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Nonlinear estimation method of spectral reflectance from camera responses is proposed. The proposed
method minimizes the mean square error of spectral reflectance when the reflectance can be regarded as
a random sequence of Gaussian mixture distribution. In computer simulations, 168 samples of spectral
reflectance from a color chart are estimated from their image signals obtained by three- and six-band
cameras. It is confirmed that the proposed method improves the accuracy in comparison with the
conventional Wiener estimation method. © 2002 Optical Society of America
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1. Introduction

High fidelity color image reproduction through digital
imaging devices has become important recently, es-
pecially in applications, such as telemedicine, digital
art, on-line shopping, etc. The color of an object de-
pends on the viewing illumination, and in order to
reproduce the color of the object under various illu-
minations, information about the spectral reflec-
tance, which can be obtained by multispectral
imaging,1–3 is required. It is reported that a large
number of color bands, approximately more than
fourteen,3 is required for accurate reproduction of
various objects. However, improvement in the accu-
racy with cameras that operate in fewer bands or
ordinary trichromatic camera is also an important
issue4–6 in some practical applications. This paper
presents a nonlinear estimation method of spectral
reflectance, which improves the estimation accuracy
especially when the number of the color bands is
insufficient.

The formation process of a pixel of N-band images
�N � 3 in case of trichromatic� can often be modeled
by a linear system, where the input is a spectral
reflectance and the output is a N-dimensional im-
age signal. Then, the estimation of a spectral re-
flectance from an image signal can be regarded as
the inverse problem of a linear system. To im-
prove estimation accuracy, the probability density
of input data is often used as a priori information.
One such method is the Wiener estimation that
minimizes the mean square error of the estimate
when the input is a Gaussian sequence. Even if it
is not a Gaussian sequence, the Wiener estimation
gives the best estimate among the linear estimates,
therefore it has been widely used. However, be-
cause there are various colors and various subjects
that exist in an image, it is difficult to model the
probability density of the input by a Gaussian dis-
tribution. Therefore, if the mean square error
based on the actual probability density can be min-
imized, the estimation accuracy should be im-
proved. For this purpose, a nonlinear estimation
technique is needed.

In this paper, we propose an estimation method
called the Gaussian mixture distribution based
�GMD-based� estimation, which minimizes the mean
square error of estimates when the input is a random
sequence of GMD. The proposed method is applied
to the estimation problem of the spectral reflectance
of various colors in the color chart from the camera
responses. The results show the improvement of the
estimation accuracy.
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2. Theory

A. Gaussian Mixture Distribution

If the probability density distribution of a stochastic
sequence f is a mixture distribution, it can be written
as

PM�f� � �
k�1

K

wk pk�f�, (1)

where the superscript M on PM�f� indicates a mixture
distribution, K is the number of the components, pk�f�
is kth component density, and wk is kth weight coef-
ficient. The functions, pk�f� and wk, satisfy

� pk�f�df � 1, (2)

�
k�1

K

wk � 1, 0 � wk � 1, (3)

respectively, which yield the integration of PM�f� be-
comes 1. When pk�f� is a Gaussian function, PM�f� is
called a GMD.

B. Linear Inverse Problem from a Stochastic View

Let f and g be a zero mean stochastic sequence and its
linear observation, where their relationship is repre-
sented with matrix H by

g � Hf � n, (4)

where n is a vector of an additive noise. In the case
when an input sequence is not zero mean, the sub-
traction of the mean from the original should be ap-
plied in the same way. Then, an estimate of f, f̂,
from g is derived under the condition that the mean
square error

ε � �� f � f̂ �2� (5)

is minimized, where � � is an averaging operator. It
is known that f̂ can be calculated as the conditional
mean of f given g, that is,

f̂ � �f�g�

� � P�f�g�fdf, (6)

where P�f �g� is the conditional probability density of
f given g.

