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a b s t r a c t

In this survey paper, by using variational methods, we are concerned with the qualitative
analysis of solutions to nonlinear elliptic problems of the type

−div A(x,∇u) = λ|u|q(x)−2u inΩ
u = 0 on ∂Ω,

where Ω is a bounded or an exterior domain of RN and q is a continuous positive func-
tion. The results presented in this paper extend several contributions concerning the
Lane–Emden equation and we focus on new phenomena which are due to the presence
of variable exponents.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the reasons of the huge development of the theory of classical Lebesgue and Sobolev spaces Lp and W 1,p (where
1 6 p 6 ∞) is the description of many phenomena arising in applied sciences. For instance, manymaterials can bemodeled
with sufficient accuracy using the function spaces Lp andW 1,p, where p is a fixed constant. For somematerials with inhomo-
geneities, for instance electrorheological fluids (sometimes referred to as ‘‘smart fluids’’), this approach is not adequate, but
rather the exponent p should be able to vary. This leads us to the study of variable exponent Lebesgue and Sobolev spaces,
Lp(x) andW 1,p(x), where p is a real-valued function. Variable exponent Lebesgue spaces appeared in the literature for the first
time already in a paper by Orlicz [38]. In the 1950s this study was carried on by Nakano [37], who made the first systematic
study of spaces with variable exponent (called modular spaces). Nakano mentioned explicitly variable exponent Lebesgue
spaces as an example of more general spaces he considered, see Nakano [37, p. 284]. Later, the Polish mathematicians in-
vestigated the modular function spaces, see Musielak [35]. Variable exponent Lebesgue spaces on the real line have been
independently developed by Russian researchers. In that context we refer to thework of Tsenov [45], Sharapudinov [43] and
Zhikov [47].We refer to themonograph by Diening, Harjulehto, Hästö, and Ruzicka [10] for a comprehensive introduction to
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the theory of function spaceswith variable exponents and various applications.We also point out themultiple contributions
of the Finnish ‘‘Research group on variable exponent spaces and image processing’’ [22], whose main purpose is to study
nonlinear potential theory in variable exponent Sobolev spaces.

This paper is motivated by phenomena which are described by nonlinear boundary value problems of the type
−div(a(x,∇u)) = f (x, u), for x ∈ Ω

u = 0, for x ∈ ∂Ω
(1.1)

whereΩ ⊂ RN (N > 3) is a bounded or an exterior domain with smooth boundary.
The interest in studying such problems consists in the presence of the Laplace-type operator with variable exponent

div(a(x,∇u)). A basic example is the p(x)-Laplace operator, which is defined by

∆p(x)u = div (|∇u|p(x)−2
∇u).

The study of differential equations and variational problems involving p(x)-growth conditions is a consequence of their
applications. In 1920, E. Bingham was surprised that some paints do not run, like honey. He studied such a behavior and
described a strange phenomenon. There are fluids that flow then stop spontaneously (Bingham fluids). Within them, the
forces that create flow reach a first threshold. As this threshold is not reached, the fluid flows without deforms as a solid.
Invented in the 17th century, the ‘‘Flemish medium’’ makes painting oil thixotropic: it fluidies under pressure of the brush,
but freezes as soon as you leave the rest. While the exact composition of themedium Flemish remains unknown, it is known
that the bonds form gradually between its components, which is why the picture freezes in a few minutes. Thanks to this
wonderful medium, Rubens has painted La Kermesse in 24 h.

Materials requiring such more advanced theory have been studied experimentally since the middle of the last century.
The first major discovery on electrorheological fluids is due to Willis Winslow, who obtained a US patent on the effect in
1947 andwrote an article published in 1949, see [46]. These fluids have the interesting property that their viscosity depends
on the electric field in the fluid. Winslow noticed that in such fluids (for instance lithium Polymethacrylate) viscosity in an
electrical field is inversely proportional to the strength of the field. The field induces string-like formations in the fluid,which
are parallel to the field. They can raise the viscosity by as much as five orders of magnitude. This phenomenon is known as
theWinslow effect. For a general account of the underlying physics, we refer to consult Halsey [19]. Electrorheological fluids
have been used in robotics and space technology. The experimental research has been done mainly in the USA, for instance
in NASA laboratories. For more information on properties, modeling and the application of variable exponent spaces to
these fluids we refer to Acerbi and Mingione [1], Ruzicka [42], Chen, Levine, and Rao [9], Harjulehto, Hästö, Latvala, and
Toivanen [20], Molica Bisci and Repovš [34], et al. We also point out the pioneering contributions of Pucci et al. [4,5,3] in the
study of Kirchhoff-type problems, including nonlocal problems with variable exponent like

M


Ω

1
p(x)

|∇u|p(x)dx

∆p(x)u = f (x, u).

We give in what follows two relevant examples that justify the mathematical study of models involving variable expo-
nents.

Example 1 (Image Restoration Chen, Levine, Rao [9]). In image restoration, we consider an input I that corresponds to shades
of gray in a domainΩ ⊂ R2. We assume that I is made up of the true image corrupted by noise. Suppose that the noise is
additive, that is, I = T + η where T is the true image and η is a random variable with zero mean. Thus, the effect of the
noise can be eliminated by smoothing the input, since this will cause the effect of the zero-mean random variables at nearby
locations to cancel. Smoothing corresponds to minimizing the energy

E1(u) =


Ω

(|∇u(x)|2 + |u(x)− I(x)|2)dx.

Unfortunately, smoothing will also destroy the small details from the image, so this procedure is not useful A better
approach is total variation smoothing. Since an edge in the image gives rise to a very large gradient, the level sets around
the edge are very distinct, so this method does a good job of preserving edges. Total variation smoothing corresponds to
minimizing the energy

E2(u) =


Ω

(|∇u(x)| + |u(x)− I(x)|2)dx.

Unfortunately, total variation smoothing not only preserves edges, but also creates edges where there were none in the
original image. This is the staircase effect.

Looking at E1 and E2, Chen, Levine and Rao suggest that an appropriate energy is

E(u) =


Ω

(|∇u(x)|p(x) + |u(x)− I(x)|2)dx,

where 1 6 p 6 2.
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This function should be close to 1 where there are likely to be edges, and close to 2 where there are likely not to be
edges. The approximate location of the edges can be determined by just smoothing the input data and looking for where the
gradient is large.

Example 2 (Electrorheological Fluids). The constitutive equation for the motion of an electrorheological fluid is

ut + div S(u)+ (u · ∇)u + ∇π = f , (1.2)

where u : R3,1
→ R3 is the velocity of the fluid at a point in space–time, π : R3,1

→ R is the pressure, f : R3,1
→ R3

represents external forces, and the stress tensor S : W 1,1
loc → R3,3 is of the form

S(u)(x) = µ(x)[1 + |Du(x)|2](p(x)−2)/p(x)Du(x),

where Du = (∇u + ∇uT )/2 is the symmetric part of the gradient of u.

We observe that the highest order differential term in (1.2) is

div

(1 + |Du(x)|2)(p(x)−2)/p(x)Du(x)


.

The degenerate case corresponds to the Laplace operator with variable exponent.
This survey investigates mathematical models that involve differential operators with variable exponents and we are

mainly interested in the qualitative properties of solutions for problems with p(x) growth as in (1.1). We point out that
even if our results will be formulated in a variational context, our methods and techniques can be applied to systems as
well. A particular interest in this work is given to new phenomena, which are generated by the presence of one or several
variable exponents and which are no longer valid in the classical framework corresponding to homogeneous differential
operators like the Laplace or the p-Laplace operator. In particular, we are interested in new spectral properties, for instance
the concentration of the spectrum near the origin or at infinity. In all the cases studied in the present paper, a central role
is played by various competition effects between the terms arising in the equation, as well as by various perturbations that
can alter the behavior of the solutions by generating nonexistence properties. We refer to [28,29,16,30,31,18,32,41,33] for
related results and complete proofs.

This paper is constructed as follows. In the next section we recall the basic properties of Lebesgue and Sobolev spaces
with variable exponent. Section 3 contains a multiplicity result for a class of Dirichlet problems involving a general
nonhomogeneous differential operator. Section 4 deals with the existence of a continuous spectrum for a differential
operator with two variable exponents. A concentration property at infinity of the spectrum is established in Section 5 in the
case of the p(x)-Laplace operator on exterior domains. The case of multiple variable exponents and sign-changing potential
is considered in the next section of the paper. In Section 7, by using the Morse theory in combination with local linking
theory, we establish several existence results. Finally, we consider the discrete framework and we are concerned with the
existence of homoclinic solutions for a class of partial difference equations with variable exponent.

2. Function spaces with variable exponent

With the emergence of nonlinear problems in applied sciences, standard Lebesgue and Sobolev spaces demonstrate their
limitations in applications. The class of nonlinear problemswith variable exponent growth is a new research field and reflects
a new kind of physical phenomena.

In this sectionwe introduce the Lebesgue and Sobolev spaceswith variable exponent andwe recall theirmain properties.
For more details we refer to the book by Musielak [36], Diening, Harjulehto, Hästö and Ruzicka [10], and the papers by
Edmunds et al. [12,11], Kovacik and Rákosník [23].

For any continuous function h : Ω → (1,∞)we denote

h−
= ess inf

x∈Ω
h(x) and h+

= ess sup
x∈Ω

h(x).

Usually it is assumed that h+ < +∞, since this condition is known to imply many desirable features for the associated
variable exponent Lebesgue space Lh(x)(Ω). This function space is defined by

Lh(x)(Ω) =


u; u is a measurable real-valued function such that


Ω

|u(x)|h(x) dx < ∞


.

On this space we define a norm, the so-called Luxemburg norm, by the formula

|u|h(x) = inf


µ > 0;


Ω

u(x)µ
h(x) dx 6 1


.

The variable exponent Lebesgue space is a special case of an Orlicz–Musielak space. For a constant function h the variable
exponent Lebesgue space coincides with the standard Lebesgue space.

We recall that the variable exponent Lebesgue spaces are separable and reflexive Banach spaces. If 0 < |Ω| < ∞ and
h1, h2 are variable exponents so that h1(x) 6 h2(x) almost everywhere in Ω then there exists the continuous embedding
Lh2(x)(Ω) ↩→ Lh1(x)(Ω).
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We denote by Lh
′(x)(Ω) the conjugate space of Lh(x)(Ω), where 1/h(x) + 1/h′(x) = 1. For any u ∈ Lh(x)(Ω) and

v ∈ Lh
′(x)(Ω) the Hölder type inequality

Ω

uv dx
 6


1
h−

+
1
h′−


|u|h(x)|v|h′(x) (2.1)

holds true.
Variable exponent Lebesgue spaces do not have the mean continuity property: if p is continuous and nonconstant in an

open ball B, then there exists a function u ∈ Lp(x)(B) such that u(x + h) ∉ Lp(x)(B) for all h ∈ RN with arbitrary small norm
(see Kovacik and Rákosník [23]).

Most of the problems in the development of the theory of Lp(x) spaces arise from the fact that these spaces are virtually
never translation invariant. The use of convolution is also limited: the Young inequality

∥f ∗ g∥Lp(x) 6 C ∥f ∥Lp(x) ∥g∥L1

holds if and only if p is constant.
An important role in manipulating the generalized Lebesgue–Sobolev spaces is played by the modular of the Lh(x)(Ω)

space, which is the mapping ρh(x) : Lh(x)(Ω) → R defined by

ρh(x)(u) =


Ω

|u(x)|h(x) dx.

Lebesgue–Sobolev spaces with h+
= +∞ have been investigated in [11,23]. In such a case we denote Ω∞ = {x ∈

Ω; h(x) = +∞} and define the modular by setting

ρh(x)(u) =


Ω\Ω∞

|u(x)|h(x) dx + ess sup
x∈Ω∞

|h(x)|.

If (un), u ∈ Lh(x)(Ω) then the following relations hold true

|u|h(x) > 1 ⇒ |u|h
−

h(x) 6 ρh(x)(u) 6 |u|h
+

h(x), (2.2)

|u|h(x) < 1 ⇒ |u|h
+

h(x) 6 ρh(x)(u) 6 |u|h
−

h(x), (2.3)

|un − u|h(x) → 0 ⇔ ρh(x)(un − u) → 0. (2.4)

Next, we define the variable exponent Sobolev space

W 1,h(x)(Ω) = {u ∈ Lh(x)(Ω) : |∇u| ∈ Lh(x)(Ω)}.

OnW 1,h(x)(Ω)we may consider one of the following equivalent norms

∥u∥h(x) = |u|h(x) + |∇u|h(x)

or

∥u∥ = inf


µ > 0;


Ω

∇u(x)
µ

h(x) + u(x)µ
h(x)


dx 6 1


.

We also define W 1,h(x)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,h(x)(Ω). Assuming h− > 1, then the function spaces W 1,h(x)(Ω)

and W 1,h(x)
0 (Ω) are separable and reflexive Banach spaces. Set

ϱh(x)(u) =


Ω


|∇u(x)|h(x) + |u(x)|h(x)


dx.

For all (un), u ∈ W 1,h(x)
0 (Ω) the following relations hold

∥u∥ > 1 ⇒ ∥u∥h−

6 ϱh(x)(u) 6 ∥u∥h+

, (2.5)

∥u∥ < 1 ⇒ ∥u∥h+

6 ϱh(x)(u) 6 ∥u∥h−

, (2.6)

∥un − u∥ → 0 ⇔ ϱh(x)(un − u) → 0. (2.7)

Next, we recall some embedding results regarding variable exponent Lebesgue–Sobolev spaces. If h, θ : Ω → (1,∞)
are Lipschitz continuous and h+ < N and h(x) 6 θ(x) 6 h⋆(x) for any x ∈ Ω where h⋆(x) = Nh(x)/(N − h(x)), then there
exists a continuous embeddingW 1,h(x)

0 (Ω) ↩→ Lθ(x)(Ω). Furthermore, assuming thatΩ0 is a bounded subset ofΩ , then the
embeddingW 1,h(x)

0 (Ω0) ↩→ Lθ(x)(Ω0) is continuous and compact.



340 V.D. Rădulescu / Nonlinear Analysis 121 (2015) 336–369

As shown by Zhikov [47], the smooth functions are in general not dense in W 1,p(x)(Ω). This property is in relationship
with the Lavrentiev phenomenon, which asserts that there are variational problems for which the infimum over the smooth
functions is strictly greater than the infimum over all functions that satisfy the same boundary conditions. Another
formulation asserts that a Lagrangian L exhibits the Lavrentiev phenomenon if the infimum taken over the set of Lipschitzian
trajectories AC[0, 1] is strictly lower than the infimum taken over the set of Lipschitzian trajectories Lip[0, 1], with fixed
boundary conditions. The first example of such a phenomenon is due to Lavrentiev [24], who proved that

inf
u∈W1,1(0,1), u(0)=0, u(1)=1

 1

0
(x − u3)2|u′(x)|6dx = 0,

while

inf
u∈W1,∞(0,1), u(0)=0, u(1)=1

 1

0
(x − u3)2|u′(x)|6dx > 0.

