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Nonlinear electromagnetic fields in strictly stationary spacetimes
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We prove two theorems which imply that any stationary nonlinear electromagnetic field obeying a
dominant energy condition in a strictly stationary, everywhere regular, asymptotically flat spacetime
must be either trivial or a stealth field. The first theorem holds in static spacetimes and is inde-
pendent of the gravitational part of the action, as long as the coupling of the electromagnetic field
to the gravitational field is minimal. The second theorem assumes Einstein–Hilbert gravitational
action and relies on the positive energy theorem, but does not assume that the spacetime metric
is static. In addition, we discuss possible generalizations of these results, to theories with charged
matter, as well as higher-dimensional nonlinear electromagnetic fields.

I. INTRODUCTION

Interaction of the gravitational and the electromag-
netic fields, governed by the gravitational-gauge field
equations, is highly nonlinear. It is quite optimistic to
hope that we might reach a complete classification of all
solutions, even under the constraints of some regularity
and boundary conditions. Indeed, a slightly less ambi-
tious goal, understanding of time-independent solutions,
is still a formidable task, but one worth taking as sta-
tionary solutions serve as models of the equilibrium field
configurations.

For example, an important class of stationary black
hole spacetimes is heavily narrowed by the series of black
hole uniqueness and no-hair theorems [1, 2], distilled and
polished over the past several decades. These solutions,
however, are not strictly stationary, as the Killing vector
field corresponding to stationary isometry, timelike on
some domain of the black hole exterior, may change its
causal character in the black hole interior and ergoregions
surrounding rotating black holes. Also, black holes may
harbor a singularity, in which case they are not globally
regular spacetimes.

This begs the question whether it is possible to have
a strictly stationary, everywhere regular, asymptoti-
cally flat solution with a nonvanishing electromagnetic
field. Such a spacetime would represent an instance of
Wheeler’s gravitational-electromagnetic geon [3], at least
up to a nontrivial question of stability. A negative answer
in the case of Einstein–Maxwell theory is a canonical,
well-known result, sometimes referred to as the absence
of self-gravitating electromagnetic solitons [1]. Setting
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aside a delicate historical question of primacy, the basic
strategy of proofs can be traced back to the seminal work
of Lichnerowicz [4]: construct a convenient non-negative
quantity, whose integral over the spacetime domain in the
problem is nonpositive, implying that this quantity has
to be identically zero. This was masterfully utilized in
the foundational uniqueness theorems obtained by Carter
[5] (cf. republished, corrected paper [6]) and, more re-
cently, by Heusler [2, 7]. Several generalizations of the
“no-soliton theorem” for the Einstein–Maxwell theory in
the presence of various scalar fields was obtained by Shi-
romizu, Ohashi and Suzuki [8], and Herdeiro and Oliveira
[9, 10].

One step further is to ask what happens in the theories
where Maxwell’s classical electrodynamics is replaced by
its nonlinear modifications. Nonlinear electrodynamics
(NLE) has its roots at the dawn of quantum field theory,
back in the 1930s, sprouting over the following decades
with innumerable NLE Lagrangians. Born–Infeld theory
[11, 12] was constructed with the specific aim to cure the
inconsistencies of Maxwell’s electrodynamics associated
with the infinite self-energy of the point charges and, re-
markably, reappeared much later in low energy limits of
the string theory [13]. Another prominent NLE theory is
defined by the Euler–Heisenberg one-loop QED correc-
tion to Maxwell’s Lagrangian [14, 15]. The repository of
proposed NLE theories has been growing ever since, with
Lagrangian densities constructed from logarithmic [16],
hyperbolic tangent [17], power [18, 19], exponential func-
tion [20], and so forth. Novel ModMax electrodynamics
[21, 22] is a one-parameter class of NLE theories which
is both conformally invariant and invariant with respect
to electromagnetic duality rotations [23]. Nonlinearities
in the electromagnetic interaction are being tested by the
ATLAS Collaboration [24–27] and new generations of the
ultraintense lasers at the Extreme Light Infrastructure
[28].
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An intriguing feature of NLE theories is that they may
admit a resolution of the black hole singularities, up
to delicate constraints [29–32]. An example of a regu-
lar black hole spacetime, originally proposed ad hoc by
Bardeen [33], was later interpreted by Ayón-Beato and
Garćıa [34, 35] as a solution of Einstein-NLE-Maxwell
field equations for a particular NLE theory (broader anal-
yses of spherically symmetric solutions may be found in
[36–39]; cf. also [40, 41]). Recently found, an even less
trivial, regular black hole solution [42] is based on a NLE
theory with nonminimal coupling of the electromagnetic
field to the gravitation. Nevertheless, these examples still
leave the original question open: will a self-gravitating
electromagnetic field settle in a nontrivial, regular con-
figuration which is not a black hole? The first extension
of the “no-soliton” theorem (referred to by the authors as
the “Lichnerowicz-type theorem”) for theories with NLE
was given in [43] for the truncated Born–Infeld theory
and the power-Maxwell theory. Our aim is to provide a
much broader generalization of this result for NLE La-
grangians which are general smooth functions of both
electromagnetic invariants, FabF

ab and Fab ?F
ab. Also,

we shall present the first steps in the generalization of
these results for theories with charged matter or theories
in a different number of spacetime dimensions.

