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The dynamics of a free-liquid film with insoluble surfactants is followed until film rupture with a 
simple model based on three nonlinear evolution equations for the film thickness, the surfactants 
concentration and the tangential velocity of the fluid in the film. This model is derived 
asymptotically from the full Navier-Stokes equations for free films and incorporates the effect of 
van der Waals attraction, capillary forces and Marangoni forces due to gradients of surface tension. 
Different stability regimes are observed numerically for periodic and fixed boundary conditions and 
several initial conditions. Furthermore, the role of the relevant parameters (Hamaker constant, 
tension, Marangoni number) on the rupture time is assessed and comparison is made with the flow 
dynamics for a liquid film with insoluble surfactants on a solid substrate. 

I. INTRODUCTION 

The hydrodynamic stability of thin liquid films has been 
widely studied over the last two decades, allowing many 
applications in chemical or biomedical engineering. 1\vo dif­
ferent generic geometries of these films have been consid­
ered: first, a thin liquid film on a solid substrate, l which is 
involved in wetting of surfaces, evaporation or surfactant 
spreading; second, a free-film geometry,2 involved for in­
stance in rupture of soap films and coalescence of droplets or 
emulsions. In the biological domain, these two geometries 
can be recognized respectively in the case of adhesion of 
cells to solid substrates and in the case of aggregation or 
fusion of vesicles and cells?,4 In both cases, the rupture in­
stability, first introduced by Sheludko,5 result from an ampli­
fication of spontaneous fluctuations by long range molecular 
forces due to van der Waals attraction, which are always 
operative for ultrathin liquid films (100-1000 A). Such fluc­
tuations and waves have been detected experimentally at the 
surface of free-liquid films by dynamic light scattering. Two 
collective modes of motion were observed on soap films:6

,7 

the bending mode (BE), also called the undulation mode, 
which maintains the thickness of the film, and the squeezing 
mode (SQ), or in other words the peristaltic mode, which 
involves symmetric thickness fluctuations. This squeezing 
mode is the one considered when studying film rupture. 

In order to describe this rupture, Felderhofl has applied a 
linear stability analysis to a thin free film, accounting for the 
van der Waals dispersion forces and the double layer forces, 
but for an inviscid flow. Lucassen-Reynders and Lucassen9 

have extended this treatment to a viscous film with capillary 
waves. Gummerman and HomsylO examined the linear sta­
bility of radially bounded thinning films. However, a linear 
analysis ceases to be valid at finite size deformation and does 
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not enable to follow the dynamics of the induced flow. Re­
cently, nonlinear methods have appeared based on the long­
wave nature of the response. They provide nonlinear evolu­
tion equations (NEE) derived asymptotically from the 
Navier-Stokes equations and whose solutions are obtained 
either by bifurcation analysis or by numerical methods. Such 
nonlinear evolution equations have already been considered 
in different systems, which allows now some classification. 

• A single NEE is sufficient to describe the evolution of 
the thickness h of the film, in the case of a thin film on 
a solid substrate (Williams and Davis,11 Burelbach 
et al.,12 Hatziavramidis13

) or in the case of a free film 
with tangential immobile surfaces (Prevost and 
Gallez,14 Gallez et al. 15). 

• A pair of NEE are needed if surfactants are present in 
variable concentration for a liquid film on a solid sub­
strate: one equation for h and a second one to describe 
the evolution of the concentration of the surfactants 
(see, for example, the case of a multistable chemical 
reaction treated by Dagan and Pismen,16 the spreading 
of surfactants on a viscous film examined by Jensen 
and Grotberg17,18 or the problem of adhesion of cells 
to a solid substrateI9

). However, it has been recently 
recognized by Erneux and Davis20 that for free films 
without surfactants, the presence of two stress-free 
boundaries requires a higher-order analysis which 
leads also to a system of two NEE (one equation for h 
and the other one for the tangential velocity of the 
fluid in the film). 

