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Abstract 27 

We tested an empirical modelling approach using relatively low-cost continuous records of 28 

turbidity and discharge as proxies to estimate phosphorus (P) concentrations at a sub-hourly 29 

time step for estimating loads. The method takes into account non-linearity and hysteresis 30 

effects during storm events, and hydrological conditions variability. High-frequency records of 31 

total P and reactive P originating from four contrasting European agricultural catchments in 32 

terms of P loads were used to test the method. The models were calibrated on weekly grab 33 

sampling data combined with 10 storms surveyed sub-hourly per year (weekly+ survey) and 34 

then used to reconstruct P concentrations during all storm events for computing annual loads.  35 

For total P, results showed that this modelling approach allowed the estimation of annual loads 36 

with limited uncertainties (≈ -10% ± 15%), more reliable than estimations based on simple 37 

linear regressions using turbidity, based on interpolated weekly+ data without storm event 38 

reconstruction, or on discharge weighted calculations from weekly series or monthly series. For 39 

reactive P, load uncertainties based on the non-linear model were similar to uncertainties based 40 

on storm event reconstruction using simple linear regression (≈ 20% ± 30%), and remained 41 

lower than uncertainties obtained without storm reconstruction on weekly or monthly series, 42 

but larger than uncertainties based on interpolated weekly+ data (≈ -15% ± 20%). These 43 

empirical models showed we could estimate reliable P exports from non-continuous P time 44 

series when using continuous proxies, and this could potentially be very useful for completing 45 

time-series datasets in high-frequency surveys, even over extended periods. 46 
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1. Introduction 57 

Phosphorus (P) concentrations in streams and rivers present a high temporal variability that can 58 

only be captured through sub-daily or even sub-hourly sampling [Cassidy and Jordan, 2011]. 59 

For example, P concentrations can vary by several orders of magnitude within a few hours 60 

during storm events in small rural and flashy catchments. These dynamics of P concentrations 61 

question the relevance of the monitoring strategies adopted by water authorities, for example 62 

within the EU Water Framework Directive, where P is surveyed at best on a monthly basis 63 

[Halliday et al., 2015; Skeffington et al., 2015]. Many authors have shown that a higher 64 

frequency monitoring would be required to: i) improve knowledge of hydrological and 65 

biogeochemical processes such as understanding P sources, mobilization and delivery processes 66 

from soils to rivers [Halliday et al., 2014; Bowes et al., 2015; Dupas et al., 2015b, 2015c, 2017; 67 

Mellander et al., 2015; Van Der Grift et al., 2016] ; ii) assess stream chemical dynamics and 68 

estimate reliable chemical fluxes with limited uncertainties to evaluate the ecological status of 69 

streams [Johnes, 2007; Rozemeijer et al., 2010; Cassidy and Jordan, 2011; Jones et al., 2012; 70 

Wade et al., 2012; Blaen et al., 2016; Rode et al., 2016]; iii) monitor the evolution of water 71 

quality in large rivers impacted by multiple anthropogenic activities [Moatar et al., 2013; 72 

Minaudo et al., 2015; Vilmin et al., 2016] and their response to mitigation measures [van Geer 73 

et al., 2016]. In recent years, high frequency water quality monitoring programs have been 74 

developed [Rode et al., 2016], but such efforts are costly and require heavy logistics that are 75 

currently unsuitable for river basin authorities to implement.  76 

A commonly used monitoring strategy to understand P dynamics across time scales (storm 77 

event, seasonal, inter-annual variability) is to complement regular low frequency grab 78 

sampling, typically weekly to monthly, with high-frequency sampling during selected storm 79 

events [Ide et al., 2012; Audet et al., 2014; Dupas et al., 2015c]. Although this strategy has 80 

proved useful to understand the hydrological and biogeochemical controls on P transfer, the 81 

time series produced remain non-continuous and estimated annual P exports are associated with 82 

high uncertainties [Defew et al., 2013]. Consequently, there is a need to develop appropriate 83 

methods that help to reconstruct P series during periods when no high frequency data are 84 

available, during base flow periods and unmonitored runoff events. The information contained 85 

within continuous records of parameters such as turbidity and discharge are rarely considered 86 

despite these measurements being commonly available, robust and low-cost.  87 
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A previous study has used turbidity as an explanatory variable to estimate total P concentrations 88 

with linear mixed models [Jones et al., 2011]. However, this method does not account for the 89 

commonly observed hysteresis loops between P concentrations and turbidity or discharge 90 

[Bieroza and Heathwaite, 2015; Bowes et al., 2015; Dupas et al., 2015c; Perks et al., 2015]. 91 

Additionally, this approach has not been tested to provide proxies of reactive phosphorus (RP) 92 

concentrations and fluxes. More recently, Mather and Johnson [2015] developed a non-linear 93 

empirical model to predict suspended sediment (SS) time series based on continuous discharge 94 

time series. This approach requires a limited number of continuous observation data of both the 95 

explanatory variable and the target variable, here SS, during different flow conditions to build 96 

an empirical model to estimate SS concentrations during unmonitored storm events. 97 

In the present study, we propose to transpose this approach to P. We hypothesized that 98 

combining continuous records of turbidity and discharge with non-continuous series of P 99 

concentration (total and reactive P), with a limited number of storm events monitored at high-100 

frequency during different hydrological conditions, could be used to calibrate non-linear 101 

empirical models and reconstruct continuous P series. The objectives were to determine i) 102 

whether this type of approach is suitable for total and/or reactive P in streams of small 103 

agricultural catchments, and ii) how many storms need to be monitored at a higher resolution 104 

(hourly) to reliably calibrate empirical non-linear models and satisfactorily predict P exports 105 

compared to the usual monthly or weekly sampling, with or without storm event monitoring. 106 

This study was undertaken using high frequency total P (TP) and reactive P (RP) time series 107 

measured in four contrasting agricultural catchments on the Atlantic seaboard of Europe 108 

(France and Ireland). 109 

2. Methods 110 

2.1. Study sites 111 

The study used TP and RP concentrations measured in four streams at the outlet of small 112 

intensively farmed catchments on the Atlantic seaboard of Europe, two in western France 113 

