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NONLINEAR EQUATORIAL SPREAF F:
THE EFFECT OF NEUTRAL WINDS AND

BACKGROUND PEDERSEN CONDUCTIVITY

1. Introduction

In our previous studies of evolving equatorial spread F (ESF) bubbles

and plumes in the equatorial ionosphere [ Scannapieco and Ossakow, 1976;

Ossakow et al., 1979; Zalesak and Ossakow, 1980] , the effects of the neutral

wind were neglected. Rather, we focused our attention on showing that the

motion and structure of the experimentally measured ESF environment (bottom-

side and topside spread F, bubble formation and evolution) could be ex-

plained in terms of the nonlinear evolution of the gravitationally driven

collisional Rayleigh-Taylor instability. Through the use of numerical simu-

lation techniques we were able to demonstrate both qualitative and quantita-

tive agreement with the observations. We wished to show that a simple model

(i.e., using only gravity and the bottomside background electron density

gradient as drivers), followed into the nonlinear regime, could explain

observations that were up to that point inexplicable. However, there are

some aspects of the observations which we do not see in our previous simu-

lations.

First, there is the tendency of ESF structure to drift eastward at

approximately the neutral wind velocity, obviously something which could

not be duplicated in a numerical simulation which neglected neutral wind

effects. Secondly, there is the curious tendency on the part of radar back-

scatter maps of ESF to show plumes of backscatter intensity which tilt east-

ward with altitude at the lower altitudes and westward with altitude at the

higher altitudes. These structures were dubbed "C's" and "fishtails" by
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Woodman and La Hoz [1976] and have also been seen in the ALTAIR backscatter

maps of Tsunoda [1981], although Tsunoda chooses not to regard the eastward-

tilting and westward-tilting structures as part of the same plume. Addition-

ally, we should point out that McClure et al.., [1977] have observed the

westward drift of plasma bubbles (bite-outs or depletions). We propose here

a simple model of the interaction of the eastward neutral wind at the equator

with the equatorial ionosphere which we believe explains both of these ob-

servations. At this juncture, we should point out that Woodman and La Hoz

[1976] , Ott [1978], and Ossakow and Chaturvedi [1978] hypothesized that an

eastward neutral wind would producela westward drift of ESF bubbles.

Briefly, we find that if the magnetic field line integrated Pedersen

conductivity has a finite contribution from plasma which is not subject to

the equatorial F region neutral wind (e.g., plasma at highcr latitude E

regions), then the vertical polarization electric field driven by the neutral

wind at the equator is partially shorted out by this "background" E region

conductivity, causing there to be relative motion, or "slip", between the

plasma and the neutral wind at the equator. This effect was first described

by Rishbeth [1971] . Further investigation shows that the degree of "slip"

is inversely proportional to the "local" (i.e., equatorial F region) Pedersen

conductivity, causing there to be a vertical shear in the plasma motion even

when there is no vertical shear in the neutral wind. This plasma shear bends

any vertical structure about the "local" maximum in Pedersen conductivity,

giving rise to the "C's" and "fishtails" seen on coherent backscatter radar

maps (Woodman and La Hoz, 1976; Tsunoda, 1981). Zalesak et al. (1980) have

presented a preliminary version of this model.

In section 2 we present the geometry of the physical problem we are

modeling and briefly review the relevant equations of motion. We also show
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that any passive structure placed in the ambient equatorial environment will,

in fact, be bent into C-shaped structures. However, spread F plumes are

far from passive structures, and it is necessary to perform nonlinear numeri-

cal simulations to prove the case unequivocally. These simulations are

presented in section 3, where we also show the surprising result that, for

the case studied, it may be the eastward wall of the plume, as well as the

westward wall, which is subject to secondary instabilities. A stability

analysis which included only the interaction of the neutral wind with the

plasma gradients in the bubble would conclude that it should be only the

westward wall of the plume which is unstable. Consideration of the self-

consistent polarization electric field of the bubble itself, as well as of

gravitational effects on the tilted structure can cause the instability to

"1switch sides". In section 4 we present our conclusions, and in section 5

we discuss briefly our plans for future work.



2. Theory

In Figure 1, we show the geometry of the physical phenomenon we are

attempting to model. The equatorial F region plasma responds to the effects

of the earth's magnetic field, gravity, collisions with the neutral atmosphere,

and electric fields. Since the conductivity along magnetic field lines is

extremely high, these electric fields can depend on the dynamics of plasma

far from the equatorial region, but connected to the equatorial region by

magnetic field lines. We find that the physical quantity dominating the

evolution of the collisional Rayleigh-Taylor instability is the magnetic

field line integrated Pedersen conductivity, and that the primary contri-

bution to that quantity comes from plasma in the local region near the

"computational plane" shown in Figure 1. This fact has been the basis for

our previous theoretical and numerical studies of equatorial spread F,

(Scannapieco and Ossakow, 1976; Ossakow et al., 1979; Zalesak and Ossakow,

1980) and has enabled us to study the phenomena of interest using just a

single two-dimensional computational plane.

We do not propose here to analyze the problem in the complete three-

dimensional geometry, but rather, as a first step, to modify our two-

dimensional model to take into account the presence of other plasma, and

hence Pedersen conductivities and forces, in regions far from the equatorial

plane, but connected to the equatorial F region plasma along magnetic field

lines. For instance this could be the northern and southern hemisphere E

region plasma shown in Figure 1. This modification is shown in Figure 2,

where we show three distinct layers of plasma connected by magnetic field

lines. The center layer is the same computational plane as we have used in

our previous work (Scannapieco and Ossakow, 1976; Ossakow et al., 1979;
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EQUATORIAL
SPREAD F MODEL DASHED LINE DEPICTS4 E REGION PLASMA

I COMPUTATIONAL PLANE
/EQUATORIAL F REGION

PLASMA)

4000

1--- 125 km

* Fig. 1 - Diagam of the equatorial ionosphere and of the neighboring regions which have
physical relevance to equatorial spread F (ESF) processes, including the E region plasma
at highier and lower latitudes. These regions are electrically coupled to the equatorial F
region ionosphere by the high conductivity along magnetic field lines. Plasma is actually
distributed all along these field lines, but in this study we shall make the assumption that
this system can be modeled accurately by three planes of plasma connected by straight
field lines, as shown in Figure 2. One of these three layers (layer 2 in Figure 2) is shown
here as the "computational plane."
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REMAINING NORTHERN
HEMISPHERE PLASMA L AE