In this paper, we extend these nonlinear approaches to 
study the rupture of a free film with insoluble surfactants. We 
show that a system of three coupled NEE describing the 
evolution of the thickness h, the concentration of the surfac­
tants r and the tangential velocity u of the fluid is required to 
describe the evolution of the symmetric mode (SQ mode) of 
the free film with insoluble surfactants. Analytical and nu­
merical study of the derived model give insight into the role 
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FIG.!. Sketch of a free film with fluctuating surfaces. The free surfaces are 
described by the equations z=h±Cx,t). The dashed lines indicate their mean 
position at Iz = ± 1/2. The squeezing mode, for which the fluctuations of the 
thickness are symmetric with regard to the axis z=O, leads to rupture. 

of the different parameters on the rupture time, as well as on 
the dynamics of the rupture. Eventually, we underline the 
difference between the behavior of a free film with that of a 
film on a solid substrate. 

The paper is therefore organized as follows. Section II is 
devoted to the derivation of the model. In Sec. III, a linear 
stability analysis will provide insight on the role of the rel­
evant parameters on rupture time while in Sec. IV, numerical 
results will show the stability properties and the dynamic 
behavior of the system in different conditions. Finally, in 
Sec. V, we compare these results to those obtained for a 
liquid film on a solid substrate. 

II. BASIC EQUATIONS AND FORMULATION OF THE 
MODEL 

Consider a thin liquid layer bounded by two surfaces. 
The longitudinal direction is denoted by x while z corre­
sponds to the transverse direction. The film is bounded by 
two free surfaces located at z=hAx,t) separating the liquid 
from the gas (Fig. 1). The analysis will be based on the 
squeezing mode, which is symmetric along the x axis, since 
it leads to film rupture and is the most unstable. 

The liquid layer is assumed to be thin enough so that van 
der Waals forces are effective and yet thick enough so that a 
continuum theory of the liquid is applicable. The film is sup­
posed to be of finite extent, its length L far exceeding its 
thickness ho. The free surfaces possess surface properties 
like surface tension and surface coverage. Consequently, if 
the surfactants are free to diffuse along the surface, the sur­
face tension will vary in accordance with surface concentra­
tion (Marangoni effect21

). The liquid film is described as a 
Newtonian viscous fluid having viscosity /-L, density p, and 
kinematic viscositv v. Dimensionless variables are intro­
duced using the fo"Uowing scales: length ho, time h5/v, ve­
locity plho and pressure pp2/h5. In addition, we use the 
equilibrium value r 0 as a unit measure for the concentration 
of the surfactants. The two-dimensional motion of the liquid 
in the film phase is given by the dimensionless Navier­
Stokes equations2

: 

(u t + UUx + vUz ) = - (p + W)x + (uxx+ uzz)' (1) 

(V t+ uVx+vv z) = - (p+ W)z+ (v xx+v.7,z), 

together with the continuity equation 

llx+Vz=O, 
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(2) 

(3) 

where II and v are, respectively, the tangential and normal 
velocities in the Cartesian coordinate system (x,z). The suf­
fices indicate differentiation while p is the mechanical pres­
sure. The van der Waals potential is given by 

W(r)= f w(lr- r'l)p(r')dr' (4a) 

and 

w(\r- r' I)=A/([r- r'I)6. 

Here the dimensionless London constant A is related to the 
dimensional constant AD by A=AD/(h5P p2). In general, W 
is a function of x, z, and t. However, as indicated by Mal­
darelli et al.,22 this formulation can be simplified in the long 
wavelength limit, and it has been customary to use the fol­
lowing simplified model, where the attractive van der Waals 
potential W depends on the film thickness h as 

W=A(h+ -h_)-3, (4b) 

where the dimensionless Hamaker constant A can be linked 
to the dimensional constant AH as A =AH/(h~pv2). 