(Kervidy-Naizin and Moulinet) and two in southern Ireland (Timoleague and Ballycanew). 114 

The catchments share several physical characteristics (Table 1): they are second or third 115 

Strahler order systems, present gentle topography and are exposed to a temperate oceanic 116 

climate [Dupas et al., 2015c; Mellander et al., 2015, 2016]. Catchment sizes vary from 5 to 12 117 

km² and average rainfall ranges from 862 to 1060 mm year-1. 118 
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Differences exist among the study catchments with respect to land use and soil types. Three 119 

catchments with intensive dairy farming are dominated by grasslands, covering 77, 77 and 60 120 

% of the total surface area for Timoleague, Ballycanew and Moulinet, respectively. One 121 

catchment, Kervidy-Naizin, is dominated by arable land (85% of agricultural land consists of 122 

arable crops (mainly cereals and maize) and 15% is grassland) and intensive indoor animal 123 

production (dairy cows, pigs and poultry). In Kervidy-Naizin, Moulinet and Timoleague, soils 124 

are well drained [Molenat et al., 2008; Dupas et al., 2017]. This contrasts with Ballycanew 125 

where 74% soils are classified as poorly drained Gley soils [Mellander et al., 2016]. 126 

The hydrological variability largely differed for these catchments: in 2% of the time, 8% of the 127 

total discharge occurred in Moulinet, 10% in Timoleague, 17% in Kervidy-Naizin and 26% in 128 

Ballycanew (indicator W2, following Moatar et al., [2013]). In Kervidy-Naizin, the stream is 129 

usually dry from August to October while the three other catchmentstreams are perennial.  130 

2.2. Stream monitoring 131 

All four catchments were equipped with an automatic gauging station (time step varying from 132 

1 min (Kervidy-Naizin and Moulinet) to 10 min (Timoleague and Ballycanew)) for determining 133 

the discharge and with an in-situ turbidity probe (time step between 10 and 15 min). In the 134 

French catchments, the turbidity probes (PONSEL TU-NA in Kervidy-Naizin and Hydrolab 135 

HL4 in Moulinet) were situated directly in the stream water column while in the Irish 136 

catchments the probes (Hach Solitax) were located in a tank continuously filled with water 137 

pumped from the stream. Potential differences in in-situ and ex-situ installations were studied 138 

and found to give comparable results [Sherriff et al., 2015]. Sub-hourly datasets were 139 

aggregated and transformed into hourly time series. Rainfall was recorded hourly in the French 140 

catchments and every 10 minutes in the Irish catchments. 141 

The P monitoring strategies differed between the French and the Irish catchments. The French 142 

monitoring was composed of a regular survey (weekly to daily grab sampling) combined with 143 

sub-hourly sampling using ISCO 612 Full-Size Portable autosamplers during a limited number 144 

of hydrological events (approximately 10 events per year). In the Moulinet catchment, P was 145 

surveyed on a weekly basis during the period October 2007 – July 2015 and 79 storms were 146 

surveyed sub-hourly. At Kervidy-Naizin, P was surveyed on a weekly basis during the period 147 

October 2007 – October 2013, and then daily from November 2013 to July 2015. Additionally, 148 

61 storm events were surveyed sub-hourly during the period October 2007-July 2015. For each 149 

sample, one aliquot was filtered directly on-site for soluble reactive phosphorus (SRP) analysis 150 
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(0.45 μm cellulose acetate filter), and another aliquot kept unfiltered for TP determination. Both 151 

samples were then stored at 4°C until analysis within a fortnight. Soluble reactive P was 152 

determined using colorimetry by reaction with ammonium molybdate on filtered samples (ISO 153 

15681). Precision of SRP measurement was ±4 μg L-1. TP was determined with the same 154 

method, after digestion of the unfiltered samples with potassium peroxydisulfate. 155 

In both Irish catchments, TP and total reactive P (TRP) concentrations were recorded sub-156 

hourly, using continuous bank-side analyzers (Hach Phosphax-Sigma instruments [Jordan et 157 

al., 2007]) and then aggregated to hourly data. The data recorded during the hydrological year 158 

2011-2012 were chosen within the present study as this period had frequent storms in both 159 

winter and summer time. The two Irish catchments have different flow controls (soil drainage) 160 

and hydrological “flashiness” and respond differently to storm events. We could, therefore, test 161 

the non-linear modelling approach for a particular challenging year in catchments of contrasting 162 

hydrology. It was assumed that TRP was approximately equivalent to SRP since it was reported 163 

in a previous study that the discharge-weighted mean SRP accounted for 98-99% of the 164 

discharge-weighted mean TRP in the Ballycanew catchment [Shore et al., 2014], similar in 165 

terms of land-use to Timoleague. For consistency, RP is used here to describe this fraction in 166 

both catchments following the terminology of Haygarth and Sharpley [2000]. 167 

Further information on the monitoring equipment used is provided in Dupas et al. [2015c] for 168 

the French catchments and in Mellander et al. [2015, 2016] for the Irish catchments. 169 

2.3. Storm event detection with continuous discharge records 170 

A storm detection algorithm was developed to extract each storm event from the discharge time 171 

series. The algorithm was based on the derivative of discharge (dQ/dt) which allowed the 172 

identification of the falling and rising limbs of a given hydrological event and defined the exact 173 

start and end times of each discrete storm event (Fig. 1). When dQ/dt exceeded a calibrated 174 

threshold during a given period, it was considered to be either a rising (dQ/dt > 2 10-3 mm h-2) 175 

or falling limb (dQ/dt < -1.25 10-3 mm h-2) period. If two successive periods corresponded to a 176 

rising and falling limb, they were considered to be part of the same hydrological event, as long 177 

as the gap between these periods did not exceed 2 hours. Additionally, discharge amplitudes 178 

had to exceed 0.015 mm h-1 to be identified as storm events.  179 

2.4. Non-linear empirical modelling 180 

Several levels of analysis were conducted and presented as different layers (Fig. 2). 181 
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2.4.1. Dataset separation between calibration and evaluation datasets 182 

