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Abstract—The purpose of this paper is to give a very simple method for

nonlinearly estimating the fundamental matrix using the minimum number of seven

parameters. Instead of minimally parameterizing it, we rather update what we call

its orthonormal representation, which is based on its singular value decomposition.

We show how this method can be used for efficient bundle adjustment of point

features seen in two views. Experiments on simulated and real data show that this

implementation performs better than others in terms of computational cost, i.e.,

convergence is faster, although methods based on minimal parameters are more

likely to fall into local minima than methods based on redundant parameters.

Index Terms—Structure-from-motion, bundle adjustment, minimal

parameterization, fundamental matrix.
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1 INTRODUCTION

THE fundamental matrix has received a great interest in the

computer vision community, see, e.g., [5], [6], [11], [12], [20], [23],

[24]. It encapsulates the epipolar geometry or the projective motion

between two uncalibrated perspective cameras and can be used for

3D reconstruction, motion segmentation, self-calibration, etc.

Accurately estimating the fundamental matrix is therefore a major

research issue. Most of the time, point correspondences between

the two images are used. A linear solution is obtained using the

8-point algorithm [5], [11] optionally embedded in a robust

estimation scheme [20], [23]. This estimate is then nonlinearly

refined by minimizing a physically meaningful criterion that may

involve reconstructed 3D point coordinates as well (in particular

for bundle adjustment). However, nonlinearly estimating the

fundamental matrix suffers from the lack of a simple technique

to represent it efficiently. This paper, which is an extension of [2],

provides such a technique in Section 3, based on the orthonormal

representation of the fundamental matrix that we introduce. We

show in Section 4 how this method can be used to refine the

fundamental matrix by bundle adjustment of point features. We

demonstrate experimentally in Sections 5.1 and 5.2 that the

resulting algorithm performs better than existing ones in terms

of computational cost.

2 NOTATIONS AND RELATION TO PREVIOUS WORK

The fundamental matrix denoted as F is a homogeneous (i.e.,
defined up to scale) ð3� 3Þ rank-2 matrix. It therefore has nine
entries, but only 7 degrees of freedom.

There have been many attempts to minimally parameterize it,
i.e., to represent it with seven parameters. Most of the previous
works deal with directly parameterizing the epipolar geometry.
The fundamental matrix F is decomposed into the epipoles e and
e0 and the epipolar transformation, which is a 1D projective
transformation relating the epipolar pencils, represented by a
homogeneous ð2� 2Þ matrix g [4], [12], [23].

Representing these entities with minimal parameters requires
eliminating their arbitrary scale factors. This can be done by fixing,
e.g., the 2-norm of homogeneous entities, but then the parameter-
ization would not be minimal. Another solution is to freeze one
entry of each homogeneous entity (in practice, the largest entry),
which yields three possibilities for each epipole and four for the
epipolar transformation, so 3 � 3 � 4 ¼ 36 possible parameterizations.

In [12], the authors propose to restrict the two-view configura-
tions considered to the cases where both epipoles are finite and can
therefore be expressed in affine coordinates. Consequently, this
parameterization can be used only when both epipoles do not lie at
infinity. Due to the homogeneity of the epipolar transformation,
four distinct parameterizations are still necessary for g. A total of
four parameterizations are then needed to represent this restricted
set of fundamental matrices.

The method has been extended in [23] to the general case, i.e.,
when the epipoles can be either finite or infinite. In this case, it is
shown that all 36 distinct parameterizations are necessary. This
leads to a cumbersome and error-prone implementation of the
optimization process.

Note that there are nine different possibilities to form the
fundamental matrix—or any other 2D entity such as the extended
epipolar transformation [4] or the canonic plane homography H?

[13]—from e, e0, and g [23].
In [4], [24], the method has been revised so as to reduce the

number of parameterizations using image transformations. In [4],
the image transformations used are metric and the number of
distinct parameterizations is restricted to three plus one bilinear
constraint on the entries of g, while, in [24], the transformations
used are projective, which allows one to reduce the number of
parameterizations to one. The main drawback is that in the
transformed image space, the original noise model on the image
features is not preserved. A means to preserve it, up to first order
approximation, has been proposed in [24] for the gradient-
weighted criterion, which is not the one used for bundle
adjustment.