A related example corresponding to the Lagrangian L(t, x, x′) = (x3 − t2)x′6 on the interval [0, 1] is due to Manià [27].
Moreover, Foss, Hrusa and Mizel [17] gave a physical action of a nonlinear elastic material where the occurrence of the
Lavrentiev phenomenon is the occurrence of a meaningful physical event.

If p is logarithmic Hölder continuous (notation: p ∈ C0, 1
| log t| (Ω)), that is,

|p(x)− p(y)| 6
C

|log|x − y||
∀ x, y ∈ Ω, |x − y| 6 1/2,

then the smooth functions are dense in W 1,p(x)(Ω) and so the Sobolev space W 1,p(x)
0 (Ω) is the closure of C∞

0 (Ω) under the
norm ∥ · ∥. Edmunds and Rakosnik [12] derived the same conclusion under a local monotony condition on p.

SinceΩ is bounded and p ∈ C+(Ω) is logarithmic Hölder continuous, then

|u|p(x) 6 C |∇u|p(x) ∀ u ∈ W 1,p(x)
0 (Ω) [Poincaré inequality],

where C = C(p, |Ω|, diam (Ω),N). Poincaré’s inequality holds under a much weaker assumption on p than the Sobolev
inequality and embedding, namely if the exponent p is not too discontinuous.

2.1. Some remarks and a striking example

We start with some useful remarks in the framework of function spaces with variable exponent.

Remark 1. IfΩ is bounded then the following embeddings hold:

C0,1(Ω) ⊂ W 1,q(Ω) (if q > N) ⊂ C0, 1
|logt| (Ω).

Remark 2. IfΩ is unbounded, then p is said to be logarithmic Hölder continuous if

|p(x)− p(y)| 6
C

|log|x − y||
∀ x, y ∈ Ω, |x − y| 6 1/2

and

|p(x)− p(y)| 6
C

|log(e + |x|)|
∀ x, y ∈ Ω, |y| > |x|.

In such a case we cannot require p ∈ W 1,q(Ω), since

Ω

|p(x)|qdx = ∞.

Let
W 1,(∞,q(·))(Ω) := {u ∈ L∞(Ω); |∇u| ∈ Lq(·)(Ω)},

where N < q− 6 q+ < ∞.
We conclude that ifΩ is unbounded then the hypotheses

(i) p ∈ C0,1(Ω);
(ii) p ∈ W 1,(∞,q(·))(Ω)with N < q− 6 q+ < ∞;
(iii) p ∈ C0, 1

|logt| (Ω)

are independent of each other.
Next, we provide the following example related to minimizers of the one-dimensional Dirichlet energy with variable

exponent. We say that a function u ∈ W 1,p(x)(0, 1) is a minimizer with boundary values 0 and a > 0 if u(0) = 0, u(1) = a,
and  1

0
|u′(y)|p(y)dy 6

 1

0
|v′(y)|p(y)dy,

for all v ∈ W 1,p(x)(0, 1)with v(0) = 0, v(1) = a.
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If p is constant, then the minimizer is linear, namely u(x) = ax. Let us assume that p(x) = 3χ(0,1/2) + 2χ(1/2,1). Assume
that u is a minimizer and denote u(1/2) = b. Then u|(0,1/2) is the solution of the classical energy integral problem with
values 0 and b, and u|(1/2,1) is the solution with boundary values b and a. Thus, these functions are linear. This u has Dirichlet
energy 4b3 + 2(a − b)2. The function b −→ 2b3 + (a − b)2 has a minimum at b = (

√
12a + 1 − 1)/6, which determines

the minimizer of the variable exponent problem. A computation shows that the minimizer is convex if a > 2/3, concave if
a < 2/3 and linear if a = 2/3.

3. Combined sublinear perturbations in a problem with variable exponent

LetΩ ⊂ RN be a bounded domain with smooth boundary. In this section we study the nonlinear Dirichlet problem−div(a(x,∇u)) = λ(uγ−1
− uβ−1), for x ∈ Ω

u = 0, for x ∈ ∂Ω
u > 0, for x ∈ Ω,

(3.1)

where 1 < β < γ < infx∈Ω p(x).
Problem (3.1) is studied in [28], which seems to be the first paper dealing with elliptic equations involving general

nonhomogeneous differential operators.
We assume that a(x, ξ) : Ω×RN

→ RN is the continuous derivative with respect to ξ of the mapping A : Ω×RN
→ R,

A = A(x, ξ), that is, a(x, ξ) = ∇ξA(x, ξ). Suppose that a and A satisfy the following hypotheses:
(A1) The following equality holds

A(x, 0) = 0,

for all x ∈ Ω .
(A2) There exists a positive constant c1 such that

|a(x, ξ)| 6 c1(1 + |ξ |p(x)−1),

for all x ∈ Ω and ξ ∈ RN .
(A3) The following inequality holds

0 6 (a(x, ξ)− a(x, ψ)) · (ξ − ψ),

for all x ∈ Ω and ξ, ψ ∈ RN , with equality if and only if ξ = ψ .
(A4) There exists k > 0 such that

A

x,
ξ + ψ

2


6

1
2
A(x, ξ)+

1
2
A(x, ψ)− k|ξ − ψ |

p(x)

for all x ∈ Ω and ξ, ψ ∈ RN .
(A5) The following inequalities hold true

|ξ |p(x) 6 a(x, ξ) · ξ 6 p(x) A(x, ξ),

for all x ∈ Ω and ξ ∈ RN .

Examples. 1. Set A(x, ξ) =
1

p(x) |ξ |
p(x), a(x, ξ) = |ξ |p(x)−2ξ , where p(x) > 2. Then we get the p(x)-Laplace operator

div(|∇u|p(x)−2
∇u).

2. Set A(x, ξ) =
1

p(x) [(1 + |ξ |2)p(x)/2 − 1], a(x, ξ) = (1 + |ξ |2)(p(x)−2)/2ξ , where p(x) > 2. Then we obtain the generalized
mean curvature operator

div((1 + |∇u|2)(p(x)−2)/2
∇u).

We say that u ∈ W 1,p(x)
0 (Ω) is a weak solution of problem (3.1) if u > 0 a.e. inΩ and

Ω

a(x,∇u) · ∇φ dx − λ


Ω

uγ−1φ dx + λ


Ω

uβ−1φ dx = 0

for all φ ∈ W 1,p(x)
0 (Ω).

The main result in this section asserts that problem (3.1) has at least two nontrivial weak solutions, provided that λ is
large enough.

Theorem 1. Assume hypotheses (A1)–(A5) are fulfilled. Then there exists λ⋆ > 0 such that for all λ > λ⋆ problem (3.1) has at
least two distinct non-negative, nontrivial weak solutions, provided that p+ < min{N,Np−/(N − p−)}.

We observe that using Theorem 4.3 in Fan and Zhang [14], problem (3.1) has at least a weak solution in the particular
case a(x, ξ) = |ξ |p(x)−1ξ . However, the proof in [14] does not state the fact that the solution is non-negative and not even
nontrivial in the case when f (x, 0) = 0.



342 V.D. Rădulescu / Nonlinear Analysis 121 (2015) 336–369

3.1. Qualitative properties of the energy functional

Let E denote the generalized Sobolev spaceW 1,p(x)
0 (Ω). Define the energy functional I : E → R by

I(u) =


Ω

A(x,∇u) dx −
λ

γ


Ω

uγ+ dx +
λ

β


Ω

uβ+ dx,

where u+(x) = max{u(x), 0}.
We first establish some basic properties of I .

Proposition 2. The functional I is well-defined on E and I ∈ C1(E,R) with the derivative given by

⟨I ′(u), φ⟩ =


Ω

a(x,∇u) · ∇φ dx − λ


Ω

uγ−1
+ φ dx + λ


Ω

uβ−1
+ φ dx,

for all u, φ ∈ E.

To prove Proposition 2 we define the functionalΛ : E → R by

Λ(u) =


Ω

A(x,∇u) dx, ∀u ∈ E.

Lemma 3. (i) The functionalΛ is well-defined on E.
(ii) The functionalΛ is of class C1(E,R) and

⟨Λ′(u), φ⟩ =


Ω

a(x,∇u) · ∇φ dx,

for all u, φ ∈ E.
Proof. (i) For any x ∈ Ω and ξ ∈ RN we have

A(x, ξ) =

 1

0

d
dt

A(x, tξ) dt =

 1

0
a(x, tξ) · ξ dt.

Using hypotheses (A2) we get

A(x, ξ) 6 c1

 1

0
(1 + |ξ |p(x)−1tp(x)−1)|ξ | dt

6 c1|ξ | +
c1
p(x)

|ξ |p(x)

6 c1|ξ | +
c1
p−

|ξ |p(x), ∀x ∈ Ω, ξ ∈ RN . (3.2)

The above inequality and (A5) imply

0 6


Ω

A(x,∇u) dx 6 c1


Ω

|∇u| dx +
c1
p−


Ω

|∇u|p(x) dx, ∀u ∈ E.

Using inequality (2.1) and relations (2.2) and (2.3) we deduce thatΛ is well defined on E.
(ii) We now argue the existence of the Gâteaux derivative. Let u, φ ∈ E. Fix x ∈ Ω and 0 < |r| < 1. Then, by the mean

value theorem, there exists ν ∈ [0, 1] such that

|A(x,∇u(x)+ r∇φ(x))− A(x,∇u)|/|r| = |a(x,∇u(x)+ ν r ∇φ(x))| |∇φ(x)|.

Using condition (A2) we obtain

|A(x,∇u(x)+ r∇φ(x))− A(x,∇u)|/|r| 6 [c1 + c1(|∇u(u)| + |∇φ(x)|)p(x)−1
]|∇φ(x)|

6 [c1 + c12p+

(|∇u(x)|p(x)−1
+ |∇φ(x)|p(x)−1)]|∇φ(x)|.

Next, by Hölder’s inequality, we have
Ω

c1|∇φ| dx 6 |c1| p(x)
p(x)−1

· |∇φ|p(x)

and 
Ω

|∇u|p(x)−1
|∇φ| dx 6 | |∇u|p(x)−1

| p(x)
p(x)−1

· |∇φ|p(x).

Therefore

c1[1 + 2p+

(|∇u(x)|p(x)−1
+ |∇φ(x)|p(x)−1)]|∇φ(x)| ∈ L1(Ω).
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It follows from the Lebesgue theorem that

⟨Λ′(u), φ⟩ =


Ω

a(x,∇u) · ∇φ dx.

In order to establish the continuity of the Gâteaux derivative, we assume that un → u in E. Let us define θ(x, u) =

a(x,∇u). Using hypotheses (A2) and Proposition 2.2 in Fan and Zhang [14], we deduce that θ(x, un) → θ(x, u) in (Lq(x)(Ω))N ,
where q(x) =

p(x)
p(x)−1 . By inequality (2.1) we obtain

|⟨Λ′(un)−Λ′(u), φ⟩| 6 |θ(x, un)− θ(x, u)|q(x)|∇φ|p(x)

and so

∥Λ′(un)−Λ′(u)∥ 6 |θ(x, un)− θ(x, u)|q(x) → 0, as n → ∞.

The proof of Lemma 3 is complete. �

The next result generalizes a classical property due to Stampacchia [44]. The proof combines Lebesgue’s dominated
convergence theorem and Sobolev-type embeddings.

Lemma 4. If u ∈ E then u+, u− ∈ E and

∇u+ =


0, if [u 6 0]
∇u, if [u > 0], ∇u− =


0, if [u > 0]
∇u, if [u < 0]

where u± = max{±u(x), 0} for all x ∈ Ω .

By Lemmas 3 and 4 it is clear that Proposition 2 holds true.
We remark that if u is a critical point of I then using Lemma 4 and condition (A5) we have

0 = ⟨I ′(u), u−⟩ =


Ω

a(x,∇u) · ∇u− dx − λ


Ω

(u+)
γ−1u− dx + λ


Ω

(u+)
β−1u− dx

=


Ω

a(x,∇u) · ∇u− dx =


Ω

a(x,∇u−) · ∇u− dx >


Ω

|∇u−|
p(x) dx.

Thus we deduce that u > 0. It follows that the nontrivial critical points of I are non-negative solutions of problem (3.1).
The above remark shows that we can prove Theorem 1 using the critical points theory. More exactly, we first show that

for λ > 0 large enough, the functional I has a global minimizer u1 > 0 such that I(u1) < 0. Next, by means of the Mountain
Pass Theorem, a second critical point u2 with I(u2) > 0 is obtained.

Lemma 5. The functionalΛ is weakly lower semi-continuous.

Proof. By Corollary III.8 in Brezis [7], it is enough to show that Λ is lower semi-continuous. For this purpose, we fix u ∈ E
and ϵ > 0. SinceΛ is convex (by condition (A4)), we deduce that for any v ∈ E the following inequality holds

Ω

A(x,∇v) dx >


Ω

A(x,∇u) dx +


Ω

a(x,∇u) · (∇v − ∇u) dx.

Using condition (A2) and inequality (2.1) we have
Ω

A(x,∇v) dx >


Ω

A(x,∇u) dx −


Ω

|a(x,∇u)| |∇v − ∇u| dx

>


Ω

A(x,∇u) dx − c1


Ω

|∇(v − u)| dx − c1


Ω

|∇u|p(x)−1
|∇(v − u)| dx

>


Ω

A(x,∇u) dx − c2|1|q(x)|∇(v − u)|p(x) − c3| |∇u|p(x)−1
|q(x)|∇(v − u)|p(x)

>


Ω

A(x,∇u) dx − c4∥v − u∥

>


Ω

A(x,∇u) dx − ϵ

for all v ∈ E with ∥v − u∥ < δ = ϵ/c4, where c2, c3, c4 are positive constants, and q(x) =
p(x)

p(x)−1 . We conclude that Λ is
weakly lower semi-continuous. The proof of Lemma 5 is complete. �

Standard arguments show that one of the associated Rayleigh quotients has positive infimum. More precisely, we have
the following property.
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Lemma 6. There exists λ1 > 0 such that

λ1 = inf
u∈E, ∥u∥>1


Ω

1
p(x) |∇u|p(x) dx
Ω

|u|p− dx
.

