the higher order terms are the
effects of the black hole on the path. By plugging Eq. 4.8 in the equation Eq. 4.7 and collecting terms
of same order in M

b , we get equations for u1 and u2:

d2u1

dφ2
+ u1(φ)− 3G cos2 φ = 0 (4.9)

d2u2

dφ2
+ u2(φ)− 6G cosφ u1(φ) + 4κP 2 cos3 φ = 0, (4.10)

which has solutions (u1, u2):

u1(φ) =
3− cosφ

2
(4.11)

u2(φ) =
3

16
G cos(3φ) +

P 2κ cos(3φ)

8M2
+

3

4
Gφ sin(φ)− 3P 2κφ sin(φ)

2M2
. (4.12)

We wish the consider the weak lensing approximation, so we take a Taylor expansion of u(φ)
for r →∞, which corresponds to u→ 0. Assuming the zero of the coordinate φ is aligned with the
point of closest approach, the relation between φ and the deviation angle δα from the straight path
is given by φ = π

2 + δα
2 at the r → ∞ limit, where the path is assumed to be straight again. Taylor

expanding u(φ) at this value for the angle gives us the full value for the deflection angle:

δα =
4GM + 8

√
2P 2πκ
3R2

0

b
−

3
4G

2M2π + 3
2P

2πκ+ 2P 4π3κ2

3R4
0

+
√

2GMP 2π2κ
R2

0

b2
, (4.13)

which confirms the Gauss-Bonnet result (4.5) up to second order as seen in Fig. 4.

5 Null Geodesics and Shadows Cast

For purposes of understanding the behaviours of null geodesics qualitatively, we can take a closer
look on the radial E-L equation of 4.6. It is:

1

f(r)
ṙ2 + r2θ̇2 − E2

f(r)
+

L2

r2 sin2 θ
= 0, (5.1)

with the choices of the previous section , we can write the equation as

ṙ2 + Veff(r) = 0, Veff(r) =
L2

r2
f(r)− E2. (5.2)
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The turning point of the photon path is given by ṙ|rp = 0, Veff(rp) = 0. If at the turning point

of a photon we have a local extrema of the potential, where dVeff
dr

∣∣∣
rp

= 0, the radial coordinate of the

turning point corresponds to a circular orbit, known as the photon sphere:

rph =

√(
6GMr0 + 4π

√
2κP 2

)2 − 64κP 2r2
0

4r0
+

3GM

2
+
π
√

2κP 2

r0
. (5.3)

The impact parameter of a geodesic is related to its turning point by

b =
rp√
f(rp)

. (5.4)

For the case of rp = rph, we have the critical impact parameter bc, for which all geodesics with b < bc
fall into the event horizon. For this reason it is referred to as the radius of the shadow of the black
hole, which is given by [129]

Rs = rp

√
f (x0)

f (rp)
, (5.5)

where we place the distant and static observer at position x0. For large distant observer (f(x0) = 1),
it reduces to

Rs =
rp√
f(rp)

=

2

(
1
2

√(
6GMr0 + 4π

√
2κP 2

)2 − 64κP 2r2
0 + 3GMr0 + 2π

√
2κP 2

)

r0

√√√√− 3G2M2

κP2 +
GM
√

(6GMr0+4π
√
2κP2)2−64κP2r202κP

2r0√
π
√

2
√

(6GMr0+4π
√
2κP2)2−64κP2r20

− 4
√
2πGM
r0

− 8π2κP2

3r20
+8

(5.6)

The angular size of the M87∗ galactic center black hole shadow is θs = (42± 3)µas, as reported by
EHT Collaboration. Considering that the distance to M87∗ is D = 16.8 Mpc and the mass of M87∗

central object M = 6.5 × 109 M�. Ignoring rotation, this gives us the diameter of the shadow in
units of mass dM87∗ [6, 35]:

dM87∗ =
Dθs
M87∗

= 11.0± 1.5. (5.7)

Because of the remarkable closeness of the M87∗ black hole shadow with a Schwarzschild one,
we expect that if it had any DL-NED magnetic charge P, it would be very close to zero. With undoing
the substitutions r2