The storm event datasets where split into calibration sub-datasets (Layer 1) and model 183 

evaluation sub-datasets (Layer 2). 184 

For the French datasets, 60% of P-surveyed storms were randomly chosen among the total 185 

available data and were added to the weekly frequency monitoring; this constituted the 186 

calibration dataset. Thus, the calibration dataset at Kervidy-Naizin was composed of 37 storm 187 

events randomly selected among 61 P-surveyed events out of the 266 storm events that occurred 188 

over the entire period of record. In Moulinet, the calibration dataset was composed of 47 storm 189 

events randomly chosen among 79 P-surveyed events out of the 266 storm events that occurred 190 

over the entire period of record. The evaluation datasets were then respectively constituted by 191 

the 24 and 32 remaining storm events in Kervidy-Naizin and Moulinet. 192 

For the Irish datasets, the continuous records of P concentrations were sub-sampled to mimic 193 

the monitoring strategy of the French catchments, i.e. a combination of a weekly sampling with 194 

a sub-hourly survey for a few storm events every year. For that purpose, a weekly survey was 195 

randomly simulated by subsampling the continuous time series every 7 days: the date of the 196 

first sample was randomly chosen among the first 7 days of the considered period, and the 197 

sampling hour was selected randomly within reasonable working hours (from 8am to 5pm). 198 

Additionally, 10 events per year were randomly chosen among the available data to compose 199 

the set of intensively surveyed events. The combination of these two samplings constituted what 200 

is hereafter called a “weekly+” sampling. Weekly+ time series were then considered as 201 

calibration data and the rest of the continuous time series was the evaluation data. 202 

Because performances by the models can be sensitive to this dataset separation step, the 203 

successive steps of data separation, calibration and evaluation were repeated 500 times. This 204 

number of successive iterations was determined based on an analysis of error distribution 205 

variations from 2 iterations to 1000 (results not shown). 206 

2.4.2. Layer 1 – Calibration 207 

Non-linear empirical models with hysteresis effects were developed following a similar 208 

approach to that reported by Mather and Johnson [2014, 2015]. These models were calibrated 209 

on each catchment dataset separately (Fig. 3). 210 

The different models tested in this study are denoted models M1, M2 and M3 (Equations 1, 2, 211 

3) where P(t) is the P concentration (either TP or RP) at time t and X(t) is the chosen explanatory 212 



8 

 

variable (turbidity for TP or Q for RP) at time t, P0 is the minimum between the observation of 213 

P before and after the P surveyed storm (i.e. baseflow concentration observed through the 214 

regular weekly sampling, or the first/last observation of the next/previous high-frequency storm 215 

event surveyed), and X0 is the value of the chosen explanatory variable at the time 216 

corresponding to P0.  217 

Model M1: 𝑃(𝑡) = 𝑎 ∙ 𝑋(𝑡) + 𝑏 ∙ 𝑑𝑋(𝑡)𝑑𝑡     Equation 1 218 

Model M2: 𝑃(𝑡) − 𝑃0 = 𝑎 ∙ (𝑋(𝑡) − 𝑋0) + 𝑏 ∙ 𝑑𝑋(𝑡)𝑑𝑡   Equation 2 219 

Model M3: 𝑃(𝑡) = 𝑎 ∙ 𝑋(𝑡)𝑐 + 𝑏 ∙ 𝑑𝑋(𝑡)𝑑𝑡     Equation 3 220 

Coefficient a describes the mean slope between P(t) and X(t); b describes the direction and 221 

amplitude of the hysteresis loop (clockwise if positive, counterclockwise if negative); and c 222 

describes the shape of the loop (symmetrical if equal to 1, and curved if different from 1). Model 223 

M1 predicts absolute concentrations. Model M2 is based on the hypothesis that hysteresis 224 

patterns might depend on initial turbidity or discharge conditions, or on their temporal evolution 225 

during storm events recession. Thus, M2 predicts relative variations, the baseflow value (P0 226 

term) being added afterwards. Model M3 considers the possibility of asymmetrical hysteresis 227 

loops. Model M1 is therefore a particular case of M3, where parameter c equals 1. 228 

Previous studies have shown the hysteretic patterns between TP concentrations and turbidity 229 

on one side, and on RP concentrations and discharge on the other side [Grayson et al., 1996; 230 

Bowes et al., 2005; Jones et al., 2011]. The explanatory variable X was then chosen accordingly, 231 

i.e. turbidity for TP, and discharge for RP.  232 

Five steps were considered to apply these non-linear models (Fig. 3):  233 

 Step 1. For each individual storm surveyed, coefficients (a, b, c) of Equations 1, 2, 3 234 

were fitted on the calibration data series using iterative least squares estimates. 235 

 Step 2. Because coefficients a, b, c might differ from one storm to another (e.g. due to 236 

different sources or different P transfer processes [Bieroza and Heathwaite, 2015]), the 237 

best calibrated sets were first selected according to a Nash-Sutcliffe criterion [Nash and 238 

Sutcliffe, 1970] above 0.5 and more than 5 observations within the storm event. 239 

 Steps 3. In order to choose the right set of coefficients for a new storm event, the sets of 240 

coefficients were clustered using an agglomerative hierarchical classification, using 241 

Euclidean distance as a distance metric. The cutting threshold, i.e. the number of 242 
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clusters, was determined according to Caliński and Harabasz [1974] and the maximum 243 

number of clusters was set at 5. Coefficients a, b, c were then re-calibrated among each 244 

of the different clusters to determine a single set of coefficients representative of each 245 

cluster. 246 

 Step 4. Decision trees were built to allocate unmonitored storm events to the previously 247 

defined clusters with given parameter values. This was based on the linkage (Linkage 248 

Matlab© function) between the different clusters identified previously and a set of 249 

hydrological indicators chosen to characterize the event. The hydrological indicators 250 

were the following: i) the variation of discharge during the event (Qmax-Qmin), ii) the 251 

cumulated rainfall on the day when the storm event started, iii) the cumulative rainfall 252 

over 10 days before the event, iv) the average discharge over 10 days before the event, 253 

v) the average groundwater depth in the riparian wells over 10 days before the event 254 

when data were available (i.e. at Timoleague and Kervidy-Naizin only). The first two 255 

indicators were related to the event itself, while the last three were related to antecedent 256 

catchment wetness conditions. 257 

 Step 5. Decision trees were then used to assign a, b, c parameter values to a new storm 258 

and predict P concentrations and fluxes using the ClassificationTree set of functions in 259 