At the free interfaces h±(x,t), we have the following 
boundary conditions:23 the normal stress balance (Laplace 
condition) is given by 

- p + I/O + h;X>[2vA I-h;x) - h:txCv x+ uz )] 

= ±I h±xxlO +h;x)3i2, 
(5) 

where we have assumed that the pressure of the gas is zero. 
If we neglect surface viscosity, the dimensionless surface 
tension I is given by the following constitutive relation: 

I=T-Mr, 

where 

T=(TOho/(pp2) 

(6) 

(7) 

is the dimensionless tension for the constant part of the ten­
sion <To at equilibrium concentration r 0 and 

(8) 

is the dimensionless Marangoni number for the variation 
a<Tlar of the dimensional tension <T versus the dimensional 
concentration r; r=rffo is the dimensionless surfactants 
concentration. 

The tangential stress balance (Marangoni condition) 
reads 

[(uz + v x)(l- h;x) + 2h:tx(vz-uJJ = Ix(1 + h;J 1f2
• 

(9) 

The kinematic boundary conditions are given by 

v=h±t+h±xll . (10) 

In addition, a conservation equation is needed for the con­
centration of the surface active substance: 

(11) 

where D s is the surface diffusion coefficient of the surfac­
tant. The second term in the left-hand side (LHS) of Eq. (11) 
represents the rate of change of concentration due to the 
dilatation of the surface.24 This term is small for large cur-
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vature radius a and will be neglected in the following. The 
possible generation mechanisms for the variation of surfac­
tants concentration (surface chemical reaction, adsorption­
desorption from the film bulk phase or surfactant spreading) 
will not be considered explicitly here, since we are above all 
interested in deriving a simple model. These effects could be 
added afterwards by introducing a source term in the equa­
tion of conservation of surface massY 

Last, the perturbations at the two surfaces are symmetric 
for the squeezing mode in which 

(12) 

From now on, we write the dimensionless thickness as 
h+(x,t)=h(x,t) and will consider only the upper part of the 
symmetric film [O";;z,,;;;h+(x,t)]. The conditions for the SQ 
mode are then 

uz=v=O at the center of the film z=O. (13) 

The behavior of the film is thus completely determined by 
the hydrodynamic equations (1)-(3) along with the boundary 
conditions (5), (9), (13), the kinematic equation (10) and the 
conservation equation (11). The linear stability analysis of 
this system may be performed in order to determine the con­
ditions for marginal stability of the free film with a finite 
quantity of surfactants toward infinitesimal disturbances. 
This analysis cannot, however, follow the dynamics of the 
film up to the rupture: experimental evidence on soap films 
shows indeed that films rupture when disturbances have 
reached a large size. The behavior of the system in that re­
gime can be correctly understood only by taking into account 
the nonlinearities of the evolution equations governing the 
behavior of finite disturbances. 

To take such terms into account, a long wavelength ap­
proximation is used in a nonlinear theory to obtain succes­
sive approximations to the solutions of the equations of mo­
tion (1) and (2). The solutions derived for each component of 
the velocity field will then be substituted in the kinematic 
equation (10) and in the conservation equation (11). We for­
malize the long wavelength theory by rescaling the variables 
with a small parameter E inversely proportional to the wave­
length of the disturbance which is supposed to be much 
larger than the film thickness. We define thus new dimen­
sionless rescaled variables as follows: 

,\'= EX, Z=z, 

U=U/E, V=v/E2
, (14) 

r=E2t, P=p/E2, H=h. 

The rescaled variables and derivatives with respect to the 
upper case variables are all unit order as E- >0. 

The dynamical equations (1) and (2) are then expressed 
as follows: 

UT+ UUx + VUz=[UxX+UZZ/E2_(p+ W')XJ, (15) 

VT+ UVx + VVz={Vxx + Vzz/~-PZ/E2), (16) 

where we have assumed that 

W'=A'/h 3 with A'=A/E2=O(1). 