0 = 2P
√
β and κ = 8πG, and choosing a value β = 1, we fit (5.6) to bounds

of (5.7) and determine the possible values of magnetic charge for M87. We obtain that the magnetic
charge should be in the range

0 ≤ P ≤ 0.024. (5.8)

with P = 0.01 for dM87∗ = 11.0. Moreover, we find that with very large values of β, the upper
end of the charge constraint asymptotically approaches P = 0.1. With the understanding that the
charge should be low, this suggests that the coupling parameter should not assume large values.
To obtain visual representations of these abstract calculations, we numerically solve the set of Euler-
Lagrange equations of (4.6). For this purpose we created a simulation and visualisation scheme in
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Mathematica. In this visualization, we assume that in the real universe, most black holes have accret-
ing materials around it, which should influence the observational appearance of the Black Hole. To
study the observational appearance, we consider two simplified models: an optically and geometri-
cally thin disk, and a spherically infalling matter disk.

5.1 Classification of rays and Rings

The so-called "shadow" of a black hole is generated by the light coming from the background, which
we treat as uniform in this paper. To classify the incoming light rays, we closely follow Gralla et
al [134], we define the number of orbits n(γ) = φ/2π, where φ is the final angular coordinate
of the geodesic γ once it is essentially free of the effect of the gravitational lens. The number of
orbits measures the number of times any incoming geodesic crosses the accretion plane, which is the
equatorial plane perpendicular to the plane generated by the observer and the position of the black
hole [66].

1. n < 3
4 : Direct emission, intersects the accretion plane once.

2. 3
4 < n < 5

4 : Lensing ring, intersects the accretion plane twice

3. n > 5
4 : Photon ring, intersects the accretion plane at least three times.

We want to investigate the appearance of the shadow with different parameters of the theory.
For this reason we first show the number of orbits n versus the impact parameter b associated with
the geodesic γ.

Assuming that the only visible portion is due to the accretion disk, the specific intensity and
frequency of the emission will be denoted by Iemν . The observed intensityIobsν′ at some frequency ν ′

is given by

Iobsν′ = g3Iemν , g =
√
f(r), (5.9)

and integrating over all frequencies, we observe that Iobs = g4IEM as ν ′ = gdν [134] and IEM =∫
Iemν dν. By our model of brightness by contact with the accretion disk, the total intensity received

by the observer should be given by the sum of all crossings with the disk:

I(r) =
∑
n

Iobs(r)|r=rm(b), (5.10)

where rm(b) is the radial coordinate of the mth intersection with the disk plane outside the
horizon, which we will call the transfer function.

5.2 Accretion Models and Shadows

5.2.1 Thin Disk Accretion

Now that we obtained an expression for the observed intensity, the only missing ingredient is the
IEM . We consider three toy models, previously investigated by [135], and visualize the results in
Fig.s 5,6,7.

• Model I: The emission starts from the innermost stable circular orbit (ISCO), and the emission
decays with the second power:

I1
EM (r) =


(

1
r−(risco−1)

)2
r ≥ risco

0 r ≤ risco.
(5.11)
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Figure 5. Given are the number of orbits and behaviour of null geodesics, in the DL-NED spacetime, with
different values of the impact parameter. On the left, we show the fractional number of orbits, n = φ/(2π),
where φ is the final azimuthal angle outside the horizon at r → ∞ limit. The colors correspond to n < 0.75
(black), 0.75 < n < 1.25 (gold), and n > 1.25 (red), defined as the direct, lensed, and photon ring trajectories,
respectively. On the right is the spacetime traced out by null geodesics. We only show a selected portion,
where the spacing between impact parameters are 1/5, 1/100, and 1/1000 in the direct, lensed, and photon ring
bands, respectively. The photon ring is shown as green dashed line and the black circle is the event horizon.