Another solution is the point-based parameterization of [19].
The idea is to represent the fundamental matrix by a set of 7-point
correspondences. Minimal optimization can then be conducted by
varying one coordinate for each point correspondence. The
fundamental matrix is obtained at each minimization step by
computing the standard 7-point solution, which means that the
null-space of a ð7� 9Þ matrix has to be computed and a cubic
equation has to be solved. There may be up to three solutions. The
one giving the lowest residual error is kept. The disadvantage of
this parameterization is that it is costly to obtain the fundamental
matrix given its parameters (i.e., the 7-point correspondences).
Also, analytic differentiation is not possible.

3 NONLINEAR OPTIMIZATION WITH SEVEN

PARAMETERS

In contrast to the existing work, we do not try to represent the
entire set of fundamental matrices using seven parameters. We
rather locally update it with seven parameters. Before going
further, we illustrate this idea by considering the case of the
nonlinear estimation of 3D rotations, which is simpler and, as will
be seen later, has similarities with the case of the fundamental
matrix.

3.1 The Case of 3D Rotations

There exist many representations of 3D rotations, see, e.g., [18],
including Euler angles, the Gibbs vector, Cayley-Klein parameters,
Pauli spin matrices, axis-and-angle systems, SOð3Þ matrices,1 and
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unit quaternions. None of these representations is able to uniquely
represent all 3D rotations with the minimum three parameters. For
that reason, the following scheme is often used for their nonlinear
estimation, see, e.g., [1], [7], [21]. The rotation is represented by an
SOð3Þ matrix R and is locally updated using three parameters by

any well-behaved (locally nonsingular) representation, such as
three Euler angles ��> ¼ ð�1 �2 �3Þ as:

R R Rð��Þ; ð1Þ

where Rð��Þ ¼ Rxð�1Þ Ryð�2Þ Rzð�3Þ is the SOð3Þ matrix representa-
tion of the 3D rotation corresponding to �� with

Rxð�1Þ ¼

1 0 0

0 cos �1 � sin �1

0 sin �1 cos �1

0

B@

1

CA;

Ryð�2Þ ¼

cos �2 0 sin �2

0 1 0

� sin �2 0 cos �2

0

B@

1

CA;

Rzð�3Þ ¼

cos �3 � sin �3 0

sin �3 cos �3 0

0 0 1

0

B@

1

CA:

At the end of each iteration, R is updated and �� is reset to zero.
Hence, at each iteration, the estimated Euler angles are small
(initialized as zero), which makes this representation nonsingular.

3.2 Minimal Update

Following the example of 3D rotations, we propose the orthonormal
representation of the fundamental matrix where more parameters
than degrees of freedom are needed, but that can be easily updated
using the minimum seven parameters.

Given an estimate of the fundamental matrix F obtained using,
e.g., the 8-point algorithm, consider its singular value decomposi-
tion F � U�V>, where U and V are Oð3Þ matrices2 and � a
diagonal one containing the singular values of F. Since F has
rank 2, � � diagð�1; �2; 0Þ, where �1 � �2 > 0 [22]. We can scale �

such that F � U diagð1; �; 0Þ V>, where � ¼ �2=�1 (�1 6¼ 0 since
F 6¼ 0) and 1 � � > 0.

This decomposition shows that any fundamental matrix can be
represented by ðU;V; �Þ, i.e., two Oð3Þmatrices and a scalar, which
form what we call its orthonormal representation. Note that, in the
case � ¼ 1, i.e., when the fundamental matrix is an essential matrix
[8], the orthonormal representation is not unique (see below).