(LAYER 1)

COMPUTATIONAL PLANE IIII
(EQUATORIAL F REGION I LIUD )

PLASMA) LAE 2

REMAINING SOUTHERNII
HEMISPHERE PLASMA II
(LAYER 3)II

L z_(NORTH) LAYER 1

Fig. 2 -The "three layer" model of the physical system depicted in Figure 1. All plas-
ma in the vicinity of the equatorial plane has been compressed into layer 2, while the
remaining northern and southern hemisphere plasma has been compressed into layers 1
and 3 respectively. Further, the magnetic field lines have been straightened so we can
deal in cartesian coordinates x, y, and z as shown in the figure. The plasma in layers 1
and 3 is assumed to be uniform and free of any external driving force such as a neutral
wind. The equatorial layer 2 is assigned a realistic initial distribution of electron den-
sity N,(y), and ion-neutral collision frequency, along with a neutral wind which may
vary with altitude, but which is taken to be uniform and -eastward, and equal to
150 in/sec in this study. Li addition, gravity points in the negative y direction.
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Zalesak and Ossakow, 1980) and represents the equatorial nighttime F region

plasma. The upper and lower layers represent the remaining northern and

southern hemisphire plasma respectively, including the E region plasma. The

problem is still essentially two-dimensional in that we do not allow trans-

port of ions between layers, nor do we allow any physical quantity to vary

with z within a layer, where z is the direction along the magnetic field.

We do, however, allow electron currents to flow along field lines between the

layers to preserve electrical neutrality. Also, within the context of this

model, we will finally take the E region layers to act as a passive load,

i.e., we do not allow for any change in layers 1 and 3 and those layers are

assumed to remain uniform. Thus, as a first cut we are taking our previous

equatorial plane simulations (Scannapieco and Ossakow, 1976; Ossakow et al.,

1979; Zalesak and Ossakow, 1980) and adding a passive E region load to the

circuit to allow for short circuiting effects. Under the assumptions that:

(i) the electric fields of interest are electrostatic and, hence, derivable

from a scalar potential; and (ii) the conductivity along magnetic field lines

is extremely large and, hence, the potential is constant along a field line,

we are left with a problem similar to the multilevel barium cloud striation

problem[Lloyd and Haerendal, 1973; Scannapieco et al., 1974; 1976; Doles

et al., 1976]. We will now briefly derive the multilevel equations, in

general form, appropriate to our ESF problem.

Consider a plasma consisting of ions and electrons imbedded in a magnetic

field aligned along the z axis. The continuity and momentum equations de-

scribing the system are:

3n

+ V• (n v ) - - vRn (1)
at

7



I\I

v V (v-U) (2)(-5V~ = ( Tx ) m an -a -n

where the subscript a denotes the species (i for ions, e for electrons),

n is the species number density, v is velocity, vR is the recombination co-

efficient, E is the electric field, y is the gravitational acceleration, q

is the species charge, van is the species collision frequency with the neutral

atmosphere, U is the neutral wind velocity, c is the speed of light, and

m is the species mass. Note that we have neglected finite temperature effects

(pressure), and the effects of ion-ion collisions and electron-ion collisions

(eventually, we will even neglect electron-neutral collisions). We further

assume that we are interested only in average drift velocities over time

scales long compared to either the mean time between collisions or the gyro-

period. In this case we can neglect the inertial terms (the left hand side)

of (2), and invert the equation to obtain an algebraic expression for v a

v k F + k F x z (3)
-a la .. 2a --'al

v = k F (4)Voa -j

where

fi F v /~)2 1an c 1 (an
kla _ qaB1 1 + ((5)ana)2

Cl an a *1
k2a qB 1 +v~ )2 [1 V% 2 1(6)I (V na

koC (m CLan) (7)

fF = q E+m a +vm (8)

-u a- aa.-



z :B/IBI (9)

It O (10)
Ma

The vector subscripts I. and jj'refer to the components of the vector which are

perpendicular and parallel respectively to z. We take qi e and q -e.

We then assume that v /0 ow 0 and obtain
en e

kVin R c

k Is= (12)

21 i eJB

~1k C0 (12)
2e e

k 1 +=RA (13)
2i ie

We now define the perpendicular current

n= q v (16)

Substituting (11) through (15), (3) and (4) into (16), and using the quasi-

neutrality approximation

ni n En (17)

we obtain

-Vin R n c

(18)

+nc+F
B- --ii a2x



For our problem

F m e E (19)

F =-eE +m

e. -. L e . (20)

and we obtain

.in nci l-I (e E+mi + V U7 ~ ~ m -- Li U.L

+Ri [eE (1-R,_I)+(M+ +V mU x; (21)R i R .j + in u -. xz(L

Since 0.01 AR 1.0 we may neglect me/Ri with respect to mi.

Defining the Pedersen conductivity

Vin nce-- R - (22)

p iQ T I Bpi

and noting that l-R f - V n 2 / 02 we obtain

e +

p+ il i U

~ ~.i mi~ ) ~(23)

Equation (23)-is tobe appiled to each of our layers of plasma. Referring to

Figures I and 2 we see that for layers I and 3 U n - 0 and further that

= - Dgy where g - 980 cm/sec
2  

and 0<D<1 to account for the fact that g

is not perpendicular to B for plasma away from the equatorial plane (D is

actually cos 8D where 6D is the dip angle). Under the assumptions we shall

make later it will be seen that the value of D is irrelevant and can be taken

to be zero. In layer 2, the equatorial plane, we have , - g y, and we

make the assumption that the neutral wind is directed along the x axis

(U - Un x, where x points west). Furthermore, since layer 2 is taken to be

at F region altitudes where Vin/i<<< (RisI), we can neglect in that layer

10



the second, third, and fourth terms of equation (23) with respect to the fifth,

sixth, and first, respectively. So we have for the three layers:

i d _ Dg +i, E x (24'

Vin E y-e Dg Ex yT

B

J3 P3 _1 
V i n e Dg + *Ei (25)

12 EP2 Vn i n i e ] (26)
-. 1 eii2

where the numerical subscripts refer to the layer numbers depicted in Figure 2.