• Model II: The emission peaks at the photon sphere but the rest of the emission has the similar
center and asymptotic characteristics as the first model. But the rate of attenuation with the
impact parameter is assumed to be slightly larger, which decays with the third power:

I2
EM (r) =


(

1
r−(rp−1)

)3
r ≥ rp

0 r ≤ rp.
(5.12)

• Model III: we consider that the emission starts right off the event horizon, peaks at the photon
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Figure 6. The first three transfer functions rm(b) for a face-on thin disk in the DL-NED spacetime. Tracing
a photon back from the detector, these represent the radial coordinate of the first (black), second (gold), and
third (red) intersections with a face-on thin disk outside the horizon.

ring, and decays much slower than the first two models:

I3
EM (r) =

{
1−arctan(r−(rrisco−1))

1−arctan(rp) r ≥ rH
0 r ≤ rH .

(5.13)

5.2.2 Spherically infalling accretion

In this section we study spherically free-falling accretion, following the technique of [136]. The
accretion is spherical and dynamic, contrary to the previous section, which was a static disc. For this
dynamic model we again employ the number of orbits formalism of [134], but now the crossings are
not with the equatorial plane but all throughout the spherical accretion, the sum in Eq. 5.10 becomes
an integral over the null geodesic γ:

I(νobs, bγ) =

∫
γ
g3j(νe)dlprop, (5.14)

where we compute the intensity observed at some specific frequency νobs from the null geodesic
of impact parameter bγ , j is the emissivity per unit volume, and dlprop is the infinitesimal proper
length and we must alter the redshift factor g:

g =
kµu

µ
o

kµu
µ
e
, kµ = ẋµ, (5.15)

where kµ is the 4-velocity of the photon, uµo is the 4-velocity of the static observer at infinity.
The uµe is the 4-velocity of the infalling accretion:

uµe =
( 1

f(r)
,−
√

1− f(r), 0, 0
)
, (5.16)

and the 4-velocity of the photon is
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Figure 7. Observational appearance of an optically thin disk of emission near a DL-NED black hole with
charge P = 0.1, β = 1, of all three emission profiles, viewed from a face-on orientation. The emitted and
observed intensities Iem and Iobs are plotted as normalized to the maximum value. We observe the lensing ring
around 20M, while the photon ring at 16.9M is barely visible, for only the transfer functions m ≤ 3. When the
emission model begins outside the event horizon, stops at some inner edge (e.g models I and II), the radius of
the dark hole is the apparent position of the edge. When the emission extends to the horizon, the radius of the
main dark hole becomes the observed radius of the event horizon (here b ∼ 11M ). The analytically calculated
shadow radius (or the critical impact parameter) does not correspond to the observed radius of the shadow in
these emission models.
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kt =
1

b
, kr = ± 1

bf(r)

√
1− f(r)

b2

r2
, (5.17)

which allows us to write

g =
(
ute +

kr
kt
ure

)−1
. (5.18)

The proper distance along a null geodesic γ must be parametrized by an affine parameter other
than the proper time, which is given by

dlγ = kµu
µ
edλ =

kt

g|kr|
dr. (5.19)

For the simplicity of the model we assume a monochromatic emission with rest-frame frequency
ν∗ and a 1

r2
radial profile:

j(νe) ∝
δ(νe − ν∗)

r2
, (5.20)

where δ is the delta function. Then integrating Eq. 5.14 over all frequencies yields the total
observed flux

F (bγ) ∝
∫
γ

g3

r2

kte
kre
dr, (5.21)

With the expressions for the flux, we created the Mathematica code and numerically integrated
the flux to see the effects of the parameters of the DL-NED theory. See figures (8, 9, 10) for examples.
For an implementation in Python, see EinsteinPy [137].

6 Time-Domain Profile and Quasinormal modes (QNMs)

In this section we wish to obtain the quasinormal modes of the DL-NED spacetime (2.6), by solving
the wave equation in this background. An exact solution does not seem to be available, so we resort
to numerical methods to approximate the frequencies. The most popular in the literature seems to
be the WKB method. We further confirm the accuracy of the WKB method, by solving the wave
equation itself numerically and extracting the fundamental mode using the Prony method [147].