The continuity equation (3) becomes 
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(17) 

Ux+Vz=O. (18) 

The ratio U/V is of the order of E to preserve the continuity 
equation (3) with the stretching transformation. 

The normal stress balance (5) at Z=H(X,r) reads 

- P+ 1/(1 + E2H.~)[2Vz(1- E2H}) -HX(E2VX+ Uz)J 

=(T- E2MT)Hxx/(1 + E2H}) 3/2, 
(19) 

where we have assumed that M' = M /E2 = 0 (1) and 
T=O(1). 

Using the same definition for the rescaled Marangoni 
number M', the tangential stress balance (9) at Z = H(X, r) 
becomes 

(Uz + E2Vx )(1- E2Hi)+2E2H x(Vz-Ux ) 

= - E2MTx(1 + E2Hi) 112. 

Moreover, we have 

Uz=V=O at Z=O. 

(20) 

(21) 

Last, the kinematic equation and the conservation equation 
for the concentration of the surfactants can be written at 
Z=H(X,r) as 

V=HT+UHx , (22) 

f T+(fU)x=fxx/Sc> (23) 

where Sc= v/Ds is the dimensionless Schmidt number. Ap­
proximate solutions of this new system of equations can be 
obtained by introducing the following regular perturbation 
expansion for U, V, and P into equations (15)-(23): 

(U, V,P)=(Uo,vo,Po)+ E2(u l , VI ,Pd+···· (24) 

We have assumedA=O(E2) and T=O(l) to retain at low­
est order both effects of van der Waals interactions and of 
surface tension. The problem is to obtain the velocity field 
which is the solution of Eqs. (15)-(18), consistent with the 
boundary conditions on normal and tangential stress together 
with the SQ mode condition. In particular, consistence be­
tween the tangential stress condition (20) at Z=H(X,r) and 
condition U z = 0 at Z = 0 for the SQ mode at the lowest 
order has lead us to take M=O(~). The zeroth-order prob­
lem reads then 

Uozz=O, 

Vozz=Poz, 

Uox+ Voz=O, 

-Po+2Voz-HxUoz=THxx at Z=H, 

Uoz=O at Z=H, 

Vo=Uoz=O at Z=O, 

VO=HT+UoHx at Z=H, 

f T+(fUo)x=fxx/Sc at Z=H. 

(2Sa) 

(2Sb) 

(2Sc) 

(2Sd) 

(25e) 

(2St) 

(25g) 

(25h) 

A straightforward integration20 of Eqs. C2Sa)-(2Sc) using 
boundary conditions (25d)-(2St) leads to the following ve­
locity and pressure fields: 
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Uo=B(X,r), 

Vo=-ExZ , 

Po=-2Bx-THxx , 

(26) 

(27) 

(213) 

where B, an unknown function of X and r becomes a new 
variable of the problem, i.e., the tangential velocity of the 
fluid. We straight away remark that the normal velocity Vo is 
an antisymmetric function of Z while the tangential velocity 
Uo is a symmetric function of Z, in agreement with the defi­
nition of the SQ mode. The form for U 0 [Eq. (26)] is substi­
tuted into (25g) a~d (25h) to obtain 

H .. =-(BHh, 

r .. =r xx/sc-crBh. 

(29) 

(30) 

Since we obtain two NEE [Eqs. (29) and (30)] for three 
variables: H, r, and B, a third relation between them is 
needed. To this end, we analyze the next order of the € ex­
pansion where we have for U 1 

Uo .. +UoUox+ VoUOz=[Uoxx+ U1ZZ-(PO+ W')x], (31a) 

Ulz+Vox+2Hx(Voz- Uox)- uozHl 

=-M'rx at Z=H, 

U1Z=0 at Z=O. 