Quasi-neutrality demands that

a" = D a jy + = 0 (27)
-- X Jx + ay +a z

Integrating (27) along field lines and assuming that jz vanishes at z = +

we obtain

Vf *j I dz= 0 (28)

where

VI x 5a + y  (29)

If we model our plasma as an array of discrete layers of planes of plasma per-

pendicular to the magnetic field as in Figure 2 we may replace the integral

by a sum:

$i



3

v *J Azk -0 (30)
k I

where Azk is tfii thickness of layer k measured along the magnetic field line.

By our assumption of equipotential magnetic field lines and electrostatic

electric fields

E1  (xy)-E 2 (x,y) - E 3 (xy) = E (xy)=- V (x,y) (31)

where we have neglected the slight convergence of the magnetic field. Then

(30) becomes

V [(Epl+ EE ) V,]+ H=p2 P

I i P2 P3 .J

a 0 (_mi&) _~ (,P,, g (32)

b b

where the subscript b denotes the sum of levels 1 and 3 and

Epk f layer k Op dz s apk Azk (33)

Also we have defined

12



H - P ) a'

x v2 ay~ ay (r (34)x

b b

ay a p Q x - a ( 11p )b

Note that implicit in thb above manipulation is the assumption that a and
p

V in/ i are constant along a magnetic field line within a given layer, as

we had assumed earlier. Equations (1) and (32) constitute the system of

equations we must solve. In general it will be necessary to resort to

numerical means for this task, but for the case of an unperturbed laminar

ionosphere it is both possible and useful to find a simple analytic solution

to the plasma flow field, which is an illuminating example.

Suppose Z , P3' are functions only of y (altitude in the

equatorial plane). Then for any set of boundary conditions on * which does

not itself impose an x-dependence on 0, we find that * = *(y). Then (32)

becomes

ay + E + E i  U )  (35)
Pi P2 p3 a) a3  P2 Qi Un) (5

the general solution of which is

(Z +z +z ) 0- - - E i U + J (36)
P1 P2 P3  ay P2 i e n oy

where J is a constant, and we have dropped the subscript 2 on Rip mi, and
oy

Un . Assuming that £ 1 0 as y + c and demanding that L (or equivalently

P2 18



the total current) vanish at y + w we get Jo - 0.. Recalling that

it- - E we obtain
ay y

y E P2 +Ei (37)
y P1 P2 P3

The ExB plasma motion produced by this electric field is given by

v =-E y E c2 Q m U (38)
B P1 P2 P3

P1 P2 P3

-fU

n

where

f EP2 / EP1 +EP2 +EP3 (9

N~ote that the plasma drifts at a fraction f of the neutral wind velocity, and

that that fraction is simply the ratio of the "local" (i.e., equatorial plane)

Pedersen conductivity to the total field line conductivity on a given field

line (Note: what we have in mind here and in the numerical simulations is

that our magnetic field line integration for the equatorial F region is over

a few degrees in latitude, and that regions 1 and 3 constitute the rest of

the field line connected ionosphere as a load on the circuit). This simple

equation has some remarkable consequences in terms of the motion of structures

(spread F plumes, for example) imbedded in the equatorial ionosphere. Sup-

pose that E is a function of altitude with a peak Ema at altitude h
P2 P2 max

Suppose further that E pjand Z P are constants such that E P + E P3-0.1 ZP

and that we impose a uniform eastward neutral wind of 100 in/sec on level 2

(the equatorial plane). We now create a model ionosphere (see Table 1) and

14



tabulate the eastward plasma velocity as a function of altitude:

TABLE 1

Altitude (k) Z 
m a x  

Eastward Plasma
Altitud )P2 P2 Velocity (m/see)

600 0.1 50

500 0.5 83

400 (h max) 1.0 91

300 0.1 50

200 0.01 9

Note that even though there is no vertical shear in the neutral wind velocity,

the plasma flow field contains a large shear with opposing signs on either

side of h max . The effect of this shear is to bend any passive vertical

structure imbedded in this flow field into a "C" shape as depicted in

Figure 3 (Also note that for Z = E = 0, i.e., no E region, from (39)Pl P3

f - I and the plasma moves at the wind speed (Rishbeth, 1971)).

The above result is quite satisfying in that it offers a qualitative

explanation of the "C's", "fishtails", and other tilted structures seen by

Woodman and La Hoz [1976] and Tsunoda [1981] in their observations of co-

herent radar backscatter from the meter-scale irregularities associated with

ESF plumes. However, the above analysis is valid only for passive structures

imbedded in a laminar unperturbed ionosphere, conditions which are simply

not met in the ESF environment. Numerical simulations are necessary to

prove the case unequivocally.

15



ARROWS DEPICT PASSIVE VERTICALLY "C" SHAPE AT
PLASMA VELOCITY ALIGNED STRUCTURE LATER TIMES

X/

EAST WEST EAST WEST
t--0 t >0

(a) WEE

Fig. 3 - Schematic diagram depicting the'bending of a passive vertically-aligned
structure caught up in a velocity shear pattern of the type we believe exists in the

nighttime equatorial ionosphere. The neutral wind is eastward and uniform in
altitude, and the response of the plasma (depicted by arrows) is to move at some

fraction of the neutral wind velocity, that fraction being largest at the altitude
hma of maximum equatorial plane Pedersen conductivity. The eastward plasma
velocity falls off both above and below h..x, as shown.

16



3. Numerical Simulatious

We mentioned before that equations (1) and (32) constitute the system

we wish to solve numerically. Let us now be more specific. Equation (1)

is actually six equations (one electron and one ion equation for each of our

three layers). By quasi-neutrality (17) we can eliminate three of these and

integrate either the ion or electron equation at each level; but since we

have made the assumption thatyii, = 0 (currents along field lines are carried

by electrons) we can more conveniently solve the two-dimensional ion continuity

equation at each layer:

- +n v n i) Rn]

L k; k = 1,2,3 (40)

in (40(40)

In the simulations we present here we have set v R in (40) to zero for simpli-

city and because at the F region altitudes we shall be dealing with, recombina-

tion effects are negligible.