6.1 QNMs with the WKB method

We consider the evolution of massless scalar waves in the background, which obey the Klein-Gordon
equation:

1√
−g

∂µ
(√
−ggµν∂vΦ

)
= 0, (6.1)

where m = 0, and the covariant derivatives are expressed in terms of the metric. Due to the spherical
symmtery of our metric (2.5), we attempt to decompose the solution into spherical harmonics:

Φ =
∑
`,m

r−1Ψ(t, r)Y`,m(θ, φ). (6.2)

With this ansatz the wave equation becomes
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Figure 8. Observational appearance of a spherically free-falling accretion emission near a Schwarzschild
(upper) and DL-NED black hole (lower) of charge P = 0.1, β = 1. The mass for all black holes hereafter are
taken to be unity. It is seen that the introduction of a charge term greatly increases the apparent size of the
’shadow’, but decreases the intensity of the incoming light.

(
∂2

∂t2
− ∂2

∂r2
∗

+ V (r∗)

)
Ψ = 0, (6.3)

where r∗ is the so-called tortoise coordinate given by r∗ =
∫

1
f(r)dr. It can be analytically

integrated, in terms of the horizons (2.8):

r∗ = r − r2
c

log r − rc
rc − rh

− r2
h

log r − rh
rc − rh

. (6.4)

The potential V` is known as the Regge-Wheeler potential, given by

V`(r) = f(r)

(
`(`+ 1)

r2
+

1− s2

r

∂f

∂r

)
, (6.5)

where s is the spin of the perturbation, which is s = 0 for the scalar case. If we assume a temporal
dependence of the wave function of form

Ψ(t, r) = e−iωtψ(r), (6.6)

the equation (6.3) becomes
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Figure 9. Observational appearance of a spherically free-falling accretion emission near a DL-NED black hole
of charge P = 0.1 (upper) and P = 0.2 (lower), fixed β = 1. Similar to the comparison to the Schwarzschild
black hole case, the increase of the charge term greatly increases the size of the black hole shadow. However
the intensity is reduced greatly.

d2ψ

dr2
∗

+
[
ω2 − V (r)

]
ψ = 0, (6.7)

where the time dependence is eliminated and ω is the QNM frequency we want to figure out.
To compute ω, we attack (6.7) with the WKB method. This was applied to the first order by Schutz
and Will [138], extended to third order by Iyer and Clifford in [139], finally Konoplya derived the 6th

order result in [114]. According to [139], the WKB method essentially reduces to solving

i
[
ω2 − V (r∗)|r̄∗

]√
2V ′′ (r∗)|r̄∗

−
N∑
j=2

Λj(n) = n+
1

2
, (6.8)

where r̄∗ is the location of the maximum of the RW potential (6.5), V ′(r∗) := dV
dr∗

. Λj(n) are the
WKB correction terms and N is the order. The corrections Λ2,3 are given in [139] and Λ4,5,6 can be
found in [114]. Solving this equation, we obtain the modes to the 6th order, which we present below
in Table 6.1. There, we provide the QNM complex modes for different values of the overtone number
n and the angular momentum l. As indicated in [114], the WKB method works more accurately for
lower values of n and higher values of l.
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Figure 10. Observational appearance of a spherically free-falling accretion emission near a DL-NED black
hole of charge with P = 0.1 with different values of the field coupling constant β, β = 1 (upper) and β = 10000
(lower). Contrary to the charge, an increase in β actually decreases the size of the black hole shadow, although
minimally. This results in an increase in intensity.

To test the accuracy of the WKB method for certain calculations of modes, we look for con-
vergence of the real and imaginary components of the modes, with respect to the order of the WKB
method. In Fig. 11, we show convergence for various values of (n, l) pairs.

As mentioned in [141], we expect that the WKB method is reliable when the angular momentum
is high and the number of overtones n is low, which is confirmed by Fig. 11. The most unstable
solution is the one with n = 2 > l = 0 whereas the most stable is the one with n = 2 < l = 6. As
the WKB method is merely an approximation, we wish to compute the QNMs with another method
as a way to gauge WKB’s accuracy.

6.2 Analyzing the QNM spectrum

We provide a visualization of the QNM spectrum for the P = 0.1 case in Fig. 12. It is seen that
the real part ωR increases in discrete steps with increasing angular momentum l, while the imaginary
part ωI shows a minimal decrease.

