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1. Introduction

The aim of this paper is to continue and extend the discussion in [9] concerning the

'numerically irrelevant' Solutions
 6

NIS' of finite difference approximations to certain

nonlinear boundary value problems in the context of continuation methods or more

generally and more appropriately, in the context of global topological perturbations of

nonlinear eigen value problems. This latter technique äs a numerical device for the global
numerical study of nonlinear eigenvalue and bifurcation problems has been set up,

discussed and applied to various nonlinear problems in [9] and [11]. Our discussion
here will make an essential use of these techniques and ideas and moreover, provide a

mathematical foundation for the numerical procedures suggested in [9] which were

designed to avoid NIS. Our present attempt and approach has been motivated by a

recent numerical study of Bohl [4] and a recent paper of Ambrosetti and Hess [3].

The former deals with the existence and characterization of NIS of finite difference

approximations to a boundary value problem of the type

(1.1) u" + sin u = 0, w(0) = 0 = ( ),

whereas the latter is concerned with multiplicity results for positive Solutions of asympto-

tically linear elliptic eigenvalue problems containing nonpositive nonlinearities.

The notion of NIS is by no means a precise one. It roughly expresses the fact

that finite difference approximations to certain nonlinear eigenvalue problems may

allow Solutions which do not approximate Solutions of the approximated differential

equations, i.e., äs the meshsize of the difference approximation is made smaller and

smaller, these Solutions do not approximate a solution of the problem at hand or they

disappear. Envisaging the differential equation äs a limit of these difference approx-

imations it must be the case that the NIS must undergo a critical change.

*) This paper was written while the first author was a Visiting Professor at the University of Utah.
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More precisely, the first author, together with E. Allgower and K. Georg has
developed the conceptual Interpretation that NIS should be characterized in terms of
singularities of certain embeddings of finite difference approximations with varying
meshsize, where the meshsize is understood s a homotopy parameter.

Once one realizes that NIS may occur and one is engaged in a concrete algo-
rithmic attempt to solve a given problem one must settle the important question
whether a computed solution is "right" or "wrong" or one should design the algo-
rithm in such a way to avoid the computation of NIS. This, of course, requires a good
understanding of the occurrence of wrong Solutions and their specific characterization.

An earlier paper of Allgower [1] has shown that the problem

(1.2)

may admit NIS for the finite difference approximation. Here the crucial point is that
NIS do not have the symmetry properties which the Solutions of (1.2) enjoy. Since
the finite difference approximations also admit Symmetrie Solutions those certainly are
the candidates of NRS (numerically relevant Solutions) and in fact this will be shown
later. It is also shown in [1] that the existence of NIS is independent of the parameter ì
and only depends upon the meshsize and, in fact, s the meshsize decreases, the NIS
simply disappear. Bohl [4] recently observed the existence of a different type of NIS
in his study of the pendulum equation (1. 1). He found the existence of NIS which
depend upon ì and the meshsize h and which moreover, do have the symmetry prop-
erties of Solutions of (1. 1). Here the distinguishing feature between NIS and NRS is
the uniqueness of positive Solutions of (1. 1). Thus it is immediate from the above
discussion that in the presence of multiple Solutions of a boundary value problem which
do have the same structural type, the question of distinguishing between NIS and NRS
becomes even more important the more involved the solution structure of a given
problem.

One of the main themes of this paper is to present criteria which allow us to make
such distinctions. We shall confine ourselves here to the study of problems of the type
(1. 1), (1. 2) and further classes where multiplicity of positive Solutions occur, a typical
example of such a problem is

(l . 3) u" + ì/(ç) = 0, w(0) = 0 = Ì(ð),

where / is an asymptotically linear or superlinear continuous function having several
zeros.

This example has the property that for certain values of ì, multiple positive
Solutions exist and that finite difference approximations indeed may possess NIS. In fact
we show that for certain kinds of/, having k positive zeros, at least kn (« = number of
internal meshpoints) nontrivial Solutions exist, almost all of which are NIS. In addition,
we provide an understanding of these problems from an algorithmic point of view.

We interpret this phenomenon s follows. Let Á÷ = ëÃ(÷) denote the finite differ-
ence approximation of a nonlinear boundary value problem where A is the discretized
differential operator. Then one may interpret A s a coupling for the system of non-

linear equations determined by F. Since — Ax = F(x), then for ë large, the System
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would be practically uncoupled for bounded x, and hence would have s many Solutions
s there are zeros of F. This Interpretation together with our results sheds new light

onto coupled Systems of differential equations which are parameter dependent.

The following sections of this paper are devoted to essentially three main topics.

(i) Existence of Solutions of various boundary value problems and finite difference
approximations thereof.

(ii) Existence of NIS and distinguishing between N1S and NRS.

(iii) Establishing numerical procedures which detect NRS and avoid NIS.

Since, again, our aim is to study phenomena, we have sacrificed generality (i.e.,
we do not discuss nonautonomous equations and restrict ourselves to ordinary rather
than partial differential equations) and simply discuss some model equations where the
arguments can be freed from much technical detail.

The organization of the paper is s follows: After some preliminary results and
defmitions, we provide some general criteria which may be used to detect NIS. We
then study problems of the type (1. 1) and (1. 3) and their finite difference approximations
and provide criteria for the calculation of Solutions and at the same time obtain some
simple criteria for bifurcation from oo. We then present an analysis for the superlinear
boundary value problem (1. 2). Finally, we give numerical results.

All the numerical calculations were performed on the FDP 11-60 of the Mathe-
matics Department of the University of Utah. The algorithms used are a package of
interactive PL-algorithms which are designed for the global continuation of Solutions
of a PL approximation of problems H (ë, ÷) — 0, where H: R ÷ IR

n —> Rn is continuous.
The algorithms are implementations of ideas and procedures described in [9] and [11].

In what follows we often speak about generic properties of Solutions of problems.
This is to be understood in two different ways. (i) We consider Solutions of H (ë, ÷) = å,
where H is of class C°° and å is a regul r value and/or (ii) å = (å, å 2 , . . . , â") and
Çô(ë, ×) = Ý, where HT is a PL approximation to H subject to a given triangulation T
of/R"4"1 and å>0 is small. The latter Solutions are precisely those Solutions exhibited
in section 5.

The phenomenon of NIS has been observed in other situations s well. We
mention two further cases. Gaines [8] in bis study of nonlinear boundary value problems
by finite difference schemes found NIS which had the property that even though
bounded, their first order divided differences became unbounded. Li and Yorke [10]
observed that a difference approximation to the logistic equation u' = au(\—u) may be
transformed into a first order difference equation of the form xn+l =ë÷ç(ß — *„), an
equation which for a certain parameter r nge will have 'chaotic' Solutions, whereas the
logistic equation is well behaved.1) As we shall see there exists a very similar phenomenon
for boundary value problems s soon s nonlinearities have more than one zero. As
already pointed out we have restricted ourselves to some simple examples which represent
classes of problems which have received much attention in the literature, other types of
nonlinearities will be considered at another time.

*) In this context H. Heatherly has pointed out to us the interesting paper by T. W. Chaundy and
E. Phillips [The convergence of sequences defmed by quadratic recurrenee-formulae, Quart. J. of Math.
(1936), 74—80].
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Throughout we denote by P^ = {x e/Rn : Jt^O, Ig i^n} and f?^=interior Ra+
and if r > 0 then B(r) = {xe!Rn : \\x\\ < r, where ||x|| = max \xt\}.

/ l

Acknowledgement. The first two authors thank the Department pf Mathematics
of the University of Utah for the very special hospitality during their visit and the
generous availability of Computer facilities. Thanks are also due to Frank Little for
introducing and providing access to the Computer aided geometric design package
which was used in the graphics and authentic Computer plots of our last section.