We now make one last simplifying assumption: the background E region

plasma (layers 1 and 3) is initially uniform in density and Pedersen conduc-

tivity, and remains so during the course of our simulation. This is tantamount

to neglecting compressibility (Pedersen mobility) effects in the E region

plasma. Thus, we are utilizing layers 1 and 3 as a passive load in an iono-

spheric circuit, in order to allow for short circuiting effects. A true multi-

level numerical code which will model these effects self-consistently is under

development. This assumption does have the advantage, though, of reducing (40)

to a single equation (since an/at - 0 for levels 1 and 3) and of eliminating

H and the last two terms of (32) (since all the terms subscripted by b

are constant). Our final pair of equations to be solved numerically is then

17



3n (n (41)

V E p+EP2+E )V] - (x 42)
P1L P2 P3a ,in vc

~4E BU)

where all quantities except E and Z refer to layer 2.P1 P3

Equation (41) is solved numerically using the fully multi-dimensional

flux-corrected transport (FCT) techniques of Zalesak [1979]. Briefly,

FCT is a technique originally developed by Boris and Book [1973] for solving

equations of the form (41) where steep gradients in n are expected to form.

The fluxes used in the algorithm are nonlinear weighted averages of fluxes

computed by high and low order finite differences. The high order fluxes are

weighted as heavily as possible subject to the constraint that nonphysical

oscillations are not introduced. Equation (42) is solved using the fully

vectorized incomplete Cholesky conjugate gradient (ICCG) algorithm of Hain

[1980], which is an extension of the work of Kershaw [1978]. This algorithm

is extremely fast and efficient for the cases described below for which the

neutral wind was set to zero; however, when a finite eastward neutral wind

was used the ICCG convergence rate became painfully slow and it was necessary

to resort to the direct elliptic solver of Hadala [1978].

The numerical calculations to be presented were performed on a two-

dimensional cartesian mesh using 40 points in the x (east-west) direction and

140 points in the y (vertical direction). The (uniform) grid spacing was

3 km in the y direction, and 5 km is the x direction for all calculations.

Note that in our previous work we used 2 km spacing in the y direction.

The bottom of the grid corresponds to 253 km altitude and the top of the

18
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grid to 676 km altitude. Periodic boundary conditions were imposed on both

n and 0 in the x direction. In the y direction transmissive boundary con-

ditions were imposed on n (Dn/Dx = 0), and the normal derivative of 0 at the

top boundary was chosen such that the normal component of the total current

(the sum over all three layers) was zero there for the unperturbed state.

For the calculations with no neutral wind this implies 30/ay -0 at the upper

boundary. For calculations with a neutral wind this implies

(E O~z ° 0) + [0 mi Un =0 (43)P1 P2 P3 aY 
p 

ie n

2

at the upper boundary, where E is the Pedersen conductivity of the initial

unperturbed state. At the lower boundary we set * = 0 for all cases.

Three kinds of plots will be presented: (1) contours of constant

n(x,y,t); (2) contours of constant n(x,y,t)/n (y); and (3) contours of con-

stant electrostatic potential t(xy,t). Here n (y) is the initial unperturbed
0

electron density profile in layer 2. Superimposed on each contour plot is a

dashed line depicting n0 (y) for reference purposes. Our n (y) profile is

such that the F2 peak is located at 434 km altitude, and the minimum electron

density scale length L = no (no /y)-' is 10 km. The ion-neutral collision

frequency vin(y) used in the calculations is shown in Figure 4. The initial

perturbation used to start each calculation was a mode 1 sine wave in the

x direction:

n(xy,o) 1

no(y) e- e cos (Wx/100) (44)

Three calculations were performed to determine the effect of the

19



RECOMBINATION RATE, R(eC )

546 1 -3
I 1 %L I IIII I I I I l lll I' I 1 I 1 11 I I 1 1 1 111

500:"

E450-"

W400"

350

300

2 50 1 I I 1 I 1 1 1 IIIIL 1 -
0.01 0.1 I 10 100 200

ION-NEUTRAL COLLISION FREQUENCY, uin(sec-1)

Fig. 4 - The ion-neutral collision frequency vi, (solid line) as a function
of altitude. The recombination coefficient VR was set to zero for this

study (see text).
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background E region plasma and of the eastward neutral wind on evolving

spread F bubbles:

1) Calculation 2L, in which E i=E = U n= 0. This calculation is

identical to calculation 2L of Zalesak and Ossakow [19801 except

for the difference in vertical grid spacing noted previously.

2) Calculation 2LE, identical to calculation 2L above, except that a

constant background Pedersen conductivity has been included such

that Z + E 0.12 Z 0 where Eo is the maximum Pedersen
pi P3 2ma x '  2ma x

conductivity in the initial unperturbed equatorial plane (layer 2).

We believe the value of 0.12 for the relative background Pedersen

conductivity level to be a conservative figure. Rishbeth 1971]

used a value of 0.2 as being representative of nighttime conditions.

3) Calculation 2LEW, identical to calculation 2LE above, except that

a uniform eastward neutral wind of 150 m/sec was imposed over the

entire equatorial plane (U = - 150 m/sec). The designations

E and W above obviously refer to the presence of E region plasma and

neutral winds, respectively.

Figure 5 shows isodensity contours of n(x,y,O) for our initial conditions

(laminar ionosphere n (y) plus perturbation (44)). The contours are labeled

for later reference purposes. Note that in this and all subsequent plots

we have plotted two periods (recall that we have periodic boundary conditions

in the x direction) of the various functions. That is, the 40 by 140 mesh

was extended to 80 by 140 for plotting purposes only, to facilitate comparison

with plots of calculations run with a neutral wind, in which structures move

across the grid.

Figure 6 shows isodensity contours of n(x,y,t) for calculation 2L at

four different times during the simulation. Figure 7 shows a similar sequence
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Fig. 5 - hso-electron density contours for the initial perturbed state in layer 2.
This represents the initial conditions for our numerical simulation. The con-
tours are labeled in units of electrons/cm 3 in E format notation (1.OE1 = 1 X
101, etc.). The unperturbed ionosphere was initially laminar (independent of x,
the east-west direction) and is exhibited by the dashed curve showing N,(y), at
any point in the east-west (x) direction. This curve is labeled at the top of the
figure. The perturbation has a maximum amplitude of e-3 in relative electron
density, is a pure mode 1 sine wave in x, and is independent of altitude y, as
described in the text. The observer is looking southward so that B is out of the
figue.
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Fig. 6 - Sequence of four iso-electron density contours for calculation 2L (no back-
bround, no wind) at 875, 1130, 1220, ard 1276 seconds

23



1500 SEC No x 10.5 tO-1 1900 SEC M, x 0 ls ci

6700 0. 5 1 .0 1.S 2.0 2. 5 __________1.0__1__s_ 2.0__ 2._

57057

464 464

-200 1l00 0 1,00 200 20 10 a 10 20

EAST Ix"I WEST EAST IMn WEST

2215 SEC No I g0
0 
CHN 2560 SEC No X i

1
tM

5
.