The interesting point is that the cases converge in terms of their real frequencies at higher
overtones, while the damping coefficient does increase faster in the Schwarzschild curve, which is
lower than the DL-NED case at n = 0 but surpasses it by the highest overtone in the plot for both
l = 3 and l = 6. Also, the difference in the fundamental overtones suggest that there could be
a detectable difference between the fundamental frequencies. Refer to section 6.4 for an explicit
computation.
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Figure 11. The real and imaginary parts of the QNM frequencies, versus the order of the WKB method, with
different value of (n, l). Top left: n = 1, l = 0. We see that the values converge. Top right: n = 2, l = 0. the
values still fluctuate, even at the highest order. Bottom left: n = 2, l = 2. Frequences seem to have converged
after order 3. Bottom right: n = 2, l = 6. The values are more stable than any of the other methods.
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Figure 12. The QNM spectrum for P = 0.1 (above). We show cases in which l ∈ {1, 2, 3, 4, 5, 6}. We also
show the comparison of l = 3, 6 cases to the Schwarzschild case. Unlike the authors in [141], we see that the
DL-NED spectrum does not cross the Schwarzschild spectrum.
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Table I: ω for different values of P using 6th order WKB method 1

n, l P = 0 P = 0.1 P = 0.2

0,0 0.22093− 0.20164i 0.2197− 0.1987i 0.2198− 0.1991i
1,0 0.17805− 0.68910i 0.1779− 0.6776i 0.1778− 0.6795i

0,1 0.58582− 0.19552i 0.5823− 0.1927i 0.5828− 0.1931i
1,1 0.52894− 0.61304i 0.5272− 0.6036i 0.5275− 0.6048i
2,1 0.46203− 1.0843i 0.4624− 1.0664i 0.4624− 1.0687i

0,2 0.96728− 0.19353i 0.9614− 0.1908i 0.9622− 0.1911i
1,2 0.92769− 0.59125i 0.9231− 0.5826i 0.9237− 0.5837i
2,2 0.86077− 1.0174i 0.8583− 1.0018i 0.8586− 1.0039i
3,2 0.78641− 1.4798i 0.7864− 1.456i 0.7864− 1.4592i
4,2 0.72517− 1.9766i 0.7273− 1.9431i 0.7271− 1.9475i

0,6 2.5038− 0.19261i 2.4884− 0.1899i 2.4905− 0.1902i
1,6 2.4875− 0.57947i 2.4727− 0.5712i 2.4747− 0.5723i
2,6 2.4557− 0.97120i 2.4419− 0.9572i 2.4437− 0.9591i
3,6 2.4098− 1.3708i 2.3975− 1.3509i 2.3991− 1.3535i
4,6 2.3519− 1.7809i 2.3414− 1.7547i 2.3428− 1.7581i
5,6 2.2848− 2.2036i 2.2765− 2.1706i 2.2776− 2.1749i
6,6 2.2113− 2.6402i 2.2054− 2.5999i 2.2062− 2.6052i
7,6 2.1347− 3.0914i 2.1313− 3.0433i 2.1317− 3.0496i
8,6 2.0579− 3.5575i 2.057− 3.501i 2.0572− 3.5085i
9,6 1.9839− 4.0383i 1.9855− 3.9728i 1.9854− 3.9815i
10,6 1.9155− 4.5334i 1.9196− 4.4583i 1.9191− 4.4681i
11,6 1.8555− 5.0421i 1.862− 4.9566i 1.8612− 4.9678i

6.3 The time-domain solution

To calculate the QNMs in an independent way, we wish to solve equation (6.3) in the time domain
numerically. We assume that the initial disturbance is a Gaussian wave packet,

Ψ (r∗, t = 0) = AExp

(
−(r∗ − r̄∗)2

2σ2

)
, ∂tΨ(r∗, t)|t=0 = −∂r∗Ψ (r∗, 0) , (6.9)

where we pick σ = 1, r̄∗ = −40, and A = 20, r∗ = 90. We impose boundary conditions such
that the wavefunction vanishes at (r∗ = −200, r∗ = 250). Since our black hole is the Schwarzschild
BH at the P →∞ limit, we wish to see the differences between the two spacetimes.