The orthonormal representation is consistent in that it yields
3þ 3þ 1 ¼ 7 degrees of freedom. The fundamental matrix can be
recovered as:

F � u1v
>
1 þ �u2v

>
2 ; ð2Þ

where ui and vi are the columns of U and V, respectively.
This representation suggests the following update scheme. Each

Oð3Þ matrix can be updated using an SOð3Þ matrix, using (1) as in
the case of 3D rotations, while � can be included as such into the
optimization:

U U RðxÞ V V RðyÞ � �þ ��: ð3Þ

Here, x and y are 3-vectors of Euler angles. Intuitively, the
orthonormal representation should be intrinsically well-condi-
tioned since U and V are Oð3Þ matrices.

Completeness. A first question that immediately follows about
the above-proposed method is whether all two-view configura-
tions are covered. Clearly, any fundamental matrix can be
decomposed into two Oð3Þ matrices and a scalar. The question

arises from the fact that U and V are Oð3Þ matrices, which may
have positive or negative determinants, and are updated using
SOð3Þ matrices, RðxÞ and RðyÞ, respectively, which have positive
determinants. Actually, this is not a problem since the signs of U
and V can be freely switched, which accordingly switches the signs
of their determinants, while leaving the corresponding F invariant:
F � ð�UÞ �ð�VÞ>.

Ensuring bounds on �. A second remark is about the bounds
on �: 0 < � � 1. There are several possibilities to ensure them while
leaving the corresponding F invariant. However, we have found
during our experiments that, in practice, this does not affect the
behavior of the underlying optimization process.

Essential matrices. As pointed out previously, in the case of
� ¼ 1, where the fundamental matrix considered is an essential
matrix, the proposed orthonormal representation is not unique: If
U and V represent F, then also U Rzð�Þ and V Rzð�Þ for any �.
This induces that the Jacobian matrix (6) has rank 6, as shown in
Section 4.3. We propose two ways to deal with this singularity.

First, one can use a nonlinear optimization technique that
handles singular parameterizations, e.g., damped Newton-type
techniques. Using Levenberg-Marquardt, we found in our experi-
ments that the singularity does not induce numerical instabilities.

Second, one can avoid singular configurations by properly
normalizing the image points. Indeed, an essential matrix arises
usually from a semicalibrated configuration where the origin of the
coordinate frame in the image lies close to the principal point and
where the image coordinates have been scaled by approximately
the inverse focal length. In practice, the principal point position is
unknown, but it is likely to be close to the image center. Hence,
singular configurations can be avoided by translating the origin of
the coordinate frame off the image center.

4 BUNDLE ADJUSTMENT

In this section, we show how the orthonormal representation can
be used for bundle adjustment of point features qi $ q0i, i 2 1 . . .m

seen in two views, through the minimization of the reprojection
error. Similar results can be derived for other criteria, such as the
minimization of the distances between points and epipolar lines or
the gradient-weighted criterion [12], [23]. However, in order to
obtain the maximum likelihood estimate of the fundamental
matrix, one has also to estimate corrected point positions
bqqi $ bqq0i, i.e., which satisfy exactly the epipolar geometry and,
therefore, correspond to 3D points Qi.

Bundle adjustment consists in minimizing a cost function
described in Section 4.1 over structure and motion parameters. In
projective space, there are 15 inherent degrees of gauge freedom,
due to the coordinate-frame ambiguity. In [9], a general framework
consisting in incorporating gauge constraints up to first order in
numerical estimation is introduced. The method of [15] falls in that
category. Another technique is to let the gauge be free to drift,
sometimes partially, while it is ensured that it does not move too
far at each iteration. These methods are compared to ours in
Section 5.

When the motion is represented by the fundamental matrix, the
gauge is completely eliminated. We call any pair of camera
matrices P and P0 a realization. In Section 4.2, we give analytical
formulae to compute a realization from the orthonormal repre-
sentation of F (as opposed to [12], [19], [23], [24]).

The algorithm is summarized in Table 1.

4.1 Cost Function

Bundle adjustment consists in solving the following optimization
problem, see e.g., [15], [21], [23]: mina;b

P
j r

2
j , where a and b are

respectively motion and structure parameters (or parameters used
to update them), r is the 4m-vector of residual errors defined by:
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r>ð4m�1Þ ¼ . . . qi1 � bqqi1 qi2 � bqqi2 q0i1 � bqq0i1 q0i2 � bqq0i2 . . .
� �

;

where bqqi � PQi and bqq0i � P0Qi are predicted image points.