When P�f �g� is Gaussian, Eq. �6� can be solved lin-
early. One of such cases is that the probability den-
sities of f and n are Gaussian, and they are
independent. In this case P�f �g� can be written as

P�f �g� � PG�f� PG�n�, (7)

where superscript G indicates a Gaussian distribu-
tion,

PG�f� � Cf exp�	
1
2

fT
f
	1f� , (8)

PG�n� � Cn exp�	
1
2

nT
n
	1n� , (9)

where Cf and Cn are normalization constants. From
Eqs. �7�–�9�, we have

P�f �g� � PG�f �g� � exp�	
1
2

�f � f*�T
*	1�f � f*�� ,

(10)

where the mean and the covariance are

f* � 
fHT�H
fHT � 
n�
	1g, (11)


* � �I � 
fHT�H
fHT � 
n�
	1H�
f. (12)

The detail derivation is demonstrated in Ref. 7.
Substituting Eq. �10� into Eq. �6� gives

f̂ � f*. (13)

The vector, f*, is the best estimate minimizing the
mean square error in this Gaussian case, and is iden-
tical to the Wiener estimate.

C. Mixture Distribution Case

Assuming that the probability density of f is the mix-
ture distribution PM�f�, the conditional probability
density of f given g becomes

P�f �g� � APM�f� PG�n� (14)

as Eq. �9�, where A is a normalization constant such
that

� P�f �g�df � 1. (15)

Substituting Eq. �1� into Eq. �14� gives

P�f �g� � A �
k�1

K

p� k�f �g�, (16)

where we use the notation p� k�f�g� defined by

p� k�f �g� � wk pk�f� P�n�. (17)

The function, p� k�f�g�, is not identical, but in propor-
tion to the probability density of f given g when f is a
random sequence of pk�f�, pk�f�g�;

p� k�f �g� � Bk pk�f �g�, (18)

where

Bk � � p� k�f �g�df. (19)
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Substituting Eqs. �16� and �18� into Eq. �6�, the best
estimate becomes

f̂ � � P�f �g�fdf � A �
k�1

K �Bk � pk�f �g�fdf� . (20)

The vector, � pk�f�g�fdf, is the best estimate of f if f is
a random sequence of pk�f�, which is denoted by f̂k.
As a result, we have

f̂ � A �
k�1

K

Bkf̂k. (21)

This equation indicates that f̂ is the sum of f̂k with the
weight Bk.

D. Gaussian Mixture Distribution-Based Estimation

Next, let us think about the case where the probabil-
ity density of f is a GMD, every pk�f� is Gaussian;

pk�f� � pk
G�f�

� Ck exp�	
1
2

�f � �fk��
T
k

	1�f � �fk��� , (22)

where Ck is the normalization constant as A is in Eq.
�16�, and �fk� and ¥k are mean and covariance of
random sequence f of pk

G�f�. In addition, assuming
the Gaussian noise, pk�f�g� also becomes Gaussian,
the same as Eqs. �10�–�12�;

pk�f �g� � pk
G�f �g� � exp�	

1
2

�f � fk*�T
k*
	1

� �f � fk*�� , (23)

where

fk* � �fk� � 
kHT�H
kHT � 
n�
	1�g � H�fk�� (24)

and


k* � �I � 
kHT�H
kHT � 
n�
	1H�
k, (25)

where we assume that the mean vector �fk� is not
zero. As Eq. �13�, f̂k can be obtained by fk*, which is
identical to the Wiener estimate f̂k

Wiener using a pri-
ori information of pk

G�f�.
To calculate Bk from Eq. �19�, we need the complete

form of p� k�f�g� including the proportional constant.
In Appendix A, we show the derivation. For now, we
simply state the result as

p� k�f �g� � p� k
G�f �g�

� wk Ck Cn exp		
1
2

Dk

� exp�	

1
2

�f � fk*�T
k*
	1�f � fk*�� , (26)

where

Dk � �g � H�fk��
T�H
kHT � 
n�

	1�g � H�fk��. (27)

From Eq. �26�, we can calculate Bk as

Bk � � (wk Ck C exp		
1
2

Dk

� exp�	

1
2

�f � fk*�T
k*
	1�f � fk*��)df

� wk Ck C exp		
1
2

Dk

� � exp�	

1
2

�f � fk*�T
k*
	1�f � fk*��df

� wk Ck C exp		
1
2

Dk
 ��2��L�
k*� . (28)

A becomes

A �
1

�
k�1

K

Bk

. (29)

Therefore, finally we have the estimate

f̂ � �
k�1

K Bk

�
j�1

K

Bj

fk* � �
k�1

K

mkf̂k*, (30)

where mk indicates the mixing proportion of each
estimates fk*. If mk’s are equal to 0 except at k � k,
the estimate becomes

f̂ � fk* � f̂k
Wiener. (31)

It is the same as the Wiener estimate obtained under
the assumption that f is a random sequence of pk

G�f�.