In the following figures (13, 14, 16, 17), we show the |Ψ| and ln |Ψ| for l = 0, 1, 2, for both
the Schwarzschild potential and the DL-NED potential. The waveforms are essentially identical, but
there are slight differences in the oscillation frequencies, which are clearer to see in the logarithmic
plots. In Fig. 15, we investigate the large-t behaviour of the l=0 case. Our expectation was that the
waveforms should be essentially identical, which is confirmed in Fig. 15. The simplest explanation
for this is that, because of the asymptotic behaviour of both the Schwarzschild and the P=0.1, 0.2
cases, both are VSch, VDL−NED ∼ 1

r2
.

Furthermore, we provide the frequencies of the fundamental modes (n = 0) for the numerical
waveforms in Table 6.3, which we obain using the Prony method [147] . The results agree with values
in Table 6.1, with stronger agreement for higher values of l.
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Figure 13. The Regge-Wheeler Potentials for P = 0, and P = 0.1, with l = 0 on the right and l = 2 on the left.
We show the Schwarzschild limit with dashed dark red, and the charged case in light blue. The Schwarzschild
case has a slightly higher peak for both cases.

Table II: ω for the fundamental modes n=0, obtained by the Prony method [147] from the numerical simulations 2

n, l P = 0 P = 0.1

0,0 0.216889− 0.21359i 0.210219− 0.201568i

0,1 0.585765− 0.195525i 0.58228− 0.192675i

0,2 0.967308− 0.193487i 0.961436− 0.190716i

6.4 Detectability of the QNMs

To check whether a gravitational signal emitted by an oscillating black hole in the bandwidth of the
Virgo/LIGO interferometers, its fundamental frequencies have to be in the range about 10− 40 Hz or
for the LISA interferometer about 10−4−10−1 Hz [146]. AssumingM = αM�,

(
M� = 1.48 · 105 cm

)
,

the frequencies and damping times are calculated by [146]

ν =
c

2πα ·M� (Mω0)
=

32.26

α
(Mω0) kHz, τ =

αM�
(Mωi) c

=
α · 0.4937 · 10−5

(Mωi)
s. (6.10)

For our fundamental overtones for angular momenta l = 0, 1, 2 of oscillating black holes with
charge P=0.1, confirmed by the Prony fitting in section 6.3, we compute the fundamental frequencies
to determine the range of masses of oscillating DL-NED black holes LIGO and LISA would be able
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Figure 14. The waveforms for the l = 0 case. The DL-NED is given in blue while the Schwarzschild case is
in red. In the logaritmic plot, we see that the DL-NED frequency is lower, consistent with (6.1) (n=0, l=0) case
fundamental overtone.

to detect. We find that LIGO can detect

5M� .M . 6 · 103M�, (6.11)

in the fundamental frequency range ν ∈ [12 Hz, 1.2kHz], and for LISA the detectable mass
range is

6.8 · 104M� .M . 8.0 · 108M�, (6.12)

corresponding to frequencies ν ∈
[
10−4, 10−1

]
Hz. Since the variations in the frequencies

when the charge is increased to P = 0.2 are on the order of 10−3, we did not expect an appreciable
change in the detection mass range, which is confirmed by our calculations.
Furthermore, we had pointed out that there could be a difference in the fundamental frequencies of
the fundamental overtones between the Schwarzschild BH and the DL-NED BH, as seen in Fig. 12.
We find that for a black hole of mass 100M�, the differences in the fundamental frequencies are

l=3: δν = 2.64Hz

l=6: δν = 4.97Hz

We also found that the frequency difference decreases with increasing mass of the perturbed black
hole, for both cases.
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Figure 15. The behaviour of the tails of the l = 0 waveforms, given in (14). They follow the same paths,
unlike [141], the behaviour of the DL-NED black hole is very similar to the Schwarzschild black hole.