The paper is organized as follows. In Sec. II we briefly
overview the fundamentals of gravitational theories with
nonlinear electromagnetic fields. The main results of the
paper, theorems 1 and 2, are stated in Sec. III and their
proofs are presented in Sec. IV. We discuss various gen-
eralizations of these theorems in Sec. V and review the
remaining open questions in Sec. VI. Several basic iden-
tities from differential geometry are stated in the Ap-
pendix.

Conventions and notation. The interior of a set S is
denoted by S◦, the boundary of S by ∂S and the clo-
sure of S by S. The difference between sets A and B
is denoted by A − B. We shall use the “mostly plus”
metric signature and the natural system of units with
G = c = 4πε0 = 1. Differential forms are denoted by
bolded indexless letters, an abstract index notation or a
combination of both. The volume 4-form is denoted by
ε. The contraction of a symmetric tensor Sab with vec-
tor Xa is a 1-form denoted by S(X). Following reference
[1], we write f = O(r−k) when f is of order O(r−k) as
r → ∞ and f = O∞(r−k) when ∂i1 . . . ∂i`f = O(r−k−`)
for an arbitrary set of coordinate indices {i1, . . . , i`}.

II. BRIEF OVERVIEW OF NLE

Let us, before stating the central theorems of the pa-
per, briefly introduce the nonlinear electrodynamics. The
ubiquitous elements are two electromagnetic invariants,

F := FabF
ab and G := Fab ?F

ab . (1)

We follow the nomenclature from [44] by sorting NLE
theories into the F-class, with a Lagrangian density L

depending only on invariant F, and the FG-class, with
Lagrangian density L depending on both invariants. In
this paper the main focus is on the broader, FG-class of
NLE theories, with the NLE Lagrangian density L which
is a C2 function on some neighbourhood of the origin of
the F-G plane. We can always choose the Lagrangian
density, by adding an appropriate constant, such that
L (0, 0) = 0. Partial derivatives of the Lagrangian den-
sity L are denoted by abbreviations such as LF := ∂FL ,
LG := ∂GL , LFG := ∂G∂FL , and so on. We say that a
NLE Lagrangian density L obeys Maxwell’s weak field
limit if LF(0, 0) = −1/4 and LG(0, 0) = 0.

The Lagrangian 4-form, defined with some (diffeomor-
phism covariant) gravitational Lagrangian density L (g),
is

L =
1

16π

(
L (g) + 4L

)
ε . (2)

The corresponding gravitational field equation is of the
form

Eab = 8πTab , (3)

where the gravitational tensor Eab is divergence-free,
∇aEab = 0, and the NLE energy-momentum tensor may
be conveniently written as

Tab = −4LFT
(Max)

ab +
1

4
Tgab (4)

with Maxwell’s electromagnetic energy-momentum ten-
sor

T (Max)

ab :=
1

4π

(
FacF

c
b −

1

4
gabF

)
(5)

and the trace

T := gabTab =
1

π
(L −LFF −LGG) . (6)

For an Einstein–Hilbert Lagrangian density L (g) = R we
have Eab = Gab, the Einstein tensor.

Using an auxiliary 2-form

Z := −4 (LFF + LG ?F) , (7)

the NLE Maxwell’s equations may be written in the form

dF = 0 , d?Z = 0 . (8)

We shall invoke two energy conditions, the null energy
condition (NEC) and the dominant energy condition
(DEC). It can be shown [44, 45] that the NEC holds
if and only if LF ≤ 0, while the DEC holds if and only
if LF ≤ 0 and T ≤ 0.

III. TWO THEOREMS

We shall present two “no-soliton” theorems, each of
which has its strengths and limitations. Both theorems
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assume that the spacetime is strictly stationary, so that
we do not consider spacetimes with either black hole
or cosmological horizons. The first result rests upon a
stronger assumption, that spacetime is static, which ad-
mits a simpler proof that does not depend on details of
the gravitational Lagrangian of the theory, as long as
the coupling of the electromagnetic field to gravitation
is minimal. The second result does not rely on this as-
sumption, so that it may be applied to “rotating” solu-
tions. However, this comes at a price: proof rests upon
a highly nontrivial, celebrated positive energy theorem
[46–52] and, correspondingly, works only in those gravi-
tational theories for which this theorem has been proven.

Let us, before the statement of the main results, list
the technical assumptions necessary for the theorems.

(1) The spacetime consists of a four-dimensional
smooth, simply connected manifold M , with a
smooth Lorentzian metric gab and a smooth elec-
tromagnetic 2-form Fab, which are solutions of the
gravitational-NLE field equations (3) and (8), with
the NLE Lagrangian density L obeying Maxwell’s
weak field limit.