3. Simulations

We compare the estimation accuracy of spectral re-
flectance from camera responses between Wiener and
GMD-based estimations. In this comparison, we
use samples of spectral reflectance with various col-
ors, which were classified into six or three classes by
the clustering technique.

A. Samples of Spectral Reflectance and Their
Classification

We use spectral reflectances from 168 mat patches of
GretagMacbeth Color Checker DC, measured by
spectrophotometer �PhotoResearch PR650�. The
measuring range was 380–780 nm with a 4-nm wave-
length interval. To classify the samples, we use
K-means algorithm8; K � 6 and 3. Before cluster-
ing, all reflectances are normalized so that the inte-
grations of them are equal to 1. The reason for this
operation is that the spectral reflectances that have
the same spectral shape but different power can be
assumed to have the same statistical characteristics
and should be placed in the same classification.
Then the principal components analysis is performed
to reduce the data dimension, which reduces the it-
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eration time for clustering. Figure 1 shows the cen-
ters of the clusters that resulted from this
classification. Figure 2 shows the clustered samples
projected onto the plane where the horizontal and
vertical axes are the first and second principal com-
ponents, respectively. Though we cannot say that
the GMD-based model based on either clustering re-
sult is the best to represent the data distribution,
they are superior to the model by a single Gaussian
from the viewpoint of the Akaike information crite-
rion.9

B. Color Estimation from Camera Responses

We carried out the simulations using the spectral
sensitivities of three-band and six-band cameras.
As a three-band camera, the spectral sensitivity of
FD420M �Flovel�, shown in Fig. 3�a�, is used. The
sensitivities of six-band camera are shown in Fig.
3�b�, which is the sensitivities of the six-band camera
assembled in our laboratory from the two FD420Ms
and two kinds of filters. The illumination light is
assumed to be a D65 illuminant. Three- or six-

dimensional image signals are calculated from the
168 spectral reflectances, and each spectral reflec-
tance is estimated with Wiener- and GMD-based es-
timation methods.

The Wiener estimation is carried out with Eq. �24�
instead of Eq. �11� because the average reflectance
does not become a zero vector, where the covariance
and average are computed from the following two-
type ensembles; all 168 samples �indicated by Wiener
in the results shown below� and the samples belong-
ing to kth class �Wiener�#k��. GMD-based estima-
tion is carried out by use of Eqs. �24�–�30� �GMD�.
The kth-class covariance and average are computed
from the spectral reflectance of the samples belonging
to the kth class, where each class is regarded as a
component of the GMD. The estimation error is
measured in the spectral space by normalized root
mean square error �NRMSE� and in CIE 1976 L*a*b*
color space, Eab*, where the color matching function

Fig. 1. Centers of the clusters in spectrum form, in the case of �a�
K � 3 and �b� K � 6. Fig. 2. Clustered samples on the plane whose horizontal and

vertical axes are the first and the second principal components in
the case of �a� K � 3 and �b� K � 6. The designated numbers in
the parentheses are the number of the samples classified into a
respective class.
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is CIE 1931 and the viewing illuminants are A, D65,
and F2.

Figure 4 shows the NRMSE of spectral reflectance
functions for every class of samples in the case of K �
3 and three-band camera. In this graph, #k means
the kth class samples and the label All means all 168
samples. We can see that the minimum NRMSE for
kth class samples is obtained by the Wiener�#k�
method. However, the errors of the samples of non-
kth classes are considerably large. In contrast,
GMD realizes almost the same accuracy to the cor-
responding Wiener�#k� in every class. As a result,
for All, the error of the GMD becomes minimum.

Figure 5 shows the results of the same simulation
as Fig. 4, in which the error is measured by the av-
erage Eab* under viewing illuminant A. This graph
shows the same tendencies as Fig. 4.

