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Abstract. In this paper we introduce a novel approach for inferring
articulated spine models from images. A low-dimensional manifold em-
bedding is created from a training set of prior mesh models to establish
the patterns of global shape variations. Local appearance is captured
from neighborhoods in the manifold once the overall representation con-
verges. Inference with respect to the manifold and shape parameters is
performed using a Markov Random Field (MRF). Singleton and pairwise
potentials measure the support from the data and shape coherence from
neighboring models respectively, while higher-order cliques encode geo-
metrical modes of variation for local vertebra shape warping. Optimiza-
tion of model parameters is achieved using efficient linear programming
and duality. The resulting model is geometrically intuitive, captures the
statistical distribution of the underlying manifold and respects image
support in the spatial domain. Experimental results on spinal column
geometry estimation from CT demonstrate the approach’s potential.

1 Introduction

Statistical models of shape variability have been successful in addressing funda-
mental vision tasks such as segmentation and registration in medical imaging.
For example, Active Shape and Appearance Models have been used in recovering
single object geometries obtained from dense collection of data points. Implicit
representations is an alternative formulation to address model-based segmenta-
tion while more recently numerous methods based on point distribution models
(PDM) and embedding on various geometric spaces (spherical [1]) have been
proposed. However, in the case of articulated objects such as the spinal column,
model-based segmentation of single objects typically leads to fitting errors when
pathologies are present. The result is thereby sensitive to model initialization
and therefore limited to the capture range. Simultaneous multi-object inference
is often beneficial compared to the separate segmentation of individual objects.
In [2], an extension of PDMs was considered for modeling relations between
shape constellations using conditional probabilities between 2D-contours. Rigid
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transformations were considered as statistics between part sets to create recon-
structed models [3], achieve CT segmentation [4] and multi-modal inference [5].

On the other hand, the high dimensionality and complex non-linear underlying
structure unfortunately makes the commonly used linear statistics inapplicable
for articulated structures. A manifold learning algorithm of particular interest to
this work is locally linear embedding [6]. It maps high-dimensional observation
data that are presumed to lie on a nonlinear manifold, onto a single global
coordinate system of lower dimensionality. Such a concept reveals the underlying
structure of the data which can be used for statistical modeling. Inferring a model
from the underlying manifold is a novel concept but far from being trivial. In this
work, we tackle the problem of spinal deformity pathologies to model both global
statistics of the articulated model and local shape variations of vertebrae based
on local measures. We propose a spine inference/segmentation method from CT,
where the model representation is optimized through a Markov Random Field
(MRF) graph, balancing prior distribution with image data.

We introduce a deformable articulated spine instantiation through a statisti-
cal modeling of inter-object transformations. Our method is structured in two
parts. The first relates to the creation of a nonlinear manifold embedding of
spine articulations which can handle both small and large deformations in a
given population. To this end, a novel articulated metric is introduced to create
local linear patches. Second, we propose an inference framework using high-order
MRF. This graph involves costs related to the imaged data, prior geometrical
dependencies and global higher-order cliques. This paper is organized as follows.
Section 2 presents the theoretical methodology for the manifold representation
of articulated mesh models, while in Section 3 we propose the MRF-based infer-
ence framework. In Section 4 we present our evaluation results applied to images
of the spinal column and the last section concludes the paper.

2 Manifold Embedding of Articulated Spine Models

The method performs an embedding of a training set of annotated vertebra shape
constellations into a sub-space which dimensionality corresponds to the domain
of admissible variations. Local shape is determined via analysis of variations in
patch of the manifold. Fig. 1 illustrates a flowchart of the method.

Fig. 1. Flowchart diagram of the proposed spine inference approach.
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2.1 Representation of Articulated Spine Models

Our spine model S = {s1, . . . , sL} consists of an interconnection of L verte-
brae. For each vertebra si, we recover a triangular mesh with vertices {vi

j |j =
1, . . . , V }, where the jth vertex corresponds to approximately the same location
from one shape to another and V the number of vertices. Additionally, every si

is annotated with landmarks on each model to rigidly register each object to its
upper neighbor. Hence, an articulated deformable model (ADM) is represented
by a vector of local inter-vertebral rigid transformations A = [T1, T2, . . . , TL].
To perform global shape modeling of S, we convert A to an absolute represen-
tation Aabs = [T1, T1 ◦ T2, . . . , T1 ◦ T2 ◦ . . . ◦ TL] using recursive compositions.
The transformations are expressed in the local coordinate system (LCS) of the
lower vertebra. Center of transformation is the intersection of all 3 vertebral
axes, following antero-posterior, cranial-caudal and left-right directions. Rigid
transformations described here are the combination of a rotation matrix R, a
translation t and scaling s. We formulate the rigid transformation T = {s, R, t}
of a triangular mesh model as y = sRx + t where x, y, t ∈ �3.