4.2 Computing a Realization

Due to the projective frame ambiguity, there exists a 15-parameter

family of realizations for a given fundamental matrix. A common

choice is the canonic projection matrices given by [13]:

P � ðIð3�3Þ 0ð3�1ÞÞ and P0 � ðH? �e0Þ; ð4Þ

where e0 is the second epipole, given by the left null-vector of F,

F>e0 � 0ð3�1Þ, and H? � ½e0��F is the canonic plane homography

[13]. The arbitrary scalar � fixes the relative scale between H? and

e0. Without loss of generality, we assume that � ¼ jje0jj ¼ 1. Any

other realization can then be obtained by postmultiplying P and P0

by a nonsingular 3D homography.
Computing the canonic projection matrices (4) can be achieved

directly from the orthonormal representation of F. The second

epipole is the last column of U: e0 � u3 (ku3k ¼ 1), so the canonic

plane homography can be formulated as:

H? � ½e0��F � ½u3�� u1v
>
1 þ �u2v

>
2

� �
:

Since U is an Oð3Þ matrix, ½u3��u1 ¼ �u2 and ½u3�u2 ¼ 	u1 which

yields H? � u2v
>
1 � �u1v

>
2 and, thus, the particularly simple and

direct form of the second projection matrix:

P0 � u2v
>
1 � �u1v

>
2 j u3

� �
: ð5Þ

4.3 Analytical Differentiation

Many nonlinear optimization methods necessitate computing the

Jacobian matrix J ¼ ðA j BÞ of the residual vector r with respect to

motion and structure parameters a and b. While this can be

achieved numerically using, e.g., finite differences [16], it may be

better to use an analytical form for both computational efficiency

and numerical accuracy. We focus on the computation of A ¼ @r
@a

since B ¼ @r
@b only depends upon structure parameterization. Let

p0 ¼ vectðP0Þ, where vectð:Þ is the row-wise vectorization. We

decompose Að4m�7Þ ¼
@r
@p0

@p0

@a ¼
�AAð4m�12Þ A

?
ð12�7Þ. Only the 12 entries

of P0 are considered since P is fixed in the canonic reconstruction

basis (4). The matrix �AA ¼ @r
@p0 depends on the chosen realization of

the fundamental matrix, i.e., on the coordinate frame employed.

We have chosen the canonic projection matrices (4). This Jacobian

matrix is employed directly for the overparameterization pro-

posed in [6]. Deriving its analytical form is straightforward. We

therefore concentrate on deriving a closed-form expression for A?.

One of the advantages of the update rule (3) is that there exists a

simple closed-form expression for A?. Nonlinear least squares

with analytical differentiation can be applied based on A?.
Let us consider the orthonormal representation ðU;V; �Þ. The

motion update parameters are minimal and defined by a> ¼

x1 x2 x3 y1 y2 y3 �ð Þ, where x> ¼ ðx1 x2 x3Þ and y> ¼ ðy1 y2 y3Þ are

used to update U and V, respectively. Since U and V are updated

with respect to the current estimate,A? is evaluated at ðU;V; �Þ, i.e.,

at a> ¼ a>0 ¼ ð0
>
ð6�1Þ �Þ. Equation (5) is used to derive a closed-form

expression of the second canonic projection matrix after updating.

By expanding, differentiating and evaluating this expression at a0,

we obtain:

A? ¼
@p0

@a
¼

@p0

@x1

� �
� � �

@p0

@y3

� �
@p0

@�

� �� �
; ð6Þ

where:

@p0=@x1 ¼ vectðu3v
>
1 j � u2Þ

@p0=@x2 ¼ vectð�u3v
>
2 j u1Þ

@p0=@x3 ¼ vectð�u1v
>
1 � �u2v

>
2 j 03�1Þ

@p0=@y1 ¼ vectð��u1v
>
3 j 03�1Þ

@p0=@y2 ¼ vectð�u2v
>
3 j 03�1Þ

@p0=@y3 ¼ vectðu2v
>
2 þ �u1v

>
1 j 03�1Þ

@p0=@� ¼ vectð�u1v
>
2 j 03�1Þ:

ð7Þ

In the general case, rankðA?Þ ¼ 7, but when � ¼ 1, rankðA?Þ ¼ 6

since @p0=@x3 þ @p0=@y3 ¼ 0.
If the minimal method of, e.g., [23] were used, 36 different

Jacobian matrices, one for each parameterization, would have to be

derived.