Matlab©. During inter-storm periods, RP and TP concentration were interpolated 260 

linearly, using observations from weekly monitoring. 261 

 262 

2.4.3. Layer 2 - Evaluation 263 

Performances of non-linear models were evaluated at two different time-scales (Fig. 2): i) at 264 

the storm event scale, using comparable model settings in all four catchments (same number of 265 

storms for calibration step); ii) at the annual scale in the two Irish catchments where the 266 

monitoring was near-continuous and thus allowed for calculation of actual loads on 267 

measurements. 268 

At the storm event scale, each model was evaluated for each storm event using the calibration 269 

data series described in section 2.4.1. For each storm event, the P concentration was estimated 270 

at an hourly time step. Relative root mean square errors (%RMSE) were calculated on P loads 271 

during every storm intensively surveyed to quantify the performances of the empirical models. 272 

The annual scale evaluation could only be conducted in the Irish catchments because of their 273 

near-continuous data. Annual loads were estimated by multiplying continuous discharge by 274 
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reconstructed P concentrations estimated by models and interpolated P concentrations (after 275 

step 5, see section 2.4.2). The performances of the model at the annual time-scale were 276 

quantified using relative errors, relative bias and standard deviation of relative errors of loads. 277 

2.4.4. Layer 3 – Comparing different strategies to assess annual loads 278 

Performances of non-linear modelling on estimating annual loads were compared to more 279 

common ways of assessing loads, with or without storm reconstruction (Fig. 2). Again, this was 280 

conducted on the Irish dataset only (Timoleague and Ballycanew) where P measurements were 281 

near-continuous (allowing for computing the actual load). Thus, five different strategies were 282 

compared: 283 

i) A discharge weighted load calculation based on a monthly discrete sampling. Those 284 

monthly sub-sampled time series were built following the same steps as the weekly 285 

subsampling described in section 2.4.1.  Annual loads for these sub-sampled series 286 

were estimated using discharge weighted formula (Eq. 4). 287 𝐿𝑦 = ∑𝐶𝑖𝑄𝑖∑𝑄𝑖 𝑄̅   Equation 4 288 

where Ly is the calculated load during year y, Ci and Qi are the instantaneous 289 

concentration and discharge at time i and 𝑄̅ is the average discharge during y. 290 

ii) A discharge weighted load calculation based on a weekly discrete sampling. Sub-291 

sampling and load calculation methods were similar to the monthly strategy. 292 

iii) A simple linear interpolation between observations of a weekly+ sampling without 293 

storm-reconstruction. Corresponding loads integrated only the storm events that 294 

were sampled and neglected the others.   295 

iv) A weekly+ sampling with storm-reconstruction based on a linear regression model 296 

were continuous records of turbidity and discharge were used as proxies for, 297 

respectively, TP and RP, as in non-linear models M1, M2 and M3. This model did 298 

not consider hysteresis cycles. The relationship between P concentration and the 299 

explanatory variable X followed a linear relationship according to the Equation 5 300 

formulation. 301 

Linear model: 𝑃(𝑡) = 𝑎 ∙ 𝑋(𝑡) + 𝑏   Equation 5 302 

Coefficients a and b in each case were fitted by minimalizing squared errors based 303 

on the entire calibration dataset. This model was a simpler version of the model 304 
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presented in the Jones et al. [2011] study where turbidity was used as a proxy for 305 

high-frequency TP. 306 

v) Our approach, i.e. a weekly+ sampling with storm-reconstruction, based on the non-307 

linear modelling approach developed in this study (see section 2.4.2.) 308 

The same sensitivity test as conducted for model evaluation was run by repeating 500 times the 309 

successive steps: random calibration dataset selection, model calibration, annual load 310 

estimations and performance evaluation. 311 

 312 

2.4.5. Layer 4 – Sensitivity analysis of non-linear models 313 

Additionally to the sensitivity of model performances to calibration datasets, we assessed the 314 

impact of the number of P surveyed storms included in the calibration dataset on annual load 315 

estimations (Fig. 2). It was chosen to estimate model performances when the calibration dataset 316 

was composed of 6 to 20 storm events per year. This allowed an estimation of the differences 317 

in the model efficiency when more information was added in the input dataset. This was 318 

conducted with the Irish catchments’ data, and compared to load assessments from a simple 319 

linear regression between turbidity and TP and between discharge and RP (see sections 2.4.2 320 

and 2.4.4 for models constructions).  321 

2.4.6. Layer 5 – Model application to improve P exports assessment in catchments 322 

where P is non-continuously surveyed 323 

The model providing the best performances on P load assessment was used to estimate annual 324 

TP and RP exports in the two French catchments where P surveys are non-continuous (Fig. 2). 325 

Uncertainty was associated with these estimations based on the load uncertainties computed 326 

from the analysis made on the continuous Irish datasets at the annual scale, as errors in both 327 

Irish catchments were similar. 328 

 329 

3. Results 330 

3.1. Contrasting P concentration in the four catchments 331 

Phosphorus variability and composition were different in the four catchments (Table 2). TP 332 

median concentrations ranged between 0.06 and 0.20 mg P L-1, the highest concentrations being 333 

observed in the Moulinet catchment (90th percentile was 0.9 mg P L-1 against 0.16-0.37 mg P 334 
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L-1 in the other catchments). RP median concentrations ranged between 0.01 and 0.05 mg P L-
335 

1, the highest concentrations being comparable in Timoleague, Ballycanew and Kervidy-Naizin 336 

(0.09-0.11 mg P L-1) and much lower in Moulinet (0.04 mg P L-1). The proportion of RP in TP 337 

also differed in the four catchments. For example, during storm events, the RP fraction of the 338 

TP concentration represented on average approximately 40% in Timoleague, Ballycanew and 339 