(31b) 

(31c) 

Solving this system of equations finally gives an additional 
partial differential equation governing the spatiotemporal 
evolution of the tangential velocity B(X,r): 

(B .. +BBx-THxxx+ W.~)H=( -MT+4HBxh. (32) 

Finally, we rewrite Eqs. (29), (30), and (32) in terms of the 
original variables using (14) and (26) and reminding that 
M I = M fE2 and W' = W/ ~. We obtain a simple model de­
scribing the evolution of free films with insoluble surfadants 
thanks to three coupled' NEE for the thickness h of the film, 
the c~ncentration r of the surfactants and the tangential ve­
locity u of the fluid in the film, i.e., 

I 

ht = -(uh)x, (33a) 

r t = r xx/Sc - cru)x, 

(u t + ullx-Thxxx+ WJh= (- Mr+4hllx)x· 

III. !-INEAR STABILITY THEORY 

(33b) 

(33c) 

If we suppose that the free tilm is initially homogeneous, 
model (33) admits a whole family of steady states denoted as 
(hss ,r ss ,uss). In the following, we choose to analyze the 
stability of the steady-state solution 
(hss ,rss ,uss)=(1I2,1,0) corresponding to a plane film 
with the fluid at rest. We peiturb this basic state by small 
perturbations (a, y,fJ) i.e., 

h= 112+ a, 

r= 1 +y, 

II = 13. 

Phys. Fluids, Vol. 6, No. 10, October 1994 

(34a) 

(34b) 

(34c) 

ro 

0.015 

FIG. 2. Growth rate al of the unstable mode versus its wave number k for 
increasing values of M. The straight, dotted, and dashed lines correspond, 
respectively, to M: 0.025, 0.05, and 0.1 with A =0.05; T=3; Sc= 10. The 
growth rate is positive for all k<kc . The variation of M docs not affect kc 
while increasing M leads to a decrease of almax and hence to an increase of 
the rupture time. 

We obtain by inserting Eqs. (34) in Eqs. (33) a linearized 
problem that, in a system with periodic boundary conditions 
on a bounded domain O";x";L, admits solutions of the form 

m 

while in a system with fixed boundary conditions, the solu-
tions are " 

(36) 
m 

where b = 13x and w is the growth rate of the disturbance 
while km=m'Tf/L (m=1,2, ... ) is its wave number. For both 
cases, the correspondi~g characteristic equation for w reads 

w( w+ k 2/S c )( w + 4k2) + k2/2( w + k 2/S c)(Tk2- 6A) 

(37) 

The critical wave number kc for which w=o corresponds to 

k~= 6A/T (38) 

which agrees with the linear theory result of Ruckenstein and 
Jain.2 The dispersion relation has three roots. 1\vo of them 
have a real part which remains always negative while the 
third one, w~, has a real part that may become positive. A 
simple analysis of (37) for small' k yields a growth rate of 
O(k) for 2M <3A, while the growth rate becomes O(k2) for 
2M>3A. For 2M=3A, the root is proportional to k4/3 for 
small k. ' , 

Several conclusions appear from expression (38) among 
which the most important is that the Marangoni effect does 
not affect the cutoff wave number k c • In other words, the 
domain of unstable wave numbers in the case of a free film is 
the same whether or not the film contains any surfaCtant. 
This can be seen in Fig. 2 where we have plotted the curve 
w= w3 = f(k) for different values of M. The orders of mag­
nitude for the parameters M, T, and A have been chosen in 
order to be coherent with the hypotheses made to obtain the 
model. An increase of M results in a decrease of the fastest 
growth rate wmax which can be interpreted as the inverse of 
the rupture time of the free film. This means that the film will 
be more stable as we increase the concentration roof surfac­
tants in the film or the rate (-aO"/aO in order to increase the 
Marangoni number [Eq. (8)]. If we increase the tension T, 
the cutoff wavenumber kc decreases [Eq. (38)]. The film is 
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TABLE I. Parameters for thin liquid films (aqueous). 