2. Preliminary and auxiliary results

In this section we consider the nonlinear System of equations

(2. 1)

where ëîßÑ+ and F:IRn—+IRn is continuous and A is an n ÷ n matrix. The Systems we
have in mind arise s discretizations of nonlinear elliptic boundary value problems
Lu — ë/ (u, V u) subject to linear homogeneous boundary conditions. For such Systems
it is often the case that a unique solution exists (examples will be seen later), whereas
the discretization may have many Solutions and the question arises which of these
Solutions ought to be taken s an approximation to the solution of the boundary value
problem. The following lemma and its consequences show how such additional Solutions
arise.

Lemma 2.1. Lei & be an open bounded subset of IRn and let F~1(0)n ^ = 0.
Assume that

(2.2)

Then for all ë > 0 sufficiently large (2. 1) has a solution ÷ë e G.

Proof. Choose ë+ so large that for ë j£ ë+

ìÁ÷-Ñ(÷)*0, xed&, M = JLe 0,-U.

Then

deg(M -F, 0, 0) = deg(-F, 0, 0),

and thus

has a solution in Ö, proving the lemma.

Since (2. 2), of course, implies that F has a zero in 0, we see that zeros of F
generate Solutions of (2. 1) for large ë.

Let us consider some special cases of Lemma 2. 1.

Coroltofry 2. 2. Let x0 e Rn be a zero of F and let F be ofclass Cl in a neighborhood
of x0 and let detF'(.x0)=|=0. Then for ë sufficiently large (2. 1) has a solution near x0.

11
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Proof. Since detF'(*0)=|=0 it follows that JCQ is an isolated zero of F. Hence there
exists a bounded open neighborhood È of x0 such that G contains no other zeros. But
deg(-F, (9, 0) = (-l)MsigndetF'(;t0)4=0. Hence, the result follows from Lemma 2.1.

Let/: IR — » IR be a continuous function such that

where zl <z2< ··· <zk, further assume that / changes sign at these zeros, i.e. there
exists å > 0 such that

(2.3) /

Let F= col (Fi, . . . , F„) : R" -» /R" be defmed by

(2.4)

(F will be called, s is customary, the Nemitskii operator associated with the scalar
function/).

Corolliity2.3. Let F be defmed by (2.4). Then F has N = kn zeros. And F~l(V)
is given by

(2. 5) F-1 (0) = {w E IRn : w£ E/-1 (0), l g i^ w}.

Furthermore ifw = (wl9 . . . , wn) is such a zero and È is a bounded open neighborhood of w
with ( \ {w}) n F'1 (0) = 0, then

(2.6) deg(-F,0,0)=±l.

. deg( — F, È, 0) is defmed and by the Cartesian product formula and the
excision property of degree

(2. 7) deg(-F, ®, 0) = Ð deg(-/K.-e, íí, + å), Ï),
i=l

and since w{ef~l((i) it follows from (2.3) that deg(-/(wf — å, wf + e), 0)= ±1, thus
(2. 6) follows. That there are N = kn such zeros follows by a simple counting argument.

Remark 2. 4. In the Situation of Corollaries 2. 2 and 2. 3 the following observation
is of importance. Let weF~l(Q} and let 0 be a bounded open neighborhood of w
with (<P\{w}) n F~1(0) = 0. Let {÷ë} be the collection of Solutions of (2. 1) {÷ë} c .̂
Then ÷ë — > w s A — * oo. This easily follows since

-

and thus since {Á÷ë} is bounded, and since every subset of {÷ë} has a convergent sub-
sequence converging to a zero of F in 0, i.e., w.

In addition to (2.3) let us now assume that for each i, l^ i^fc , there exist
constants ml5 qt such that çß^>0

mx-y for

We then obtain the following uniqueness result
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Coroll ly 2. 5. Lei F be defined by (2. 4) and let f satisfy also (2. 8). Then if

w£F~
l
( ) and ë is sufficiently large there is a unique solution ÷ë of (2. 1) such that

Proof. Existence of ÷ë has been verified, thus we only need to prove uniqueness.
Let w e F~

l
(0) and let je, y be two Solutions of (2. 1) near w. Then

But (2. 8) implies that

\\F(x)-F(y)\\=m^x\f(xi)-f(yi)\.

|̂ .|, K|} \Xi-yi\

i.e.

\\F(x)-F(y)\\^c\\x-yl

where c is some positive constant (c may be taken to equal min min(|#f|, |mf|)). On

the other band F(x)-F(y) A(x-y) ^— \\A\\ \\x-y\\, hence if ë is so large
A

that — || A || <c, we conclude that x = y.

We shall now, for the remainder of the paper consider only nonlinear operators F
which are the Nemitskii operator of scalar functions / s described above. In case one
considers fmite difference approximations to nonlinear boundary value problems where
the nonlinearities are gradient dependent the equation F(x) = Q, will no longer be
uncoupled, however, Lemma 2. l and Corollary 2. 2 still provide existence results for
Solutions of (2. 1). Also if the gradient dependence is linear, these terms may be absorbed
in A and our results apply.

We now restrict attention to matrices A which typically arise in the discretization
of elliptic differential operators, namely A = (a^) such that

(2.9) a
n = Ó \<*ij\9 with strict inequality for at least one /, l ̂  i,j^ n,

A is irreducible.

The class of all such matrices shall be denoted by M.

The following lemma gives some needed properties of matrices A e M (see e. g.
[14], [15]).

Lemma 2.6.IfAeJf then A is nonsingular and

(2.10) A-
l
(IR

Furthermore A has a unique positive eigenvalue ë± of multiplicity one and associated

eigenvector ÷ e /R" .
11*
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Lemma 2. 7. Lei A å Ji, /(0) = 0, and let there exist ì>0 such that f(x)^ - ì÷,
xelR. Then if ÷ is a solution of(2. 1), it follows that x e / R n

+ .

Proof. Á÷ = where M = di . But

hence

But (F+ M) (ftn) g IRn
+ , hence by Lemma 2. 6, ÷ e IRn

+ .

Let us next defme a class of asymptotically linear functions
satisfles the following six conditions :

(i) /is locally Lipschitz continuous.

(ii) There exists a ì>0 such that/(x)^ —ì÷ for all x<0.

(iii) /has zeros at z0 = 0 < zl < - - - < z2m

^ We say/e J^ if/

(iv) (2.11)
f(x) > 0, X > Z2

(v) There exist constants qi and m i? l ^ / ^ 2 m such that (—\)iqi9(—\)lmi

(2.12) #f (x - y) ^f(x) -f(y) 5Î /H j (x — y), x ^y, in a neighborhood of z,·.

(vi) There exist positive constants m0 and m^ such that

{ f(x) = m0x +o(x) s x — > 0 +

s x—> -f oo.

We find it convenient to denote/e^ having 2m +1 zeros by/,, i.e., m denotes
the number of positive (or negative) humps. A typical^ looks s follows:

Fi
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Lemma 2. 8. Lei A å J£ f=fm e & Lei *0 > 0 be such that f(xO) < 0. Then (2. 1)
has no solution ÷ with \\x\\=x0.

Proof. Let x, \\x\\ =XQ be a solution of (2. 1). It easily follows that Lemma 2. 7
may be applied to conclude that x e / R " . Hence since ||·|| is monotone with respect to
the partial ordering induced by IR+, it follows that x^x09 i^i^n. Choose i such
that X — X. Then

^ f v - _ L \ ? ^ v 3 / Õ í \ ^ - Ðaiixi ' 2* aijxj ~ A7 (XQ) < " 5

since x^ xt and A e Ji we get

n
Õ ¾ " * / 7 <C y) /*/¾ ^ <f Ð

n

contradicting xz· ̂  0 and X atj ^ 0.

Remark 2. 9. The conclusion of the lemma remains valid in case f(x0) = 0. The
proof is not significantly different in this case.

Remark 2.10. The above sequence of results implies that all nontrivial Solutions ÷
of (2.1) must lie in f?" and are such that ||x|| e(zi9 zi+1), / even or ||x||>z2w, for

The next couple of lemmas and remarks will be of aid in establishing the general
bifurcation results of the next section and further will permit necessary estimates for
the global perturbation and continuation of Solutions. We here follow to some extent
the ideas of [3].