Proposition 7. (i) The functional I is bounded from below and coercive.
(ii) The functional I is weakly lower semi-continuous.

Proof. (i) Since 1 < β < γ < p− we have

lim
t→∞

1
γ
tγ −

1
β
tβ

tp−
= 0.

Then for any λ > 0 there exists Cλ > 0 such that

λ


1
γ
tγ −

1
β
tβ


6
λ1

2
tp

−

+ Cλ, ∀t > 0,

where λ1 is defined in Lemma 6.
Condition (A5) and the above inequality show that for any u ∈ E with ∥u∥ > 1 we have

I(u) >


Ω

1
p(x)

|∇u|p(x) dx −
λ1

2


Ω

|u|p
−

dx − Cλµ(Ω)

>
1
2


Ω

1
p(x)

|∇u|p(x) dx − Cλµ(Ω)

>
1

2p+
∥u∥p−

− Cλµ(Ω).

This shows that I is bounded from below and coercive.
(ii) Using Lemma 5we deduce thatΛ is weakly lower semi-continuous.We show that I is weakly lower semi-continuous.

Let (un) ⊂ E be a sequence which converges weakly to u in E. SinceΛ is weakly lower semi-continuous we have

Λ(u) 6 lim inf
n→∞

Λ(un). (3.3)

On the other hand, since E is compactly embedded in Lγ (Ω) and Lβ(Ω) it follows that (un+) converges strongly to u+ both
in Lγ (Ω) and in Lβ(Ω). This fact together with relation (3.3) imply

I(u) 6 lim inf
n→∞

I(un).

Therefore, I is weakly lower semi-continuous. The proof of Proposition 7 is complete. �

By Proposition 7 we deduce that there exists u1 ∈ E a global minimizer of I . The following result implies that u1 ≠ 0,
provided that λ is sufficiently large.

The next property asserts that the energy functional achieves negative values for big values of the parameter.

Proposition 8. There exists λ⋆ > 0 such that infE I < 0 for all λ > λ⋆.

Proof. Let Ω1 ⊂ Ω be a compact subset, large enough and u0 ∈ E be such that u0(x) = t0 in Ω1 and 0 6 u0(x) 6 t0 in
Ω\Ω1, where t0 > 1 is chosen such that

1
γ
tγ0 −

1
β
tβ0 > 0.

We have
1
γ


Ω

uγ0 dx −
1
β


Ω

uβ0 dx >
1
γ


Ω1

uγ0 dx −
1
β


Ω1

uβ0 dx −
1
β


Ω\Ω1

uβ0 dx

>
1
γ


Ω1

uγ0 dx −
1
β


Ω1

uβ0 dx −
1
β

tβ0 µ(Ω\Ω1) > 0

and thus I(u0) < 0 for λ > 0 large enough. �

Since Proposition 8 holds true it follows that u1 ∈ E is a nontrivial weak solution of problem (3.1).
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Fix λ > λ⋆. Set

g(x, t) =


0, for t < 0
tγ−1

− tβ−1, for 0 6 t 6 u1(x)
u1(x)γ−1

− u1(x)β−1, for t > u1(x)

and

G(x, t) =

 t

0
g(x, s) ds.

Define the functional J : E → R by

J(u) =


Ω

A(x,∇u) dx − λ


Ω

G(x, u) dx.

The same arguments as those used for functional I imply that J ∈ C1(E,R) and

⟨J ′(u), φ⟩ =


Ω

a(x,∇u) · ∇φ dx − λ


Ω

g(x, u)φ dx,

for all u, φ ∈ E.
On the other hand, we point out that if u ∈ E is a critical point of J then u > 0. The proof can be carried out as in the case

of functional I .

Lemma 9. If u is a critical point of J then u 6 u1.

Proof. We have

0 = ⟨J ′(u)− I ′(u1), (u − u1)+⟩

=


Ω

(a(x,∇u)− a(x,∇u1)) · ∇(u − u1)+ dx − λ


Ω

[g(x, u)− (uγ−1
1 − uβ−1

1 )](u − u1)+ dx

=


[u>u1]

(a(x,∇u)− a(x,∇u1)) · ∇(u − u1) dx.

By condition (A3) we deduce that the above equality holds if and only if ∇u = ∇u1. It follows that ∇u(x) = ∇u1(x) for all
x ∈ ω := {y ∈ Ω; u(y) > u1(y)}. Hence

ω

|∇(u − u1)|
p(x) dx = 0

and thus
Ω

|∇(u − u1)+|
p(x) dx = 0.

By relation (2.3) we obtain

∥(u − u1)+∥ = 0.

Since u− u1 ∈ E by Lemma 4 we have that (u− u1)+ ∈ E. Thus we obtain that (u− u1)+ = 0 inΩ , that is, u 6 u1 inΩ . The
proof of Lemma 9 is complete. �

In the following we determine a critical point u2 ∈ E of J such that J(u2) > 0 via the mountain pass theorem. By the
above lemma we will deduce that 0 6 u2 6 u1 inΩ . Therefore

g(x, u2) = uγ−1
2 − uβ−1

2 and G(x, u2) =
1
γ
uγ2 −

1
β
uβ2

and thus

J(u2) = I(u2) and J ′(u2) = I ′(u2).

More exactly we find

I(u2) > 0 = I(0) > I(u1) and I ′(u2) = 0.

This shows that u2 is a weak solution of problem (3.1) such that 0 6 u2 6 u1, u2 ≠ 0 and u2 ≠ u1.
In order to find u2 described above we prove that the energy J satisfies the following geometric property (see [28] for

details).
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Lemma 10. There exists ρ ∈ (0, ∥u1∥) and a > 0 such that J(u) > a, for all u ∈ E with ∥u∥ = ρ .

Lemma 11. The functional J is coercive.

The proof combines our assumption (A5) with relation (2.2) and inequality (2.1).
The following result yields a sufficient condition which ensures that a weakly convergent sequence in E converges

strongly, too.

Lemma 12. Assume that the sequence (un) converges weakly to u in E and

lim sup
n→∞


Ω

a(x,∇un) · (∇un − ∇u) dx 6 0.

Then (un) converges strongly to u in E.

Proof. Using relation (3.2) we have that there exists a positive constant c5 such that

A(x, ξ) 6 c5(|ξ | + |ξ |p(x)), ∀x ∈ Ω, ξ ∈ RN .

The above inequality implies

A(x,∇un) 6 c5(|∇un| + |∇un|
p(x)), ∀x ∈ Ω, n. (3.4)

The fact that un converges weakly to u in E implies that there exists R > 0 such that ∥un∥ 6 R for all n. By relation (3.4),
inequalities (2.1)–(2.3) we deduce that {


Ω
A(x,∇un) dx} is bounded. Then, up to a subsequence, we deduce that

Ω
A(x,∇un) dx → c . By Lemma 5 we obtain

Ω

A(x,∇u) dx 6 lim inf
n→∞


Ω

A(x,∇un) dx = c.

On the other hand, sinceΛ is convex, we have
Ω

A(x,∇u) dx >


Ω

A(x,∇un) dx +


Ω

a(x,∇un) · (∇u − ∇un) dx.

Next, by the hypothesis lim supn→∞


Ω
a(x,∇un) · (∇un − ∇u) dx 6 0, we conclude that


Ω
A(x,∇u) dx = c.

Taking into account that (un + u)/2 converges weakly to u in E and using Lemma 5 we have

c =


Ω

A(x,∇u) dx 6 lim inf
n→∞


Ω

A

x,∇

un + u
2


dx. (3.5)

We assume by contradiction that un does not converge to u in E. Then by (2.4) it follows that there exist ϵ > 0 and a
subsequence (unm) of (un) such that

Ω

|∇(unm − u)|p(x) dx > ϵ, ∀m. (3.6)

By condition (A4) we have

1
2
A(x,∇u)+

1
2
A(x,∇unm)− A


x,∇

u + unm

2


> k|∇(unm − u)|p(x). (3.7)

Relations (3.6) and (3.7) yield

1
2


Ω

A(x,∇u) dx +
1
2


Ω

A(x,∇unm) dx −


Ω

A

x,∇

u + unm

2


> k


Ω

|∇(unm − u)|p(x) dx > kϵ.

Lettingm → ∞ in the above inequality we obtain

c − kϵ > lim sup
m→∞


Ω

A

x,∇

u + unm

2


dx

and that is a contradiction with (3.5). It follows that un converges strongly to u in E and Lemma 12 is proved. �
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3.2. Existence of multiple solutions

Using Lemma 10 and the mountain pass theorem (see Ambrosetti and Rabinowitz [2]) we deduce that there exists a
sequence (un) ⊂ E such that

J(un) → c > 0 and J ′(un) → 0 (3.8)

where

c = inf
γ∈Γ

max
t∈[0,1]

J(γ (t))

and

Γ = {γ ∈ C([0, 1], E); γ (0) = 0, γ (1) = u1}.

By relation (3.8) and Lemma 11 we obtain that (un) is bounded and thus passing eventually to a subsequence, still denoted
by (un), we may assume that there exists u2 ∈ E such that un converges weakly to u2. Since E is compactly embedded in
Li(Ω) for any i ∈ [1, p−

], it follows that un converges strongly to u2 in Li(Ω) for all i ∈ [1, p−
]. Thus, as n → ∞,

⟨Λ′(un)−Λ′(u2), un − u2⟩ = ⟨J ′(un)− J ′(u2), un − u2⟩ + λ


Ω

[g(x, un)− g(x, u2)](un − u2) dx = o(1).

By Lemma 12 we deduce that un converges strongly to u2 in E and using relation (3.8) we find

J(u2) = c > 0 and J ′(u2) = 0.

Therefore, J(u2) = c > 0 and J ′(u2) = 0. By Lemma 9 we deduce that 0 6 u2 6 u1 inΩ . Therefore

g(x, u2) = uγ−1
2 − uβ−1

2 and G(x, u2) =
1
γ
uγ2 −

1
β
uβ2

and thus

J(u2) = I(u2) and J ′(u2) = I ′(u2).

We conclude that u2 is a critical point of I and thus a solution of (3.1). Furthermore, I(u2) = c > 0 and I(u2) > 0 > I(u1).
Thus u2 is not trivial and u2 ≠ u1. The proof of Theorem 1 is now complete. �

4. Subcritical Lane–Emden equations with multiple variable exponents

4.1. Previous results and statement of the problem

The standard Lane–Emden equation is
−1u = λ|u|q−2u, if x ∈ Ω

u = 0, if x ∈ ∂Ω,

where Ω ⊂ RN is a bounded domain. This paper has been intensively studied, especially after the pioneering paper by
Ambrosetti and Rabinowitz [2]. The structure of solutions is well understood at this stage and the behavior of solutions
strongly depends on the values of q with respect to the critical Sobolev exponent. In the present paper we point out some
striking properties of solutions in the case of the presence of several variable exponents. In particular, we will point out
some concentration properties of the spectrum, which are generated by the nonstandard nonlinearities in relationship with
the nonhomogeneous differential operator.

Consider the following nonlinear Dirichlet problem
−div(|∇u|p(x)−2

∇u) = λ|u|q(x)−2u, if x ∈ Ω

u = 0, if x ∈ ∂Ω.
(4.1)

In the case when p(x) = q(x) on Ω , Fan, Zhang and Zhao [15] established the existence of infinitely many eigenvalues
for problem (4.1) by using an argument based on the Lyusternik–Schnirelmann critical point theory. Denoting byΛ the set
of all nonnegative eigenvalues, Fan, Zhang and Zhao showed thatΛ is discrete, supΛ = +∞ and they pointed out that only
under special conditions, which are somehow connected with a kind of monotony of the function p(x), we have infΛ > 0
(this is in contrast with the case when p(x) is a constant; then, we always have infΛ > 0).

In the case when minx∈Ω q(x) < minx∈Ω p(x) and q(x) has a subcritical growth Mihăilescu and Rădulescu [29] used
Ekeland’s variational principle in order to prove the existence of a continuous family of eigenvalues which lies in a
neighborhood of the origin. If maxx∈Ω p(x) < minx∈Ω q(x) and q(x) has a subcritical growth a mountain-pass argument,
then any λ > 0 is an eigenvalue of problem (4.1).
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Assuming that maxx∈Ω q(x) < minx∈Ω p(x) then the energy functional associated to problem (4.1) has a nontrivial
minimum for any positive λ, see [14, Theorem 4.3]. Using now the main result in [29], we obtain two positive constants
λ⋆ and λ⋆⋆ such that any λ ∈ (0, λ⋆) ∪ (λ⋆⋆,∞) is an eigenvalue of problem (4.1).

In this section we are concerned with the problem
−div((|∇u|p1(x)−2

+ |∇u|p2(x)−2)∇u) = λ|u|q(x)−2u, if x ∈ Ω

u = 0, if x ∈ ∂Ω.
(4.2)

We impose the following hypotheses:

1 < p2(x) < min
y∈Ω

q(y) 6 max
y∈Ω

q(y) < p1(x), ∀ x ∈ Ω (4.3)

and

max
y∈Ω

q(y) < p⋆2(x), ∀ x ∈ Ω, (4.4)

where p⋆2(x) :=
Np2(x)
N−p2(x)

if p2(x) < N and p⋆2(x) = +∞ if p2(x) > N .
Under these conditions, we show a concentration property of the spectrum at infinity. More precisely, we argue that

there are two positive constants λ0 and λ1 with λ0 6 λ1 such that any λ ∈ [λ1,∞) is an eigenvalue of problem (4.2) while
any λ ∈ (0, λ0) is not an eigenvalue of problem (4.2). An important consequence of our study is that, under hypotheses (3.1)
and (4.4), we have

inf
u∈W

1,p1(x)
0 (Ω)\{0}


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx
Ω

1
q(x) |u|

q(x) dx
> 0.

That fact is proved by using the Lagrange multiplier theorem. The absence of homogeneity will be balanced by the fact that
assumptions (3.1) and (4.4) yield

lim
∥u∥p1(x)→0


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx
Ω

1
q(x) |u|

q(x) dx
= ∞

and

lim
∥u∥p1(x)→∞


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx
Ω

1
q(x) |u|

q(x) dx
= ∞,

where ∥ · ∥p1(x) stands for the norm in the variable exponent Sobolev spaceW 1,p1(x)
0 (Ω).

