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Introduction. I t is our purpose in the present note to present a 
general existence theorem for noncoercive elliptic boundary value 
problems for operators of the form : 

(1) A{u) = £ (-l)l«lZ)M a(*, * , • • • , D«u), 

on closed subspaces F of the Sobolev space Wm'v{G), G an open subset 
of Rn, n ^ l . This existence theorem is based upon an extension of the 
theory of the generalized topological degree for A -proper mappings 
of Banach spaces introduced in Browder-Petryshyn [8], [9], and, in 
particular, on an extension of the Borsuk-Ulam theorem to pseudo-
monotone mappings 2" from a reflexive separable Banach space V to 
its conjugate space V*. 

To make a precise statement of our general existence theorem 
possible, we introduce the following notation: For a given m ^ l , we 
let £ be the ra-jet of a function u from Rn to Rs for some given s â l , 
i.e. £ = {£«'. \oi\ ^m}y and set 

f = {f«-|al = m)> V = UP:\P\ Srn-l}, 

where each £a, f a, and rjp is an element of R8. The set of all £ of the 
above form is an Euclidean space Rrm> and correspondingly, f ÇiR?™, 
7jERrm-^ 

For each a, Aa is assumed to be a function from GXRrm to R8 satis
fying the following conditions: 

Assumptions on A(u) \(\)Aa(x, £) is measurable in x for fixed £ and 
continuous in %for fixed x. For a given p with Kp < <*>, there exists a 
constant c such that 

\Aa(x,Q\ Sc((l+ E \^A 
\ in*» / 

with pap â (P — 1) for \a\ = | j81 = m, and 
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np + p(m — | a | ) — n n , , 
Pafi< r—v- > ifm-—g \a\ Sm, 

n — p(m — I p I ) p 
n , , 

m S 1fi | Sm, 
P 

\p\ + | a | < 2w, 

£«0 ^ r-TT > if\a\<m-—, 
n — p(m — I p I ) ^ 

w i i w S hÖ ^ w. 

(2) /ƒ £ = (f, 77), then for each xinG,y\ in RT«r+, f awd f' iw i£r»» mtó 

X) <^a(*, f, V) ~ Aa(x, f, V), fa - fa> > 0, 
|a|=m 

{where ( •, • ) denotes the inner product in R8). 
(3) For each y and y' in Rr™, 

£ (Aa(x,r, ri) - 7 « , f « - Y«>-» °° (| r| -> » ) , 
|a|=m 

uniformly for bounded rj. 
Let PFm,2,(G) be the Sobolev space of 5-vector functions u such that 

u and all its derivatives Dau for | a | S m lie in Lp(G) where p is the 
exponent involved in the inequalities of Assumption (1). Then 
for any u and v in Wm>p(G), we may define the generalized Dirichlet 
form corresponding to the representation (1) by: 

(2) a(u, v) = £ (4a(É(fO), £>«*,), 

where 

£(«) = {Z)aw: | a | S m}, Aa(S(u))(x) = Aa(x, £(«)(*)), 

(w, z;) = | (w(#), ^(#))d#, (integration with respect to 

Lebesgue ^-measure). 

THEOREM 1. Let G be an open subset of Rn with G bounded and the 
Sobolev Imbedding Theorem valid on G (i.e. G satisfies mild smoothness 
conditions on its boundary). Let A (u) be a quasilinear elliptic operator 
of order 2m on G of the form 

(1) A(u)~ £ ( - l )WJ>i l« t t («) ) , 
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where the coefficient functions Aa satisfy Assumptions (1), (2), and (3) 
above. Suppose that A(u) is odd in u, i.e. Aa(x, —£) = — Aa(x, £) for 
each a and all x in G} £ in Rrm. For each w in V*, the dual space of a 
closed subspace V of Wm'p(G), consider the problem of finding u in V 
such that a(u, v) = (w, v) for all v in V. Suppose that there exists a con
tinuous function <j> : R+—>R+ such that for each solution u of this problem 
for any w in V*t 

(3) ||«||y = | |« | |F*.*<G) S *(||w||y*). 

Then for each w in V*, there exists at least one solution u in V of the 
problem : a(u, v) = (w, v) for all v in V. 

We have used the notation (w, v) in Theorem 1 to denote the pair
ing between w in V* and u in V. 