Lemma 2.11. Let Ae Ji, fe 2F and let Ë be a compact real interval with

ëáï=-^-öË. Then there exists R>Q such that \\x\\^R implies Á÷̂ ëÑ(÷), for ë€Ë.
Woo

Proof. Assume there are sequences {xm}, \\xm\\ —> oo, {ëç} /1 such that

Hence xme/R£. We write Ã(÷) = çéáï÷ + ö(÷), where ö(÷) = ï(\\÷\\) s ||x||->oo. Then
÷

letting ym^ we maY assume that ym-+y e/R" \{0}, and ëç-+ë€Ë. Thus, since

one gets

^ = ̂ oo.F·

Therefore, by Lemma 2.6, yelRn
+ and A/w00 = A1, i.e., — eA, a contradiction.

Univ
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Remark 2. 12. Lemma 2. 11 implies that A 0 0 =— — is the only possible point of

bifurcation from infinity.

Using arguments similar to the ones above we obtain the following result.

Lemma 2. 13. Lei A e Jf9 /e 3F and let Ë be a compact real interval with

AO = — -ÖË. Then there exists r>0 such that 0<||x||^r implies Á÷Þ=ëÑ(÷) for ëåË.
m0

Remark 2. 14. It follows from Lemma 2. 13 that A0 is the only possible point of
bifurcation from 0.

/(X)
Remark 2. 15. (i) In case / is superlinear at oo, i.e., lim - =00, the previous

÷-»áï ×

set of lemmas hold when ë^ is replaced by ë^ = 0. (ii) Often it is desirable to weaken
the differentiability assumptions (2. 13) to the following type of Lipschitz conditions:
There exist positive constants w01, m02, #*ïïÀ> moo2 such ^at

m01x + o(x)^f(x)^m02x +o(x) s ÷— » 0 + ,

(x) s x— > + 00.

For such nonlinearities bifurcation need not take place from isolated points but rather
will take place from intervals, see e. g., [13]. In fact using the ideas of [13] one may establish
the following facts for functions f^SF which satisfy (2. 14) rather than (2. 13):

Let A be a compact interval such that — — , — — n A = 0, then there exists a
L

m
oo2 WoolJ

constant R such that ||÷||^/? implies Á÷̂ =ëÑ(÷), ëåË, and in fact the bifurcation

points from infinity must be contained in — — , — — . And dually if Ë n — —, —^- = 0
L™oo2 ^oolj L™02 ^OlJ

one can find a constant r>0 such that for ë$Ë, and 0<||x||^r implies Á÷̂ ëÑ(÷)
and one can assert that bifurcation from zero can only take place in

É¢ A]
|_m02'w01J

Lemma 2. 16. Let Ae Ji and /e ̂  be such that f(x) ^ á÷, á > Ï, ÷ > 0. Then there
exists ë* such that if ë>ë*, (2.1) cannot have any Solutions xejR+\{0}.

Proof. Assume the contrary, then we obtain a sequence {>lm}, A m — » o o and
{xm} g ̂  \ {0} such that

Axm = AmF(xm) ̂  Amaxm,

and since A~l is a positive operator (Lemma 2. 6)

Again, we may assume that ym— +yEftn
+ \{0}, and thus, since ô-.}7»,— *0, we obtain

"-m

A~1y = Q, a contradiction to A'1 being nonsingularBereitgestell
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Remark 2. 17. In case A is Symmetrie we may use Lemma 2. 6 to estimate ëö.
In fact for ÷ e /R"

Thus since

weget

(>4.x, x) = (x, Ax) = (÷, ëÀ ÷) = ë^ (÷, ÷)

((,) is the scalar product of Rn), but

(Ax, ;c)^(/lax, ÷) = ëá(÷, je),

hence since ÷, ÷ e IRn
+ \ {0}, it follows that

ë^ë^, i.e., A^ — = /L.

3. Existerice of NIS and NRS — continuation results

In this section we consider finite difference approximations to nonlinear elliptic
equations Lu + ì/0/) = 0 subject to homogeneous linear boundary constraints.

For example, in the case of problem (1.3) one divides [Ï, ð] into «+1 equal
n

parts of meshsize one replaces u" by

Letting u(iH) = xh then since x0 = Q = xn+i, we obtain the difference scheme

(3.1) 2 x2 - x3 = h2

which we write s

(3.2) Á÷

where A is the Symmetrie n ÷ ç matrix

A =

2 -1
-1 2 -1

o -.
O
2 -1

-1 2,

F(x) = co
and

It is well known that AeJi. Again we emphasize that more general /i are permissible
in what follows (i.e., the requirement that AeJt suffices). Let ëé be the unique
positive eigenvalue whose existence follows from Lemma 2. 6.
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Much of the discussion to follow is equally valid for different types of homogene-
ous boundary conditions, e.g., if instead of (1. 3) we consider the problem

then we obtain s a fmite difference approximation a problem of type (3. 2) with A
given by

A =

2 - 1 0 0
- 1 2 - 1 j

: 0
0 -l 2 -l
0 -2 2

where again A e M. Since Solutions of (1. 3) will be Symmetrie it is natural to consider
such boundary value problems and use the Symmetrie extension (about ð/2) s a
solution of (1. 3).

Concerning (3. 2) we establish the following theorem.

Theorem 3.1. Letf=fm e 3F. Then the following are true:

(a) For all m ̂ 0, A0 = — is a bifurcation point from zero for (3. 2) from which an
m0

unbounded continuum Ó0 of nontrivial Solutions of (3. 2) emanates, and ë^ =—— is a
m

ao

bifurcation point from infinity with a corresponding branch Ó^ of nontrivial Solutions.

(b) If ra = 0, then Ó0 = Ã00 and (ë, x) e Ó0 implies ë^ë^ where ë^ is given by
Remarkl. 17.

(c) Ifm^l, then Ó0 ç Ó^ = 0, more precisely

((ë, ÷) 6 Ó0 => \\x\\ < z1 and ë —> oo
(3' {(ë, x) e Ó^ => ||x|| > z2m and ë -> oo ,

in either case there exists å>0 such that ë^å. There are no Solutions ÷ of (3. 2) w/

(d) Z09Z

Using Corollary 2. 3 and Corollary 2. 5 we obtain a unique solution of (3. 2) in
the neighborhood of every zero w of F with w 6 1§" for all large A and thus many
other Solutions of (3. 2) must be expected. We describe this in the following theorem.

Theorem 3. 2. Let f=£e&9 then for all large ë, (3.2) has at least N = (2m)n

o o

Solutions in /R" ; these Solutions may be found dose to the zeros of F which He in )R" .
Furthermore, the Solutions of(3. 2) have the following properties:Bereitgestellt von | Unive
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(i) For each & = !,..., 2 m there are kn — (k — l)n Solutions (whose local degree is
odd) with norm dose to zk (for large ë).

(ii) I f v ( z h zi+i) denotes the number oflRn
+ Solutions in B(zi+l)\B(zt), /=!, . . . , 2m

(where z2m+i = 00) (whose local degree is odd), then (for large ë)

IO'-f ly-O'-iy, i£2, ieven,
l i = 0,
0 ,iodd,

(iii) Gener ically there exist at least —(7V— 2) nontrivial continua Óß9 which are

unbounded in the ë direction, and there exists >0 such that:

at least - k? fc+1 such are contained in [É, ïï) ÷ jS(zk+1)\5(zfc), k even, and

there are at least — v(z2m, oo) — l such in [A, oo) x!Rn\B(z2m). Each of these Óß9

l^i^-^r(N—2) are gener ically homeomorphic to afolded real line.