Figure 6 shows the average and the maximum Eab*
of 168 samples when the viewing illuminants are A,
D65, and F2, the cameras are three and six bands,
and the estimation methods are Wiener and GMD

�K � 3 and K � 6�. For every illuminant, it can be
confirmed that the GMD reduces both the average
and the maximum error in comparison with the Wie-
ner estimation. Especially for K � 6, the errors of
the GMD are about half of those of the Wiener esti-
mation for both three- and six-band cases. The rea-
son why K � 6 cases are superior to K � 3 cases can
be thought of as follows. As shown later, GMD-
based estimates become similar to Wiener estimates
by use of corresponding class statistics in both the
cases of K � 6 and K � 3. In the Wiener estimate, the
smaller the deviation of the data in a class, the higher
the accuracy of the estimates become. In accordance
with the fact that the deviation of a class is smaller in
K � 6 than in K � 3, the accuracy of K � 6 can be
thought of as being higher than that of K � 3.

Finally, let us consider the mixing parameter mk of
each sample. Figure 7 shows the proportion of mk of
each of the samples obtained through the three-band
camera simulation. Samples are listed in the order of
classes along the horizontal axis. The vertical axis
indicates the proportion of mk’s. From the graphs, we
can see that the mk’s for the samples of the kth class
are dominant to other mixing parameters. This ten-

Fig. 3. Spectral sensitivities of the cameras used in the simula-
tions: �a� three bands and �b� six bands.

Fig. 4. NRMSE of every class of samples for the case of K � 3 and
the three-band camera.

Fig. 5. Average Eab* of every class of samples in the case of K �
3, three-band camera, and viewing illuminant A.
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dency can be seen in both cases of K � 3 and K � 6.
These results indicate that an estimate of the samples
in the kth class obtained by the GMD-based estimation
becomes similar to the estimate from the Wiener esti-
mation selectively by use of its own statistics.

4. Conclusions

We proposed a nonlinear-estimation method for an
inverse problem, a GMD-based estimation, assuming
that the input is a random sequence of Gaussian
mixture distribution. The significant property of
the proposed method is to be derived through analyt-
ical procedures in spite of the nonlinear estimation.
That is, the GMD estimate is a linear combination of
the Wiener estimates, which are derived by use of the
probability distribution of one of the components as a
priori information.

The proposed method is applied to the problem of a
spectral-reflectance estimation from camera re-
sponses. As a result, the GMD-based estimation re-
duces the estimation error by up to half in
comparison with the conventional method, the Wie-

ner estimation. The improvement in accuracy de-
pends on the accuracy of the model of the probability
density of spectral reflectance in the proposed
method. Then, it becomes an important issue that
how to make an appropriate model for target ensem-
ble based on GMD.

Appendix A: Derivation of the Formulas

In this appendix, we show that the complete form of
the probability density p� k

G�f�g� is given by Eqs. �26�
and �27�. Ref. 7 derives the relative form of p� k�f�g�,
which is the same as pk�f�g� in Eq. �23�, then it is
enough to derive only the constant term.

Substitute Eqs. �4�, �9�, and �22� into Eq. �17�, we
have

p� k
G�f �g� � wk Ck exp�	

1
2

�f � �fk��
T
k

	1�f � �fk���
� Cn exp�	

1
2

�g � Hf�T
n
	1�g � Hf��

� wk Ck Cn exp�	
1
2

��f � �fk��
T
k

	1�f � �fk��

� �g � Hf�T
n
	1�g � Hf��� . (A1)

We now consider the argument of the exponential not
including variable f:

�fk�
T
k

	1�fk� � gT
n
	1g, (A2)

where the factor of 	1�2 is omitted. We want to
show that this expression equals to

fk*
T
k*

	1fk* � Dk, (A3)

the argument of the exponential of Eq. �26� not in-
cluding f.