(2) The spacetime admits a strictly timelike Killing
vector field ka (namely, kaka < 0 on the whole M )
and the electromagnetic field inherits the symmetry
£kFab = 0 [53–55].

(3) Through each point p ∈ M passes at least one
complete oriented spacelike hypersurface Σ with in-
duced metric hij and the associated second funda-
mental form (extrinsic curvature) Kij , Euclidean
at infinity1 and asymptotically flat in the sense
[1, 51, 52] that on each of its “ends” the following
fall-off conditions, written in Cartesian coordinates,
are met: 1 + kαkα = O∞(r−1), kαgαi = O∞(r−1),
γij = O∞(r−1) and Kij = O∞(r−2), while the elec-
tromagnetic 2-form Fab satisfies kαFαi = O∞(r−2)
and kα?Fαi = O∞(r−2), and the associated poten-
tials (defined below) are of order O∞(r−1).

We shall refer to assumptions (1)–(3) as the basic as-
sumptions. It is quite possible that some of the assump-
tions above may be slightly relaxed without any signif-
icant effect on the further conclusions, but we shall not
pursue such nuances here. Furthermore, we introduce
the following notion.

Definition. We say that an electromagnetic field is
stealth at a point p ∈ M if at that point the corre-
sponding energy-momentum tensor Tab is zero, but the
electromagnetic 2-form Fab is nonzero.

1 We say that a smooth n-manifold S is Euclidean at infinity if
there is a compact set C ⊆ S, such that S − C is a disjoint union
of a finite number of sets (“ends”), each of which is diffeomorphic
to the complement of a contractible compact set in Rn.

In other words, stealth fields do not affect the
spacetime metric, as their contribution to the energy-
momentum tensor is vanishing. Such configurations are
absent in Maxwell’s classical electrodynamics, but ap-
pear in NLE theories if and only if Fab 6= 0, LF = 0 and
T = 0 hold at a given point [56]. Note that in this paper,
for clarity, we keep the trivial fields, Fab = 0, apart from
the stealth fields. A prominent class of stealth solution
examples [56] may be found among the null electromag-
netic fields in power-Maxwell theory [18, 19], which also
belong to a family of so-called universal electromagnetic
fields [57–59].

The two central results of the paper are as follows.

Theorem 1. Suppose that a spacetime with an electro-
magnetic field satisfies basic assumptions, with the elec-
tromagnetic energy-momentum tensor obeying the null
energy condition, and where the Killing vector field ka is
hypersurface orthogonal. Then the electromagnetic field
is at each point of the spacetime either trivial, Fab = 0,
or stealth.

Theorem 2. Suppose that a spacetime with the electro-
magnetic field satisfies basic assumptions and the gravi-
tational part of the action is the Einstein–Hilbert’s with
the electromagnetic energy-momentum tensor obeying the
dominant energy condition. Then the spacetime is iso-
metric to the Minkowski spacetime (R4, ηab) and the elec-
tromagnetic field is at each point of the spacetime either
trivial, Fab = 0, or stealth.

We stress that theorem 1 relies on a weaker, null energy
condition.

IV. PROOFS OF THEOREMS

In both theorems we are looking at a spacetime ad-
mitting a strictly timelike Killing vector field ka. It is
convenient to introduce the function V := −kaka > 0
and the associated twist 1-form

ω := −?(k ∧ dk) . (9)

One should, however, beware of variations in the def-
inition of the twist 1-form throughout the literature
(e.g. Heusler [2] introduces a twist 1-form ω̃, such that
ω = −2ω̃). Our choice is mainly motivated by the fact
that, in the abstract index notation, it corresponds sim-
ply to ωa = ε bcd

a kb∇ckd, without additional factors.

The vector field ka allows us to define two electric 1-
forms,

E := −ikF , D := −ikZ , (10)

and two magnetic 1-forms,

B := ik?F , H := ik?Z . (11)
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As a consequence of the symmetry inheritance and gen-
eralized Maxwell’s equations we know that E and H are
closed forms,

dE = −dikF = (−£k + ikd)F = 0 , (12)

dH = dik?Z = (£k − ikd)?Z = 0 . (13)

As manifold M is, by assumption, simply connected, we
can globally define scalar potentials, electric Φ and mag-
netic Ψ, such that E = −dΦ and H = −dΨ. Also, di-
rectly from the definition we know that £kΦ = −ikE = 0
and £kΨ = −ikH = 0.

The backbone of the proofs are divergence identities
which have to be carefully chosen. First, using

d

(
k

V

)
=

1

V 2
(V dk− dV ∧ k) =

1

V 2
?(ω ∧ k) (14)

and

− ? ikZ = ? ik??Z = k ∧ ?Z (15)

we have

∇a
(
Da

V

)
= −?d?

(
− 1

V
ikZ

)
= −?d

(
1

V
k ∧ ?Z

)
= −?