Parameter 

Film viscosity 
Film density 
Kinematic viscosity 
Equilibrium film thickness 
Hamaker constant 

f.J­
P 
v 
ho 
AH 
Ds 
ao 
1'0 

Symbol Best estimate 

""10-2 g/(cm s) 
=1 g/cm3 

Surface diffusion coefficient 
Equilibrium surface tension 
Equilibrium sorfactants concentration 
Variation surface tension (-aal af) at r 0 

=10-2 cm2/s 
10-6_10-5 cm 
10-14_10- 12 erg 
10-5_10-4 cm% 

1-30 dyn/cm 
10- 12_10- 10 moVcm2 

109_10 11 erg/mol 

Dimensionless Hamaker 
constant 

A=AHlhopv2 10-5_10- 2 

Dimensionless surface tension 
Dimensionless Marangoni 
number 

T= (Tohol P v2 

M = (-rial ar) r oho/ P v2 

Dimensionless Schmidt 
number 

thus more stable as the domain of possible unstable wave 
numbers shrinks. In parallel, W max decreases, i.e., the rupture 
time of the film will be longer which is in agreement with the 
fact that films with a higher interfacial tension are more 
stable. Increasing van der Waals interaction (A increasing) 
will have exactly the opposite influence because it increases 
kc and wmax as can be intuitively expected. 

The linear stability analysis of a free film provides thus 
qualitative understanding of the influence of the physical pa­
rameters of the problem on both the domain of unstable 
wave numbers and the rupture time. The linear analysis can­
not, however, give any information on the dynamics of the 
rupture which depends strongly on the nonlinear interactions 
of the disturbances. This behavior can only be understood by 
solving the nonlinear model of the free film. 

IV. NUMERICAL RESULTS 

Equations (33) have been solved numerically using finite 
difference methods.15 Forward differences in space are used 
to obtain the successive derivatives with respect to x up to an 
error of order Ax4 where Ax = 0.2 is the size of the spatial 
mesh. An explicit scheme is applied for the time derivative. 
The difference equations obtained are then solved iteratively. 
Table I summarizes the typical values of the various system 
parameters and an estimate of the corresponding dimension­
less parameters used in the paper. The two extreme values 
for the equilibrium surfactants concentration 1'0 correspond, 
respectively, to a gaseous and a condensed monolayer. 

The cutoff wave number kc gives the smallest unstable 
wavelength Ac == 27T/ kc such that all wavelengths greater 
than Ac are unstable. We choose parameter values in Table I 
which are consistent with the orders of magnitude of the 
development. IfM=O.025,A=O.05, T=3, andSc =10 as 
in most of our simulations, then Ac = 19.9. To follow the 
dynamics of the film we draw h(x,t), f(x,t) and u(x,t) at 
several successive times separated by At, starting from the 
initial condition at time to till the final rupture at time t f' We 
define the rupture time of the film as the time for which h S;; 0 
at any lateral location of the system. Let us remark that when 

3260 Phys. Fluids, Vol. 6, No. 10, October 1994 

h vanishes, the nonlinear model loses its applicability as the 
evolution equation for the tangential velocity (33c) becomes 
singular and consequently the numerical integration fails 
down. Hence, the final curve tf of h(x,t) and f(x,t) may 
show a spiky short-scale behavior due to the numerical in­
stability. In that regard, the final curve tf of u(x,t) will not 
be drawn when looking at the tangential velocity of the fluid 
because, at rupture time, u tends to infinity at the locations of 
rupture. We will indicate the last time preceding rupture at 
which u(x,t) is drawn. More sophisticated numerical 
methods26 using variable time steps and nonuniform mesh 
sizes in space could be used in the vicinity of the rupture 
point in order to focus on the dynamics of the rupture itself. 
However, we have checked in our simulations that, as long 
as h(x,t»O, the integral of h(x,t) over the length of the 
system is conserved throughout the evolution. This criterion 
indicates that our model describes the dynamics of the sys­
tem until fairly close to the rupture and that the definition of 
the rupture time we introduced is accurate enough to study 
the influence of insoluble surfactants on rupture times. 