676 0 '0 15 1.0 1S 2.0 . S676 00 0 5 1 .0 1.s 2 .0 2. S

570570S

S -C

464 464

20 00 a 10 20-200 -100 0 100 200

EAST IKM WST EAST Iurn VEST

Fig. 7 - Same as Figure 6, but for calculation 2LE (background E region,
no wind) at 1500, 1900, 2215, and 2560 seconds
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for calculation 2LE. (The reader may note that the 2L calculation of this

paper evolves at a faster rate at late times than the 2L calculation of

Zalesak and Ossakow [1980]. This is primarily due to two improvements in the

numerical treatment of equations (41) and (42), implemented since our previous

studies: 1) the differencing of the Hermitian form (42) of the potential

equation, rather than the non-Hermitian expansion we were constrained to use

previously, as discusse6 in the appendix of Zalesak and Ossakow [1980]; and

2) improved treatment of the continuity equation (41) which has enabled us to

further reduce the numerical diffusion that inevitably occurs across electron

density gradients as steep as those formed at the edges of ESF plumes at late

times. We would emphasize that the conclusions of Zalesak and Ossakow [1980]

do not depend on late-time rise velocities and are, therefore, unaffected by

this result). In comparing Figure 6 with Figure 7 we are looking at the ef-

fect of a backgjound conductivity. The most striking difference is that of

the time scales, whereby 2LE takes about 70% more time to achieve a 600 km

altitude plume than does 2L. Qualitatively this can be understood in terms

of the shorting effect of the background E region, by which a given current

can be driven by a smaller electric field, which in turn means smaller plasma

velocities. Almost as striking is the fact that the 2LE plume bifurcated

while the 2L plume did not. The inevitability of the bifurcation in calcula-

tion 2LE can be seen even in the very early time plot at 1500 sec, where the

characteristic flattening of a significant number of contours in the upper

portion of the plume, the sure signal of imminent bifurcation in barium cloud

studies [Zabusky et al.', 1973; Scannapieco et al., 1974; Ossakow et al., 1977;

McDonald et al., 1980], can be seen. The close similarity of the physics of

the ESF gravitational instability and that of the ExB gradient drift in-

stability associated with the bifurcation and striation process in plasma
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clouds, has been noted by Scannapieco and Ossakow [1976]. We shall draw

heavily on our knowledge of bifurcation tendencies in plasma clouds

Iossakow et al., 1977; McDonald et al., 1980] when we address the question of

why the plume in calculation 2LE bifurcated while that in calculation 2L did

not, later in this paper.

For the moment we note that there are two primary effects of the pre-

sence of a background conducting region (E region): 1) electric fields every-

where are reduced by the shorting effects of the background conductivity, re-

suiting in an overall slower evolution for the instability; and 2) electric

fields are reduced the most in the regions where the ratio of the equatorial

plane conductivity to that of the background plane is smallest, i.e., at low

altitudes, rendering the 2LE configuration incapable of drawing plasma from

extremely low altitudes to produce large depletion levels inside the bubble.

This can be seen easily in comparing Figures 6 and 7 wherein we note that

the isodensity contours at low altitudes are virtually stationary in the 2LE

case, whereas the 2L configuration results in significant upward movement in

even the lowest density plasma near the bottom of the plot. The more effec-

tive shorting of the electric fields by the background layer in the 2LE

case is seen dramatically in Fig. 9a and 9b, where we plot contours of

constant electrostatic potential * for calculations 2L and 2LE respectively

at early time. (The contour level increment of 4, in this paper is chosen

such as to divide the maximum excursion of 4, from zero into 7 equal intervals.

The contours corresponding to positive values of 4, are plotted as solid lines,

while those corresponding to negative values are plotted as dashed lines.

The zero contour level is suppressed. For the 2L and 2LE cases the

symmetry of the potential would cause the zero contour to be simply two

vertical lines. Since the electric field, and hence plasma velocity, is
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inversely proportional to the contour spacing, this normalization allows us

to easily determine by eye the rate at which the upward velocity of plasma

is decreasing with decreasing altitude. It also allows us to visualize the

global plasma flow field, since contours of * are essentially streamlines of

the plasma flow). Comparing Figures 9a and 9b, we note a much more rapid de-

crease in the horizontal component of the electric field with decreasing al-

titude in calculation 2LE than in 2L. The flow field in 2LE is mixing plasma

over a fairly narrow altitude range, while that in 2L is drawing plasma from

deep in the ionosphere, where the plasma densities are lowest. Hence, we

should expect the late time plume in calculation 2L to consist of plasma of

lower density (i.e., to have much higher depletion levels) than that in cal-

culation 2LE. That this is indeed the case can be seen in Figures lOa and

lOb, where we compare isodensity contours of n(x,y)/n (y) at late times for

the two calculations. (Contours of n/n in this paper are spaced logarithmi-

cally, with solid lines representing depletions (n/n <1) and dashed lines re-

presenting enhancements (n/n0 >1). The kth depletion contour represents an

k
n/n value of 0.5 , while the kth enhancement contour represents an n/nO

value of 2.0 k). Although the bifurcation of the 2LE plume makes the compari-

son less clean than it would otherwise be, it is obvious that the depletion

levels of the 2L plume are much higher than those of the 2LE plume. Depletion

levels (1-n/n ) in the upper portions of the 2L plume are greater than 99.2%,

while those in the 2LE plume are only about 94%. We conclude that the pre-

sence of a background conducting region results in plumes which are both

slower to evolve and less depleted than their no-background conterparts.