(
1

V 2
?(ω ∧ k) ∧ ?Z

)
=

1

2V 2
(ω ∧ k)ab ?Z

ab . (16)

Therefore,

∇a
(
Da

V

)
= −ωaH

a

V 2
(17)

and, analogously,

∇a
(
Ba
V

)
=
ωaE

a

V 2
. (18)

Proof of theorem 1. Let us introduce an auxiliary open
set

O := {x ∈M | LF(x) 6= 0} . (19)

In other words, due to the assumed NEC, LF(x) < 0
for all x ∈ O and LF(y) = 0 for all y ∈ M − O. As
the electromagnetic field decays along each “end” and
the Lagrangian density obeys the Maxwellian weak field
limit, we know that O is nonempty.

At each point of the complement M −O, the gravita-
tional field equation is reduced to Eab = 2πTgab. Thus,
the divergence ∇aEab = 0 implies that the trace T is
constant on each connected component of the interior
(M −O)◦. Furthermore, by the assumption of the theo-
rem, ω = 0, so that ka is a hypersurface orthogonal vec-
tor field. Let Σ be an arbitrary spacelike hypersurface

from the basic assumption (3). Inserting, respectfully,
α = D/V and α = B/V in Eq. (A7), both of which
satisfy £kα = 0, we get∫

∂Σ

1

V
?(k ∧D) = 0 ,

∫
∂Σ

1

V
?(k ∧B) = 0 . (20)

Formally, the integral over ∂Σ may denote the limit for
the integral over the “sphere at infinity”. Furthermore,
for α = ΦD/V and α = ΨB/V we get, respectfully,

∇a
(

Φ

V
Da

)
=

4

V
(LFEaE

a −LGEaB
a) (21)

and

∇a
(

Ψ

V
Ba

)
=

4

V
(LFBaB

a + LGEaB
a) . (22)

The sum of these two equations,

∇a
(

Φ

V
Da +

Ψ

V
Ba

)
=

4

V
(LFEaE

a + LFBaB
a) (23)

integrated over Σ, with the help of (20) and the fall-off
conditions on potentials Φ and Ψ, leads to∫

Σ

LF

V
(EaE

a +BaB
a) ε̂ = 0 , (24)

with the induced volume 3-form ε̂. Now, as k is strictly
timelike, V > 0, neither Ea nor Ba can be causal (as
kaE

a = 0 and kaB
a = 0), and the integrand above is

nonpositive on O ∩ Σ and zero on (M −O) ∩ Σ. As the
total integral is zero, it follows that Ea = 0 = Ba and, as
L (0, 0) = 0, consequently T = 0 on O∩Σ. By continuity
this implies that T = 0 on O ∩Σ, and thus T = 0 on the
whole Σ. In conclusion, on each point of the set O∩Σ we
have Fab = 0, while on each point of the set (M −O)∩Σ
the electromagnetic field Fab is either zero or stealth.

We stress that the argument works irrespectively of the
gravitational part of the equations of motion, as long as
the coupling is minimal and tensor Eab is divergence-free.
If LF = 0 we can find simple counterexamples, such as
the stealth field on static background [56].

Proof of theorem 2. Here we turn to the Einstein–
Hilbert case, Eab = Gab. The exterior derivative of the
twist 1-form, with the help of the Killing lemma d?dk =
2 ?R(k), may be written as

dω = −2?(k ∧R(k)) =

= 64πLF ?(k ∧T(Max)(k)) =

= 4E ∧H . (25)

Using electromagnetic scalar potentials,

dω = −4(dΦ ∧H) = −4(E ∧ dΨ) (26)

we see that both ω + 4ΦH and ω − 4ΨE are closed 1-
forms. Thus, as M is, by assumption, simply connected,
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we can globally define the new scalar potentials UE and
UH such that

ω = −4ΦH + dUH (27)

= 4ΨE + dUE . (28)

As with the electromagnetic potentials Φ and Ψ, we see
directly from the definition that £kUE = 0 and £kUH =
0. Note that

ωaω
a = −4ΦωaH

a + ωa∇aUH (29)

= 4ΨωaE
a + ωa∇aUE . (30)

Now, using a basic formula

∇a
( ωa
V 2

)
= 0 (31)

and the relations above, we have four divergence identi-
ties,

∇a
(
UE

ωa
V 2

)
=
ωa∇aUE
V 2

, (32)

∇a
(
UH

ωa
V 2

)
=
ωa∇aUH
V 2

, (33)

∇a
(

Φ

V
Da

)
=

4

V
(LFEaE

a −LGEaB
a)− Φ

ωaH
a

V 2
,

(34)

∇a
(

Ψ

V
Ba

)
=

4

V
(LFBaB

a + LGEaB
a) + Ψ

ωaE
a

V 2
.