4.4 Particular Configurations

The epipolar geometry can be decomposed as a pair of epipoles

and the 3-degrees of freedom epipolar transformation [12], [23]. If

one or two of these components are a priori known, it may be

convenient to leave them invariant during optimization of the

fundamental matrix. Such features are easily added to our

estimation method, as follows.
Leaving an epipole invariant. Consider, e.g., the second

epipole encapsulated in the orthonormal representation as the

third column of U. The update U U RðxÞ does not affect u3 if

x1 ¼ x2 ¼ 0. Therefore, freezing the left or the right epipole can be

done by removing x1; x2 or y1; y2, respectively, from the estimation

and updating as U U Rzðx3Þ or V V Rzðy3Þ, respectively.
Leaving the epipolar transformation invariant. The epipoles

are encapsulated by the x1; x2 and the y1; y2 update parameters.

Hence, the 3 degrees of freedom of the epipolar transformation are

contained in the remaining update parameters: x3, y3, and �.

Removing them from the optimization freezes the underlying

epipolar transformation.
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TABLE 1
Implementing Our Minimal Estimator within the

Bundle Adjustment Levenberg-Marquardt-Based Framework
Given in [7, p. 574] (Algorithm A4.1)

Note that r is the number of residuals and that the second projection matrix has to
be extracted from the orthonormal representation using (5) (e.g., for computing the
residual vector).



5 EXPERIMENTAL RESULTS

We compare an algorithm based on the orthonormal representa-
tion to other algorithms. We use simulated and real data in
Sections 5.1 and 5.2, respectively. Below, we give details about the
compared methods, the measured quantities, the computation of
an initial suboptimal solution for structure and motion, and the
nonlinear optimization scheme we use.

Compared methods. We compare the following motion
parameterizations:

. FREE directly optimizes the 24 entries of the camera
matrices. The gauge is left free to drift. The 24� 7 ¼ 17

extra parameters are the homogeneous factors of each
camera matrix and the 15-dimensional projective basis.

. NORMALIZED [15] is similar to FREE, but the gauge is
fixed since a normalized coordinate frame is used. This is
done by renormalizing the reconstruction before each step
of the nonlinear minimization and by including first-order
gauge constraints into the minimization. The reconstruc-
tion basis, as well as the homogeneous scale of the camera
matrices are constrained.

. PARFREE [6] partially fixes the gauge by optimizing only
the entries of the second camera matrix, while keeping
P � ðI 0Þ. The 12� 7 ¼ 5 extra parameters are the homo-
geneous scale of the second camera matrix, the global
scene scale, and the position of the plane at infinity.

. MAPS [3], [23] is a minimal parameterization based on
multiple maps.

. ORTHO uses the orthonormal representation proposed in
this paper.

Measured quantities. We measure two quantities characterisic
of a bundle adjustment process, computational cost, i.e., CPU time
to convergence and the error at convergence.

Structure parameterization. We use the structure parameter-
ization proposed in [7] which consists in scaling the reconstructed
points such that their third element is unity. The three remaining
free elements are then optimized. Note that this parameterization
can be used only when a canonical basis enforcing P � ðI 0Þ is
used. Therefore, methods FREE and NORMALIZED have their
own structure parameterization: They optimize the four elements
of each point.

Initialization. We compute an initial solution for the motion
using the normalized 8-point algorithm [5]. Image point coordi-
nates are standardized such that they lie in ½�1 . . . 1�. Each point is
reconstructed by minimizing its reprojection error.