Proof. Using Corollary 2. 3 and Corollary 2. 5 we deduce the existence of a
o

solution of (3. 2) in small neighborhoods of zeros w e IRn
+ of F for all ë sufficiently

large. There are (2m)n = N such zeros. That 0 is an isolated solution follows since
o

large ë are not eigenvalues of A. We may identify each IRn+ zero of F with a lattice
point in Z", (i) and (ii) therefore follow by counting such lattice points and using
Lemma 2. 8. Assertion (iii) follows from the above arguments, the fact that for ë<å
no positive Solutions exist, the Leray-Schauder continuation method and Theorem 3. 3
to follow.

We remark at this point that there may be other Solutions ÷ë of (3. 2), for ë
large, namely Solutions close to zeros w of F, wedlRn+, i.e., those zeros of F having
at least one of their components zero.2) Since other Solutions will be seperated from
such and since each such zero w is isolated we may compute deg(>4 — /IF, È, 0),
where G is a small neighborhood of w. We claim that deg(^4 — ëÑ9 È, 0) = 0. It follows
from our consideration that

ë+ large, and thus by homotopy invariance i/=deg( — F, È, 0). Let w = (wi9. . ., wn), then
for each j, i^j^n, ^j = zi for some i, 0^i^2m, with at least one íí;· = 0. It follows
from the Cartesian product formula of Brouwer degree that

2) If A is the diseretization corresponding to (1. 3) then an easy argument shows that Ax — AF(#) =
and ÷ e dR*+ implies that ÷ Î 0.
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where j is a small neighborhood of Wj e /R, however, for those j where \vj = 0,
deg (-/$,., 0) = 0 (recall that/(x)>0, ÷ÖÏ in small neighborhoods of 0), hence d=0.
As a special case we have, of course also shown that

for all ë sufficiently large and å > 0 sufficiently small.

The differentiability assumptions at 0 and oo may be relaxed to conditions of
the type (2. 14) in which case we obtain a result similar to Theorem 3. l except that
in part (a) the bifurcation points ë0 and ë^ will be replaced by bifurcation intervals

—i-, —— and ——, —— L Arguments like the ones used here combined with ideas
^02 ™01 J L

m
oo2 ^oolj

from [13] would establish these Claims.

We now define a global perturbation Ö: IR ÷ R" —> IRn of (3. 2) in order to provide
(i) a numerical access to Ó^ via Ó0 in case m^ l and (ii) to prove (a) of Theorem 3. 1.

The idea is to perturb (3. 2) in such a way that the disjoint continua Ó0 and
Ó^ become connected, while the continua Óß either disappear or close up to homeo-
morphs of S1, i.e., no longer interfere with Ó0 and Ó^· More precisely Ö is chosen such
that Ö-1(0) is generically a union of a real line (representing Ó0=Óáï) and finitely
many S1 (representing the Zt) (see figure 3).

To achieve that goal we define for j£ 6 J2; m > l,

(i.e., ^ satisfies the require-

j^>-\g(X),Zi^.
where g(z1) = g(z2m) = Q and g is so chosen that J.
ments (2.11)—(2.13) for m = 1).

X

m

fo

Figure 2
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Let ^eJ^Ã (i.e., f0 satisfies the requirements (2.11)—(2.13) w = 0) be such that
fQ —fm in a neighborhood of 0 and of oo.

As perturbation parameters we choose constants ì À 5 . . . , ì4 such that

max {A0, AJ < ìß < ì2 < ì3 < ì4 < + oo,

where /13|ß<ì4, and where Á# is given by Remark 2.17 for^>. We define

(3.5)
ìé-ì2

Ç^ë, x) = m0x+o(x) s ÷—»0+,
= maox + ï(÷) s ÷—> +00, é = 1, 2.

F0, //15 //2 the associated nonlinear Nemitskii operators. Put

0(ë,÷) =

Observe that

Denote by Fm,

(3.6)

and set

(3.7)

The following result will describe the solution set of the perturbed problem

(3.8) Ö(Á, ;c) = 0.

l

2
Theorem 3. 3. Ö-1(0) contains continua %Q=Z^ and Óß9 l^i^

where Ó0 bifurcates from 0 at ë0 and from infinity at A^, and the Àß satisfy the condi-
tions of the ÓÉ of Theorem 3. 2, ((i), (ii)). Those continua ÓÉ which He in B(z2i+i)\B(z2i)
are gener ically homeomorphic to a 1-spfiere and IQ = I^ is gener ically homeomorphic to
a real line.

Remark 3. 4 (Numerical Interpretation), (i) Under appropriate regularity assump-
tions (e.g. fm(x) = m0x + (t>o(x) near 0, 00 is smooth, ö0(÷) = ï(÷)9 /çé(÷) = çé00÷ + öæ÷)(÷)
near + oo, ö^ is smooth and ö^ (÷) = o(x) s ÷ -> oo) the simplicity of A0 (respectively A^)
will imply that Ó0 (respectively !„) are locally unique. More precisely the theory of
Crandall and Rabinowitz [12] will imply that in a small neighborhood of (A0,0), I0

is a parametrizable curve containing all small nontrivial Solutions. The appropriate
description of Ó^ near infinity is obtained from the classical transformations

12*

et s
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(ii) As demonstrated in the discussion of Figures 25 and 26 in section 5 it may
happen that the perturbation Ö (ë, *) = 0 creates additional singularities: There it is shown
that the Ó0=Ó<×) component in Ö-1(0) may undergo a secondary bifurcation to NIS
components Óß of problem (3. 2). In view of this it is important to note that (cf. [11],
Theorem 9. 1. 3) in our Situation also generically global bifurcation occurs, i.e. Z0 = Ó^
is generically homeomorphic to a real line. More precisely, it may happen that in the
course of the perturbation Ó0 = Ó^ picks up some Óß components of problem (3. 2)
(which may be NIS to problem (1. 3)).

(iii) Local uniqueness (cf. (i)) of Ó0 and Ó^ and remark (ii) may be interpreted
by concluding that ZQ and Z0 (resp. Ó^ and Ó^) consist of NRS to problem (1. 3)
near the bifurcation point from zero (resp. infinity). Thus, any algorithm which is
designed to globally solve the generic problem (e.g. a PL or smooth continuation
algorithm) associated with Ö (ë, ÷) = 0, will provide an access to the NRS component
via Ó0 = Ó^ from the trivial Solutions.

(iv) As the proof of Theorem 3. 3 will show, we have a way of detecting bi-
furcation from oo simply through bifurcation from 0(Ó0 = Ó^), thus avoiding elaborate
degree or index calculations in a neighborhood of oo, a method of proof very much
different from that used in [3].

Proof of Theorem 3.3. Using the results of section 2 and the special construction
of G (A, x) we may construct regions X*9 Yl s follows:

For each ä$ > 0, there exists r^ > 0 such that

(3.9) Ö(ë,÷)Öè, for (ë,÷)åßë0 + ä+,ð)÷~5(7%) = ×\

(see Lemma 2. 13 and Lemma 2. 16).

For each <5+ > 0, there exists Rd^ such that

(3.10) Ö(ë,÷)Öè, for (A,Jc)e[A0 0 + Coo)x

(see Lemma 2. 11 and Lemma 2. 16).

(3.11) Ö(Á,÷)Öè, for (A, x)e |>4, oo)

(see Remark 2. 17 and definition of Ö).

(3. 12) Ö(ë, *)ÖÏ, for (A, ÷) e [Ï, ì2] ÷ 5(^)\5(æ2é._1)= Õ\ 1^ i^

(see Lemma 2. 8 and Remark 2. 9).

(3. 13) Ö(ë, ÷) Ö Ï, for (Á, ÷) e [ì2, ì3] ÷ W^)^B(zl) = ×\

(see Lemma 2. 8 and Remark 2. 9).

(3. 14) Ö(Á, ÷) Ö Ï, for (ë, ÷) e [Ï, å] ÷ (;Rn\ {0}) = ×5.

For each <5~ > Ï, there exists Rd^ > Ï such that

(3. 15) Ö(ë,*)Öè, in [Ï, ̂ -5-] ÷Ë'×Á^)-*6

(see Lemma 2. 11).