(35)

A brief inspection reveals that an auxiliary 1-form

W :=
UE + UH

V 2
ω +

4

V
(ΦD + ΨB) (36)

has a rather simple covariant divergence,

∇aW a =
16

V
LF (EaE

a +BaB
a) + 2

ωaω
a

V 2
. (37)

Taking into account Einstein’s field equation,

Rab = 8π

(
Tab −

1

2
Tgab

)
(38)

and

8πT (Max)

ab kakb = EaE
a +BaB

a , (39)

we get

4

V
Rabk

akb − 2

V 2
ωaω

a = −∇aW a + 8πT . (40)

Now we turn to Heusler’s mass formula [7]. If we contract

?dω = 2 k ∧R(k) (41)

with ka and take the Hodge dual, we obtain

− ?R(k) =
Rabk

akb

V
?k +

1

2V
k ∧ dω . (42)

Also, using

− d

(
1

V
k ∧ ω

)
=
ωaω

a

V 2
?k +

1

V
k ∧ dω (43)

we have

− ?R(k) =

(
Rabk

akb

V
− ωaω

a

2V 2

)
?k− d

(
1

2V
k ∧ ω

)
.

(44)
Thus, relying on the fall-off properties of the twist 1-form
ω inferred from the basic assumptions, Komar’s mass

M = − 1

4π

∫
Σ

?R(k) (45)

may be written in the form

M =
1

4π

∫
Σ

(
Rabk

akb

V
− ωaω

a

2V 2

)
?k , (46)

which, in combination with (40), becomes

M = − 1

16π

∫
Σ

∇aW a ?k +
1

2

∫
Σ

T ?k . (47)

We note in passing that the formula obtained here is
consistent with the generalized Smarr formula [44, 60,
61]. The W -term vanishes at infinity, while the T -term
is nonpositive, given that the DEC holds. Finally, the
positive energy theorem implies that M ≥ 0 and M = 0
if and only if the spacetime is Minkowski. As we have
proven that M ≤ 0, it follows that M = 0. Therefore
Tab = 0, implying that any nontrivial electromagnetic
field must be zero or stealth.

V. FURTHER GENERALIZATIONS

We now turn to possible generalizations of the main
results, which we shall sort into two directions.

Theories with charged matter. As the simplest model
of matter we may choose a complex scalar field φ, with
the total Lagrangian

L (tot) = L (F,G) + (Daφ)∗(Daφ)−U (φ∗φ) , (48)

constructed with the covariant gauge derivative Da =
∇a + iqAa, the gauge 1-form A which defines the elec-
tromagnetic 2-form F = dA, and the scalar (self-
interaction) potential U . In this theory generalized
Maxwell’s equations have the form

d?Z = 4π ?J (49)

with the current 1-form

Ja =
iq

4π

(
φ∗Daφ− φ(Daφ)∗

)
. (50)



6

The electric 1-form E is again closed and we have the as-
sociated electric scalar potential Φ. Let us, for simplicity,
focus on the strictly static case, ω = 0. Then,

∇a
(

1

V
Da

)
= −4π

V
kaJa , ∇a

(
1

V
Ba

)
= 0 (51)

and

∇a
(

Φ

V
Da

)
=

4

V
(LFEaE

a −LGEaB
a)− 4πΦ

V
kaJa .

(52)
The first technical obstacle is a treatment of the term
ΦkaJa which, without additional assumptions, is in gen-
eral neither positive nor negative definite. Setting aside
spacetimes with symmetry noninheriting scalar fields
[62–64], let us for simplicity assume that £kφ = 0. Also,
taking into account remarks from [44, 54], we assume
that the gauge choice is made such that £kA = 0. Now,
as

d(Φ + ikA) = −E + (£k − ikd)A = 0 , (53)

given that both Φ and kaAa vanish at infinity, we may
set Φ = −kaAa. This leads us to the simplification

ΦkaJa =
(qΦ)2

2π
φ∗φ ≥ 0 . (54)

Furthermore, the magnetic 1-form H is no longer neces-
sarily a closed form as

dH = 4π?(k ∧ J) . (55)

This is a familiar obstacle to the introduction of magnetic
scalar potential on domains which contain nonvanishing
electric currents. There are several subcases in which we
can proceed with a similar strategy of proof as above:

(a) if k∧ J = 0, which allows us to introduce the mag-
netic scalar potential Ψ and deduce

∇a
(

Ψ

V
Ba

)
=

4

V
(LFBaB

a + LGEaB
a) ; (56)

(b) if we have a strictly electric system, in the sense
that B = 0, so that Eq. (52) may suffice for the
proof.

Given that any of the two conditions above, (a) or (b),
are met, repetition of the argument from the previous
section leads to the conclusion that the electromagnetic
field is trivial on the set O where LF 6= 0. We note in
passing that Eq. (52) may be also used if we have an F-
class theory, but only to deduce that E = 0 on the set
O, without any control of the magnetic field B (unless,
again, we invoke condition (a) or (b)).