Kervidy-Naizin, and sometimes up to 80% in Kervidy-Naizin. In Moulinet, RP represented less 340 

than 10% of TP most of the time, especially during storm events, and concentrations remained 341 

under 0.06 mg RP L-1. Ninety percent of the annual TP load occurred in 51% of the time in 342 

Timoleague against 21% in Ballycanew. For annual RP loads, this was 54% of the time in 343 

Timoleague against 34% in Ballycanew.   344 

3.2. Storm events characteristics in the four catchments 345 

The algorithm identified 266 and 329 storm events in Kervidy-Naizin and Moulinet, 346 

respectively, over the entire period, i.e. approximately 38 and 47 storms per year respectively 347 

(Table 2). In the Irish catchment during the 2011-2012 hydrological year, the algorithm 348 

identified 38 and 49 storms in Timoleague and Ballycanew, respectively. Storm event 349 

amplitudes were larger in Ballycanew than in the other catchments: among all the events 350 

identified, 12% of events exhibited specific discharge amplitudes over 0.1 mm h-1 at Moulinet, 351 

against 29% at Kervidy-Naizin, 39% at Timoleague and only 49% at Ballycanew. Storm events 352 

were longer in Timoleague and Ballycanew than in Kervidy-Naizin and Moulinet: event 353 

durations ranged between a few hours and several days. Average event duration was 18 hours 354 

at Moulinet, 30 hours at Kervidy-Naizin, and 42 hours at Timoleague and Ballycanew. 355 

Approximately 95% events lasted less than 3 days in the different catchments, except at 356 

Timoleague where the proportion was 87%. 357 

3.3. Empirical models performances during calibration step 358 

The three different mathematical formulations used to calibrate non-linear models using 359 

turbidity as a proxy for TP and discharge as a proxy for RP were tested on all available 360 

intensively surveyed storms. The distribution of Nash-Sutcliffe (NS) criterions computed for 361 

each storm individually were very low for the symmetrical hysteresis models M1 and M2, and 362 

were for most of the time below 0.5 independent of catchment or variable (TP or RP) (Figure 363 

4). Only a small percentage of storms could be considered for further model calibration steps, 364 

indicating that non-linear models considering symmetrical hysteresis poorly fitted the 365 
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observations. The asymmetrical hysteresis model M3, however, provided NS values most of 366 

the time over 0.5, and a large percentage of storms could be used for the next calibration steps.  367 

Thus, the rest of the study focused on both TP and RP in all 4 catchments based on the non-368 

linear model with asymmetrical hysteresis loops (M3). Models M1 and M2 are no longer used 369 

or reported hereafter. 370 

3.4. Performances on predicting P concentration and fluxes at different time scales 371 

3.4.1. Performances at the storm event scale 372 

Errors at the storm event scale for predicting TP and RP fluxes from model M3 were large 373 

(Table 3). For TP, medians over 500 iterations of relative RMSE (%RMSE) ranging between 374 

51 and 104%. Variability through the different simulations were considerable. The number of 375 

simulations providing %RMSE for TP flux at the storm event scale under 50% was small with, 376 

respectively, 49, 2, 11 and 9% for Timoleague, Ballycanew, Kervidy-Naizin and Moulinet. 377 

Most simulations provided %RMSE for TP fluxes under 100% in the Irish catchments, but error 378 

ranges were higher in the French catchments with 90th percentile on %RMSE reaching 129% 379 

in Kervidy-Naizin and up to 193% in Moulinet. Similar values were found for RP fluxes. The 380 

non-linear modelling approach showed unacceptable %RMSE values for predicting RP loads 381 

in Moulinet catchment (median %RMSE was 238%), but median %RMSE in the other 382 

catchments ranged between 72 and 79%. The number of simulations providing %RMSE for RP 383 

flux at the storm event scale under 50% was, respectively, 12, 26, 5 and 0% for Timoleague, 384 

Ballycanew, Kervidy-Naizin and Moulinet. 385 

Continuous series reconstructed by the non-linear model M3 preserved storm event  386 

concentrations dynamics (Fig. 5). If peak amplitudes were subject to large errors, especially for 387 

RP, peak phases corresponded to the observed concentrations. Predictions over 500 iterations 388 

were variable, and uncertainties depended on the storm event considered. 389 

3.4.2. Performances at the annual scale 390 

For model evaluation, annual load estimations could be calculated for the Irish catchments only. 391 

Errors were relatively low (Fig. 6). For annual TP load prediction, 10th to 90th percentile range 392 

of relative error was -5 to +18% for Timoleague and -26 to +1% for Ballycanew. This 393 

corresponded to relative bias ± s.d. error of 7% ± 12% in Timoleague and -11% ± 17% in 394 

Ballycanew. In Timoleague, we counted in results from the non-linear modelling that 60% 395 
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simulations out of 500 iterations produced relative errors on TP annual loads included within 396 

the range ± 10%. The proportion was 35% in Ballycanew. 397 

For RP, non-linear model M3 tended to overestimate the annual load: 10th-90th percentile errors 398 

ranged between -5 to +48% (bias ± imprecision were approximatively 20% ± 30%). In 399 

Timoleague, we counted that 42% simulations out of 500 iterations produced relative errors on 400 

RP annual loads included within the range ± 10%. The proportion was 38% in Ballycanew. 401 

3.5. Comparison of five different strategies to estimate annual loads 402 

3.5.1. Comparison with linear regression models 403 

Simple linear regression models using continuous records of turbidity and discharge 404 

respectively as proxies for TP and RP exhibited variable coefficients of determination (results 405 

shown in a Supplement information S1): R² between turbidity and TP concentration extracted 406 

from the calibration dataset ranged throughout the 500 iterations between 0.5 and 0.8 in 407 

Timoleague and between 0.2 and 0.7 in Ballycanew; R² between discharge and RP 408 

concentration ranged between 0 and 0.65 in Timoleague and between 0.15 and 0.6 in 409 

Ballycanew. 410 

When used to reconstruct TP and RP concentrations during storm events and estimate annual 411 

loads, these simple regressions provided load estimates associated with larger uncertainties than 412 

with the non-linear modelling approach. The simple linear method tended to underestimate TP 413 

(bias ± imprecision was approximatively 15% ± 20% at both sites) and overestimate RP (bias 414 