4.2. Concentration at infinity

Since p2(x) < p1(x) for any x ∈ Ω it follows thatW 1,p1(x)
0 (Ω) is continuously embedded inW 1,p2(x)

0 (Ω). Thus, a solution
for a problem of type (4.2) will be sought in the variable exponent spaceW 1,p1(x)

0 (Ω).
We say that λ ∈ R is an eigenvalue of problem (4.2) if there exists u ∈ W 1,p1(x)

0 (Ω)\{0} such that
Ω

(|∇u|p1(x)−2
+ |∇u|p2(x)−2)∇u∇v dx − λ


Ω

|u|q(x)−2uv dx = 0,

for all v ∈ W 1,p1(x)
0 (Ω). We point out that if λ is an eigenvalue of problem (4.2) then the corresponding eigenfunction

u ∈ W 1,p1(x)
0 (Ω)\{0} is a weak solution of problem (4.2).

Define a first Rayleigh quotient by

λ1 := inf
u∈W

1,p1(x)
0 (Ω)\{0}


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx
Ω

1
q(x) |u|

q(x) dx
. (4.5)

The main result in this section is given by the following theorem. This result points out the importance of the quotient
defined in (4.5) and of a second Rayleigh quotient denoted by λ0.

Theorem 13. Assume that conditions (4.3) and (4.4) are fulfilled. Then λ1 > 0. Moreover, any λ ∈ [λ1,∞) is an eigenvalue of
problem (4.2). Furthermore, there exists a positive constant λ0 such that λ0 6 λ1 and any λ ∈ (0, λ0) is not an eigenvalue of
problem (4.2).
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Proof. Let E denote the generalized Sobolev space W 1,p1(x)
0 (Ω). We denote by ∥ · ∥ the norm on W 1,p1(x)

0 (Ω) and by ∥ · ∥1

the norm onW 1,p2(x)
0 (Ω).

Define the functionals J, I, J1, I1 : E → R by

J(u) =


Ω

1
p1(x)

|∇u|p1(x) dx +


Ω

1
p2(x)

|∇u|p2(x) dx,

I(u) =


Ω

1
q(x)

|u|q(x) dx,

J1(u) =


Ω

|∇u|p1(x) dx +


Ω

|∇u|p2(x) dx,

I1(u) =


Ω

|u|q(x) dx.

Standard arguments imply that J, I ∈ C1(E,R) and for all u, v ∈ E,

⟨J ′(u), v⟩ =


Ω

(|∇u|p1(x)−2
+ |∇u|p2(x)−2)∇u∇v dx,

⟨I ′(u), v⟩ =


Ω

|u|q(x)−2uv dx.

We split the proof of Theorem 13 into four steps.
Step 1. We show that λ1 > 0.
Since for any x ∈ Ω we have p1(x) > q+ > q(x) > q− > p2(x)we deduce that for any u ∈ E,

2(|∇u(x)|p1(x) + |∇u(x)|p2(x)) > |∇u(x)|q
+

+ |∇u(x)|q
−

and

|u(x)|q
+

+ |u(x)|q
−

> |u(x)|q(x).

Integrating the above inequalities we find

2

Ω

(|∇u|p1(x) + |∇u|p2(x)) dx >


Ω

(|∇u|q
+

+ |∇u|q
−

) dx, ∀ u ∈ E (4.6)

and 
Ω

(|u|q
+

+ |u|q
−

) dx >


Ω

|u|q(x) dx, ∀ u ∈ E. (4.7)

By Sobolev embeddings, there exist positive constants λq+ and λq− such that
Ω

|∇u|q
+

dx > λq+


Ω

|u|q
+

dx, ∀ u ∈ W 1,q+

0 (Ω) (4.8)

and 
Ω

|∇u|q
−

dx > λq−


Ω

|u|q
−

dx, ∀ u ∈ W 1,q−

0 (Ω). (4.9)

Using again the fact that q− 6 q+ < p1(x) for any x ∈ Ω we deduce that E is continuously embedded in W 1,q+

0 (Ω) and in

W 1,q−

0 (Ω). Thus, inequalities (4.8) and (4.9) hold true for any u ∈ E.
Using inequalities (4.8), (4.9) and (4.7) it is clear that there exists a positive constant µ such that

Ω

(|∇u|q
+

+ |∇u|q
−

) dx > µ


Ω

|u|q(x) dx, ∀ u ∈ E. (4.10)

Next, inequalities (4.10) and (4.6) yield
Ω

(|∇u|p1(x) + |∇u|p2(x)) dx >
µ

2


Ω

|u|q(x) dx, ∀ u ∈ E. (4.11)

By relation (4.11) we deduce that

λ0 = inf
v∈E\{0}

J1(v)
I1(v)

> 0 (4.12)
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and thus,

J1(u) > λ0I1(u), ∀ u ∈ E. (4.13)

The above inequality yields

p+

1 · J(u) > J1(u) > λ0I1(u) > λ0I(u) ∀ u ∈ E. (4.14)

The last inequality assures that λ1 > 0 and thus, step 1 is verified.
Step 2. We show that λ1 is an eigenvalue of problem (4.2).

Lemma 14. The following relations hold true:

lim
∥u∥→∞

J(u)
I(u)

= ∞ (4.15)

and

lim
∥u∥→0

J(u)
I(u)

= ∞. (4.16)

Proof. Since E is continuously embedded in Lq
±

(Ω) it follows that there exist two positive constants c1 and c2 such that

∥u∥ > c1 · |u|q+ , ∀ u ∈ E (4.17)

and

∥u∥ > c2 · |u|q− , ∀ u ∈ E. (4.18)

For any u ∈ E with ∥u∥ > 1 by relations (2.2), (4.7), (4.17), (4.18) we infer

J(u)
I(u)

>

∥u∥p
−

1

p+

1

|u|q
+

q+
+|u|q

−

q−

q−

>

∥u∥p
−

1

p+

1

c−q+
1 ∥u∥q++c−q−

2 ∥u∥q−

q−

.

Since p−

1 > q+ > q−, passing to the limit as ∥u∥ → ∞ in the above inequality we deduce that relation (4.15) holds true.
Next, let us remark that since p1(x) > p2(x) for any x ∈ Ω , the space W 1,p1(x)

0 (Ω) is continuously embedded in
W 1,p2(x)

0 (Ω). Thus, if ∥u∥ → 0 then ∥u∥1 → 0.
The above remarks enable us to affirm that for any u ∈ E with ∥u∥ < 1 small enough we have ∥u∥1 < 1.
On the other hand, since (4.4) holds true we deduce thatW 1,p2(x)

0 (Ω) is continuously embedded in Lq
±

(Ω). It follows that
there exist two positive constants d1 and d2 such that

∥u∥1 > d1 · |u|q+ , ∀ u ∈ W 1,p2(x)
0 (Ω) (4.19)

and

∥u∥1 > d2 · |u|q− , ∀ u ∈ W 1,p2(x)
0 (Ω). (4.20)

Thus, for any u ∈ E with ∥u∥ < 1 small enough, relations (2.3), (4.7), (4.19), (4.20) imply

J(u)
I(u)

>


Ω |∇u|p2(x) dx

p+

2

|u|q
+

q+
+|u|q

−

q−

q−

>

∥u∥
p+2
1

p+

2

d−q+
1 ∥u∥q

+

1 +d−q−
2 ∥u∥q

−

1
q−

.

Since p+

2 < q− 6 q+, passing to the limit as ∥u∥ → 0 (and thus, ∥u∥1 → 0) in the above inequality we deduce that relation
(4.16) holds true. The proof of Lemma 14 is complete.

Lemma 15. There exists u ∈ E\{0} such that J(u)
I(u) = λ1.

Proof. Let {un} ⊂ E\{0} be a minimizing sequence for λ1, that is,

lim
n→∞

J(un)

I(un)
= λ1 > 0. (4.21)
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By relation (4.15) it is clear that {un} is bounded in E. Since E is reflexive it follows that there exists u ∈ E such that, up to
a subsequence, {un} converges weakly to u in E. On the other hand, similar arguments as those used in the proof of Lemma
3.4 in [28] show that the functional J is weakly lower semi-continuous. Thus, we find

lim inf
n→∞

J(un) > J(u). (4.22)

By the compact embedding theorem for spaces with variable exponent and assumption 1 6 maxy∈Ω q(y) < p1(x) for all
x ∈ Ω (see (4.3)) it follows that E is compactly embedded in Lq(x)(Ω). Thus, {un} converges strongly in Lq(x)(Ω). Then, by
relation (2.4) it follows that

lim
n→∞

I(un) = I(u). (4.23)

Relations (4.22) and (4.23) imply that if u ≢ 0 then

J(u)
I(u)

= λ1.

Thus, in order to conclude that the lemma holds true it is enough to show that u is not trivial. Assume by contradiction the
contrary. Then un converges weakly to 0 in E and strongly in Lq(x)(Ω). In other words, we will have

lim
n→∞

I(un) = 0. (4.24)

Letting ϵ ∈ (0, λ1) be fixed by relation (4.21) we deduce that for n large enough we have

|J(un)− λ1I(un)| < ϵI(un),

or

(λ1 − ϵ)I(un) < J(un) < (λ1 + ϵ)I(un).

Passing to the limit in the above inequalities and taking into account that relation (4.24) holds true we find

lim
n→∞

J(un) = 0.

That fact combined with relation (2.4) implies that actually un converges strongly to 0 in E, that is, limn→∞ ∥un∥ = 0. By
this information and relation (4.16) we get

lim
n→∞

J(un)

I(un)
= ∞,

and this is a contradiction. Thus, u ≢ 0. The proof of Lemma 15 is complete.

By Lemma 15 we conclude that there exists u ∈ E\{0} such that

J(u)
I(u)

= λ1 = inf
w∈E\{0}

J(w)
I(w)

. (4.25)

Then, for any v ∈ E we have

d
dϵ

J(u + ϵv)

I(u + ϵv)


ϵ=0

= 0.

A simple computation yields
Ω

(|∇u|p1(x)−2
+ |∇u|p2(x)−2)∇u∇v dx · I(u)− J(u) ·


Ω

|u|q(x)−2uv dx = 0, ∀ v ∈ E. (4.26)

Relation (4.26) combined with the fact that J(u) = λ1I(u) and I(u) ≠ 0 implies the fact that λ1 is an eigenvalue of problem
(4.2). Thus, step 2 is verified.

Step 3. We show that any λ ∈ (λ1,∞) is an eigenvalue of problem (4.2).
Let λ ∈ (λ1,∞) be arbitrary but fixed. Define Tλ : E → R by

Tλ(u) = J(u)− λI(u).

Clearly, Tλ ∈ C1(E,R)with

⟨T ′

λ(u), v⟩ = ⟨J ′(u), v⟩ − λ⟨I ′(u), v⟩, ∀ u ∈ E.

Thus, λ is an eigenvalue of problem (4.2) if and only if there exists uλ ∈ E\{0} a critical point of Tλ.
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With similar arguments as in the proof of relation (4.15) we can show that Tλ is coercive, that is, lim∥u∥→∞ Tλ(u) = ∞.
On the other hand, as we have already remarked, similar arguments as those used in the proof of Lemma 3.4 in [28] show
that the functional Tλ is weakly lower semi-continuous. Thus there exists uλ ∈ E a global minimum point of Tλ and thus,
a critical point of Tλ. In order to conclude that step 4 holds true it is enough to show that uλ is not trivial. Indeed, since
λ1 = infu∈E\{0}

J(u)
I(u) and λ > λ1 it follows that there exists vλ ∈ E such that

J(vλ) < λI(vλ),

or

Tλ(vλ) < 0.

Thus,

inf
E

Tλ < 0

and we conclude that uλ is a nontrivial critical point of Tλ, or λ is an eigenvalue of problem (4.2). Thus, step 3 is verified.
Step 4. Any λ ∈ (0, λ0), where λ0 is given by (4.12), is not an eigenvalue of problem (4.2).
Indeed, assuming by contradiction that there exists λ ∈ (0, λ0) an eigenvalue of problem (4.2) it follows that there exists

uλ ∈ E\{0} such that

⟨J ′(uλ), v⟩ = λ⟨I ′(uλ), v⟩, ∀ v ∈ E.

Thus, for v = uλ we find

⟨J ′(uλ), uλ⟩ = λ⟨I ′(uλ), uλ⟩,

that is,

J1(uλ) = λI1(uλ).

The fact that uλ ∈ E\{0} assures that I1(uλ) > 0. Since λ < λ0, the above information yields

J1(uλ) > λ0I1(uλ) > λI1(uλ) = J1(uλ).

Clearly, the above inequalities lead to a contradiction. Thus, step 4 is verified.
By steps 2, 3 and 4 we deduce that λ0 6 λ1. The proof of Theorem 13 is now complete.

5. Eigenvalue problems with variable exponents on exterior domains

The result established in Section 4 can be extended to other classes of nonlinear equations with variable exponent. We
give an example in this section in the framework of nonhomogeneous differential operators with a single variable exponent.

We are concerned with the nonlinear eigenvalue problem
−div(|∇u|p(x)−2

∇u)+ |u|p(x)−2u + |u|q(x)−2u = λg(x)|u|r(x)−2u if x ∈ Ω

u = 0 if x ∈ ∂Ω,
(5.1)

where Ω is a smooth exterior domain in RN , that is, Ω is the complement of a bounded domain with Lipschitz boundary.
The mappings p, q, r : Ω → [2,∞) are Lipschitz continuous functions while g : Ω → [0,∞) is a measurable function for
which there exists a nonempty setΩ0 ⊂ Ω such that g(x) > 0 for any x ∈ Ω0, and λ > 0 is a real number. We assume that
the functions p, q and r satisfy the hypotheses

2 6 p− 6 p+ < N, (5.2)

p+ < r− 6 r+ < q− 6 q+ <
Np−

N − p−
. (5.3)

Furthermore, we assume that the function g(x) satisfies the hypotheses

g ∈ L∞(Ω) ∩ Lp0(x)(Ω), (5.4)

where p0(x) = p⋆(x)/(p⋆(x)− r−) for any x ∈ Ω .
We say that λ ∈ R is an eigenvalue of problem (5.1) if there exists u ∈ W 1,p(x)

0 (Ω)\{0} such that
Ω

(|∇u|p(x)−2
∇u∇v + |u|p(x)−2uv + |u|q(x)−2uv) dx − λ


Ω

g(x)|u|r(x)−2uv dx = 0,

for all v ∈ W 1,p(x)
0 (Ω).
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Define the Rayleigh quotients

λ1 := inf
u∈W1,p(x)

0 (Ω)\{0}


Ω

1
p(x) (|∇u|p(x) + |u|p(x)) dx +


Ω

1
q(x) |u|

q(x) dx
Ω

g(x)
r(x) |u|

r(x) dx

and

λ0 := inf
u∈W1,p(x)

0 (Ω)\{0}


Ω
(|∇u|p(x) + |u|p(x)) dx +


Ω

|u|q(x) dx
Ω
g(x)|u|r(x) dx

.