Furthermore, the divergence of the gravitational field
equation on the interior (M − O)◦ leads to ∇aT =
4JbFba. If, in addition, we assume either (a) or (b) from
above, the decomposition V F = k ∧ E + ?(k ∧B) and

ka∇aT = 0 allow us to deduce V∇aT = 4(kbJb)Ea. In
particular, B = 0 on the set (M−O)◦ also implies D = 0
and, via divergence identities, kaJa = 0, leading to the
conclusion that the trace T is constant on each connected
component of the domain (M −O)◦ (it is not clear if this
necessarily holds in the (a) subcase).

In conclusion, at least under some additional assump-
tions, the initial problem can be reduced to the question
of existence of self-gravitating scalar solitons [2, 65]. It
is important to stress that spacetimes with charged bo-
son stars evade the partial no-go result from above due
to the symmetry noninheriting scalar field. Namely, a
typical ansatz for such solutions features a scalar field of
the form φ(t, r) = f(r)eiωt, so that £kφ = iωφ and the
definiteness of the term ΦkaJa is in general lost.

Higher-dimensional theories. Let us look at space-
times of dimension m ≥ 5. As the G invariant is a
scalar only in four spacetime dimensions, where F and
its Hodge dual ?F are both 2-forms, here we treat only
F-class theories. We may define a twist (m− 3)-form as
ω := (−1)m+1?(k ∧ dk), in order to preserve its form in
abstract indices,

ωa1...am−3
= ε bcd

a1...am−3
kb∇ckd , (57)

and the 1-form D := −ikZ as above. Taking into account
that

ikZ = (−1)m+1?(k ∧ ?Z) (58)

we have

∇a
(
Da

V

)
=

1

(m− 2)!V 2
(ω ∧ k)a1...am−2

?Za1...am−2 .

(59)
The basic divergence identity for a strictly static space-
time, with ω = 0, is

∇a
(

Φ

V
Da

)
=

4

V
LF EaE

a . (60)

Assuming the appropriate fall-off conditions, namely Φ =
O(r−(m−3)) and D = O(r−(m−2)) (cf. also [66]), we may
repeat the previous argument to conclude that E = 0
on the set O. A further technical obstacle is that in an
m-dimensional spacetime magnetic fields B = ik?F and
H = ik?Z are (m−3)-forms, so that we have less control
on the sign of their squares, such as Ba1...am−3

Ba1...am−3 .

VI. DISCUSSION

We have proved that, up to exotic stealth solutions,
NLE theories on simply connected four-dimensional
spacetimes do not admit globally regular, stationary soli-
tonic solutions. These results admit only partial gener-
alizations in the presence of the charged matter and in
higher-dimensional theories. Limitations in both direc-
tions do not come as a surprise, due to known solutions
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with charged bosonic stars and an increased number of
electromagnetic degrees of freedom with the number of
spacetime dimensions.

The remaining open questions may be grouped as fol-
lows:

1. Are conclusions altered if the spacetime manifold
M is not simply connected?

2. How do we treat a NLE theory which does not obey
the Maxwellian weak field limit?

3. Can constraints on four-dimensional theories with
complex scalar fields and higher-dimensional theo-
ries be strengthened?

Simple connectedness of the manifold M was invoked
in order to guarantee the existence of scalar potentials
Φ, Ψ, UE and UH . This assumption is not necessary,
but on a nonsimply connected manifold one needs to ei-
ther (a) impose some boundary conditions which imply
the existence of scalar potentials, or (b) construct diver-
gence identities which do not involve scalar potentials
and which allow one to prove theorems analogous to the
ones treated in this paper.

The Maxwellian weak field limit or a, slightly weaker,
mere assumption that partial derivatives LF and LG are
well-defined and finite at the origin of the F-G plane plays
a role in the elimination of the boundary terms at asymp-
totic ends. However, there are NLE theories, such as the
power-Maxwell theory [18, 19] (for powers less than 1)
and the ModMax theory [21–23, 67], which do not be-
have well in this sense. Here one must first find a proper
way to incorporate some notion of asymptotic flatness,
with the appropriate fall-off conditions for the fields.

We feel that conditions under which a NLE theory with
a complex scalar field (or some other form of the charged
matter) does not admit strictly stationary solitonic so-
lutions should be mapped more carefully. Also, it is
not clear how to sensibly choose additional assumptions
which might lead to generalizations in higher-dimensional
theories. Finally, we remark that in (1 + 2)-dimensional
spacetimes one might again rely on the divergence rela-
tion (60), as well as the lower-dimensional positive energy
theorem [68], but the problem is that the natural fall-off
condition for the scalar potential Φ = O(ln r) does not
seem to be sufficient to get rid of the boundary terms.

Appendix A: Menagerie of identities

Let us first, for generality, assume that (M , gab) is a
smooth m-dimensional Lorentzian manifold. The Hodge

dual of a p-form α, defined as

(?α)ap+1...am :=
1

p!
αa1...apε

a1...ap
ap+1...am , (A1)

twice applied produces a sign according to

??α = (−1)p(m−p)+1α . (A2)

A simple useful rule, so-called “flipping over the Hodge”,
reads

iX?α = ?(α ∧X) , (A3)

where X is the associated 1-form, Xa = gabX
b.