THEOREM 2. Let G be a bounded, smoothly bounded open set in Rn (as 
in Theorem 1), and consider a one-parameter family of operators 
^4<(w),/£[0, l ] , where for each t, 

(4) At(u)= £ ( - l )W0M«f t (« ) ;O 

and the coefficient f unctions are continuous in t, uniformly for bounded £ 
and all x outside a null set in G. For each t> we take the generalized 
Dirichlet form 

(5) at(u,v)= T, (AMu);t),D«v), 
\a\gm 

where we assume that At(u) satisfies Assumptions (1), (2), (3) for each 
t in [0, l ] . Suppose that A\(u) is odd, and that there exists a continuous 
function 4>:R+—^R+ such that if at(u, v) = (w, v) for some w in V*, u in 
Vytin [0, l ] and all vin V, then | |«||vâ0(||w||7*). 

Then the problem: aQ(u, v) = (w, v) for all v in V; has a solution u in 
V for each w in V*. 

Theorem 2 includes Theorem 1 as the special case in which At(u) 
= A(u) for all / in [0, l ] . I t also includes the standard existence 
theorem for A(u) in which the Dirichlet form a(u, v) is assumed to 
be coercive, i.e. 

(6) There exists c:R+-^R1 with c(r)—»«> as r—»«> such that a(u, u) 
*4\u\\v)\\u\\y. 

Indeed, if A(u) is coercive, and if we set At{u)=A(u)—tA(—u) 
for / in [0, l ] , then A0(u) =A(u), A\(u) is odd, the Assumptions (1), 
(2), and (3) hold for every At(u), while since at(u, u)=a(uf u) — 
ta(—u, u) =a(u, ^)+to(—w, —u), it follows that 
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ot(u, u) è (i + *MlMk)IMk ^ '(IMkîlMk 
provided that | |w||y>iî, where c(r)>0 for r>R. Suppose that for 
some u in F, w in V* and / in [0, 1 ], we have 

at(u, v) = (w, v) (Î) £ F) . 

Then: 
c(IMk)IHk â a<(«, w) = (w, u) g ||W||F*||«||FI 

and as a consequence c(||w||*0 ^ |M|y* if w = 0. If we set <l>(s) = 
sup{r:c(r) Ss}, it follows that | |W | |F^<K|M|V*)

 a n d by Theorem 2, 
the equation a(u, v) — (w, v) (»G7)» n a s a solution u in V for each 
w in V*. 

Existence theorems for elliptic boundary problems of this type 
were first obtained by Visik [15] using compactness arguments and 
a priori estimates on (m + l)st derivatives. Mono tonicity arguments 
were first applied to these problems in Browder [2], [3], using the 
basic existence theorem for monotone maps from a reflexive Banach 
space F to F* proved independently by Browder [2] and Minty [12]. 
The existence theorem in the coercive case was extended to elliptic 
operators A(u) satisfying Assumptions (1), (2), and (3) by Leray-
Lions [ l l ] . Borsuk-Ulam theorems for monotone and semimonotone 
operators in infinite dimensional Banach spaces were first derived by 
Browder [4], [5], and were first applied to odd, homogeneous, elliptic 
operators satisfying strong monotonicity conditions by Pohozaev 
[14]. Theorem 1 was first obtained under a stronger hypothesis (3)' 
rather than (3) in Browder [ó], together with Assumptions (1) and 
(2) on A(u). This is as follows: 

(3)' There exist continuous f unctions k(rj)t ko(rj)>0 such that 

E (A*(x, r, V)U) è *o(i?) I f |p - Hi), 

for all x in G, f in Rr™, rj in R*1*-1. 

1. Proofs of Theorems 1 and 2 rest upon general results con
cerning two classes of nonlinear mappings of monotone type from a 
reflexive Banach space F to its conjugate space V*. 

DEFINITION 1. Let V be a Banach space, V* its conjugate space, T a 
mapping from V to V*, Then: 

(a) T is said to be pseudomonotone if for any sequence {u3-} in V with 
Uj converging weakly to u in V such that lim sup(T%, Uj — u) ^ 0 , it fol
lows that f or any v in V, lim inf (Ttij, Uj—v) *z(Tu, u—v). 

(b) T is said to satisfy condition (S)+ if for any sequence Uj in V with 
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\uj] converging weakly to u in V for which \im(Tuj, u3-—u)^0, it 
follows that Uj converges strongly to u in V. 