2.2 Nonlinear Manifold Embedding of Articulated Spine

Given a training set of N articulated spine shape models S expressed by the
absolute vector representation Ai

abs of dimensionality D, we seek their low-
dimensional manifold M with points Yi, Yi ∈ �d where d � D. The set consisted
of pre-reconstructed patient X-rays exhibiting a wide range of deformities (nor-
mal to severe). A free-form deformation was applied to obtain vertebral meshes
with vertex correspondences. In all, 6 classes of spine deformations were included
to represent the underlying population structure. In the sub-cluster correspond-
ing to a pathological population, each individual point of the training set and
its neighbours would lie within a locally linear patch on the manifold.

Nearest neighbor selection. In our approach, we adopt the intrinsic nature
of the Riemannian manifold geometry allowing us to discern between articulated
shape deformations in a topologically suited framework. The K closest neigh-
bours are selected for each point using a distortion metric adapted for geodesic
metrics, defined as dM(Ai

abs,A
j
abs) which estimates the distance of models i, j.

Distance measure can be expressed as a sum of the L articulation deviations:

dM(Ai
abs,A

j
abs) =

L∑

k=1

dM(T i
k, T j

k ) =
L∑

k=1

‖ci
k − cj

k‖ + dG(Ri
k, Rj

k) (1)

where the canonical representation encodes the intrinsic (c) and orientation (R)
parameters. The first term evaluates intrinsic distances in the L2 norm evalu-
ating the inter-vertebral translations. The second defines a diffeomorphism dG

between rotation neighborhoods. We use the concept of geodesics to evaluate the
unfolding in the manifold space M of orientation vectors in order to estimate
how both diverge from the tangent plane.
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Forward and inverse manifold mapping. The manifold is built by locally
linear embedding [6], where the low-dimensional representation of an absolute
articulated vector Ai

abs is obtained from it’s neighbors Aj
abs for all data points.

Hence, a new ADM can be inferred in the embedded d-space as a low-dimensional
data point by finding its optimal manifold coordinates Yi. To obtain the articula-
tion vector for a new embedded point in the ambient space, one has to determine
the representation in high-dimensional space based on its intrinsic coordinates.
The inverse mapping of Yi is performed by estimating the relationship between
the D-space and manifold M as a joint distribution. The manifold should fol-
low a conditional expectation which captures the overall trend of the data in a
local neighborhood of the manifold. Using Nadaraya-Watson regression, Gaus-
sian kernels are used to estimate these densities in the conditional expectation
setting [7]. By assuming the kernels G generalizes the expectation such that the
observations are defined in terms of a metric dM in manifold space:

fNW(Yi) = argmin
Ai

abs

∑
j∈N (i) G(Yi, Yj)dM(Ai

abs,A
j
abs)∑

j∈N (i) G(Yi, Yj)
(2)

which integrates the distance metric dM(Ai
abs,A

j
abs) defined in (1) and updates

fNW(Yi) using the closest neighbors of point Yi in the manifold space. This
constrains the regression to be valid for similar data points in its vicinity since
locality around Yi preserves locality in Ai

abs.

2.3 Local Vertebra Appearances in the Manifold

The key idea of capturing vertebral shape appearance lies on the assumption
that global models, represented in a local neighborhood of M, will also manifest
similar local geometries. The motivation stems from the fact that global shape
deformation belonging to the same class will induce similar local biomechan-
ical patterns, creating morphologically comparable vertebrae. We assume here
that vertebra appearances follow a linear distribution within the low-dimensional
manifold. Hence, given a data point Yj and its K neighbors, the local shape
model si, representing the ith element of the ADM, is obtained by building a
particular class of shapes given the set of examples {s1

i , ..., s
K
i }. We approxi-

mate the distribution of the shape using a parameterized linear model by com-
puting the deformation vectors formed for the K − 1 shape samples. We com-
pute the n eigenvalues and corresponding eigenvectors v so that a new vertebra
snew
i = s̄i + [v1 . . . vn][ω1 . . . ωn] can be instantiated where s̄i is the mean shape

of the K neighboring local objects and w = [ω1 . . . ωn] the weight vector. This
step warps individual instances to infer new local vertebra models.