Theorem 16. Let Ω be an exterior domain with Lipschitz boundary in RN , where N > 3. Suppose that p, q, r : Ω → [2,∞) are
Lipschitz continuous functions and g : Ω → [0,∞) is a measurable function for which there exists a nonempty set Ω0 ⊂ Ω

such that g > 0 inΩ0. Assume conditions (5.2), (4.3), and (5.4) are fulfilled.
Then

0 < λ0 6 λ1.

Furthermore, each λ ∈ [λ1,∞) is an eigenvalue of problem (5.1) while any λ ∈ (0, λ0) is not an eigenvalue of problem (5.1).

Sketch of the proof. Let E denote the generalized Sobolev spaceW 1,p(x)
0 (Ω).

Define the functionals J1, I1, J0, I0 : E → R by

J1(u) =


Ω

1
p(x)

(|∇u|p(x) + |u|p(x)) dx +


Ω

1
q(x)

|u|q(x) dx,

I1(u) =


Ω

g(x)
r(x)

|u|r(x) dx,

J0(u) =


Ω

(|∇u|p(x) + |u|p(x)) dx +


Ω

|u|q(x) dx,

I0(u) =


Ω

g(x)|u|r(x) dx.

Standard arguments imply that J1, I1 ∈ C1(E,R) and for all u, v ∈ E,

⟨J ′1(u), v⟩ =


Ω

(|∇u|p(x)−2
∇u∇v + |u|p(x)−2uv + |u|q(x)−2uv) dx,

⟨I ′1(u), v⟩ =


Ω

g(x)|u|r(x)−2uv dx.

For any λ > 0 we also define the functional Tλ : E → R by

Tλ(u) = J1(u)− λ · I1(u), ∀ u ∈ E.

It is clear that λ is an eigenvalue for problem (5.1) if and only if there exists uλ ∈ E\{0} a critical point of the functional Tλ.
The proof of Theorem 16 is divided into the following steps.
Step 1. We have λ0 and λ1 > 0. This follows with energy estimates and similar arguments as in Section 4.
Step 2. Any λ ∈ (0, λ0) is not an eigenvalue of problem (5.1).
Step 3. Any λ ∈ (λ1,∞) is an eigenvalue for problem (5.1). This property relies on the following auxiliary results first

prove two auxiliary results.

Lemma 17. Assume that the hypotheses of Theorem 16 are satisfied and s is a real number such that

r+ < s < (p−)⋆,

where (p−)⋆ = Np−/(N − p−). Then g ∈ L
s

s−r− (Ω) ∩ L
s

s−r+ (Ω) and
Ω

g(x)|u|r(x) 6 |g| s
s−r−

|u|r
−

s + |g| s
s−r+

|u|r
+

s , ∀ u ∈ E. (5.5)

Lemma 18. For any λ > 0 we have

lim
∥u∥→∞

Tλ(u) = ∞.

Returning to the proof of Step 3, we fix λ ∈ (λ1,∞). By Lemma 18 we deduce that lim∥u∥→∞ Tλ(u) = ∞, that is, Tλ is
coercive. On the other hand, standard arguments show that the functional Tλ is weakly lower semi-continuous. Thus there
exists uλ ∈ E a global minimum point of Tλ and hence, a critical point of Tλ. In order to conclude that step 3 holds true it
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is enough to show that uλ is not trivial. Indeed, since λ1 = infu∈E\{0}
J1(u)
I1(u)

and λ > λ1 it follows that there exists vλ ∈ E
such that

J1(vλ) < λI1(vλ),

or

Tλ(vλ) < 0.

Thus,

inf
E

Tλ < 0

and we conclude that uλ is a nontrivial critical point of Tλ, or λ is an eigenvalue of problem (5.1). Thus, step 3 is verified.
Step 4. λ1 is an eigenvalue of problem (5.1).
This property follows by using the following two auxiliary results.
We begin by proving two auxiliary results.

Lemma 19. The following relation holds true

lim
∥u∥→0

J0(u)
I0(u)

= +∞.

Lemma 20. Assume {un} converges weakly to u in E. Then the following relations hold true

lim
n→∞

I0(un) = I0(u), (5.6)

lim
n→∞

⟨I ′1(un), un − u⟩ = 0. (5.7)

Returning to the proof of Step 4, let λn↘λ1. By Step 3 we deduce that for each n there exists un ∈ E\{0} such that

⟨J ′1(un), v⟩ = λn · ⟨I ′1(un), v⟩, ∀ v ∈ E. (5.8)

Taking v = un we find

J0(un) = λn · I0(un). (5.9)

Passing to the limit as n → ∞ in relation (5.9) and taking into account that relation (5.6) holds true we deduce

lim
n→∞

J0(un) = λ1 · I0(u),

and thus, the sequence {J0(un)} is bounded in R. That remark, the definition of J0 and relations (2.5) and (2.6) imply that
the sequence {un} is bounded in E. Since E is a reflexive Banach space it follows that there exists u ∈ E such that, up to a
subsequence, {un} converges weakly to u in E. Then by relations (5.6) and (5.7) it follows that

lim
n→∞

I0(un) = I0(u)

and

lim
n→∞

⟨I ′1(un), un − u⟩ = 0.

On the other hand, by Lemma 4.2 in [25] we find that for any θ > 2 and any ξ , η ∈ RN we have

2
2θ−1 − 1

|ξ − η|θ 6 θ(|ξ |θ−2ξ − |η|θ−2η) · (ξ − η). (5.10)

Using inequality (5.10) and the above relations we deduce that there exist two positive constants L1 and L2 such that

L1


Ω

(|∇(un − u)|p(x) + |un − u|p(x)) dx 6


Ω

(|∇un|
p(x)−2

∇un − |∇u|p(x)−2
∇u) · (∇un − ∇u) dx

+


Ω

(|un|
p(x)−2un − |u|p(x)−2u) · (un − u) dx

and

L2


Ω

|un − u|q(x) dx 6


Ω

(|un|
q(x)−2un − |u|q(x)−2u) · (un − u) dx.
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Adding the two relations above, using relations (5.8) and (5.7) and the fact that {un} converges weakly to u in E we deduce
that

L1


Ω

(|∇(un − u)|p(x) + |un − u|p(x)) dx 6 ⟨J ′1(un)− J ′1(u), un − u⟩

= |⟨J ′1(un), un − u⟩| + |⟨J ′1(u), un − u⟩|
= |λn · ⟨I ′1(un), un − u⟩| + |⟨J ′1(u), un − u⟩| → 0,

as n → ∞.
The above inequalities and relations (2.4) and (2.7) show that un converges strongly to u in E. Then passing to the limit

as n → ∞ in (5.8) it follows that

⟨J ′1(u), v⟩ = λ1 · ⟨I ′1(u), v⟩, ∀ v ∈ E.

Thus, u is a critical point for Tλ1 . In order to prove that λ1 is an eigenvalue for problem (5.1) it remains to show that u ≠ 0.
Indeed, passing to the limit as n → ∞ in (5.9) we find

lim
n→∞

J0(un)

I0(un)
= λ1.

On the other hand, if we assume by contradiction that u = 0 then we have un → 0 in E, or ∥un∥ → 0. But by Lemma 19 we
deduce that

lim
n→∞

J0(un)

I0(un)
= ∞,

which represents a contradiction. Consequently, u ≠ 0 and thus, λ1 is an eigenvalue for problem (5.1).
By steps 2, 3 and 4 we deduce that λ0 6 λ1. The proof of Theorem 16 is now complete. �

We notice that a similar result as those of Theorem 16 can be proved with similar arguments for the problem
−1u + u + |u|q(x)−2u = λg(x)|u|r(x)−2u for x ∈ Ω

u = 0 for x ∈ ∂Ω,

where Ω is a smooth exterior domain in R2. The mappings q and r : Ω → [2,∞) are still Lipschitz continuous functions
while g : Ω → [0,∞) is a function for which there exists a nonempty setΩ0 ⊂ Ω such that g(x) > 0 for any x ∈ Ω0, and
λ > 0 is a real number. This time conditions (5.2)–(5.4) should be replaced by the following conditions

2 < r− 6 r+ < q− 6 q+ < ∞

and

g ∈ L∞(Ω) ∩ L1(Ω).

6. Nonlinear eigenvalue problems with variable exponent and sign-changing potential

In this section we discuss some combined effects in a class of nonlinear eigenvalue problems with several variable
exponents and sign-changing potential. We are concerned with the study of the Dirichlet problem

−div((|∇u|p1(x)−2
+ |∇u|p2(x)−2)∇u)+ V (x)|u|m(x)−2u = λ(|u|q1(x)−2

+ |u|q2(x)−2)u, x ∈ Ω

u = 0, x ∈ ∂Ω,
(6.1)

whereΩ ⊂ RN (N > 3) is a bounded domain with smooth boundary.
We assume that p1, p2, q1, q2,m : Ω → (1,∞) are continuous functions satisfying the following hypotheses:

max
Ω

p2 < min
Ω

q2 6 max
Ω

q2 6 min
Ω

m 6 max
Ω

m 6 min
Ω

q1 6 max
Ω

q1 < min
Ω

p1, (6.2)

max
Ω

q1 < p⋆2(x) :=


Np2(x)

N − p2(x)
if p2(x) < N

+∞ if p2(x) > N.
(6.3)

We assume that the potential V : Ω → R satisfies

V ∈ Lr(x)(Ω), with r ∈ C(Ω) and r(x) >
N

min
Ω

m
∀ x ∈ Ω. (6.4)
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Condition (6.2) which describes the competition between the growth rates involved in Eq. (6.1) represents the key of the
present study since it establishes a balance between all the variable exponents involved in the problem. Such a balance is
essential since our setting assumes a non-homogeneous eigenvalue problem for which a minimization technique based on
the Lagrange multiplier theorem cannot be applied in order to find (principal) eigenvalues (unlike the case offered by the
homogeneous operators). Thus, in the case of nonlinear non-homogeneous eigenvalue problems the classical theory used in
the homogeneous case does not work entirely, but some of its ideas can still be useful and some particular results can still
be obtained in some aspects while in other aspects entirely new phenomena can occur. To focus on our case, condition (6.2)
together with conditions (6.3) and (6.4) implies

lim
∥u∥p1(x)→0


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx +

Ω

V (x)
m(x) |u|

m(x) dx
Ω

1
q1(x)

|u|q1(x) dx +

Ω

1
q2(x)

|u|q2(x) dx
= ∞

and

lim
∥u∥p1(x)→∞


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx +

Ω

V (x)
m(x) |u|

m(x) dx
Ω

1
q1(x)

|u|q1(x) dx +

Ω

1
q2(x)

|u|q2(x) dx
= ∞,

where ∥ · ∥p1(x) stands for the norm in the variable exponent Sobolev space W 1,p1(x)
0 (Ω). In other words, the absence of

homogeneity is balanced by the behavior (actually, the blow-up) of the Rayleigh quotient associated to problem (6.1) in the
origin and at infinity. The consequences of the above remarks is that the infimum of the Rayleigh quotient associated to
problem (6.1) is a real number, that is,

inf
u∈W

1,p1(x)
0 (Ω)\{0}


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx +

Ω

V (x)
m(x) |u|

m(x) dx
Ω

1
q1(x)

|u|q1(x) dx +

Ω

1
q2(x)

|u|q2(x) dx
∈ R, (6.5)

and it will be attained for a function u0 ∈ W 1,p1(x)
0 (Ω)\{0}. Moreover, the value in (6.5) represents an eigenvalue of problem

(6.1) with the corresponding eigenfunction u0. However, at this stage we cannot say if the eigenvalue described above is the
lowest eigenvalue of problem (6.1) or not, even if we are able to show that any λ small enough is not an eigenvalue of (6.1).
At the moment this remains an open question. On the other hand, we can prove that any λ larger than the value given by
relation (6.5) is also an eigenvalue of problem (6.1). Thus, we conclude that problem (6.1) possesses a continuous family of
eigenvalues.

We say that λ ∈ R is an eigenvalue of problem (6.1) if there exists u ∈ W 1,p1(x)
0 (Ω)\{0} such that

Ω

(|∇u|p1(x)−2
+ |∇u|p2(x)−2)∇u∇v dx +


Ω

V (x)|u|m(x)−2uv dx − λ


Ω

(|u|q1(x)−2
+ |u|q2(x)−2)uv dx = 0,

for all v ∈ W 1,p1(x)
0 (Ω). We point out that if λ is an eigenvalue of problem (6.1) then the corresponding eigenfunction

u ∈ W 1,p1(x)
0 (Ω)\{0} is a weak solution of problem (6.1).

For each potential V ∈ Lr(x)(Ω)we define

E(V ) := inf
u∈W

1,p1(x)
0 (Ω)\{0}


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx +

Ω

V (x)
m(x) |u|

m(x) dx
Ω

1
q1(x)

|u|q1(x) dx +

Ω

1
q2(x)

|u|q2(x) dx

and

F(V ) := inf
u∈W

1,p1(x)
0 (Ω)\{0}


Ω

|∇u|p1(x) dx +

Ω

|∇u|p2(x) dx +

Ω
V (x)|u|m(x) dx

Ω
|u|q1(x) dx +


Ω

|u|q2(x) dx
.

Thus, we can define a function E : Lr(x)(Ω) → R.
The first result of this section is given by the following theorem.

Theorem 21. Assume that conditions (6.2)–(6.4) are fulfilled. Then E(V ) is an eigenvalue of problem (6.1). Moreover, there exists
u ∈ W 1,p1(x)

0 (Ω)\{0} an eigenfunction corresponding to the eigenvalue E(V ) such that

E(V ) =


Ω

1
p1(x)

|∇u|p1(x) dx +

Ω

1
p2(x)

|∇u|p2(x) dx +

Ω

V (x)
m(x) |u|

m(x) dx
Ω

1
q1(x)

|u|q1(x) dx +

Ω

1
q2(x)

|u|q2(x) dx
.

Furthermore, F(V ) 6 E(V ), each λ ∈ (E(V ),∞) is an eigenvalue of problem (6.1), while each λ ∈ (−∞, F(V )) is not an
eigenvalue of problem (6.1).

Next, we show that on each convex, bounded and closed subset of Lr(x)(Ω) the function E defined above is bounded from
below and attains its minimum. The result is the following:
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Theorem 22. Assume that conditions (6.2)–(6.4) are fulfilled. Assume that S is a convex, bounded and closed subset of Lr(x)(Ω).
Then there exists V⋆ ∈ S which minimizes E(V ) on S, that is,

E(V⋆) = inf
V∈S

E(V ).