± imprecision was 29% ± 35% in Timoleague and 16% ± 24% in Ballycanew). A smaller 415 

number of simulations provided annual load estimates within the range ± 10%: in Timoleague, 416 

41% of simulations were within this range for TP (against 60% with the non-linear model M3) 417 

and 19% for RP (against 42% with M3); in Ballycanew, it was 42% for TP (against 42% with 418 

M3), and 30% for RP (against 38% with M3). At the scale of the storm event, it appeared that, 419 

even if the two or three most contributing events were better predicted with the simple linear 420 

model, most event fluxes were more reliably predicted with the non-linear model (results can 421 

be found in Supporting information S2).  422 

3.5.2. Comparison with simple interpolation of measurements from different sampling 423 

strategies  424 

Using simple linear interpolation of measurement without reconstruction of storm event 425 

concentrations, the weekly+, weekly, and monthly strategies were subject to large errors and 426 
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tended to underestimate annual loads: for both TP and RP, 10th-90th percentile errors ranged 427 

between -40 to -1% for a weekly+ strategy, -40 to +40% for a weekly sampling, and -50 to 428 

+35% for a monthly survey. Bias ranged between -34 to -7%, and the smallest bias was obtained 429 

with a weekly sampling strategy, but was associated with a 38% imprecision. Standard 430 

deviation errors ranged between 16 and 55%: the highest values resulted from the lowest 431 

sampling frequencies. 432 

3.6. Sensitivity of the empirical models to the calibration dataset 433 

Results have shown how much the performance of empirical modelling of TP using turbidity 434 

and RP using discharge largely differed depending on the 500 random draws that were made to 435 

separate calibration and evaluation datasets. Models were sensitive to the information contained 436 

initially in the calibration dataset, but all these results originated from the hypothesis that 10 437 

storms intensively surveyed per year should be enough. To assess the sensitivity of non-linear 438 

modelling to the quantity of information contained into calibration data, an analysis was 439 

conducted on the number of storms initially included in the calibration dataset. This was tested 440 

at the annual scale, based on the continuous records available in the Irish catchments.  441 

The number of events contained initially in the calibration dataset highly changed the quality 442 

of annual load predictions (Fig. 7). Both bias and imprecision were reduced when using a larger 443 

calibration dataset. In Timoleague, errors on annual load estimations of TP using the non-linear 444 

model decreased from -1% ± 18% to less than 5% ± 8% when using 6 to 20 storms among 38. 445 

Predictions also improved for RP loads estimations in Timoleague: errors reduced from 51% ± 446 

99% to 11% ± 32%. In Ballycanew, TP errors reduced from -12% ± 19% to 8% ± 12% and RP 447 

errors reduced from 33% ± 51% to 9% ± 15%. 448 

3.7. Using non-linear empirical modelling to improve annual load assessment in 449 

catchments where P was non-continuously surveyed 450 

The empirical models enabled the calculation of continuous series of TP using all the 451 

information contained in the available data in the French catchments, i.e. 266 and 329 events 452 

for Kervidy-Naizin and Moulinet respectively. Based on the non-linear modelling technique 453 

developed in this study, TP annual loads ranged between 18 and 63 kg P year-1 km-2 in Kervidy-454 

Naizin and between 30 and 65 kg P year-1 km-2 in Moulinet, depending on the year (Fig. 8). The 455 

proportion of RP in the total annual load based on the model ranged between 13 and 48 % in 456 

Kervidy-Naizin depending on the year, and remained under 5% in Moulinet. Although P 457 

exports were quite similar between the two catchments, a larger part of the annual TP load 458 
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occurred in Kervidy-Naizin during storm events: on average 62% versus 51% in Moulinet. In 459 

Kervidy-Naizin, 73% of the RP annual load was exported during storms. In Moulinet, 19% of 460 

the small amount of RP load was exported during storm events. 461 

Compared to load estimations with storm event reconstructions, the weekly+ strategy globally 462 

underestimated TP load values, with a much larger uncertainty window. Differences between 463 

loads assessed with the weekly+ survey, or assessed based on the non-linear empirical model, 464 

were even larger in Moulinet: TP loads with the non-linear model were three to seven-fold of 465 

the estimated load without storm reconstruction for the years 2012 and 2014. 466 

4. Discussion 467 

4.1. Should we use turbidity and discharge as proxies for TP and RP?  468 

This study showed that storm event reconstruction based on the association of proxies 469 

(continuous turbidity for TP), a weekly+ survey (i.e. a weekly sampling added to 10 storms 470 

intensively surveyed per year), and non-linear empirical modelling provided more reliable 471 

annual load predictions for TP compared to simple discharge weighted load calculations or 472 

compared to continuous series based on linear regressions between turbidity and TP.  473 

For RP, our empirical modelling approach based on 10 storms per year and continuous 474 

discharge used as proxy did not improve load assessments since predictions at the storm event 475 

scale were subject to large errors and provoked at least 15% ± 25% errors on annual loads. In 476 

the case of RP, simple calculations based on weekly+ datasets remained the best choice. These 477 

results show a lower predictability of RP by the hydrological proxy we used, probably due to 478 

direct effects of human activities occurring mainly in spring (e.g. manure spreading, 479 

mineralization of organic matter), as indicated by Dupas et al. [2016a]. 480 

However, load estimations were highly dependent on the set of storm events used for calibrating 481 

the non-linear model: even for RP, some predictions could be very good as we counted in both 482 

Irish catchments that around 40% of simulations (among 500 iterations) produced errors 483 

included within the reasonable range ±10%. Therefore, further analysis should be done to 484 

determine which set of storms has to be selected to produce the lowest load errors. Additionally, 485 

results showed that when the number of storms included in the calibration of the non-linear 486 

model was increased, errors were highly reduced for both TP and RP load estimations. One can 487 

expect in non-continuous P series recorded over several years with 10 storm events intensively 488 

surveyed per year would allow non-linear empirical models to provide more reliable annual 489 

loads.  490 
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Empirical models are useful tools to assess P exports in small agricultural catchments. This 491 

study strongly recommends stakeholders to develop monitoring strategies that combine weekly 492 

and a selection of sub-hourly storm samplings (weekly+). This will considerably help to assess 493 