Before entering the derivation, we make some
preparations. First, we shall show two useful gen-
eral matrix identities7:

R2 � R2MT�R1 � MR2MT�	1MR2

� �R2
	1 � MTR1

	1M�	1, (A4)

R2MT�R1 � MR2MT�	1

� �R2
	1 � MTR1

	1M�	1MTR1
	1, (A5)

where R1 and R2 are symmetric matrices whose in-
verse exits, and M is a third matrix. Applying those
to the related terms, we have three equations:


k � 
kHT�H
kHT � 
n�
	1H
k

� �
k
	1 � HT
n

	1H�	1, (A6)


n
	1 � 
n

	1H�
k
	1 � HT
n

	1H�	1HT
n
	1

� �H
kHT � 
n�
	1, (A7)


kHT�H
kHT � 
n�
	1 � �
k

	1 � HT
nH�	1HT
n
	1.
(A8)

Fig. 6. Average and maximum Eab* of all samples by Wiener and
GMD-based estimations.
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Because ¥k* is represented by Eq. �25�, ¥k* � ¥k 	
¥kHT�H¥kHT � ¥n�	1H¥k, Eqs. �A6�–�A8� can be re-
written using ¥k* as follows:


k � 
kHT�H
kHT � 
n�
	1H
k

� �
k
	1 � HT
n

	1H�	1 � 
k*, (A9)


n
	1 � 
n

	1H
k*HT
n
	1 � �H
kHT � 
n�

	1, (A10)


kHT�H
kHT � 
n�
	1 � 
k*HT
n

	1. (A11)

This is the end of the preparation, and Eqs. �A9�–
�A11� are used in the following.

We now start from Eq. �A3�. The vector, fk*,
which first appears in Eq. �24�, can be rewritten as

fk* � �fk� � 
kHT�H
kHT � 
n�
	1�g � H�fk��

� �I � 
kHT�H
kHT � 
n�
	1H��fk�

� 
kHT�H
kHT � 
n�
	1g. (A12)

Using Eq. �A9� and �A11� for the first and second
terms, respectively, we have

fk* � 
k*
k
	1�fk� � 
k*HT
n

	1g. (A13)

Substituting Eq. �A13� into fk*T¥k*	1fk* gives

fk*
T
k*

	1fk* � �fk�
T
k

	1
k*
k
	1�fk�

� 2�fk�
T
k

	1
k*HT
n
	1g

� gT
n
	1H
k*HT
n

	1g. (A14)

Dk is represented by Eq. �27�, which is expanded as

Dk � �g � H�fk��
T�H
kHT � 
n�

	1�g � H�fk��

� gT�H
kHT � 
n�
	1g � 2�fk�

THT�H
kHT

� 
n�
	1g � �fk�

THT�H
kHT � 
n�
	1H�fk�. (A15)

Substituting Eq. �A10�, the first term of Eq. �A15� can
be rewritten as

gT�H
fHT � 
n�
	1g � gT�
n

	1 � 
n
	1H
k*HT
n

	1�g.
(A16)

Fig. 7. Proportion of mixing parameters for all samples: �a� K � 3 and �b� K � 6. Samples are listed in the order of classes along the
horizontal axis.
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Substituting Eq. �A11� multiplied by ¥k
	1 from the

left-hand side into the second term of Eq. �A15� gives

	2�fk�
THT�H
kHT � 
n�

	1g

� 	2�fk�
T
k

	1
k*HT
n
	1g. (A17)

By use of Eq. �A9�, the third term of Eq. �A15� be-
comes

�fk�
THT�H
kHT � 
n�

	1H�fk�

� �fk�
T
k

	1
kHT�H
kHT � 
n�
	1
k
k

	1H�fk�

� �fk�
T
k

	1�
kHT�H
kHT � 
n�
	1
k�
k

	1H�fk�

� �fk�
T
k

	1�
k � 
k*�
k
	1�fk�. (A18)

Then we have

Dk � gT�
n
	1 � 
n

	1H
k*HT
n
	1�g

� 2�fk�
T
k

	1
k*HT
n
	1g

� �fk�
T
k

	1�
k � 
k*�
k
	1�fk�. (A20)

Adding fk*T¥k*	1fk* to Dk, which cancels some
terms, gives

fk*
T
k*

	1fk* � Dk � �fk�
T
k

	1�fk� � gT
n
	1g. (A21)

The right-hand side of the equation is identical to the
expression of Eq. �A3�. We have, therefore, finished
the derivation that we want to show.
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