Since ^4 is nonsingular it follows that for ë > Ï, å > 0 small enough

(3. 16) deg (A -ëÑ^ Â(å)9 0) = sign det A ö 0.Bereitgestellt von | Univer
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Further the remark following the proof of Theorem 3. 2 implies that for ë

sufficiently large and s > 0 small

(3.17)
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Thus

(3. 18) deg(A -ëÑ^ Â(å), 0)Ë<,0 Ödeg(A - AFm, Â(å), Ï)Ë>ËÏ

and hence bifurcation from 0 must occur at A0.

Due to the Rabinowitz bifurcation result [12] an unbounded continuum Ã0

must bifurcate from (>10, 0). Considering now the regions constructed in (3. 9)—(3. 15)
and since <>+ and <5~ may be chosen arbitrarily small Ó0 must become unbounded
with Ë — » ë ç and ||jt|| —> oo, thus in view of Lemma 2. 11 and Remark 2. 12, ë^ is the
only bifurcation point from infmity.

We now pass to the remaining assertions of Theorem 3. 3. It follows from
Remark 2. 4 and Corollary 2. 5 that Ax = XFm(x) has a unique solution jcf(A) near wl?

for all large ë where {wx.}£jR" are those zeros of Fm whose norms are in (z1? z2m),
whose local degrees are odd. Thus since there are no Solutions in the shells Y\
1^/^m, either there are no zeros of Ö in B(z2j+l)\B(z2j), l^y^ra — l or they
generically occur in pairs for ë^ìß9 simply because deg(<i>(A, ·), B(z2j+l)\B(z2j)9 0) = 0
for ë^å. Since also there are no Solutions of (3. 8) in X4, the continua Ã, will reside
in [å, ì2] x B(z2j+i)\B(z2j), if they exist; therefore they are bounded continua which
are disjoint from Z0. Moreover, one may show (by means of Whyburn's Lemma (see
e.g., [12]) and the fact that they have nonzero local degree) that the continua must be
generically homeomorphic to S1.

Remark 3. 4. Theorem 3.1 is an immediate consequence of the a priori bounds
established in the previous section and the considerations and conclusions of Theorem 3. 3.

Our proof of Theorem 3. 3 may also be adapted to the situations considered by
Ambrosetti and Hess [3] concerning the existence of positive Solutions of nonlinear
elliptic boundary value problems. Our proof, however, does not need any degree calcula-
tions in a neighborhood of oo. Bifurcation from 0 together with the properties of the
global perturbation Ö yields the bifurcation from oo.

We once more remark that superlinear problems may be handled in much the
same way where ë^ = 0 will be the bifurcation point from oo.

We close this section by considering several examples.

Consider the boundary value problem (1.3) where f=fme^. The differential
equation u" 4- ìf(u) = 0 is equivalent to

(3.19) u' = v,v' =

thus trajectories starting at (0, v0) of (3. 16) must satisfy

(3.20) 1ñ2 + ÁÀ}/(ß)Ë = \ v\
2 o 2

Pick v0 > 0 such that (v0 = v0 (ì))

4*o=/f/<j)«
^ o

r



Let us now assume the following:

(3. 21)
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l
If v^>v0 and —-õ*=ì ff(s)ds9 then u^

2 o

In this case the phase portrait of (3. 19) will be s follows

~2m

Figure 4

and thus if M is a positive solution of (1.3) it must satisfy either ||«||<Æ! or eise
IMI>z2m . In this case all the continua in B(z2i+l)\B(z2i), 1^/^w-l must there-
fore be NIS. It is clear from these considerations that by placing various hypotheses on

u

the behavior of f/(s) ds one may obtain any of z2k s a possible lower bound on the
o
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norm of a second possible positive solution and thus, if in (3. 21), m is replaced by k
we would obtain NIS in B(z2i+l)\B(z2i), l ̂  /^ k — 1. Further variations of these ideas
are of course possible.

If we consider the pendulum equation, then the phase portrait in Figure 5 shows
that the only possible positive solution u must satisfy ||ê||<ð. Thus all Solutions
(ë, x)9 ||÷||>ð, obtained in this case must be NIS. If we consider the conditions of
Brown and Budin [5], then some of the Ó{ may be NRS. In their case [5] the phase
portrait is s follows:

2m

Figure 6

Thus there may be points vi9 v2,... (in fact this result is proved in [5] under suitable
hypotheses) yielding Solutions u of (1.3) with z2<|M|<z3 , z4<||w||<z5, etc. These
considerations show that the pendulum equation is in some sense on the border line
between equations whose phase portrait is s in Figure 4 and those whose phase portrait
is s in Figure 6.

4. Superlinear boundary value problems

Let /: IR —* R be continuous. Some of the following conditions will be assumed
at times.

(4.1)

(4.2)

(4.3)

f(x)x> Ï, ÷ Ö0,/(;c) = o(x) s ÷ —»0

/(·*) » oo s ÷ —* ± oo
X

f(x)>Q9xelR\{0},/(x) = o(x) s ÷-> 0.

Let us, s before, denote by F the w-dimensional Nemitskii operator associated
with / and let A be an n ÷ n matrix. We again consider the nonlinear eigenvalue problem

(4.4) Bereitgest
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The motivation for studying this equation is again a class of nonlinear boundary
value problems whose Solutions are to be obtained via finite difference approximation
schemes, a prototype of such problems is given by

(4. 5) M" + ë um = 0, n(0) = 0 = u(n)

where ë e IR+ and m > l is an integer.

In studying nontrivial Solutions of (4. 5) it suffices to study positive Solutions. This
is apparent in case m is even. On the other hand, if m is odd then Solutions having
equally spaced zeros may be pieced together using positive Solutions or their negatives.
This only involves a change in scale and a uniqueness argument.

The existence results to be given below will not only give nontrivial solution
continua but also give via the numerical algorithms of [9] and [11] access to such
continua from the trivial solution.

As in the previous chapter we shall see that even though the nonlinear boundary
value problem may have a unique positive solution no such uniqueness prevails for the
associated equation (4. 4) which in fact will have NIS, s will be shown below.

We flrst establish a general existence theorem covering two classes of such per-
turbations.

Let 0 < ì1 < ì2 be fixed positive numbers and for ì^ë^ì2 define

(4. 6) Ç(ë, ÷) = - æ * - (Á÷ -ì, F(x)) -
Hl ~~ ^2

and define Ö : IR ÷ IR" — > IRn by

(4.7)

Á÷-ëÑ(÷), O ^ A g ,
Ç (ë, ÷), ì^ëß,

Thus once Ö 1 (0) is characterized, we will be able to describe the solution set of
(4.4) for Ï^ë^ì^. Since ì1?ì2 are arbitrary we will be able to describe the whole
solution set of (4. 4).

Theorem 4. 1. (a) Let A be such that

(4.8) signdety*=(-l)M+1

and letfsatisfy (4. 1) and (4. 2), or let

(b) A"i(Pn
+)^Pn

+ and let f satisfy (4. 2) and (4. 3) (A nonsingular).

Then there exists ë^â(ìß9 u2) and an unbounded continuum Ã* in Ö"1 (0) which bifurcates
from (ë^, Ï) such that

(4.9) Ã*ç{ìé}÷(^\{0})Ö0.

In case (b) holds it is true that Ö'1 (0) c P ÷ R\ and in fact (4. 9) reads

(4.10) Ó*
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Proof. We first consider case (a).

There exists R>0 such that (A, ÷) Å Ö-1(0) and ìß^ë^ì2 implies \\x\\ < R.

To see this let H (ë, ÷) = 0, then

ë -
-*,

Thus

(4. 11)

and hence

1 v ' ì2-ë

F(x) ë-ìé ÷
£ \\A\\,

1

Ì
since/satisfies (4. 1) it follows that

(4. 12)

(4. 13) ^ £ \\A\\, 1£ß£«.