P exports from, at least, small agricultural catchments where diffuse exports associated with 494 

storm events is dominant. This type of monitoring appears costly but provides useful 495 

information to improve understanding of catchment behavior and P export assessment: in the 496 

empirical approach developed here TP loads are reasonably well estimated, even in catchments 497 

with proportionally large RP concentrations that are more difficult to estimate. 498 

Based on this study, catchment managers would then have to deploy a weekly+ strategy with 499 

approximately 10 storms intensively surveyed per year over at least two years to cover the 500 

diversity of hydrological and agricultural conditions, depending on the inter-annual climate 501 

variability. Then, TP load estimations would be predicted for the first two years and the 502 

subsequent years with limited uncertainties (≈ -10 ± 10%) using non-linear modelling applied 503 

on continuous turbidity data, which is likely to be cheaper and straightforward compared to 504 

high-frequency P surveys over the entire extended period. Because P concentration relationship 505 

with turbidity or discharge may not be stable after implementation of mitigation measures in 506 

the catchment, additional control monitoring would then need to be set up, to control and/or 507 

recalibrate the empirical models, as it is usually conducted for discharge rating curves. This 508 

would require sampling a few storm events per year. 509 

To limit prediction errors on load calculations, the hydrological events intensively surveyed 510 

must be targeted according to the diversity of storm event typologies existing, and ideally 511 

characterized in beforehand. Further work should be done, but it seems reasonable to assume 512 

these events have to be spread across the period of record, through different climatic and 513 

agricultural seasons but also a few events have to be consecutive in order to represent different 514 

catchment wetness conditions. Apart from a peculiar event such as an uncontrolled point-source 515 

loading, the calibration dataset must include events of different amplitudes and in different 516 

seasons, so it is likely that model predictions could cover the variability of conditions 517 

encountered in study catchments. Thus, to proceed properly, monitoring for modelling 518 

programs would require (i) hydro-meteorological records to be able to characterize the 519 

variability of storm events within a year and inter-annually; and (ii) hydrochemical records to 520 

be representative of this variability, associated with continuous records of a relevant proxy 521 

(turbidity). Achieving this, the use of empirical models can be a relevant compromise for 522 
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estimating annual P loads, providing more reliable estimates than calculations based on a low 523 

frequency sampling and more affordable than direct continuous monitoring of P concentrations. 524 

4.2. New insights about P export regime in catchments where P is non-continuously 525 

surveyed 526 

Continuous series of TP and RP were reconstructed for non-continuous P series (in the two 527 

French catchments) based on the non-linear empirical models and all data available. These 528 

synthetic series provided new knowledge on mean level and inter-annual variability of P exports 529 

in these catchments. Results in the present study show that P export estimations without storm 530 

event reconstruction lead to large errors, and estimations based on empirical modelling are more 531 

reliable. It was estimated with the non-linear model in Kervidy-Naizin that, depending on the 532 

considered year, 13 to 49% of TP load was composed by RP fraction, 24% on average over the 533 

study period. The highest proportion (49%) was calculated for a particularly wet year in 534 

Kervidy-Naizin (1219 mm in 2013 versus 924 mm on average), suggesting more RP transport 535 

probably due to soil-groundwater interactions taking place during longer periods and over large 536 

areas, previously identified as the mechanism controlling soluble P transport, [Dupas et al., 537 

2015a, 2015b, 2017]. The annual TP exports from Moulinet was similar to that in Kervidy-538 

Naizin, but the proportion of RP was smaller (on average, 9%) . RP concentrations are subjected 539 

to high errors due to analytical techniques and storage  [Jarvie et al., 2002]; thus, the main 540 

limitation for estimating annual RP loads in this catchment might be linked to measurement 541 

uncertainties [Dupas et al., 2016b]. Improving data quality is crucial before being able to 542 

calibrate a reliable model. In this way, bankside analyzers constitute a good solution, especially 543 

because P analysis would be immediate (no sample decay during storage), and filtration would 544 

not be delayed, limiting the risk of adsorption to particles when samples stay several days in 545 

autosampler bottles [Jordan et al., 2007].  546 

Strong disparities could be found between the two catchments considering the very different 547 

proportion of P load occurring during storm events only, since it was found that 50 to 90% of 548 

the P exports occurred during storm events in Kervidy-Naizin, contrasting with Moulinet where 549 

it was 30 to 60%. This is concomitant with the observation made on discharge variability: 550 

discharge in Moulinet presented the lowest hydrological reactivity index W2 (8%, Table 1), 551 

and despite most P exports were transferred as particulate P, fluxes during low flows should 552 

not be ignored. 553 

4.3. Potential improvements in the empirical approach 554 
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It is clear that empirical models strongly depend on the calibration step. Selecting the set of 555 

storms intensively surveyed and used for model calibration appears crucial. This is likely to be 556 

the key to improve this approach, and further analysis should try to answer the two following 557 

questions: based on hydrological indicators, what constitutes the best set of surveyed storms to 558 

minimize load prediction errors? And, can we predict confidently that these optimal 559 

hydrological conditions will occur and choose whether or not autosamplers have to be triggered 560 

for the next storm event? 561 

Other explanatory variables than turbidity and discharge could have been tested to predict RP 562 

concentrations and fluxes. For example, continuous measurements of electrical conductivity or 563 

spectrometer data can also provide good results for RP as shown by Etheridge et al. [2014]. A 564 

combination of several parameters could also be used as explanatory variables, to provide as 565 

much information as possible to the models. Additionally, other mathematical equations have 566 

been proposed to represent the hysteresis effects between two variables. For example, Mather 567 

and Johnson, [2014] proposed a more complex equation than model M3 (Eq. 3) to predict 568 

suspended solids concentration based on turbidity in which several terms help to describe as 569 

best as possible non-linearity and complex hysteresis loops. 570 

Alternative methods such as Partial Least Squares models [Wold et al., 2001] or machine 571 

learning methods might provide good performances on predicting P concentrations and loads. 572 

This has already been developed for predicting suspended sediment concentrations and fluxes 573 