In Figure 8 we present isodensity contours of calculation 2LEW at times

similar to those presented for the 2LE calculation. For the Vin (y) and n0 (Y)

profiles chosen we find a peak in Z 0 at 394 km, 40 km below the F2 peak, with
P2
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Fig. 8 - Same as Figure 6, but for calculation 2LEW (background plus wind) at 1500,
1850, 2050, and 2331 seconds. Our reference frame is moving eastward at 68 rn/sec.
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Fig. 9 - Early time contours of constant electrostatic potential O(x,y) for (a) calculation
2L at 875 sec, (b) calculation 2 LE at 1500 sec: and (c) calculation 2 LEW at 1500 sec.
The potential 00(y) associated with the unperturbed initial conditions has been removed
in (c). The contour level increment is chosen such as to divide the maximum excursion
of 0 from zero into 7 equal intervals. The contours corresponding to positive values of~

are plotted as solid lines, while those corresponding to negative values are plotted as dashed

lines. The zero contour level is suppressed.
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Z falling off by a factor of ten 42 km below and 132 km above this altitude
P2

(at 352 km and 526 km altitude respectively). Using Equation (38) to approxi-

mate our initial shear field and using E + Z = .12 £ma we find eastward
P1 P3 2

plasma drifts of 134 m/sec at 394 km altitude and 68 m/sec at both 352 and

526 km altitude. The plasma shear is weaker, but over a larger altitude range,

above the peak in E 2 than below it. If vertical plasma plumes behave as

passive structures, we would expect a bending of the structure around an

altitude of 394 km, with a larger slope below this altitude than above it.

Looking at Figure 8 we see that this behavior is qualitatively reproduced, in

spite of the fact that the self-consistent polarization fields produced by

the plumes represent very large perturbations on the equilibrium fields pro-

ducing the plasma shear. In Figure 8 we have placed ourselves in a frame

moving at 68 m/sec eastward to minimize both computational errors and computer

time. In Figure 10c we show late time isodensity contours of n(x,y)/n (Y)

for calculation 2LEW, for comparision to Figures 10a and 10b. The bending

of the plume into a "C" shape about an altitude of 360 km is quite pro-

nounced. The fact that this "bending point" is more than 30 km below the

initial maximum in equatorial plane Pedersen conductivity is an indication of

a nonlinear interaction between plume rise and ambient plasma shear. In fact,

this shift downward can be understood qualitatively as follows. The movement

of low density plasma upward inside the plume is accompanied by the movement

of high density plasma downward in the regions between the plumes (see Figures

9 anl 10). Since the scale length over which Vin is decreasing with altitude

is long (,60 km) compared to the scale length over which the electron density

is increasing with altitude ('10 km) below the F2 peak, the effect of this

downward movement of high density plasma is to move the point of maximum

Pedersen conductivity in the equatorial plane and hence the bending
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Fig. 10 -Late time conltours of constant n(x,y)/n,(y) for (a) calculation 2L at 1276 sec,
(b) calculation 2LE at 2560 sec, and (c) calculation 2LE at 2331 sec. The contours are
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of 0 . 5k, while the kth enhancement contour represents an n/n, value of 2 .Ok.
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point, (downward.

In Figure 9 c, we show contours of constant 0(x,y)-0 (y) at 1500 sec
0

for calculation 2LEW, for comparison to Figures 9a and 9b. Here 4o(y) is
0

the initial equilibrium electrostatic potential of the unperturbed initial

conditions (for the 2L and 2LE cases 40 f 0). Subtracting this quantity

from 4 before plotting enables us to examine the "underlying" plume motion

on which the shear associated with the initial conditions is superposed.

Remarkably, the motion of plasma in the plume is not purely upward, but

rather upward and westward, despite the fact that we have removed the

asymmetry-inducing profile of the equilibrium initial wind field. Although

this simple analysis is crude (in that the dependence of 4 on the plasma

structure is not linear, i.e., in Eq. (42) if A (x,y) and 4B (x,y) are

solutions for ZA  (x,y) and EB (x,y) rerpectively, 4) (x,y) + 4B (x,y) is not
P2 P2

A B
a solution for E

A  
(x,y) + EP (x,y)), It would seem to lend support toaP2 P2

the ideas advanced by Woodman and La Hoz [1976], Ossakow and Chaturvedi [1978],

and Ott [1978] who proposed that a neutral wind whose eastward velocity ex-

ceeded that of the plasma would combine with gravity to form an effective

gravity which pointed downward and eastward, causing bubbles or plumes to

drift upward and westward relative to the surrounding plasma. Thus, the

westward tilt of plumes at high altitudes would appear to be due to both this

effect (since we have shown that the plasma velocity does lag the neutral

wind velocity) and that of the plasma shear which we have addressed earlier.

We would point out, however, that the mechanism of Woodman and La Hoz [1976],

Ossakow and Chaturvedi [19783, and Ott [1978) cannot explain the eastward

tilt of plumes with altitude at low altitudes.

In comparing calculations 2LE and 2LEW (Figures 7 and 8), we are
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evaluating the effect of the neutral wind itself, since the same background

Pedersen conductivity was used in both cases. We wish to note the following

points: 1) the two calculations evolve at approximately the same rate in

time; 2) the primary effect of the wind is to bend the plume in calculation

2LEW into a "C" shape, with the upper part of the "C" being much larger in

altitude extent and tilted markedly westward; 3) the plume depletion levels

are approximately the same in both calculations; and 4) the 2LE plume bifur-

cated while the 2LEW plume did not. We shall address this last question,

along with the question of why the plume in calculation 2L did not bifurcate

in the next section.
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4. Discussion and Conclusions

Before proceeding with further discussion of our numerical results, let

us try to lend support to the idea that these tilted and C-shaped plumes

are, in fact, seen in equatorial spread F. We present experimental radar

backscatter maps of meter scale plasma irregularities taken during equatorial

spread F. Figure 11 shows a map of 3 meter irregularities (provided by J.P.

McClure) using the Jicamarca radar. Similar plots can be found in Woodman

and La Hoz [1976]. Figure 12 shows a map of 1 meter irregularities taken

by Tsunoda [1981] using the ALTAIR radar. We refer the reader to the re-

spective papers for a detailed explanation of these plots, but we point out

that the Jicamarca radar scans a fixed line in space, and plots backscatter

strength as a function of time. Therefore, structures caught up in our

postulated plasma shear would have their C-shaped appearance exaggerated in

the Jicaarca plots. The ALTAIR radar, however, is steerable; and it's

backscatter plots are a good approximation to a "snapshot" of the backscatter

strength at a single time. In both plots the evidence of oppositely tilting

structures at high and low altitudes is apparent. In making comparisons with

these small scale (<3m) irregularity radar backscatter maps we are assuming

that these maps are signatures (Tsunoda, 1980) of the large scale size bubbles

depicted in Figure 8. That is the steep plasma density gradients associated

with the bubbles in Figure 8 drive the radar backscatter observed irregulari-

ties. The westward and upward motion of the bubbles depicted in Figure 8

is in agreement with the satellite in situ measurements of McClure et al.,

[1977].