7 Greybody factors and High-Energy Absorption cross section via Sinc approxima-
tion

7.1 The Greybody Bound

In this section we calculate the lower bound for the greybody factor of the DL-NED Black Hole.
There are various methods of obtaining this bound with approximations, such as the WKB method
or the matching technique. Instead, we use the rigorous lower bound, allowing us to investigate the
effect of P on the bound. The rigorous bound is given by [118, 119]

T ≥ sech2
(∫ ∞
−∞

νdr∗

)
, (7.1)

with

ν =

√
(h′(r∗)) + (ω2 − V (r∗)− h2(r∗))2

2h(r∗)
. (7.2)

Here we use choose h(r∗) = ω, which trivially satisfies the boundary conditions h(∞) =
h(−∞) = ω. This yields

Tb ≥ sech2
( 1

2ω

∫ ∞
−∞
|V (r∗)|dr∗

)
. (7.3)

Using the Regge-Wheeler potential for the massless scalar field from last section, we can ana-
lytically evaluate the bound as
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Figure 16. The waveforms for the l = 1 case. The DL-NED is given in blue while the Schwarzschild case is
in red. In the logaritmic plot, we see that the DL-NED frequency is lower, consistent with (6.1) (n=0, l=1) case
fundamental overtone.

T ≥ Tb = sech2

(
1

2ω

(
− 4κP 2

3r3
H

−
−3GM − 2

√
2P 2πκ
r0

3r2
H

+
l(l + 1)

rH

))
, (7.4)

which reduces to the Schwarzschild case at P → 0 correctly, as TSch ≥ sech2
(1+2l(l+1)

8GMω

)
.

Investigating the variation of the greybody factor with various charges, we see in Fig. 18.

7.2 The High-Energy Absorption Cross Section with the Sinc approximation

The absorption cross section oscillated around the constant geometric-optics value for a black hole,
which is related with the photon sphere, contrarily, it increases monotonically with increasing fre-
quency for ordinary material sphere [142]. The cross section of the photon sphere is related with
impact parameter at critical value and limiting the value of absorption cross section, the black hole’s
characteristic properties at low energies, where simply the cross section equals to black hole area,
[143, 144] and also at high energies [130] using the geometrical cross section of the photon sphere
can be studied. Using the Regge pole techniques, Decanini et al. [130] prove that the oscillatory
pattern of the high-energy absorption cross section related with a Sinc(x) function included photon
sphere.

The absorption cross section for high frequency waves is approximately the so-called classical
capture cross section of null geodesics, given by σgeo = πb2c where bc is the critical impact parameter.
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Figure 17. The waveforms for the l = 2 case. The DL-NED is given in blue while the Schwarzschild case is
in red. In the logaritmic plot, we see that the DL-NED frequency is slightly lower, consistent with (6.1) (n=0,
l=2) case fundamental overtone.

Figure 18. The Greybody Bound Tb versus
the magnetic charge P, with M = 1, β = 1.

Figure 19. The total absorption cross sec-
tion for various values of the magnetic
charge, β = 1.

In the eikonal limit, the oscillatory part of the absorption cross section can be written as [130]:

σosc = −4π
λb2c
w
e−πλbc sin

2πw

Ωc
, (7.5)

where λ is known as the Lyapunov exponent
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λ =

√
f(rc)

2r2
c

(
2f(rc)− r2

cf
′′(rc)

)
, (7.6)

and Ωc =
√

f(rc)
r2c

where rc is the radius of the photon orbit. Then the Sinc approximation states
that the total absorption cross section at the eikonal limit is σabs ≈ σosc + σgeo [130–133, 142]. In
the Fig. 19 we plot the total absorption cross section for various values of P .

The absorption cross section shows a great dependence on the magnetic charge P . This is
supported by the direct dependence of the size of the shadow with P , as discussed in section 5.2.2.
Furthermore, the magnitude of the oscillatory component of the cross section is again dependent on
P with σabs ∝ b2c , which in turn depends on P at the asymptotic limit bc ∝ P

3
2 .