3 Inference through MRF Optimization

Once an appropriate modeling of spine shape variations is determined, a success-
ful inference between the image and manifold must be accomplished. We describe
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here how a new model is deformed. We search the optimal embedded manifold
point Y = (y1, . . . ,yd) of the global spine model. Such a strategy offers an ideal
compromise between the prior constraints, as well as the individual shape varia-
tion described by the weight vector W = (w1, . . . ,wn) in a localized sub-patch.
The energy E of inferring the model S in the image I is a function of the set of
displacement vectors Δ in the manifold space for global shape representation.
This involves: (a) a data-related term expressing the image cost and (b) a global
prior term measuring deformation between low-dimensional vectors with shape
models. The third term represents (c) a higher-order term which is expressed by
the reconstruction weights Ω for local vertebra modeling. The energy E can be
expressed as the following combination of a global and local optimization:

E
(
S0, I, Δ, Ω

)
= V

(
Y0 + Δ, I

)
+ α V

(
N, Δ

)
+ β V

(
H, Δ, Ω

)
. (3)

3.1 Rigid Alignment of the Spine

The global alignment of the model with the target image primarily drives the
deformation of the ADM. The purpose is to estimate the set of articulations
describing the global spine model by determining its optimal representation Y0

in the embedded space. This is performed by obtaining the global representation
using the mapping in (2) so that: fNW(Yi + Δ) = fNW({y1 + δ1, . . . , yd + δd}).
This allows to optimize the model in manifold space coordinates while retrieving
the articulations in I. The global cost can be expressed as:

V
(
Y0 + Δ, I

)
= V

(
fNW({y1 + δ1, . . . , yd + δd}), I)

)
. (4)

The inverse transform allows to obtain Ai
abs +D, with D as deformations in the

image space. Since the transformations Ti are implicitly modeled in the absolute
representation A0

abs, we can formally consider the singleton image-related term
as a summation of costs associated with each L vertebra of the ADM:

V
(
A0

abs + D, I
)

=
L∑

i=1

Vi

(
si ∗ (T 0

i + di), I
)

(5)

where Vi(s, I) =
∑

vi∈s nT
i (vi)∇I(vi) minimizes the distance between mesh

vertices of the inferred ADM and gradient image I by a rigid transformation.
Here, ni is the normal pointing outwards and ∇I(vi) the image gradient at vi.

The prior constraint for the rigid alignment are pairwise potentials between
neighboring models yi such that the difference in manifold coordinates is minimal
with regards to a prior distribution of neighboring distances P :

α V
(
N, Δ

)
= α

∑

i∈G

∑

j∈N (i)

Vij(y0
i + δi, y

0
j + δj , P ). (6)

This term represents the smoothness term of the global cost function to ensure
that the deformation δi applied to point coordinates are regular, with Vij = (0, 1)
a distance assigning function based on the distances to P .
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3.2 Non-rigid Adaptation of Vertebral Shapes

Finally, local shape geometry for each of the ADM’s vertebrae is obtained by
varying the weight parameters of the principal variations. We parameterize these
potentials with a set C of clique variables c, controlled by high-order potential Vc

[8] which assigns a cost to a configuration of c. Each clique are assigned to weight
vectors ωc. Hence the third term of (3) is described as a high-order functional:

β V
(
H, Δ, Ω

)
= β

∑

c∈C
Vc(w0

c + ωc) (7)

where independent clique variables c are treated as a graph minimization prob-
lem. The prior term is represented by higher-order potentials of degree n, based
on the eigenvalues of the L local vertebrae from our model S. Our work is in-
spired from a mesh reconfiguration [9] where costs are associated to cliques c
based on the positions of the morphed mesh vertices vi. A search is performed
along the normal ni from vi to find the optimal compromise between boundary
detection and the distance to the mean eigenvalue shape. We therefore penalize
deformations which deviates from the local distribution.