6.1. Concentration of the spectrum

We describe the main steps in the proof of Theorem 21. Let X denote the generalized Sobolev space W 1,p1(x)
0 (Ω). We

denote by ∥ · ∥ the norm onW 1,p1(x)
0 (Ω) and by ∥ · ∥1 the norm onW 1,p2(x)

0 (Ω).
Define the functionals JV , I : X → R by

JV (u) =


Ω

1
p1(x)

|∇u|p1(x) dx +


Ω

1
p2(x)

|∇u|p2(x) dx +


Ω

V (x)
m(x)

|u|m(x) dx,

I(u) =


Ω

1
q1(x)

|u|q1(x) dx +


Ω

1
q2(x)

|u|q2(x) dx.

We notice that for any V satisfying condition (6.4) we have

JV (u) = J0(u)+


Ω

V (x)
m(x)

|u|m(x) dx, ∀ u ∈ X,

where J0 is obtained in the case when V = 0 inΩ .
Standard arguments imply that JV , I ∈ C1(X,R) and for all u, v ∈ X ,

⟨J ′V (u), v⟩ =


Ω

(|∇u|p1(x)−2
+ |∇u|p2(x)−2)∇u∇v dx +


Ω

V (x)|u|m(x)−2uv dx,

⟨I ′(u), v⟩ =


Ω

|u|q1(x)−2uv dx +


Ω

|u|q2(x)−2uv dx.

The proof of Theorem 21 is based on some auxiliary results.

Lemma 23. Assume that conditions (6.2)–(6.4) are fulfilled. Then for each ϵ > 0 there exists Cϵ > 0 such that
Ω

V (x)
m(x)

|u|m(x) dx
 6 ϵ


Ω


1

p1(x)
|∇u|p1(x) dx +

1
p2(x)

|∇u|p2(x)


dx + Cϵ |V |r(x)


Ω

(|u|m
−

+ |u|m
+

) dx,

for all u ∈ X.

Lemma 24. The following relations hold true:

lim
∥u∥→∞

JV (u)
I(u)

= ∞ (6.6)

and

lim
∥u∥→0

JV (u)
I(u)

= ∞. (6.7)

Lemma 25. There exists u ∈ X\{0} such that JV (u)
I(u) = E(V ).

We refer to [32] for detailed proofs of Lemmas 23–25.
Returning to the proof of Theorem 21, we deduce by Lemma 25 that there exists u ∈ X\{0} such that

JV (u)
I(u)

= E(V ) = inf
w∈X\{0}

JV (w)
I(w)

. (6.8)

Then, for anyw ∈ X we have

d
dϵ

JV (u + ϵw)

I(u + ϵw)


ϵ=0

= 0.

A simple computation yields

⟨J ′V (u), w⟩I(u)− JV (u)⟨I ′(u), w⟩ = 0, (6.9)

for all w ∈ X . Relation (6.9) combined with the fact that JV (u) = E(V ) · I(u) and I(u) ≠ 0 implies the fact that E(V ) is an
eigenvalue of problem (6.1).
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Next, we show that any λ ∈ (E(V ),∞) is an eigenvalue of problem (6.1).
Let λ ∈ (E(V ),∞) be arbitrary but fixed. Define TV ,λ : X → R by

TV ,λ(u) = JV (u)− λI(u).

Clearly, TV ,λ ∈ C1(X,R)with

⟨T ′

V ,λ(u), v⟩ = ⟨J ′V (u), v⟩ − λ⟨I ′(u), v⟩, ∀ u ∈ X .

Thus, λ is an eigenvalue of problem (6.1) if and only if there exists uλ ∈ X\{0} a critical point of TV ,λ.
With similar arguments as in the proof of relation (6.6) we can show that TV ,λ is coercive, i.e. lim∥u∥→∞ TV ,λ(u) = ∞. On

the other hand, as we have already remarked, similar arguments as those used in the proof of Lemma 3.4 in [28] show that
the functional TV ,λ is weakly lower semi-continuous. Thus there exists uλ ∈ X a global minimum point of TV ,λ and thus, a
critical point of TV ,λ. It is enough to show that uλ is not trivial. Indeed, since E(V ) = infu∈X\{0}

JV (u)
I(u) and λ > E(V ) it follows

that there exists vλ ∈ X such that

JV (vλ) < λI(vλ),

or

TV ,λ(vλ) < 0.

Thus,

inf
X

TV ,λ < 0

and we conclude that uλ is a nontrivial critical point of TV ,λ, or λ is an eigenvalue of problem (6.1).
Finally, we prove that each λ < F(V ) is not an eigenvalue of problem (6.1). With that end in view we assume by

contradiction that there exists λ < F(V ) an eigenvalue of problem (6.1). It follows that there exists uλ ∈ X\{0} such
that

⟨J ′V (uλ), uλ⟩ = λ⟨I ′(uλ), uλ⟩.

Since uλ ≠ 0 we have ⟨I ′(uλ), uλ⟩ > 0. Using that fact and the definition of F(V ) it follows that the following relation holds
true

⟨J ′V (uλ), uλ⟩ = λ⟨I ′(uλ), uλ⟩ < F(V )⟨I ′(uλ), uλ⟩ 6 ⟨J ′V (uλ), uλ⟩.

Obviously, this is a contradiction. We deduce that each λ ∈ (−∞, F(V )) is not an eigenvalue of problem (6.1). Furthermore,
it is clear that E(V ) > F(V ). The proof of Theorem 21 is complete. �

6.2. More about a Rayleigh quotient with variable exponents

In this section we give the proof of Theorem 22, which yields a sufficient condition in order to achieve the infimum of
the Rayleigh quotient E(V ).

Let S be a convex, bounded and closed subset of Lr(x)(Ω) and

E⋆ := inf
V∈S

E(V ).

Let (Vn) ⊂ S be a minimizing sequence for E⋆, that is,

E(Vn) → E⋆, as n → ∞.

Then (Vn) is a bounded sequence, hence there exists V⋆ ∈ Lr(x)(Ω) such that Vn convergesweakly to V⋆ in Lr(x)(Ω). Moreover,
since S is convex and closed it is also weakly closed (see e.g. Theorem III.7 in Brezis [7]) and consequently V⋆ ∈ S.

Next, we show that E(V⋆) = E⋆. Indeed, by Theorem 21we deduce that for each positive integer n there exists un ∈ X\{0}
such that

JVn(un)

I(un)
= E(Vn). (6.10)

Since (E(Vn)) is a bounded sequence we have

JVn(un)

I(un)
> β

J0(un)

I(un)
− C, for any n,

where C is a positive constant, we infer that (un) is bounded in X and it cannot contain a subsequence converging to 0 (oth-
erwise we obtain a contradiction by applying Lemma 24). Thus, there exists u0 ∈ X\{0} such that (un) converges weakly to
u0 in X . Using the Rellich–Kondrachov theoremwe deduce that (un) converges strongly to u0 in Ls(x)(Ω) for any s(x) ∈ C(Ω)
satisfying 1 < s(x) < Np1(x)

N−p1(x)
for any x ∈ Ω . In particular, using conditions (6.2)–(6.4), we deduce that (un) converges
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to u0 in Lm(x)(Ω) and in Lm(x)·r
′(x)(Ω) where r ′(x) =

r(x)
r(x)−1 . Using that information, Hölder’s inequality and the fact that

V⋆ ∈ Lr(x)(Ω) and (Vn) is bounded in Lr(x)(Ω)we find

lim
n→∞


Ω

V⋆(x)
m(x)

|un|
m(x) dx =


Ω

V⋆(x)
m(x)

|u0|
m(x) dx (6.11)

and

lim
n→∞


Ω


Vn(x)
m(x)

|un|
m(x)

−
Vn(x)
m(x)

|u0|
m(x)


dx = 0. (6.12)

On the other hand, since (Vn) converges weakly to V⋆ in Lr(x)(Ω) and u0 ∈ Lm(x)·r
′(x)(Ω), where r ′(x) =

r(x)
r(x)−1 , we deduce

lim
n→∞


Ω

Vn(x)
m(x)

|u0|
m(x) dx =


Ω

V⋆(x)
m(x)

|u0|
m(x) dx. (6.13)

Combining the equality
Ω

V⋆(x)
m(x)

|un|
m(x) dx −


Ω

Vn(x)
m(x)

|un|
m(x) dx =


Ω

V⋆(x)
m(x)

|un|
m(x) dx −


Ω

V⋆(x)
m(x)

|u0|
m(x) dx

+


Ω

V⋆(x)
m(x)

|u0|
m(x) dx −


Ω

Vn(x)
m(x)

|u0|
m(x) dx

+


Ω

Vn(x)
m(x)

|u0|
m(x) dx −


Ω

Vn(x)
m(x)

|un|
m(x) dx,

with relations (6.11)–(6.13) we get

lim
n→∞


Ω


V⋆(x)
m(x)

|un|
m(x)

−
Vn(x)
m(x)

|un|
m(x)


dx = 0. (6.14)

Since

E(V⋆) = inf
u∈X\{0}

JV⋆(u)
I(u)

,

it follows that

E(V⋆) 6
JV⋆(un)

I(un)
.

Combining the above inequality and equality (6.10) we obtain

E(V⋆) 6
JV⋆(un)− JVn(un)

I(un)
+ E(Vn).

Taking into account the result of relation (6.14), the fact that I(un) is bounded and does not converge to 0 and (E(Vn)) con-
verges to E⋆ then passing to the limit as n → ∞ in the last inequality we infer that

E(V⋆) 6 E⋆.

But using the definition of E⋆ and the fact that V⋆ ∈ S we conclude that actually

E(V⋆) = E⋆.

The proof of Theorem 22 is complete. �

7. Morse theory and local linking for a degenerate problem

In this section we are concerned with the study of the following nonlinear problem
−∆p(x)u + |u|p(x)−2u := f (x, u) inΩ,
u = 0 on ∂Ω, (7.1)

where Ω is a bounded domain in Rn with smooth boundary. Let p ∈ C(Ω) and 1 < p− := minx∈Ω̄ p(x) 6 p(x) 6 p+ :=

maxx∈Ω̄ p(x) < ∞ and F(x, t) =
 t
0 f (x, s)ds,F (x, t) = f (x, t)t − p+F(x, t).
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We assume that the reaction term f (x, u) satisfies the following hypotheses:

(H1) f ∈ C(Ω × R)with f (x, 0) = 0 and there exists C1 > 0 such that

|f (x, t)| 6 C1(1 + |t|q(x)−1), ∀(x, t) ∈ Ω × R,

where q(x) ∈ C(Ω), 1 < q(x) < p∗(x) for all x ∈ Ω and p∗
=

Np(x)
N−p(x) if p(x) < N , p∗(x) = +∞ if p(x) > N;

(H2) lim|t|→∞
F(x,t)
|t|p+ = +∞ uniformly for x ∈ Ω̄;

(H3) there exists θ > 1 such that θF (x, t) > F (x, st) for (x, t) ∈ Ω × R and s ∈ [0, 1];
(H4) there exists ν > 0 such that

f (x, t)
|t|p+−2t

is increasing in t > ν and decreasing in t 6 −ν;

(H5) there are small constants r and R with 0 < r < R such that

C2|t|α(x) 6 p(x)F(x, t) 6 C3|t|p(x), for t ∈ R with r 6 |t| 6 R, a.e. x ∈ Ω, (7.2)

where C2 and C3 are constants with 0 < C2 < C3 < 1, α(x) ∈ C(Ω̄) and 1 < α(x) < p(x). Moreover, there exists
C4 > 0 such that

F(x, t) > −C4|t|p+ for all (x, t) ∈ Ω × R. (7.3)

The assumption (H2) implies that the problem (7.1) is superlinear at infinity. A lot ofworks concerning superlinear elliptic
boundary value problem have been done by using the usual Ambrosetti–Rabinowitz condition, that is,

(AR) there exist µ > p+ and M > 0 such that

0 < p+F(x, t) 6 f (x, t)t for all x ∈ Ω and |t| > M. (7.4)

From (7.4) it follows that for some a, b > 0

F(x, t) > a|t|µ − b for (x, t) ∈ Ω × R, (7.5)

which is a stronger assumption than our condition (H2).

Let us consider the following function (for simplicity we drop the x-dependence):

f (x, t) = |t|p+−2t

p+ log(1 + |t|)+

|t|
1 + |t|


.

Then F(x, t) = |t|p+ log(1 + |t|) and f does not satisfy the Ambrosetti–Rabinowitz condition, but it satisfies our conditions
(H2) and (H3). Furthermore, we can show that this function fulfills all hypotheses (H1)–(H5).

We prove that the above hypotheses provide sufficient conditions for the existence of one or more nontrivial solutions
of problem (7.1).

Theorem 26. Assume that (H1), (H2), (H3) and (H5) hold. Then the problem (7.1) has at least one nontrivial weak solution in
W 1,p(x)

0 (Ω).

Theorem 27. Assume that (H1), (H2), (H4) and (H5) hold. Then the problem (7.1) has at least one nontrivial weak solution in
W 1,p(x)

0 (Ω).

Before the statement of the next result, we recall some known properties about the eigenvalues of the nonhomogeneous
differential operator −∆p(x) in W 1,p(x)

0 (Ω). We say that λ is an eigenvalue of −∆p(x) with Dirichlet if the problem
−∆p(x)u = λ|u|p(x)−2u x ∈ Ω,
u = 0 x ∈ ∂Ω,

has nonzero solution. Fan, Zhang and Zhao [15] obtained the principal eigenvalue λ∗ > 0 by introducing the following
condition:

(P) there exists a vector l ∈ RN
\ {0} such that for any x ∈ Ω , c(t) = p(x + tl) is monotone in t ∈ Ix = {t : x + tl ∈ Ω}.

Theorem 28. Assume that conditions (P), (H1), (H5) are fulfilled and

(H6) lim sup|t|→∞

p(x)F(x,t)
|t|p(x)

<
p−

p+
λ∗ + 1 uniformly on x ∈ Ω̄;

(H7) F(x, t) > 0 for all x ∈ Ω and |t| 6 r.

Then the problem (7.1) has at least two nontrivial weak solutions in W 1,p(x)
0 (Ω).
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From the assumption (H1) we deduce that the energy functionalΦ : W 1,p(x)
0 (Ω) → R given by

Φ(u) =


Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx −


Ω

F(x, u)dx

is well defined and of class C1. The derivative ofΦ at u is given by

⟨Φ ′(u), v⟩ =


Ω

(|∇u|p(x)−2
∇u · ∇v + |u|p(x)−2u · v)dx −


Ω

f (x, u)vdx

for v ∈ W 1,p(x)
0 (Ω).