Nonlinear optimization. We use the Levenberg-Marquardt
technique with analytic differentiation. This is a damped Gauss-
Newton method. Let J be the Jacobian matrix and H ¼ J>J the
Gauss-Newton approximation of the Hessian matrix. The damp-
ing consists in augmenting the normal equations H�� ¼ �J>r to
be solved at each iteration: H HþWð�Þ. The parameter � 2 IR

is tuned heuristically, as described in [7], [21]. We try two
approaches for the step control strategy, i.e., the choice of matrix
Wð�Þ. First, in [21], the authors recommend Wð�Þ ¼ �I. This is
the original idea of the Levenberg-Marquardt algorithm [10], [14].
This will be referred to as LM. Second, in [7], the authors
recommend Wð�Þ ¼ ð1þ �Þ diagðHÞ, i.e., multiply the diagonal
entries of H by 1þ �. This strategy is recommended in [16] and is
due to [17]. This will be referred to as SEBER.

Note that gauge freedoms cause H ¼ J>J to be rank-deficient,
but that the damped matrix is guaranteed to have full-rank. Hence,
Levenberg-Marquardt iterations change both the actual estimated
geometry as well as the gauge.

We take advantage of the sparse structure of H and J to
efficiently solve the augmented normal equations, as described in
[7], [21]. More precisely, the sparseness of the structure parameters

is exploited, and the complexity of the computation is Oðmp3Þ,
where m is the number of points and p is the number of motion
parameters. Hence, we can expect the computational cost for an
iteration to be similar for all parameterizations when the number
of points is very large, and to be very different when the number of
points is low.

We stop the estimation when the difference between two
consecutive residual errors is lower than a threshold �, chosen
typically in the range 10�8 � � � 10�4.

5.1 Simulated Data

5.1.1 Experimental Setup

We simulate points lying in a cube with one meter side length,

observed by two cameras looking at the center of the cube. The

standard configuration is the following: The focal length of the

cameras is 1,000 (expressed in number of pixels). They are situated

10 meters away from the center of the cube and the baseline

between them is one meter. The number of simulated points is 50.

We add a centered Gaussian noise on true point positions with a

2-pixel variance. The normal equations are augmented using

method LM. Each parameter of the above-described setup is

independently varied to compare the parameterizations in

different situations. The results are averaged over 100 trials.

Computing the median gives similar results.

5.1.2 Results

Fig. 1 shows the results. We observe that all methods have roughly
the same accuracy, i.e., they give the same reprojection errors, up
to small discrepancies. Further comments on these discrepancies
are given in the next paragraph.

On the other hand, there are quite large discrepancies between

the computational costs of each method. The methods that have

the highest computational costs are NORM and FREE, followed by

PARFREE. The minimal methods MAPS and ORTHO have the

lowest computational cost, roughly the same. These discrepancies

are explained by the fact that redundant methods have more

unknowns to estimate than minimal ones. Solving the normal

equations is therefore more expensive (see below). These observa-

tions are valid for other experiments (not shown here) where the

focal length of the cameras is varied from 500 to 2,000 pixels and

where the baseline is varied from one to three meters. We also

conduct the same experiments while augmenting the normal

equation using SEBER. The same observations as above are valid.

The results for all methods, compared to the LM augmentation, are

worse in terms of both computational cost and reprojection error,

while the discrepancies between the different methods for the

reprojection error are reduced.

We observe that, in our C implementation, the computational

cost of each iteration is dominated by the resolution of the normal

equations, whose size is directly linked to the number of

parameters. We measure the computational cost of an iteration

for the different parameterizations. As said above, the complexity

is linear in the number of points and cubic in the number of motion

parameters. For different numbers of points, we obtain the results

shown in Table 2.
These results show that the differences in computational costs

are largely dominated by the number of motion parameters. The
discrepancies become smaller when the number of points increases
beyond 10,000, which is very large in the case of structure from
motion for two views.

5.1.3 Convergence

As said above, there are small discrepancies in the reprojection
errors achieved by the different methods, see in particular Fig. 1a.
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These small discrepancies are due to the fact that each parameter-

ization may lead to a different local minimum of the cost function.