We shall introduce an auxiliary coderivative operator,
acting on p-form α as

δα := (−1)m(p+1)+1 ?d?α , (A4)

which in the abstract index notation is simply

δαa1...ap−1 = ∇bαba1...ap−1 . (A5)

Note that for even m we have δα = −?d?α. If Ka is
a Killing vector field and Ka = gabK

b the associated 1-
form, then the following identity holds:

£Kα = δ(K ∧α) + K ∧ δα . (A6)

We are mostly interested in the case where α is a 1-
form such that £Kα = 0. Whence, Eq. (A6) integrated
over a smooth hypersurface Σ, with application of the
generalized Stokes’ theorem, leads to

∫
Σ

(δα) ?K =

∫
∂Σ

?(K ∧α) , (A7)

where we have, for simplicity, suppressed the pullback
symbol.
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115004 (2021), arXiv:2101.05816 [gr-qc].

[65] C. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24,

http://dx.doi.org/10.1103/PhysRev.97.511
http://dx.doi.org/10.1007/s10714-009-0920-9
http://dx.doi.org/10.1088/0264-9381/12/3/015
http://arxiv.org/abs/gr-qc/9411054
http://dx.doi.org/10.1103/PhysRevD.86.064041
http://dx.doi.org/10.1103/PhysRevD.86.064041
http://arxiv.org/abs/1207.7250
http://dx.doi.org/10.1088/1361-6382/ab1859
http://dx.doi.org/10.1088/1361-6382/ab1859
http://arxiv.org/abs/1902.07721
http://dx.doi.org/10.1016/j.physletb.2019.135076
http://dx.doi.org/10.1016/j.physletb.2019.135076
http://arxiv.org/abs/1909.08915
http://dx.doi.org/10.1098/rspa.1934.0010
http://dx.doi.org/10.1098/rspa.1934.0059
http://dx.doi.org/10.1016/0370-2693(85)90205-9
http://dx.doi.org/10.1016/0370-2693(85)90205-9
http://dx.doi.org/10.1007/BF01343663
http://arxiv.org/abs/physics/0605038
http://dx.doi.org/ 10.1142/9789812775344_0014
http://dx.doi.org/ 10.1142/9789812775344_0014
http://dx.doi.org/ 10.1142/9789812775344_0014
http://arxiv.org/abs/hep-th/0406216
http://dx.doi.org/10.1103/PhysRevD.52.6178
http://arxiv.org/abs/hep-th/9509033
http://arxiv.org/abs/hep-th/9509033
http://dx.doi.org/10.1016/S0370-2693(99)01038-2
http://dx.doi.org/10.1016/S0370-2693(99)01038-2
http://arxiv.org/abs/hep-th/9911174
http://dx.doi.org/10.1103/PhysRevD.75.027502
http://dx.doi.org/10.1103/PhysRevD.75.027502
http://arxiv.org/abs/hep-th/0701058
http://dx.doi.org/10.1088/0264-9381/25/19/195023
http://dx.doi.org/10.1088/0264-9381/25/19/195023
http://arxiv.org/abs/0803.2946
http://dx.doi.org/10.1016/j.aop.2013.03.008
http://arxiv.org/abs/1405.5359
http://dx.doi.org/10.1103/PhysRevD.102.121703
http://arxiv.org/abs/2007.09092
http://arxiv.org/abs/2007.09092
http://dx.doi.org/10.1016/j.physletb.2020.135840
http://arxiv.org/abs/2007.13878
http://dx.doi.org/10.1016/0550-3213(95)00409-L
http://dx.doi.org/10.1016/0550-3213(95)00409-L
http://arxiv.org/abs/hep-th/9506035
http://dx.doi.org/10.1038/nphys4208
http://arxiv.org/abs/1702.01625
http://dx.doi.org/10.1103/PhysRevLett.118.261802
http://dx.doi.org/10.1103/PhysRevLett.118.261802
http://arxiv.org/abs/1703.08450
http://dx.doi.org/10.1140/epjc/s10052-018-5643-1
http://dx.doi.org/10.1140/epjc/s10052-018-5643-1
http://arxiv.org/abs/1712.05486
http://dx.doi.org/10.1103/PhysRevD.99.115005
http://dx.doi.org/10.1103/PhysRevD.99.115005
http://arxiv.org/abs/1809.01296
http://dx.doi.org/10.1063/1.5093535
http://dx.doi.org/10.1063/1.5093535
http://dx.doi.org/ 10.1016/0003-4916(79)90235-5
http://dx.doi.org/10.1103/PhysRevD.63.044005
http://arxiv.org/abs/gr-qc/0006014
http://arxiv.org/abs/gr-qc/0006014
http://dx.doi.org/10.1103/PhysRevD.65.104017
http://dx.doi.org/10.1103/PhysRevD.65.104017