Since/satisfies (4. 2) and ||x|| = |÷^| for some j, we obtain a bound on ||x|| from
(4. 12). (4. 13) implies

(4. 14)

Since A is nonsingular it follows that 0 is an isolated zero of Ö (A, x) for Ë = ìÀ9ì2

and we may compute for all small ä > 0

é'ìé = deg (Ö(ìÀ5 ·)> Â(ä), 0) = sign det A = (- l)n+1,

k = deg(Ö(ì2, ·), Â(ä), 0) = deg(-id, B(R\ 0) = (- l)n.

Hence since é ì éÖ/ ì2, Ö-1(0) must undergo bifurcation s ë ranges over [ì1? ì2], further
A^ ì (see (4. 14)). It follows also that

hence letting

and Ë = {0},

ja^ and ^ must be connected in Ö-1(0) due to Whyburn's lemma and due to the
homotopy property of Brouwer degree there will be a continuum Ó* bifurcating from
(ìé, ìé) x {0} which hits {ì,} ÷

(b). Since F:Rn-+IRn
+ and ^~A is positive we consider equation (4.4) in

f?" and use flxed point index rather than degree theory.Bereitgestellt von
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Again if (ë, ÷) is a nontrivial solution of (4.4), ÷ e!Rn
+, ì^ë^ ì2, then (4. 11)

holds and since ||·|| is monotone with respect to the ordering induced by P" it follows

from (4. 11) that (4. 14) holds and
F(x)

^ ||^41|. Thus again there exists /?>0 such

that (ë9÷)€Ö"é(0)9 ì^Á^ì, implies ||÷||<Ë. On the other hand (A, x) e Ö~é(0\
ì1 :g ë^ ì if and only if ÷ is a fixed point of Ø (ë, ÷), where

(4.15) Ø(ë,÷) = ì,Á^Ñ(÷) + — ̂ -A^x.
ì2~ Á

We now compute the fixed point index of Ø (ë, ·) at 0 for ë = ì{ and for ë close to ì2.
Since A'1 (F(x)) = o(\\x\\) s x— »0 it follows that the fixed point index of ø at 0 for

We next show that for ë sufficiently close to ì2 the index equals 0.

To see this let Ø be a Dugundji extension of Ø to IRn+l (i.e., Ø((Ñç+ß) g IRn
+ ), then

ind (Kl , «P(A, ·), *(S)) = deg (id - Ø (ë, ·), Â(ä), 0) = deg (id - #(A, ·), (5), e)

for || å || small. Thus, it suffices to show that

has no Solutions for se/Rn
+ \{0} of small norm. If * is such a solution, then since

÷ = å+Ø(ë, x), xelRn
+. Proceeding indirectly, we find sequences {sm} £^

and {xm} g ft"+ and {Am}, Am -^ ì2 such that

hence

(4. 16) (ì2-ë^×ç = ìé(ì2

We consider three cases.

Suppose ||xj|— > oo. We divide both sides of (4. 16) by ||xj| and obtain

(4.17) (^-^)^"1|i^=-^(M2-W^"1^ + ̂
\\xm\\ l l A m l l

F(x ^
where ä — >0. Since — e^+ and yl"1 is bounded we obtain a contradiction.

Suppose ||xw||-* 0. We again divide (4. 16) by \\xm\\ and obtain

~
 X

 ~

X

where < 5 - > 0 . We thus obtain a contradiction since (Am-^1)^f~1— ̂ - has a sub-m

sequence converging toyeK*+\ {0} and ̂  — — sm e Kn+ . The case that ||xj| is bounded
l l^mil

away from 0 and infinity is argued in much the same way.Bereitgestellt von | 
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Thus the fixed point index of Ø (A, ·) at 0 equals 0 for ë close to ì2. An argument
similar to the one used in case (a) thus leads to the conclusion that a continuum of
nontrivial Solutions will bifurcate from (ìÀ5ì2) which is contained in IRn+ connecting
to {/jj ÷ B(R)\B( ). This continuum will now reside in [ì1? ì2] ÷ IRn

+.

Remark 4. 2. Since in both cases of Theorem 4. l we may in fact assert that an
unbounded continuum will bifurcate and since Solutions are a priori bounded for
^Å[ìÀ 9ì2] it in fact follows that the continuum Ó* will become unbounded for
ë E (Ï, ì^ and since A is nonsingular it follows that if (/l, ÷ë) E Z* with \ë\ + \\÷ë\\ —» oo
then it must be the case that / l — > 0 + . It thus also follows that the original problem
has an unbounded continuum of nontrivial Solutions for 0<ë^ì1 which may be
obtained via a continuation technique s a bifurcating continuum for the global per-
turbation Ö.

= 0 H(x, ë) = 0 -Id(x) = 0

Figure 7

Remark 4. 3. If instead of the approach used in Theorem 4. l one establishes a
homotopy to a constant mapping the necessary a priori bounds and index calculations
are much easier to obtain, however this type of homotopy argument, even though leading
to Solutions of our problem, may lead to NIS and hence is not appropriate. This is
demonstrated in Figures 27 and 28.

In the case f(x) = xk we shall show that the global perturbation of Theorem 4. l
indeed will lead to NRS avoiding the NIS. It is this specific case which will be con-
sidered now, i.e., we assume

(4. 18) f(x) = xk,k>l an integeBereitgestellt von | 
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Equation (4. 4) thus is considered to be a finite difference approximation to the problem

(4. 19) u" + ì uk = 0, w(0) = 0 = u(n\

i.e., A is the discretization of the differential operator —u" with boundary condition

w(0) = 0 = w(7i) on a uniform grid of n internal meshpoints, i.e., A is given s in

section 3.

The following lemma, which is due to Allgower [1], will be of essen tial use in

our discussion.

Lemma 4. 4. Lei A and fbe s above. Then:

o

(i) For every A > 0 there exists a unique solution xelR"+ of(4. 4) which is Symmetrie

about — and this solution is an approximation to the unique positive solution of (4. 19)

(ë = Ç2 ì, h the meshsize}.

(ii) Equation (4. 4) admits NIS which are characterized by the fact that they are

not Symmetrie about — and their existence is independent of ë.

Remark 4. 5. The NIS for the present problem are different from those of the

Problems considered earlier in the sense that their existence is independent of ë and

that for a fixed ë they disappear s the meshsize tends to 0, whereas those considered

earlier are present for each meshsize but then only for large ë.

In order to obtain nontrivial positive Solutions of (4. 4) we shall show that the

perturbations introduced in Theorem 4. l yield Symmetrie l about — J NRS.

In view of this define the space X c IRn
 by

W
and identify elements x = (xi,..., x„) e X with x = (xl9..., xm), where m = — if n is

even and m = \~ + l if w is odd. We denote ̂  n R»+ by ̂ +.

Theorem 4. 6. Define Ö (in case k is odd) and Ø (in case k is even) s in
Theorem 4. 1. Then:

(i)

(ii) There exists a unique continuum Ó0 of positive Solutions of Ö (ë, x) = 0, respect-
ively Ø (ë, x) = x bifurcating from 0. Furthermore, Ó0 leads to positive Solutions of (4. 4)

for ë = ìß which by the choice of X are NRS (Ó0 g R+ ÷ ×+).

(iii) In X, respectively X+, no NIS will occur and in IRn, respectively P%, (positive)
NIS occur in pairs.
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Proof. (i) This assertion follows immediately from the definition of Ö and Ø and
the special structure of A.

(ii) A has exactly one positive eigenvalue of multiplicity one corresponding to a
ë — jUt

strictly positive eigenvector (see Lemma 2. 6). Since ranges over [0, oo) s ë
ì2 — ÷

ranges over [ìÀ9ì2], Ö and Ø will undergo a bifurcation for ë = ë^ e (ì1, ì2) (see [9]
for Ö and Theorem 4. l for Ø). In either case the bifurcating continuum Z0 will be
unbounded s follows from the Sturm-Liouville theory for second order difference
equations, respectively Theorem 4. l part (b). Hence Ã0 will intersect {ì̂  ÷(Ô+\{0}).