Furthermore, the connection between the Sinc approximation of high-energy cross section and
shadow radius of the black hole can be written in this form [130, 145]:

σabs(ω) = −8πηce
−πηc sinc (ω2πRs)πR

2
s + πR2

s, (7.7)

where

ηc =

√
f(rc)−

1

2
r2

cf(rc)′′. (7.8)

The Fig. 20 and Fig. 21 show that the increasing the shadow radius of the black hole, the
high-energy absorption cross-section in the Sinc approximation increases slowly by fluctuated. But
especially for the large shadow radius value of the black hole, the high-energy absorption cross-
section in the Sinc approximation exponentially increases.
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Figure 20. Figure shows the correspon-
dence between the total absorption cross
section via Sinc approximation and the
shadow radius of the black hole for Rs < 4.
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Figure 21. Figure shows the correspon-
dence between the total absorption cross
section via Sinc approximation and the
shadow radius of the black hole for Rs <
50.

8 Conclusion

In this paper we have investigated various properties of magnetically charged black holes in an exten-
sion of the Maxwell theory, the DL-NED theory. We initially show the outline of how the metric is
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derived. We calculate the horizons of the spacetime, in the asymptotically flat setting and show that,
unlike the RN solution, our black hole is never extremal. We then look into the Hawking thermody-
namics of the black hole solution, looking into how the magnetic charge affects the thermodynamic
properties. We further investigate the effects of a generalized uncertainty principle correction to the
thermodynamics. We find that in both cases, the Hawking temperature is inversely related to the
charge whereas the Bekenstein entropy is proportional to the charge by P 4. By computing the heat
capacity in both cases, we find that the black hole can be stable, which the GUP corrections amplify.
After, we investigate the angle that null geodesics are deflected in the weak-field limit through the
Gauss-Bonnet theory and the geodesic equation. The deflection angle peaks right above the critical
impact parameter P = 0.1 case, dying off with increasing charge. The geodesic equation is then
used to visualize the observational appearance of the black hole, for a static accretion disk and a
free-falling spherical shell of gas. It is found that with increasing magnetic charge, the size of the
black hole is greatly increased and with increasing field coupling parameter β, the size of the shadow
is slightly diminished. We then compute the QNM frequencies of small oscillations of the black hole,
for the cases P = 0, 0.1, 0.2, using the WKB approximation. We solve the Regge-Wheeler equation
numerically and confirm the accuracy of the WKB method for the fundamental mode (n = 0) for
varying angular momenta. At the end, we investigate the absorption cross-section of our black hole,
first computing the greybody bound and then using the sinc approximation. We find that the grey-
body bound is gets steeper with increasing charge. We finally find that the oscillatory part of the cross
section, as well as the total absorption, get increasingly larger with increasing charge, confirming the
calculations of the section on the observational appearance of the black hole shadow. This similarity
is further confirmed by the final computation of the relation between the absorption cross section and
the shadow radius.

While we provide a survey of theoretical computations about the properties of the black hole,
we also provide possible avenues of experimental observation of the DL-NED magnetic black hole.
We show that neglecting the rotational properties of the M87* black hole, the image of the shadow
bounds its possible magnetic charge between P = 0 and P = 0.024 in units of MBH . This result
agrees with the general idea that any sort of electromagnetic charge on an astrophysical black hole
is either zero of minimally positive. We also provide observational possibilities in the gravitational
wave avenue, by showing that the Virgo/LIGO ground detectors and the LISA space detector could
find DL-NED black holes with masses ranging from 5M� up to 8.0 · 108M�, with a small gap
between 6 · 103M� and 6 · 104M�, which corresponding frequencies not covered by these detectors.
These values are for the P = 0.1 case, and as for increasing values of the magnetic charge, the metric
approaches the Schwarzschild case, the detection range therefore also converges to the Schwarzschild
case given in [146].

In the future, the most natural extension of our study is the generalization of the DL-NED metric
to the rotating case. In the real universe, we do expect that most black holes have nonzero angular
momentum. In our study of the EHT image as a DL-NED black hole, what remains to be done is a
more accurate investigation of the nontrivial rotational effects that are present, allowing for a stronger
constraint on the possibility of a net magnetic charge. Furthermore, we also wish to investigate the
quasinormal modes from other approaches. Particular topic of interests are the pseudospectrum of the
QNMs, from which we can investigate the stability. A further consideration is utilizing and improving
neural network methods to compute quasinormal modes.
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