Set

I(u) =


Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx, J(u) =


Ω

F(x, u)dx.

ThenΦ(u) = I(u)− J(u).
The function u ∈ X is called a weak solution of problem (7.1) if for any φ ∈ X

Ω

(|∇u|p(x)−2
∇u · ∇φ + |u|p(x)−2u · φ)dx −


Ω

f (x, u)φdx = 0.

The functional Φ satisfies the (C) condition if for c ∈ R, any sequence {un} ⊂ X such that Φ(u) → c, (1 +

∥un∥)∥Φ
′(un)∥X∗ → 0 has a convergent subsequence. The functionalΦ satisfies the (PS) condition if any sequence {un} ⊂ X

such thatΦ(un) is bounded andΦ ′(un) → 0 has a convergent subsequence.
Standard arguments show that the energy functionalΦ satisfies the (C) condition under the hypotheses of Theorems 26

and 27 or 28.

7.1. Computation of critical groups

Let X be a real Banach space andΦ ∈ C1(X,R), K = {u ∈ X : Φ ′(u) = 0}, then the qth critical group ofΦ at an isolated
critical point u ∈ K withΦ(u) = c is defined by

Cq(Φ, u) := Hq(Φ
c
∩ U,Φc

∩ U\{u}), q ∈ N := {0, 1, 2, . . .},

whereΦc
= {u ∈ X : Φ(u) 6 c}, U is any neighborhood of u, containing the unique critical point, H∗ is the singular relative

homology with coefficients in an Abelian group G.
We say that u ∈ K is a homological nontrivial critical point ofΦ if at least one of its critical groups is nontrivial.
The following critical point result will be used in the sequel.

Proposition 29 (See [35, Theorem 2.1]). Let X be a real Banach space and let Φ ∈ C1(X,R) satisfy the (PS) condition and is
bounded from below. If Φ has a critical point that is homological nontrivial and is not a minimizer of Φ , thenΦ has at least three
critical points.

If Φ satisfies the condition (C) and the critical values of Φ are bounded from below by some a < infΦ(K), then the
critical groups ofΦ at infinity were introduced by Bartsch and Li [6] as

Cq(Φ,∞) := Hq(X,Φa), q ∈ N. (7.6)

If Φ satisfies the condition (C), then Φ satisfies the deformation condition. By the deformation lemma, the right-hand side
of (4.1) does not depend on the choice of a.

Remark 30. Morse theory [8] tells us that if K = {0} then Cq(Φ,∞) = Cq(Φ, 0) for all q ∈ N. It follows that if Cq(Φ,∞)
≠ Cq(Φ, 0) for some q ∈ N, then Φ must have a nontrivial critical point. So, we must compute the critical groups at zero
and at infinity.

For the proofs of our theorems, in what follows we may assume that Φ has only finitely many critical points. Since Φ
satisfies the condition (C), then the critical groups Cq(Φ,∞) at infinity make sense.

Theorem 31. Suppose that Φ satisfies (H1), (H2) and (H3). Then Cq(Φ,∞) = 0 for all q ∈ N.

Proof. Let S = {u ∈ X : |||u||| = 1}. For u ∈ S, by Fatou lemma and (H2) we have

lim
t→+∞


Ω

F(x, tu)
|t|p+

dx >


Ω

lim
t→+∞

F(x, tu)
|tu|p+

|u|p+dx = +∞.

Therefore

Φ(tu) 6
tp+

p−

−


Ω

F(x, tu)dx 6 tp+

 1
p−

−


Ω

F(x, tu)
|t|p+

dx


→ −∞ as t → +∞.
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Choose a < min{inf∥u∥61Φ(u), 0}, then for any u ∈ S, there exists t0 > 1 such thatΦ(t0u) 6 a. By (H3), we have

F (x,m) > 0 for (x,m) ∈ Ω × R. (7.7)

Therefore, if

Φ(tu) =


Ω

tp(x)

p(x)
(|∇u|p(x) + |u|p(x))dx −


Ω

F(x, tu)dx 6 a,

then 
Ω


tp(x)(|∇u|p(x) + |u|p(x))


dx 6 p+a +


Ω

p+F(x, tu)dx.

Using relation (7.7), we obtain

d
dt
Φ(tu) =

1
t


Ω

tp(x)(|∇u|p(x) + |u|p(x))dx −


Ω

f (x, tu)tudx


6
1
t


p+a −


Ω

F (x, tu)dx

< 0.

Then by the implicit function theorem, there exists a unique T ∈ C(S,R) such thatΦ(T (u)u) = a. Next, we use the function
T to construct a strong deformation retract from X\{0} toΦa. Therefore, we deduce

Cq(Φ,∞) = Hq(X,Φa) = Hq(X, X\{0}) = 0, ∀q ∈ N.

The proof is completed. �

Theorem 32. Suppose that Φ satisfies (H1), (H2) and (H4). Then Cq(Φ,∞) = 0 for all q ∈ N.

The proof is standard and we omit the details.
As in [21], since X is a separable and reflexive Banach space, there exist {en}∞n=1 ⊂ X and {fn}∞n=1 ⊂ X∗ such that

fn(em) = δn,m =


1, n ≠ m
0, n = m

X = span{en : n = 1, 2, . . .}, X∗
= span{fn : n = 1, 2, . . .}.

For k = 1, 2, . . . , we denote Yk = span{e1, e2, . . . , ek}, hence Yk has a closed complementing subspace Zk in X . Thus, X =

Yk ⊕ Zk (see [7]).

Lemma 33. Assume that ϕ : X → R is weakly–strongly continuous, ϕ(0) = 0, ρ > 0 is a given positive number. Set ηk =

supu∈Zk,∥u∥6ρ |ϕ(u)|. Then ηk → 0 as k → ∞.

We refer to Fan and Han [13, Lemma 3.3] for the proof of this result.
In order to compute the critical groups at zero, we need the following classical linking theorem.

Proposition 34. Assume that Φ has a critical point u = 0 with Φ(0) = 0. Suppose that Φ has a local linking at 0 with respect
to X = V ⊕ W, k = dim V < ∞, that is, there exists ρ > 0 small such that

Φ(u) 6 0, u ∈ V , |||u||| 6 ρ;

Φ(u) > 0, u ∈ W , 0 < |||u||| 6 ρ.

Then Ck(Φ, 0) ≠ 0, hence 0 is a homological nontrivial critical point of Φ .

Theorem 35. Suppose that Φ satisfies (H1) and (H5). Then there exists k0 ∈ N such that Ck0(Φ, 0) ≠ 0.

Proof. Since f (x, 0) = 0, the zero function 0 is a critical point ofΦ . So we only need to prove thatΦ has a local linking at 0
with respect to X = Yk ⊕ Zk. We take two steps:

Step 1. Take u ∈ Yk. Since Yk is finite dimensional, we have that for given R > 0, there exists 0 < ρ < 1 small such that

u ∈ Yk, |||u||| < ρ ⇒ |u(x)| < R, ∀x ∈ Ω.

For 0 < r < R, let Ω1 = {x ∈ Ω : |u(x)| < r},Ω2 = {x ∈ Ω : r 6 |u(x)| 6 R},Ω3 = {x ∈ Ω : |u(x)| > R}. Then
Ω = ∪

3
i=1Ωi andΩi are pairwise disjoint. For the sake of simplicity, let G(x, u) = F(x, u)− C2

p(x) |u|
α(x). Therefore, from (H5)
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it follows that

Φ(u) =


Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx −


Ω1

+


Ω2

+


Ω3


F(x, u)dx

=


Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx −


Ω

C2

p(x)
|u|α(x)dx −


Ω1

G(x, u)dx −


Ω2

G(x, u)dx −


Ω3

G(x, u)dx

6


Ω

(|∇u|p(x) + |u|p(x))dx −
C2

p+


Ω

|u|α(x)dx −


Ω1

G(x, u)dx.

In terms of the assumptions onα(x) andΩ is a bounded domain inRN , the embedding Lp(x)(Ω) → Lα(x)(Ω) is continuous.
This implies that there exists a constant C > 1 such that

∥u∥α(x) 6 C∥u∥p(x) 6 C∥u∥1,p(x) 6 2C |||u||| 6 2Cρ.

If ρ 6 1
2C , then ∥u∥α(x) 6 1. Note that the norms on Yk are equivalent to each other, ∥u∥α(x) is equivalent to |||u|||. Since

α(x), p(x) ∈ C(Ω̄) and α(x) < p(x), for each x ∈ Ω , there exists an open subset Bδ(x) of Ω̄ such that

αx := sup
x∈Bδ(x)

α(x) < inf
x∈Bδ(x)

p(x) := px.

Then {Bδ(x)}x∈Ω̄ is an open covering of Ω̄ . Since Ω̄ is compact, there is a finite subcovering {Bδ(xi)}mi=1. We can use all the
hyperplanes, for each of which there exists at least one hypersurface of some {Bδ(xi)}mi=1 lying on it, to divide {Bδ(xi)}mi=1 into
finite open hypercube {Q}

n
j=1 which mutually have no common points. It is obvious thatΩ = ∪

n
j=1 Qj and

αj+ := sup
x∈Qj

α(x) < inf
x∈Qj

p(x) := pj−.

Notice that

Ω1

G(x, u)dx → 0 as r → 0 and |||u|||Qj 6 |||u|||. Therefore, there is a constant C > 0 such that for 0 < ρ < 0
small and r sufficiently small

Φ(u) 6

n
j=1


Qj

(|∇u|p(x) + |u|p(x))dx −
C2

p−


Qj

|u|α(x)dx


+


Ω1

G(x, u)dx

6

n
j=1


|||u|||

pj−
Qj

− C |||u|||
αj+
Qj


−


Ω1

G(x, u)dx 6 0.

Step 2. By hypothesis (H1) and Young’s inequality, there exists C > 0 such that

|F(x, u)| 6
C3

p+

|u|p(x) + C |u|s(x), for all x ∈ Ω and |u| > R, (4.3)

where s(x) ∈ C(Ω̄) and p(x) < s(x) < p∗(x). For the sake of simplicity, letH(x, u) = F(x, u)− C3
p(x) |u|

p(x). Therefore, if u ∈ Zk
and |||u||| 6 1, from (H5) and (4.3) we deduce

Φ(u) =


Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx −


Ω1

+


Ω2

+


Ω3


F(x, u)dx

=


Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx −


Ω

C3

p(x)
|u|p(x)dx −


Ω1

H(x, u)dx −


Ω2

H(x, u)dx −


Ω3

H(x, u)dx

>
1 − C3

p+


Ω

(|∇u|p(x) + |u|p(x))dx − C

Ω

|u|s(x)dx −


Ω1

H(x, u)dx.

We next consider the functional ϕ : X → R, ϕ(u) =

Ω

|u|s(x)dx. We already know that the embedding X → Ls(x)(Ω) is
compact. Hence by Lemma 33, we have

ηk = sup
u∈Zk,∥u∥61

|ϕ(u)| → 0 as k → ∞. (4.4)

Note that

Ω1

H(x, u)dx → 0 as r → 0. Therefore, using the same argument as in Step 1, we obtain

Φ(u) >

l
i=1

1 − C3

p+


Qi

(|∇u|p(x) + |u|p(x))dx − C


Qi

|u|s(x)dx


+


Ω1

H(x, u)dx

>

l
i=1

1 − C3

p+

|||u|||pi+Qi
− Cηk|||u|||

si−
Qi


−


Ω1

H(x, u)dx.
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From (4.4) we know that there exists k0 ∈ N such that ηk0 6
1−C3
2Cp+

. Then we get

Φ(u) >

l
i=1

1 − C3

2Cp+

(|||u|||pi+Qi
− |||u|||si−Qi

)−


Ω1

H(x, u)dx > 0

as 0 < ρ < 1 small and r sufficiently small. Thus, there exists k0 ∈ N such thatΦ(u) > 0 as u ∈ Zk0 and 0 < |||u||| 6 ρ.
Combining Steps 1 and 2, we complete the proof of Theorem 35 due to Proposition 34. �

Remark 36. From the proof of Theorem 35, we deduce that the conclusion of Theorem 35 still holds under the assumptions
(H1), (H5) and (H7).

Next, by Theorems 31 and 35, we have Ck0(Φ,∞) ≠ Ck0(Φ, 0) for some k0 ∈ N. Then Theorem 26 follows immediately
from the fact thatΦ satisfies the (C) condition and Remark 30.

By Theorems 32 and 35, we have Ck0(Φ,∞) ≠ Ck0(Φ, 0) for some k0 ∈ N. Then Theorem 27 follows immediately from
the fact thatΦ satisfies the (C) condition and Remark 30.

We know that Φ satisfies the (PS) condition and is bounded from below. By the assumption (H7) and Remark 36, the
trivial solution u = 0 is homologically nontrivial and is not a minimizer. The conclusion follows from Proposition 29.

8. Difference equations with variable exponent

Partial difference equations usually describe the evolution of certain phenomena over the course of time. In this section,
we consider a discrete problem involving variable exponents. In many cases a problem in a continuous framework can be
handled by using a suitable method from discrete mathematics and conversely a beautiful description of such phenomena
can be found in Lovász [26]. The modeling and simulation of certain nonlinear problems from economics, biological neural
networks, optimal control and others enforced in a natural manner the rapid development of the theory of difference
equations. Elementary but relevant examples of partial difference equations are concernedwith heat diffusion, heat control,
temperature distribution, population growth, cellular neural networks, etc.

Let T > 0 be a given natural number and let p(·), q(·) : Z → [2,∞), V (·) : Z → R be three T -periodic functions and
f (k, t) : Z × R → R be a continuous function in t ∈ R and T -periodic in k.

Let∆ denote the difference operator, namely

1u(k) = u(k + 1)− u(k),

for each k ∈ Z. We denote by∆2
p(·) the p(·)-Laplace difference operator, that is,

∆2
p(k−1)u(k − 1) = |1u(k)|p(k)−21u(k)− |1u(k − 1)|p(k−1)−21u(k − 1), (8.1)

for all k ∈ Z.
This section is devoted to the study of the difference non-homogeneous equations of type

∆2
p(k−1)u(k − 1)− V (k)|u(k)|q(k)−2u(k)+ f (k, u(k)) = 0 for k ∈ Z,

u(k) → 0 as |k| → ∞.
(8.2)

The goal of the present paper is to establish the existence of nontrivial homoclinic solutions for problem (8.2). Poincaré [39]
called a trajectory x(t) a homoclinic orbit (or doubly asymptotic trajectory) if it is asymptotic to a constant as |t| → ∞.
Since we are seeking solutions u(k) for problem (8.2) satisfying lim|k|→∞ u(k) = 0, we are interested in finding nontrivial
homoclinic solutions for problem (8.2).