PROPOSITION 1. Suppose that A satisfies Assumption (1). Then there 
exists a continuous bounded mapping T of V into V* for a given closed 
subspace V of Wm>v(G) such that for all u and v of V, {Tu, v) — a(u, v). 
If A(u) satisfies Assumptions (2) and (3), T is pseudomonotone. If 
A(u) satisfies Assumptions (2) and (3)', then T satisfies condition (S).+ 

The proof of Proposition 1 is given in §1 of [7], and Appendix to 
§1. Pseudomonotonicity was first defined by Brézis in [l ] (though our 
definition differs slightly from his in considering only sequences 
rather than filters). The condition (S)+ was first defined in connection 
with the study of nonlinear eigenvalue problems in Browder [ó] and 
is studied in detail in Browder [7], [8]. 

THEOREM 3. Let V be a reflexive separable Banach space, T a map-
ping of V into V* which is pseudomonotone, bounded on bounded sets, 
and continuous from each finite dimensional subspace of V to the weak 
topology of V*. Then: 

(a) If T is an odd mapping outside of some ball around the origin and 
if T~l(B) is bounded f or any bounded subset B of V*9 then R(T), the 
range of T, is all of V*. 

(b) If {Tt} is a family of bounded, pseudomonotone, finitely con
tinuous mappings from V to F* which is continuous in t uniformly on 
bounded subsets of V, with To = T, 7\ odd outside some ball, and if there 
exists a function 4>:R+-±R+ such that Tt(u) —w implies that 

Ml s*(IMI> ee[o,i]), 
then R(T) = V*. 

Theorem 3 and Proposition 1 together imply the validity of The
orems 1 and 2. Theorem 3 follows from an extension to the class of 
pseudomonotone mappings from V to F* of the theory of the general
ized degree defined for A -proper mappings of Banach spaces in 
Browder-Petryshyn [9], [lO] and applied to mappings T from a 
reflexive V to V* satisfying condition (S) in Chapter 17 of Browder 
[8]. The basic facts are summarized in the following theorem: 

THEOREM 4. Let V be a reflexive separable Banach space, V* its 
conjugate space. Let T be a mapping from V to V* which is finitely con
tinuous from V to F* (i.e. continuous from each finite dimensional 
subspace of V to the weak topology of F*) and bounded (i.e. maps 
bounded subsets of V into bounded subsets of V*). Then: 
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(a) If T is pseudomonotone, there exists a sequence {Tj} of finitely 
continuousf bounded mappings, each satisfying condition (S)+, which 
converges to T uniformly on every bounded subset of V. 

(b) If T satisfies condition (5)+, then Tis A-proper in the following 
sense [9], [lO]: If B is a closed ball of V, { Vj} an increasing sequence 
of finite dimensional sub spaces of V whose union is dense in V, and if 
for each j , u3- is an element of VjC\B such that for a given element w 
of V*9 

U*Tuj - <l>*w\\v*->0 ( i ^ oo), 

where <£./ is the injection map of Vj into V, <f>f the projection map of V* 
onto Vf, then there exists an infinite subsequence {UJ^)\ converging 
strongly to an element u of B such that T(u) = w. 

The proof of Theorem 4 is given in Chapter 17 of Browder [8]. 
The second property tells us that the generalized degree theory of 
Browder-Petryshyn [lO] applies to mappings T satisfying the con
dition (S)+ (for the details of this application, see [8]). The correspond
ing generalized degree theory for pseudomonotone maps follows 
from the convexity of the class of T satisfying (S)+ and the following 
theorem whose proof will be published elsewhere: 

THEOREM S. Let X and Y be Banach spaces, G a bounded open sub
set of X, and consider an oriented approximation scheme {(Xn, Yn, 
Pn, Qn)} for mappings T of cl(G) into Yin the sense of [lO]. Let Z be a 
convex family of A-proper mappings from cl(G) to Y with respect to the 
given approximation scheme. Let T be a mapping from cl(G) to Y which 
is the uniform limit on cl(G) of mappings Tjfrom the class Z. Then: 

(a) For any sequence {Tj} from Z converging to T, if w does not 
lie in cl( J'(bdry(G))), then Deg(7"y, G, w) is the same for allj sufficiently 
large and does not depend upon the choice of {Tj}. We denote this limit 
as Deg(T, G, w). 

(b) Deg(T, G, w) is invariant under homotopy and weakly additive 
in the sense of Theorem 1 of [lO]. If Deg( r , G, w) ^ {0} and if T(d(G)) 
is closed in F, then w lies in JT(C1(G)). 

(c) If T is odd in the sense of Theorem 1 of [lO], then Deg( r , G, 0) 
consists only of odd integers, and Deg(T, G, 0) 9e {0}. 

ADDED IN PROOF. Results closely related to Theorem 5 have also 
been obtained by P. M. Fitzpatrick in connection with his Rutgers 
Ph.D. dissertation. 
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