It is our belief that the arguments advanced in this paper offer the

most plausible explanation yet of the qualitative behavior of equatorial
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Fig. 12 - Maps of 1 meter irregularities taken by the steerable ALTAIR radar during
equatorial spread F, from Tsunoda [19811. These maps are very close to being snap-
shots of the locus of irregularities at a given time. Note the oppositely tilting struc-
tures at different altitudes in the left-hand map, and the clear bending of a plume into

a "C" shape about an altitude of about 400 km in the right-hand plot.
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spread F plumes: "C"-shaped structures and westward plume tilts are simply

the result of vertically rising spread F plumes being caught up in the ambient

plasma shear both as they rise and subsequently, this shear being the natural

consequence of a neutral wind at the equator and E regions of finite conduc-

tivity connected to the equatorial F region along magnetic field lines. If

there is a neutral wind, but no E region, the plasma will move at the wind speed,

ESF bubbles will rise vertically, and the attendant radar backscatter maps

will show non-tilted (i.e., vertical) plumes, as exhibited in the measurements

I of Kelley et al., (1981). Furthermore, even without the equatorial F region

neutral wind the numerical simulations show that E region Pedersen conductiv-

ity can have a dramatic effect on ESF. For example, the results of section

3 show that ESF has been slowed down as has the attendant bubble evolution.

In addition, the ESF bubble in the presence of an E region is less depleted

than without the E region. This is due to the fact that the E region has a

dramatic effect on the induced polarization electric field (see Fig. 9) which

causes the rise of the bubble, the fringe field component of which

(Zalesak and Ossakow, 1980) determines the region below the F peak from

which plasma is drawn (i.e., which plasma makes up the bubble). The pre-

sence or absence of an E region could also explain why bubbles (with large

depletions) stop rising at altitudes of 400-500 km (see McClure et al., 1977)

on some occasions, but not on others. Indeed, in addition to the height of

the F peak and bottomside background electron density gradient scale lengths

(Ossakow et al., 1979) influencing ESF evolution, the E region conductivity

could also determine why one does or does not observe ESF even when the

previously mentioned conditions are satisfied. Thus, the E region (even at

night) could be a controlling factor in the formation of ESF irregularities
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and could account for such things as the longitudinal influence (Basu and

Kelley, 1977; Livingston, 1980) on ESF formation and phenomena.

There are two matters, however, which bear further discussion: 1) the

question of why the plume in calculation 2LE bifurcated while those in cal-

culations 2L and 2LEW did not; and (2) the question of where along the edge of

the primary plumes in calculation 2LEW one should expect to see secondary

instabilities. If we note that an equatorial spread F plume (bubble) is

nothing more than an inverse plasma cloud "finger" (i.e., an elongated region

of low density plasma (an ESF "plume") penetrating a region of high density

plasma is the inverse of an elongated region of high density plasma (a plasma

cloud "finger") penetrating a region of low density plasma), we find that

the question of why the 2LE plume bifurcated and the 2L plume did not has

already been answered for us. McDonald et al., [1981] have shown in their

study of bifurcation tendencies of plasma cloud fingers that the critical

quantity determining the speed with which a plasma finger will bifurcate is

M, the ratio of the Pedersen conductivities inside and outside the finger.

When M is moderate, in the range 2 to 10, the bifurcation tendency is high,

while for M near 1 or M greater than 100, the bifurcation tendency is ex-

tremely small. Looking at the 2LE plume (Fig. 7), and recalling that we

have a background Pedersen conductivity of 0.12 times the maximum equatorial

plane Pedersen conductivity we find that M
-
1 (the relevant quantity since we

are dealing with inverse plasma clouds here) in the 2LE plume is about 9,

making it a prime candidate for bifurcation; while M- 1 for the 2L plume

(Fig. 6) is about 104, indicating a bifurcation tendency near zero. The

question of why the 2LEW plume did not bifurcate is a little harder to

answer. Based on the arguments advanced above, the 2LEW plume would have
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been just as likely a candidate for bifurcation as the 2LE plume. However,

we note that the 2LEW plume is rising into a region of very strong plasma

shear. Perkins and Doles [1975) have shown that such a shear would provide

a stabilizing mechanism for any secondary instability (i.e., bifurcation)

* which attempted to grow on the topside of the 2LEW plume, although the geome-

try used in their study was considerably simpler than that associated with

a rising ESF plume. We advance this mechanism as a plausible, but less than

totally convincing, explanation of why the 2LEW plume did not bifurcate, only

because we can provide no other at this time.

The question of secondary instabilities on the perimeters or in the

interiors of the plumes is in many ways the most interesting aspect of this

study. We will confine ourselves to the 2LEW plume (Fig. 8) at late time

(2331 sec) since it is both the most interesting and the most realistic.

Given the limited spatial resolution of these numerical studies, it must be

realized that the actual numerical simulation of the evolution of small-scale

secondary instabilities, within the context of the present simulations, is

an impossibility. However, we do have the resolution to be able to observe

the precursor of the plasma fluid instabilities that we believe are active:

the steepening of electron density gradients. By observing the location

of these regions of steepening, and by augmenting this procedure with a cell

by cell local stability analysis, we should be able to predict both the

location of secondary instabilities and the mechanism causing them. We use

the term "local stability analysis" to mean a local evaluation, numerical in

this case, of the generalized gradient drift growth rate YGD given by

c~xI - P2]
GD n V iP1 (E425) P
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Note that E in Eq. (45) above includes the self-consistant polarization

electric field given by the solution to the potential equation (42). The

influence of this term on yGD is large, and any stability analysis which were

to ignore these polarization fields would rest on shaky ground. Among

the assumptions implicit in the application of Eq. (45) are: 1) the growth

rates y GD are large compared to the speed with which the primary Rayleigh-

Taylor mode is evolving; and 2) the k-vector associated with the growing

perturbation is perpendicular to VP (which gives maximum growth).