http://arxiv.org/abs/hep-th/0202066
http://dx.doi.org/10.1103/PhysRevD.96.128501
http://arxiv.org/abs/1712.04342
http://dx.doi.org/10.1103/PhysRevLett.80.5056
http://dx.doi.org/10.1103/PhysRevLett.80.5056
http://arxiv.org/abs/gr-qc/9911046
http://dx.doi.org/10.1016/S0370-2693(00)01125-4
http://dx.doi.org/10.1016/S0370-2693(00)01125-4
http://arxiv.org/abs/gr-qc/0009077
http://dx.doi.org/10.1088/0264-9381/11/6/012
http://dx.doi.org/10.1088/0264-9381/23/24/003
http://dx.doi.org/10.1088/0264-9381/23/24/003
http://arxiv.org/abs/gr-qc/0604095
http://dx.doi.org/10.1103/PhysRevD.81.064021
http://dx.doi.org/10.1103/PhysRevD.81.064021
http://arxiv.org/abs/0908.3303
http://dx.doi.org/10.1103/PhysRevD.82.085024
http://dx.doi.org/10.1103/PhysRevD.82.085024
http://arxiv.org/abs/1008.2710
http://dx.doi.org/10.1142/S0129055X11004308
http://arxiv.org/abs/1012.1400
http://dx.doi.org/10.1209/0295-5075/134/20005
http://arxiv.org/abs/2103.08343
http://dx.doi.org/10.1088/1361-6382/abd923
http://dx.doi.org/10.1088/1361-6382/abd923
http://arxiv.org/abs/2006.15149
http://dx.doi.org/ 10.1103/PhysRevD.90.024046
http://dx.doi.org/ 10.1103/PhysRevD.90.024046
http://arxiv.org/abs/1404.6639
http://dx.doi.org/10.1103/PhysRevD.103.124059
http://dx.doi.org/10.1103/PhysRevD.103.124059
http://arxiv.org/abs/2102.06213
http://dx.doi.org/10.1103/PhysRevLett.43.1457
http://dx.doi.org/10.1103/PhysRevLett.43.1457
http://dx.doi.org/10.1007/BF01940959
http://dx.doi.org/10.1007/BF01940959
http://dx.doi.org/10.1007/BF01208285
http://dx.doi.org/10.1007/BF01208285
http://dx.doi.org/10.1007/BF01942062
http://dx.doi.org/10.1007/BF01942062
http://dx.doi.org/10.1007/BF01208277
http://dx.doi.org/10.1007/BF01208569
http://dx.doi.org/10.1007/BF01208569
http://dx.doi.org/10.1007/978-3-642-41992-8_18
http://arxiv.org/abs/1302.3405
http://dx.doi.org/10.1007/s10714-006-0363-5
http://arxiv.org/abs/gr-qc/0611035
http://arxiv.org/abs/gr-qc/0611035
http://dx.doi.org/10.1088/0264-9381/33/7/077001
https://cqgplus.com/2016/03/23/perfect-accordance-of-the-gravitational-and-the-electromagnetic-field-in-3d/
http://arxiv.org/abs/1508.03343
http://dx.doi.org/10.1103/PhysRevD.95.124037
http://dx.doi.org/10.1103/PhysRevD.95.124037
http://arxiv.org/abs/1705.00628
http://dx.doi.org/10.1103/PhysRevD.97.084041
http://arxiv.org/abs/1711.07490
http://dx.doi.org/10.1088/0264-9381/33/11/115010
http://dx.doi.org/10.1088/0264-9381/33/11/115010
http://arxiv.org/abs/1506.04538
http://dx.doi.org/10.1016/j.physletb.2018.01.024
http://dx.doi.org/10.1016/j.physletb.2018.01.024
http://arxiv.org/abs/1708.08017
http://dx.doi.org/10.1088/1361-6382/aad13d
http://dx.doi.org/10.1088/1361-6382/aad13d
http://arxiv.org/abs/1806.05835
http://dx.doi.org/10.1088/1361-6382/aa9dfd
http://dx.doi.org/10.1088/1361-6382/aa9dfd
http://arxiv.org/abs/1710.04660
http://dx.doi.org/10.1088/1361-6382/aac9d4
http://dx.doi.org/10.1088/1361-6382/aac9d4
http://arxiv.org/abs/1610.01237
http://dx.doi.org/10.1088/0264-9381/32/14/145010
http://arxiv.org/abs/1501.04967
http://dx.doi.org/10.1103/PhysRevD.95.024016
http://arxiv.org/abs/1609.04013
http://dx.doi.org/10.1088/1361-6382/abf896
http://dx.doi.org/10.1088/1361-6382/abf896
http://arxiv.org/abs/2101.05816
http://dx.doi.org/10.1142/S0218271815420146


9

1542014 (2015), arXiv:1504.08209 [gr-qc].
[66] M. Ortaggio, Phys. Rev. D 90, 124020 (2014),

arXiv:1406.3186 [gr-qc].
[67] D. Flores-Alfonso, B. González-Morales, R. Linares,
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