(iii) Let
z = (zl9...,zn)

be a solution of (4. 4) which is not Symmetrie about ( -^-K i-e. NIS. Then due to the

special structure of A also

z=(zn9...9zi)

is a solution of (4. 4). Moreover, the local degrees (resp. indices) add up to zero.

Remark 4. 7. Theorem (4. 6) means that the perturbations Ö (resp. Ø) preserve
the symmetry distinguishing NRS from NIS. Thus, Ó0 guarantees a numerical access to
the NRS of problem (4. 4) from trivial Solutions.

5. Numerical results and experience

All computations were performed by means of an interactive package of PL-algo-
rithms which are an Implementation and realization of the ideas described in [9] and [11].
These algorithms are designed for a global numerical study of nonlinear eigenvalue and
bifurcation problems

where H : IR ÷ f?w — * R" is continuous.

We briefly summarize the basic numerical problems and procedures described in
[9] and [11]. The problems are basically the following: (i) To globally follow a given
continuum in H~l($) without being stopped by the presence of cusps, turning and
bifurcation points. (ii) To find all bifurcation points and bifurcating branches. (iii) To
find all continua in H~l (0).

The procedures to accomplish these tasks are based on a global numerical
unfolding

K:RxRnxR-+Rn

of H~l(0). More precisely, //"^(O) is replaced in two approximating steps:Bereitgestellt von | Universitaet Konstanz
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(i) Let T be a triangulation of Rn+l and let HT denote the natural PL-approxima-
tion to H defmed by T. Then H~l(Q) is replaced by H ã l(0). This step corresponds to a
mollifying procedure in the C°°-category.

(ii) For å>0 sufficiently small the problem Hf *(()) is replaced by H f l ( e ) , where
Ý=(å, å2,. . ., åð). One shows that å is a regul r value in the PL sense and this step
corresponds to a regularizing procedure (Brown-Sard) in the C°°-category.

Defme

Then one can show that J((s) = K~l(0) n R ÷ R" ÷ {å} is a collection of PL manifolds
of dimension l and this unfolding is what we previously have called the generic case in
the PL sense. Each of these manifolds in Jt '(å) can be numerically traced by a simplicial
algorithm and moreover the global structure and behavior of M($) can be completely
understood through the properties of Brouwer degree. Especially the Leray-Schauder
Continuation Method and the Bifurcation Principles of Krasnosel'skii and Rabinowitz
may be interpreted in this approach and become numerical tools. This describes to a
certain extent the procedure for (i) above. The techniques for (ii) and (iii) are more
intricate and quite elaborate, we refer to [9] and [11] for a detailed description. We
note, however, that Ö and Ø (of section 3 and 4) are typical global perturbations
belonging to the category of (ii) and (iii).

All figures in this section are Computer plots and represent the PL manifolds in
Çãé(å). They have been produced on an Evans and Sutherland picture System.

The following numerical results should be strictly understood to contribute to a
global numerical study, i.e., the primary purpose is to exhibit the qualitative nature of
//~ *(()). Local efficiency and accuracy have been given secondary consideration, and thus
at times local accuracy has been sacrificed in order to be able to work with low dimensional
difference approximations ; our theoretical study, on the other hand, also shows that
extreme care must be taken in using Solutions of difference equations s approximations
to Solutions of differential equations. Occurance of NIS demonstrates the necessity of a
global study in addition to a local numerical study. We now present several examples.

I. The asymptotically linear problem (1.3)

Instead of (1. 3) we analyze the problem

(5. 1) u" + ì/(ç) = 0, «(0) = «'(ð/2) = Ï,

since Symmetrie extensions (about ð/2) of a solution of (5.1) will yield a solution of
(1. 3). (5. 1) has been discretized on a uniform mesh of n internal meshpoints. To
obtain access to Solutions for large ë we employ the transformation

(5.2) A = Iexp(I-l)

and solve the problem

(5.3) Ax-I exp (X- 1) F(x) = Bereitgestellt von | 
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-i

Figure 8

In Figure 8 we show three typical nonlinearities^,^,^. Let

— sin2x,

÷ — 2?t,

l 2
T

X +
T

3 . 2 ð

and

where

and finally set

2

-3ð)Ã i-i

.£(*) =
- — (l - exp( ), otherwise,
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Observe that the ft are chosen s examples for elements of &. The next figure
shows the respective continua of Solutions.

-l

Figure 9

The continua Z0 have been computed by means of a bifurcation algorithm in
the package. The continua Ó1 and Ó^ have been obtained by fmding Ø~é(0) for differ-
ent values of X, where

ø(ô, *) = (l - ô) [Ë * - X exp (X- 1) F(jc)] + rd,

and d is the constant «-vector, col(0, 0,. . ., 0, 1). The discretization in Figures 9 through
15 has been on n = 6 equally spaced interval meshpoints. We note that the Ó1 and Ó^
components show cusps and folds. In Figure 10 we have embedded the three non-

,^ into a 1-parameter family

(5.4)

Define the two parameter problem

(5. 5) Ö(É, ì, ÷) :=Ë÷-

where H is the Nemitskii operator associated with h. Then Ö is the realization of the
global perturbation discussed in Section 3. Figures 11, 12 and 13 show the solution
surfaces from various perspectives.

These results support our theoretical analysis that Ö'^Ï) connects the continua
Ó0 and Ó n while not intersecting the continuum labelled Ã1â Hence, if Óé consisted of
NIS then the perturbation (5. 5) provides a numerical access to the NRS in Ó^ via
those in Ó0 and following the surface for fixed I s ì varies.

14
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F(X)

Figure 10

JTNORM

10

100

Figurell

1000
LAMBDA

All surfaces show several cusps and folds which are shown in two closeups,
Figures 14 and 15.

These results suggest — and this is supported by the studies represented in
Figures 11, 16, 17 — that these phenomena are due to singularities in "

1
^) and not

— äs one might surmise — due to numerical imperfectionsBereitgestellt von | U
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Figure 14

In view of this, Figure 15, in particular illustrates the advantages of a PL algo-

rithm in handling such singularities.
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Figure 15

Figure 16 and 17 show the dependence of the "cusp" in Ó^ upon the meshsize of
the discretization of (5.1). It suggests itself that the "cusp" in Figure 16 appears for all
meshsizes, but moves to infinity with the meshsize tending to zero. Hence the "cusp"
seems typical for the algebraic System (5. 3). Projecting Figure 16 onto the (ë, \\x\\)
plane, s given in Figure 17, shows that the continua Ó0 are quite stable with varying
meshsize in contrast to the continua Óç. Figures 18 to 26 are solution plots of another
typical example for (1. 3).

The nonlinearity is given s
r l
— sin2x, 0^x^2n

According to Figure 5 and the remarks following it, the boundary value problem (5. 1)

with this nonlinearity cannot have positive Solutions such that —^ ||ê||^2ð. However,

Theorem 3. 2 implies that (5. 3) must have at least 46 = 4096 nontrivial Solutions ÷ in

J?£ of which there are at least 728 with norm ð^ÉÌÉ^ã ð and 3367 with norm

|| ÷ || i>2 ð, where we again have chosen 6 internal meshpoints. Figure 18 shows 10 NIS
and the NRS components Ó0 and Ó^.
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Figure 18

Again the picture suggests a correlation between the occurrence of NIS with that
of acusp in Ó^.

Figure 19 is a closeup of Figure 18.

In Figures 20 to 26 we consider the same nonlinearity, however, only subject to a
discretization on 2 internal meshpoints. This is done because a complete description of
Ö"1 (0) can be given in this case.

According to our theoretical results of Sections 3 and 4 there will be at least
16 nontrivial Solutions, these are shown in Figure 20.