-P2

Looking at Figure 8 at the latest time (2331 see) we see that the pri-

mary regions of steepening are two: the west wall of the plume at low al-

titudes (below 370 km for this particular model) and the east wall of the

plume at higher altitudes (above 370 km). Local stability analysis verifies

that these are precisely the regions of largest growth rate for the gradient-

drift/gravitational Rayleigh-Taylor instability. A less complete analysis of

just the effect of an eastward neutral wind on a more or less vertical plume

would predict that only the west wall of the plume would be unstable, but

this analysis neglects the effects of the bending of the plume which orients

the normally stable east wall of the plume so that it is once again unstable

to the gravitational instability, and the effects of the polarization electric

field produced self-consistently by the ionosphere-plume system, whose effect

is to nitigate the expected wind-driven instability over most of the plume

structure. We conclude, then, that for this particular plume, we would ex-

pect secondary instabilities along the west wall at low altitudes and along

the east wall at high altitudes, with the "switch" taking place at about

370 km altitude. If these instabilities eventually cascade down to smaller

and smaller scale sizes (or provide the steep plasma density gradients
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necessary for further instability mechanisms), eventually reaching the 1-3

meter scale sizes seen on backscatter radar maps, we would expect the radar

maps to trace out the locus of the west wall of the plume at low altitudes,

and the east wall at high altitudes, giving rise to an even more exaggerated

"C" shape than that of the simulation plume (bubble) itself (see the ex-

aggerated "C" traced out by the locus of steepened gradients in Figure 8

at 2331 sec).

We wish to close this section by briefly reviewing work by other re-

searchers which we believe has relevance to the results presented here.

Two recent papers have shown experimental evidence of a shear in east-west

plasma motion in the equatorial ionosphere: Kudeki et al., [1981] and

Tsunoda et al., [198i1. Both papers show evidence of an increase in eastward

plasma velocity with altitude, in agreement with the behavior we postulate

here for altitudes below the peak in equatorial F region integrated Pedersen

conductivity. It is our belief that experimental observations at even higher

altitudes than that examined in the above papers would show a decrease in

eastward plasma velocity with altitude at these higher altitudes (and

possibly even westward velocities), in a manner similar to that shown in

Figure 3. Both Kudeki et al., [1981] and Tsunoda et al.,[1981] show

evidence of a plasma velocity reversal point, that is,an altitude below the

F2 peak below which the plasma velocity actually becomes westward (as the

eastward velocity passes through zero). The simple model we have presented

here offers no explanation for this phenomenon. The reason is that we have

assumed here that the E regions connected to the equatorial F region along

field lines are passive and free of any dynamics of their own. Actually,

however, these E regions are subject to strong diurnal tidal neutral winds,
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which are westward at the times associated with spread F. At equatorial al-

titudes well below the F2 peak, the field-line integrated Pedersen conductiv-

ity is dominated by that of the E regions, and hence the westward neutral

winds in the E regions are able to set up polarization electric fields

which impress themselves on the equatorial region, causing a corresponding

westward drift of plasma in the equatorial plane at low altitudes.

In fact, had we retained the neutral wind terms in layers 1 and 3, Eq.

(38) would have become

V = U + U +Z U n3)/(Z p + Z + Z (46)= Pl nl P2 n2  P 3  P P2 P3)

where U , U , and Un3 are the east-west neutral winds in layers 1, 2,

and 3 respectively. If U is eastward and both U and U are westward,
n2 ni n3

it is obvious that westward plasma velocities will exist at any altitude

for which

< p3Un3 ZpUn1 (47)

P2 U n(

This effect and the consequent plasma velocity reversal point were first

described by Hellis et al.,[1974, whose detailed self-consistent numerical

model of the E-and F-region neutral gas and plasma system also shows both

the plasma shear and an altitude at which the eastward plasma velocity

maximizes, as we have proposed here. In fact, at extreme equatorial F

region altitudes, plasma well away from the equatorial plane (both E and F

region plasma) may again dominate the integrated Pedersen conductivity, and

if the corresponding neutral winds are westward, we should expect to see
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westward plasma drifts at these high altitudes, as mentioned above.

The influence of contributions to field line integrated conductivity

from plasma away from the equatorial plane on the rise of ESF bubbles has

also been addressed by Anderson and lHaerendel [1979]. In their model they

incorporated flux tube integrated quantities of electron content and Pedersen

conductivity and utilized a one-dimensional sheet model for the bubble.

This latter assumption resulted in a simple algebraic expression for the

induced polarization electric field inside the bubble in terms of the fluxI tube Integrated quantities. ESF bubble rise in the collision dominated

Rayleigh-Taylor regime with and without an ambient eastward electric field,

E0,was investigated. These authors noted that flux tube integrated quanti-

ties could have a considerable influence on the outcome of ESF bubble rise, an

observation consistent with our comparison of the 2L and 2LE cases. Burke

[1979] analyzed the effect of the sunrise "turning-on" of the E region and its

subsequent contribution to the demise of ESF bubbles in the topside F region

ionosphere near the dawn terminator. A simple analytic model was used which

showed how electric fields within the bubbles could be discharged through

the conducting sunrise E region. The results showed that the conducting

E region could effectively halt the upward bubble rise velocity. This im-

portance of an E region is consistent with our findings in comparing the 2L

and 2LE cases.
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5. Future Work

The "three layer model" used in this study is simple to be sure, al-

though we believe it adequately describes the qualitative behaviour of ESF

plumes in terms of C-shaped structures, westward tilts, and the effects of

a background E region. Work toward improving the model and its input is

ongoing on several fronts. First, we would like to make the E regions

"active", i.e., to allow external forces, such as neutral winds to act on

the E region plasma, and to self-consistently solve the continuity equation

there. Second, we would like to better resolve the plasma distribution along

magnetic field lines by adding more layers to the model to represent plasma

between the equatorial plane and the E regions. The total number of layers

might be seven or nine. Third, we would like to incorporate more realistic

models of electron and neutral density distributions, external electric fields,

neutral winds, and chemistry into the models. Sources for this information

migIt be empirical data or models of the type developed by Anderson [1973]

and by Forbes and Garrett [1978]. Last, but certainly not least, a continuing

effort is being made to keep the numerical techniques used in the code as

close to state-of-the-art as possible. A recent advance [Zalesak, 1981]

should significantly improve our already quite good, but certainly not

perfect, numerical algorithms for solving the continuity equation in the

very near future.

4
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