[Onderka et al., 2012; Ouellet-Proulx et al., 2016] but hasn’t been tested yet to assess P exports. 574 

Since we show that the models’ performances are site-dependent, the different existing methods 575 

(including the empirical models tested within our study) would have to be tested specifically 576 

on each catchment. 577 

5. Conclusion 578 

The non-linear empirical modelling approach developed in this study showed that the use of 579 

continuous low-cost measurements such as turbidity and discharge can be useful to help predict 580 

reliable estimates of P exports. For predicting TP loads empirical models applied on weekly 581 

data combined with 10 storms intensively surveyed per year (weekly+ survey) allowed the 582 

estimation of annual loads with limited uncertainties (≈ 10 ± 15% errors), more reliable than 583 

estimations based on monthly series (≈ -30 ± 50%), weekly series (≈ -10 ± 35%), or based on 584 

the weekly+ data without storm event reconstruction (≈ -25 ± 30%) or with simple regression 585 

models using turbidity and discharge to reconstruct P variations during storm events (≈ 15 ± 586 
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20%). For reactive P, load uncertainties based on non-linear empirical models were larger than 587 

uncertainties based on weekly+ data without storm reconstructions (≈ 20 ± 30%), although, it 588 

was shown that empirical models statistically provide the best results. 589 

This study showed that the asymmetrical non-linear model (M3) provided the best 590 

representation of TP-turbidity and RP-discharge hysteresis cycles and was convenient for most 591 

sites. The method developed here would largely benefit being tested on other sites with high-592 

frequency datasets and contrasting catchments. 593 

  594 
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Table 1. Study sites characteristics. S: catchment area, q: specific discharge (annual mean  ± standard 771 

deviation), W2: percentage of water flux passing in 2% of the time [Moatar et al., 2013]. 772 

 Timoleague 
(IR) 

Ballycanew 
(IR) 

Kervidy-Naizin 
(FR) 

Moulinet 
(FR) 

S (km²) 8 12 5 5 

q (mm) 417 ± 182 373 ± 129 316 ± 151 371 ± 77 

W2 (%) 10 26 17 8 

average 
rainfall 

(mm year-1) 
1047 1060 924 862 

P 
concentration 

temporal 
resolution 

hourly hourly 

weekly (2007-2013) 
daily (2013-2015) 
+ 61 storms sub-

hourly 

weekly 
+ 79 storms sub-

hourly 

data extent Oct. 2011 - Sept. 2012 Oct. 2011 - Sept. 2012 Oct. 2007 - July 2015 Oct. 2007 - July 2015 
 

 773 

 774 

Table 2. Characteristics of P concentration and load at the different study sites, and characteristics of 775 

storm events identified by the algorithm. fL90%: P load dynamic indicator such as 90% of the annual load 776 

occurs in fL90% % of the time. 777 

  Timoleague (IR) Ballycanew (IR) Kervidy-Naizin (FR) Moulinet (FR) 

TP concentration (mg P L-1) 
median (10th; 90th) 

0.06 (0.05; 0.16) 0.07 (0.05; 0.20) 0.07 (0.02; 0.37) 0.20 (0.03; 0.89) 

RP concentration (mg P L-1) 
median (10th; 90th) 

0.03 (0.04; 0.10) 0.05 (0.04; 0.11) 0.02 (0.01; 0.09) 0.01 (0.00; 0.04) 

RP/TP ratio during recorded 
storm events (%) 

40 to 60 30 to 60 10 to 80 <10 

fL90% (TP ; RP) 51 ; 54 21 ; 34 - - 

number of storm events per year 38 49 38 47 

average event duration (h) 42 43 30 18 

% of events with amplitude 
under 0.1 mm h-1 

61 51 71 88 

% of events with duration under 
3 days 

87 94 95 97 
 

 778 

 779 

Table 3. Percentiles 10, 50 and 90 of relative RMSE on fluxes computed for all identified storm events 780 

using non-linear model M3 after 500 simulations for total phosphorus (TP) and reactive phosphorus 781 

(RP). 782 

 Timoleague Ballycanew Kervidy-Naizin Moulinet 

TP - %RMSE 

median (10th; 90th) 
51 (33; 76) 75 (60; 93) 79 (48; 129) 104 (53; 193) 

RP - %RMSE 

median (10th; 90th) 
77 (48; 346) 72 (39; 177) 79 (54; 287) 238 (118; 1356) 

  783 
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 784 

Figure 1. Conceptual view of the algorithm developed to identify a storm event in discharge time 785 

series. Ai: storm event amplitudes, Ti: time between two identified stages.  786 
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 787 

Figure 2. Successive layers of analysis included in this study. Capital letters on the right side indicate 788 

the source of dataset used for the corresponding layer: IR corresponds to the Irish datasets; FR to the 789 

French datasets.  790 
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 791 

Figure 3. Successive steps for building non-linear empirical models  792 
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 793 

Figure 4. Performance during calibration step of non-linear models. Nash-Sutcliffe criterion for all P-794 

surveyed events during calibration of non-linear empirical models M1, M2, M3. Red italic numbers 795 

represent the percentage of surveyed storms with NS criterion > 0.5.  796 
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 797 

Figure 5. Example of continuous TP and RP concentration series after storm reconstruction based on 798 

the non-linear model M3, during June 2012 in the Timoleague catchment.  799 
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 800 

Figure 6. TP and RP relative errors on annual load estimations using non-linear modelling, a simple 801 

linear regression model, interpolation based on a weekly+ survey, and discharge weighted method 802 

based on weekly or monthly sampling strategies. Relative bias ± s.d. errors are indicated on the right 803 

axis of each panel.  804 
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 805 

Figure 7. Sensitivity of the annual load estimations to the number of events initially used to calibrate 806 

non-linear model M3 at Timoleague and Ballycanew (500 random draws).  807 
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 808 

Figure 8. A) Application of the non-linear empirical method M3 to estimate annual TP and RP loads and 809 

compared to estimations based on a weekly+ survey without storm event reconstruction in Kervidy-810 

Naizin and Moulinet catchments. Uncertainty ranges are based on results from Irish datasets. B) 811 

Proportion of load occurring during storm events only.  812 