The components of all Solutions are (÷é, x2)> Figure 21 gives a view from the
(x1?;c2) plane towards ë = oo. It shows the continua Ã0 and Ó^ together with 7 NIS
contjnua. In Figure 22 we give a view from ë = oo onto the (xl9 x2) plane and recognize
the 16 lattice points (zeros of the uncoupled system) to which all nontrivial Solutions
must converge s ë —+ oo.

In Theorem 3. 3 we have studied the global perturbation Ö (see (5. 5)) which is
designed to provide a numerical access to Ó^ from Ã0. Figure 23 shows the Ó0 compo-
nent in Ö-1(0) and hence shows that this has been achieved. The perturbation para-
meters ì3 and ì4 of Theorem 3. 3 were chosen approximately 80,000. However, it
should be observed, that Ã0 and Ó^ in Figure 23 are linked by one NIS component.
Figure 24 shows Ö-1(0) when Figure 23 is projected onto the (A, x2) plane.
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Figure 19

In Figures 25 and 26 we show the view of Ö
 1 (0) of the Ö-perturbation (5. 5)

from ë = 80,000 onto the (*i, *2) plane. Figure 26 gives a complete picture of Ö"1^)
whereas Figure 25 only shows the important portion of the continua in Ö-1(0). In
Figures 25 and 26 one observes that the Ã0 component undergoes a bifurcation in the
neighborhood of the point (ð, ð). Hence in this specific example we have verified
Theorem 3. 3 numerically but also observe that the Ã0 component of Ö-1(0) may be
connected to several NIS components (here with three).
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Figure 22
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Figure 26

II. The superlinear problem (4.5)

For this particular boundary value problem we choose the nonlinearity f ( x ) = xs

and base our finite difference approximation calculations on n = 3 internal meshpoints.

It is well known that the boundary value problem (4. 5) has a unique positive
solution for all ë > 0, and all m > l.

We study the finite difference approximation to (4. 5)

(5.7) Á÷ = ëÑ(÷)

via an embedding into the two parameter problem

(5.8)

where

(1-ì)ÉÁ÷-ëÃ(÷)']-ì÷, Ï^ì^

and </=col(0, 0,1).

According to Theorem 4. l, Ö-1(0) undergoes a bifurcation from the zero solution
for ì > 0 which provides an access to the positive NRS of (5. 7). There is also a con-
tinuum in Ö-1(0) connecting the zero solution with another positive solution of (5. 7)
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for ì < 0. The latter solution branch consists of NIS (non Symmetrie Solutions) and is
connected with a second NIS branch in Ö"1^) for ì>0. This is a numerical verification
of Theorem 4. 6. Also it is verified that a homotopy of (5. 7) with the problem

i/=0 (no solution)

may lead to NIS. Figure 28 gives the solution surfaces of positive Solutions of problem
(5. 8).

l'NORM
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Figure 27
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Figure 28
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III. Numerical access to the Brown-Budin Solutions

In [5] it is shown that problem (1. 3) may have positive Solutions u such that
u

z^\\u\\^z2m whenever/e^" and G(u) = \f(s)ds is such that there exists / and
o

u* e [z2i, z2/+i] such that G(u*)^G(u), Q^u^u*. These Solutions will lie on continua
which, s has been pointed out in Section 3, must be disjoint from Ó^ and Ó0. In this
final example we will show how such continua may be reached numerically using a
global perturbation Ö like the one introduced in Theorem 3. 3. Instead of considering
this approach in great detail we merely indicate one procedure for tackling this problem.

Let fm E ̂  be given. We choose two related nonlinearities / and g s in Figure 29
(the set of positive Solutions of the corresponding boundary value problem is given
below the graph of the nonlinearity):

g

Figure 29

We next choose perturbation parameters ìé < ì2 < A*3 < AU s in the proof of
Theorem 3. 3 and define the global perturbation Ö s we did there, i.e., connecting
the problems

(5.9) Ax-AFm(x) = 0

to Á÷~ëÑ(÷}-§ and Á÷-ëè(÷) = 0 (where Fm, F, G are again the Nemitskii
operators of fm, /, and g, respectively). Following the arguments in the proof of
Theorem 3. 3 we then obtain a diagram like Figure 30 for Ö^Ï).Bereitgestellt von | Universitaet 
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Figure 30

There are of course many other possible choices of the nonlinearities which may
give other approaches to this problem.

6. Concluding remarks and problems

The discussion of the phase portraits (Figures 4 — 6) of problem (1. 3) (f=fm e J5")
shows that in the fmite difference approximation (3. 2) those continua of type Ã, (see
Theorem 3. 2) which are characterized by

(6. 1) (÷, ë) e Ó i then z2J^x^

may be NIS or NRS depending on G (M),

, j<m

In [5] it is shown that under some assumptions on G problem (l . 3) has a continuum
<€ of Solutions satisfying conditions s in (6. 1). This continuum will be approximated
in each fmite difference approximation (3. 2), i.e. for each ne N (n = number of mesh-
points) one will have a continuum Ó^ç) satisfying (6. 1) which approximates % and,
thus, the Ó{(ç) will stabilize s / i — * oo. However, according to our theoretical analysis
there will be additional continua of Solutions of type Ã, in each finite difference approx-
imation satisfying (6. 1) and these will be NIS, i.e. s « — > oo these continua will vanish
towards oo. Thus, one observes two classes of continua of type Óé which are not distin-
guished so far s Solutions of (3. 2) but can be classified with regard to the underlying
differential equation.
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Probiert! 6. 2. (1) Is there an intrinsic characterization of NIS and NRS for problem
(3. 2) with respect to the Brown-Budin Solutions?

(2) What is the appropriate numerical procedure to compute the NRS in this
context?

It is obvious from our analysis that nonlinear elliptic boundary value problems

in Ù,
<6·3) - - - 0 „a

will have NIS for their finite difference approximations. However, phase plane argu-
ments are not possible and therefore we have

Problem 6. 4. What is the appropriate method to distinguish NIS and NRS for
finite difference approximations of (6. 3)?

In this paper we have restricted ourselves to Dirichlet problems. Obviously one
should expect NIS also in presence of other boundary conditions (e.g. von Neumann or
periodic boundary conditions). Again the problem will be to distinguish NIS from NRS
with respect to the underlying differential equation.

More general problems of type

i = Af(u, V u) in Ù,
é = 0 ïç 3Ù

are not immediately covered by our discussion. The reason is that the dependance on
V u generates a coupling in F(x), the discretization of/. A special problem related to
this will be the investigation of Navier-Stokes problems with regard to NIS, where one
is interested in particular for numerical Solutions for ë large («106).

Another problem which ought to be mentioned here is that one should investigate
whether the occurrance of NIS is typical for finite difference approximations only or
may be also found for alternative numerical procedures (e.g. Galerkin methods).

Added in proof .

1) Problem (6. 5) has been studied and partially answered in a recent paper by
A. B. Stephens and G. R. Shubin [Multiple Solutions and bifurcation of finite difference
approximations to some steady problems of fluid dynamics, preprint Naval Surface
Weapons Center]. These authors investigate the steady Burgers equation u-ux~ ëç÷÷ = 0
and obtain NIS Solutions.

2) Recent numerical studies have shown that problem (5.1) admits at least three
(structurally) different types of NIS. An analysis of these and a rigorous classification
will appear in a forthcoming paper.

3) The perturbation first studied and used in section 3 has been exploited also to
prove multiplicity results for nonlinear elliptic boundary value problems and nonlinear
differential delay equations. For the first see H. O. Peitgen et K. Schmitt [Perturbations
topologiques globales des problemes non lineaires aux valeurs propres, C. R. Acad. Sc.
Paris 291 (1980), 271—274]. For the latter see R. D. Nussbaum and H. O. PeitgenBereitgestellt von | Universitaet Konstanz
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[Multiplicity results and the numerical approximation for special periodic Solutions of
( ) = /( ( -\)\ to appear]. Surprisingly, äs this paper shows, one may have NIS

also for numerical approximations of differential delay equations.
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