Set

p+
:= sup

k∈Z
p(k) p−

:= inf
k∈Z

p(k)

q+
:= sup

k∈Z
q(k) q−

:= inf
k∈Z

q(k),

and we assume that

1 < q− 6 q+ < p− 6 p+. (8.3)

We also assume that the T -periodic function V satisfies the supplementary conditions

(V1) 0 < V0 := min{V (0), . . . , V (T − 1)};
(V2) V0 < q+.

while the continuous function f = f (k, t) : Z × R → R which is assumed to be T -periodic in k verifies
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(F1) there exist α > p+ and r > 0 such that

αF(k, t) := α

 t

0
f (k, s) ds 6 tf (k, t), ∀ k ∈ Z, t ≠ 0,

and

F(k, t) > 0, ∀ k ∈ Z, t > r;

(F2) f (k, t) = o(|t|q
+

−1) as |t| → 0.

For p : Z → (1,∞), define the function space

ℓp(·) :=


u : Z → R; ρp(·)(u) :=


k∈Z

|u(k)|p(k) < ∞


.

On ℓp(·) we introduce the Luxemburg norm

|u|p(·) := inf


µ > 0;


k∈Z

u(k)µ
p(k) 6 1


.

Then the following relations hold true

|u|p(·) < 1 ⇒ |u|p
+

p(·) 6 ρp(·)(u) 6 |u|p
−

p(·), (8.4)

|u|p(·) > 1 ⇒ |u|p
−

p(·) 6 ρp(·)(u) 6 |u|p
+

p(·), (8.5)

|u|p(·) → 0 ⇔ ρp(·)(u) → 0. (8.6)

We also consider the space

ℓ∞
=


u : Z → R; |u|∞ := sup

k∈Z
|u (k)| < ∞


.

Proposition 37. Assume condition (8.3) is fulfilled. Then ℓq(·) ⊂ ℓp(·).

Proof. If


k∈Z |u(k)|p(k) < ∞ then there exists S > 0 such that

|u(k)|q(k) 6 1, ∀ |k| > S.

It follows that

|u(k)| 6 1, ∀ |k| > S.

By relation (8.3) we infer that q(k) < p(k) for all k ∈ Z. That fact and the above inequality assure that

|u(k)|p(k) 6 |u(k)|q(k), ∀ |k| > S,

and the proof is complete. �

By Proposition 37, relation (8.3) and the hypotheses on functions V and f we infer that the natural spacewherewe should
seek homoclinic solutions for (8.2) is ℓq(·). Thus, we say that u ∈ ℓq(·) is a homoclinic solution for (8.2) if

k∈Z

|1u(k − 1)|p(k−1)−21u(k − 1)1v(k − 1)+


k∈Z

V (k)|u(k)|q(k)−2u(k)v(k)−


k∈Z

f (k, u(k))v(k) = 0,

for all v ∈ ℓq(·) and lim|k|→∞ u(k) = 0.
The main result of this section is given by the following theorem.

Theorem 38. Assume hypotheses (8.3), (V1)–(V2) and (F1)–(F2) are fulfilled. Then problem (1.1) possesses at least a nontrivial
homoclinic solution. Moreover, given a nontrivial homoclinic solution u of problem (8.2), there exist two integers S1 and S2 with
S1 6 S2 such that for all k > S2 and all k < S1 the sequence u(k) is strictly monotone.

8.1. Homoclinic solutions and qualitative properties

The basic idea in proving Theorem 38 is to consider the associate energetic functional of problem (8.2) and to show that
it possesses a nontrivial critical point by using the mountain-pass lemma.

Set

φp(t)(t) := |t|p(t)−2t Φp(t)(t) :=
|t|p(t)

p(t)
.
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Note that

∆2
p(k−1)u(k − 1) = ∆(φp(k−1)(1u(k − 1))).

Next, we introduce the functional A : ℓq(·) → R defined by

A(u) :=


k∈Z

Φp(k−1)(1u(k − 1))+


k∈Z

V (k)Φq(k)(u(k)).

We define the energy functional associate to problem (8.2) as J : ℓq(·) → R defined by

J(u) := A(u)−


k∈Z

F(k, u(k)).

Standard arguments show that J ∈ C1(ℓq(·),R)with the derivative given by

⟨J ′(u), v⟩ =


k∈Z

[|1u(k − 1)|p(k−1)−21u(k − 1)1v(k − 1)+ V (k)|u(k)|q(k)−2u(k)v(k)− f (k, u(k))v(k)],

for all u, v ∈ ℓq(·).
We point out that on ℓq(·) we can introduce an equivalent norm with | · |q(·), namely

∥u∥q(·) := inf


µ > 0;


k∈Z

V (k)
q(k)

u(k)µ
q(k) 6 1


.

By straightforward computation we show that

∥u∥q(·) < 1 ⇒ ∥u∥q+

q(·) 6

k∈Z

V (k)
q(k)

|u(k)|q(k) 6 ∥u∥q−

q(·), (8.7)

∥u∥q(·) > 1 ⇒ ∥u∥q−

q(·) 6

k∈Z

V (k)
q(k)

|u(k)|q(k) 6 ∥u∥q+

q(·), (8.8)

∥u∥q(·) → 0 ⇔


k∈Z

V (k)
q(k)

|u(k)|q(k) → 0. (8.9)

The next result shows that J has a mountain-pass geometry.

Lemma 39. Assume the hypotheses of Theorem 38 are fulfilled. Then there exist ϱ > 0 and ν > 0 and e ∈ ℓq(·) with ∥e∥q(·) > ϱ
such that

(i) J(u) > ν for all u ∈ ℓq(·) with ∥u∥q(·) > ϱ;
(ii) J(e) < 0.

We recall that given c ∈ R, we say that a sequence (u(k)) ⊂ ℓq(·) satisfies the Palais–Smale (PS)c condition if

J (u(k)) → c and J ′ (u(k)) → 0.

Lemma 40. Assume the hypotheses of Theorem 38 are fulfilled. Then, there exist c > 0 and a bounded (PS)c sequence for J in
ℓq(·).

Returning to the proof of Theorem 38, assume that {un} is the sequence given by Lemma 40. Then for each n ∈ N the
sequence {|un(k)|; k ∈ Z} ⊂ ℓq(·) is bounded and |un(k)| → 0 as |k| → ∞.

Assume that {|un(k)|}k∈Z achieves its maximum in kn ∈ Z. Then there exists jn ∈ Z such that jnT 6 kn < (jn +1)T . Define

wn(k) := un(k − jnT ).

Then {|wn(k)|}k∈Z attains its maximum in

in := kn − jnT ∈ [0, T ].

The T -periodicity of p(·), q(·) and V (·) implies
k∈Z

V (k)
q(k)

|un(k)|q(k) =


k∈Z

V (k)
q(k)

|wn(k)|q(k),

and J(un) = J(wn). Since {un}n∈N is bounded in ℓq(·) the above estimates and relations (8.7) and (8.8) yield that {wn}n∈N is
bounded in ℓq(·), too. Then there existsw ∈ ℓq(·) such thatwn converges weakly tow in ℓq(·) as n → ∞.
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We claim thatwn(k) → w(k) as n → ∞ for each k ∈ Z. Indeed, defining the test function vm ∈ ℓq(·) by

vm(j) :=


1 if j = m
0 if j ≠ m,

and taking into account the weak convergence ofwn tow in ℓq(·) we find
lim
n→∞

wn(k) = lim
n→∞

⟨wn, vk⟩ = ⟨w, vk⟩ = w(k),

for all k ∈ Z. The claim is clear now.
Next, we point out that for each v ∈ ℓq(·) we have

|⟨J ′(wn), v⟩| = |⟨J ′(un), v(· + jnT )⟩| 6 ∥J ′(un)∥⋆∥v∥q(·),

which implies J ′(wn) → 0 as n → ∞. It follows that for each v ∈ ℓq(·) we have as n → ∞
k∈Z

[φp(k−1)(1wn(k − 1))1v(k − 1)+ V (k)φq(k)(wn(k))v(k)− f (k, wn(k))v(k) → 0] → 0. (8.10)

Consider v ∈ ℓq(·) has compact support, hence there exist a, b ∈ Z, a < b such that v (k) = 0 if k ∈ Z\ [a, b] and v (k) ≠ 0
if k ∈ {a + 1, b − 1}. The set of compact support functions, denoted by ℓq(·)0 , is dense in ℓq(·). Indeed, for all v ∈ ℓq(·) we can
define vn ∈ ℓ

q(·)
0 by vn(j) = 0 if |j| > n + 1 and vn(j) = v(j) if |j| ≠ n and we have


j∈Z

V (j)
q(j) |v(j)− vn(j)| → 0 as n → ∞,

or, by relation (8.9), ∥v − vn∥q(·) → 0 as n → ∞.
Now, for each v ∈ ℓ

q(·)
0 in (8.10) taking into account the finite sums and the continuity of f (k, ·)we obtain by passing to

the limit as n → ∞ that
k∈Z

[φp(k−1)(1w(k − 1))1v(k − 1)+ V (k)φq(k)(w(k))v(k)− f (k, w(k))v(k) → 0] → 0.

We found thatw is a critical point of J and consequently a solution of problem (8.2).
We show thatw ≠ 0. Assume by contradiction thatw = 0. Therefore

|un|∞ = |wn|∞ = max{|wn(k)|; k ∈ Z} → 0,
as n → ∞. On the other hand, condition (F2) implies that for a given ϵ > 0 there exists δ ∈ (0, 1) such that

|F(k, t)| 6 ϵ|t|q
+

|f (x, t)t| 6 ϵ|t|q
+

,
(8.11)

for all k ∈ {0, 1, . . . , T − 1} and all |t| < δ. The above inequalities show that for every k ∈ {0, 1, . . . , T − 1} there existsMk
such that for n > Mk we have

|wn(k)| < δ.

Since in ∈ {0, 1, . . . , T − 1} it follows that for n > M := max{Mn; k ∈ {0, 1, . . . , T − 1}} and every k ∈ Z we have
|wn(k)| 6 |wn(in)| < δ < 1.

That fact and relation (8.11) imply

|F(k, wn(k))| 6 ϵ|wn(k)|q
+

6 ϵ|wn(k)|q(k),
and

|f (k, wn(k))wn(k)| 6 ϵ|wn(k)|q
+

6 ϵ|wn(k)|q(k).
We infer that for each n > M and every k ∈ Z the following estimates hold true

0 < q−J (wn) = q−

k∈Z

1
p(k)

|1wn (k − 1)|p(k−1)
+ q−


k∈Z

V (k)
q(k)

|wn (k)|q(k) − q−

k∈Z

F (k, wn (k))

6

k∈Z

|1wn (k − 1)|p(k−1)
+


k∈Z

V (k) |wn (k)|q(k) −

k∈Z

f (k, wn (k)) wn (k)

−


k∈Z


q−F (k, wn (k))− f (k, wn (k)) wn (k)


6

J ′ (wn) , wn


+ q−


k∈Z

F (k, wn (k))+


k∈Z

|f (k, wn (k)) wn (k) |

6

J ′ (wn) , wn


+ q−ϵ


k∈Z

|wn(k)|q(k) + ϵ

k∈Z

|wn(k)|q(k)

6

J ′ (wn) , wn


+


q−ϵ

q+

V0
+ ϵ

q+

V0


k∈Z

V (k)
q(k)

|wn(k)|q(k)

6 ∥J ′ (wn) ∥∗ ∥wn∥q(·) + ϵ
q+(q−

+ 1)
V0


∥wn∥

q+

q(·) + ∥wn∥
q−

q(·)


.
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Taking into account that ∥un∥q(·) is bounded, J ′(un) → 0 as n → ∞. Since ϵ > 0 is arbitrary we find by the above estimates
a contradiction with J(wn) → c > 0 as n → ∞. Thus,w is a nontrivial solution of problem (8.2).

Next, letube anonzerohomoclinic solution of problem (8.2). Assume that it attains positive localmaximumsandnegative
local minimums at infinitely many points kn. In particular we can assume that {|kn|} → ∞. Consequently,

∆2
p(kn−1)u (kn − 1) u(kn) 6 0,

and

u(kn) → 0,

as n → ∞. Using that facts and multiplying in (8.2) by u(kn)/|u(kn)|q(kn), we have

f (kn, u (kn)) u(kn)
|u(kn)|q(kn)

>
∆2

p(kn−1)u (kn − 1) u(kn)

|u(kn)|q(kn)
+

f (kn, u (kn)) u(kn)
|u(kn)|q(kn)

= V (kn) > V0 > 0. (8.12)

Using (8.12) and condition (F2) we deduce

0 = lim
n→∞

f (kn, u (kn)) u(kn)
|u(kn)|q(kn)

> V0 > 0,

which represents a contradiction. Consequently u does not attain positive local maximums and negative local minimums at
infinitely many points.

Assume now that u vanishes at infinitely many points ln. By condition (F2) we find that∆2
p(ln−1)u (ln − 1) = 0 and, con-

sequently, u(ln − 1) u(ln + 1) < 0. Therefore it has an unbounded sequence of positive local maximums and negative local
minimums, in contradiction with the previous assertion.

We proved that, for |k| large enough, function u has constant sign and it is strictly monotone. The proof of Theorem 38 is
complete. �

We observe that the homogeneous problem
∆2

p(k−1)u(k − 1)− V (k)|u(k)|q(k)−2u(k) = 0 for k ∈ Z,
u(k) → 0 as |k| → ∞,

(8.13)

has only the trivial solution. Indeed, if u is positive or negative, let k0 be the point of its positive maximum or negative
minimum. Then∆2

p(k0−1)u(k0 − 1)u(k0) 6 0 and

0 = ∆2
p(k0−1)u(k0 − 1)u(k0)− V (k0)|u(k0)|q(k0) < 0,

which is a contradiction. The same conclusion can be made if u is sign-changing.
Note that under the assumptions of Theorem 38, then for every λ > 0 we can establish with the same approach the

existence of a nontrivial solution for the eigenvalue problem
∆2

p(k−1)u(k − 1)− V (k)|u(k)|q(k)−2u(k)+ λf (k, u(k)) = 0 for k ∈ Z,
u(k) → 0 as |k| → ∞.

(8.14)

We can prove that if in addition to conditions (F1) and (F2) the following condition holds:

(F3) f (k, t) > 0 for any t < 0 and all k ∈ Z,

then the homoclinic solution of the problem (8.2) is positive.
A comprehensive treatment of nonlinear partial differential equations with variable exponent can be found in the

monograph by Rădulescu and Repovš [40].
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