One can integrate the global data and prior terms along with local shape
terms parameterized as the higher-order cliques, by combining (4), (6) and (7):

E
(
S0, I, Δ, Ω

)
= V

(
fNW({y1 + δ1, . . . , yd + δd}), I)

)

+ α
∑

i∈G

∑

j∈N (i)

Vij(y0
i + δi, y

0
j + δj) + β

∑

c∈C
Vc(w0

c + ωc). (8)

3.3 Energy Minimization

The optimization strategy of the resulting MRF (8) in the continuous domain
is not a straightforward problem. The convexity of the solution domain is not
guaranteed, while gradient-descent optimization approaches are prone to non-
linearity and local minimums. We seek to assign the optimal labels LΔ =
{l1, . . . , ld} and LΩ = {l1, . . . , ln} which are associated to the quantized space Δ
of displacements and local weight parameters Ω respectively. We consider that
displacing the coordinates of point y0

i by δli is equivalent to assigning label li
to y0

i . An incremental approach is adopted where in each iteration t we look for
the set of labels that improves the current solution s.t. yt

i = y0
i +

∑
t δlit, which

is a temporal minimization problem. Then (8) can be re-written as:

Et(LΔ,LΩ) = V
(
fNW({yt−1

1 , lΔ1 , . . . , yt−1
d , lΔd }), I)

)

+ α
∑

i∈G

∑

j∈N (i)

Vij(yt−1
i , yt−1

j , lΔi , lΔj ) + β
∑

c∈C
Vc(wt−1

c , lΩc ). (9)

We solve the minimization of the higher-order cliques in (9) by transforming
them into quadratic functions [8]. We apply the FastPD method [10] which
solves the problem by formulating the duality theory in linear programming.



Nonlinear Embedding towards Articulated Spine Shape Inference 585

4 Experiments and Results

In order to evaluate the performance, we considered modeling pathological spinal
columns for CT inference. We used a database of N = 711 spine models recon-
structed in 3D and exhibiting different types of deformations relative to global
and local shapes. For each spine, 6 landmarks on each of the 17 vertebrae compos-
ing the spinal column where used to extrapolate the inter-object transformation
(Fig. 2(a)). Optimal neighborhood size was found at K = 10, while intrinsic
dimensions was d = 7 and n = 5, dictating the number of nodes in our global
graph model. α and β balance the contribution of the energy terms and set at 0.3
and 0.5 respectively. We tested the algorithm on a subset of 20 unseen 3D recon-
structed cases from the database (modifying the modular data term to vertex
correspondences) and 12 CT volumes. We quantitatively compared our method
to an AAM modeling based on global PCA. Dice scores and root-mean-square
(RMS) landmark distances show improvement of the proposed MRF approach
via a non-linear shape analysis in Fig. 2(b). Successful examples from CT inferred
data are shown in Fig. 2(c). We evaluated the performance based on the density
of the input sample points, affecting the global shape inference starting when
only 20% of points are available. Furthermore, added Gaussian distributed noise

(a) (b)

(c)

Fig. 2. (a) Representation of inter-vertebral transformations. (b) Plots of Dice coef-
ficients and landmark errors comparing our method to AAM. (c) Spine inferences of
triangulated from CT with orthogonal views. Local shape distortions with significant
noise level increase σ added to target points (error-coded for ground-truth distances).
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to the target data introduces distortions when σ = 3 (Fig. 2). These validations
prove how our method elegantly encodes prior knowledge with image constraints
in an MRF framework, and efficiently minimizes the energy term to converge to-
wards an optimal solution. One drawback remains the computational time due to
the inverse regression mapping and higher-order clique potential minimization.

5 Discussion and Future Work

Our main contribution consists in modeling complex, non-linear patterns of spine
deformations in a Riemannian manifold. Point-based models are created from
statistical knowledge in terms of global and local variations. To this end, an ar-
ticulated distance metric based on intrinsic and orientation properties was pro-
posed. The non-linear embedding is constructed in such a way to avoid creating
shape distortions, as well as collisions between shapes. This is accomplished by
constraints within the manifold parameters to restrict outlying values corrupting
global shape appearance. The proposed framework can be extended in medical
imaging applications to allow global/local shape modeling. While the method
remains computationally expensive for the inverse map, inference of articulated
models based on optimal clique decomposition can be beneficial to this end.
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