To better characterize this phenomenon, we measure the rate of

successful estimations for the different methods against the

distance from the scene to the cameras. An estimation is successful

if it is not improved by any of the other compared method. More

precisely, let M and M0 designate two methods and EMðM
0Þ be the

error achieved by method M initialized by the result of method M0.

We define the success of an estimation made with method M as:

SuccessðMÞ 

�
8M0 6¼ M; jEMðINITÞ � EM0 ðMÞj � �

�
;

where � is the threshold used to stop the iterations. We obtain the

results as shown in Table 3.
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Fig. 1. Reprojection error (left column) and CPU time to convergence (right column) measured against different simulation parameters: distance scene to cameras (first

row), image noise (second row), and number of points (third row). Concerning the reprojection error, the curves are almost always undistinguishable, apart from the

initialization. For the CPU time, methods are divided into three groups: (from top to bottom) FREE and NORM, PARFREE, then MAPS and ORTHO.

TABLE 2
Computation Time (Seconds) of an Iteration for

Different Parameterizations



In the light of these results, we can say that methods using

minimal parameters fall into local minimamore often thanmethods

based on redundant parameters. An explanation is that the minimal

parameterizations are nonlinear, while the overparameterizations

are linear, in the entries of the projection matrices. Hence, the local

quadratic approximation of the cost fonction used in Levenberg-

Marquardt is more accurate for overparameterizations.

5.1.4 Essential Matrix

As pointed out in Section 3.2, the orthonormal representation has a

one-dimensional ambiguity when an essential matrix is considered.

We want to check if, in the essential or near-essential cases, the

orthonormal representation could induce numerical instabilities in

the optimization process. For that purpose, we repeat the previous

experiments, with the following two changes.
First, we map the fundamental matrix given by the 8-point

algorithm to the closest essential matrix [8] and use this as an

initial solution for the nonlinear optimization. Hence, the target

epipolar geometry is a fundamental matrix, but the initial solution

is an essential one.
Second, instead of using the coordinates of the points in the

images, we use the coordinates of the points on the retina. Hence,

the underlying true epipolar geometry is represented by an

essential matrix. We run the experiments based on varying the

geometry of the problem for both SEBER and LM.
We obtained results very similar to the previous experiments.

This means that the orthonormal representation can be used for

both fundamental and essential matrices, without inducing

numerical instabilities, when an appropriate nonlinear optimizer

is employed.

5.2 Real Data

We use different pairs of the images shown in Table 4, in order to

cover all possibilities for the epipoles to be close to the images or at
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TABLE 3
Convergence Results Shown as Success Rates in Percent

TABLE 4
Reprojection Error at Convergence, E, and CPU Time to Convergence, T , Obtained When Combining Pairs

of Images to Obtain Epipoles Close to the Images or Toward Infinity



infinity, with 60 point correspondences. The results are shown in

Table 4. For each combination of images and each algorithm, we

estimate the computational cost and the reprojection error. The last

row of the table shows mean values for each algorithm over the set

of image pairs. Note that, for any image pair, the reprojection error

is the same for all algorithms. Methods ORTHO, PARFREE, and

MAPS give the lowest computational costs, roughly twice as low as

those of methods FREE and NORM. We obtain similar results

using SEBER.

6 CONCLUSIONS

We studied the problem of estimating the fundamental matrix

over a minimal set of seven parameters. We proposed the

orthonormal representation which enables to easily update an

estimate of the fundamental matrix using seven parameters. The

canonic projection matrices can be directly extracted from the

orthonormal representation. The method can be plugged into most

of the (possibly sparse) nonlinear optimizers such as Levenberg-

Marquardt. We gave a closed-form expression for the Jacobian

matrix of the residuals with respect to the motion parameters for

bundle adjustment purposes, necessary for Newton-type optimi-

zation techniques.
We conducted experiments on simulated and real data. Our

conclusions are that the methods based on minimal parameter sets

have lower computational cost, but may be more frequently

trapped in local minima.
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