Two types of boundary conditions may be considered 
according to the physical situation of interest. Periodical 
boundary conditions (PBe) can be used to understand the 
behavior of an ideal infinite film corresponding to the more 
realistic case of a film of length L much greater than the 
thickness h. PBe apply also for instance to the case of a soap 
bubble the radius of which is large enough to neglect curva­
ture effects. On the other hand, fixed boundary conditions 
(FBe) allow to study films of finite length, as obtained ex­
perimentally in engineering devices.5 Moreover, FBe are im­
mediately relevant if we want to compare the behavior of a 
free film with that of a film on a solid substrate (see Sec. V). 

For PBe, three different dynamical regimes can be dis­
tinguished. 

(i) If the wavelength of the initial disturbance Ai and a 

fortiori the length of the film L are both greater than Ac ' the 
film is unstable and will rupture simultaneously at all the 
locations of the minima of the perturbation (Fig. 3). The 
nonlinear coupling between h, rand u induces a flow of the 
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FIG. 3. Rupture of a free tilm with PBC. A~0.05, T=3, M=O.025, 
S ~ = 10, and, hence, Ar = 19.9. The length L of the system equals 72. We 
impose as initial condition a slight periodic disturbance on the stationary 
value of the thickness h while the other variables are set to their stationary 
states: (h,r,u)=(O.5+0.05 cos[kmxl,l,O) with m=6 (Ai=24). The initial 
disturbance (curve toJ is amplified leading to the rupture of the film when h 
reaches zero. The curves plotted show successive situations distant in time 
by an interval dt = 10 while the curve indexed by t r shows the situation at 
the rupture time"" 121. The spiky short-scale behavior of hand r at the 
rupture time is due to a numerical instability. Rupture occurs simultaneously 
at the location of each minimum of the perturbation. The curves u(x,t) 
show the evolution of the tangential velocity of the fluid in the film. Starting 
from a film at rest (u=O anywhere at to), the instability occurs because the 
fluid flows away from the location of the minima of the thickness. The plot 
of f(x,t), I.e., of the concentration of the surfactants show that the surfac­
tants concentrate in the region between the zones of rupture. 

fluid in the film such that the fluid flows away from the 
minima of thickness h toward its maxima. Positive (negative) 
II corresponds by convention to fluid flowing to the right 
(left). In addition, the surfactants follow the movement ofthe 
fluid to escape the regions where the thickness of the film 
shrinks. Ultimately, the thickness h reaches zero at all the 
minima where the concentration of surfactants also tends to­
ward zero. Rupture of the film occurs thus in the case of PBC 
via flow of the fluid outside all the regions of initially low 
thickness. We have checked numerically the influence of the 
various parameters M, T, and A on the ruptlftectime. The 
predictions of the linear stability analysis are fully recovered, 
i.e., the film will rupture more slowly if one either adds 
surfactants (M increasing) or chooses a fluid with higher in­
terfacial tension T or lower van der Waals attraction A (see 
Table II). 
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TABLE II. Rupture times for a free film with PBC and different values of 
the parameters. L=72, Sc=10, and the initial condition is as in Fig. 3. 

A T M Rupture time 

0.05 3 0 97 
0.05 3 0.Q25 121 
0.05 3 0.050 163 
0.05 3 0.075 228 
0.05 3 0.100 316 

0.050 3 0.025 121 
0.075 3 0.025 53 
0.100 3 0.025 36 
0.125 3 0.025 28 

0.05 0.5 0.025 55 
0.05 1 0.025 61 
0.05 2 0.025 80 
0.05 3 0.025 121 

As an example, see, also, Fig. 4 where h min , the mini­
mum of thickness on the domain (0 ,L ), is plotted as a func­
tion of time for different values of T. Decreasing T clearly 
shortens the rupture time of the film. Moreover, these curves 
show that rupture happens very abruptly after a certain in­
duction period, emphasizing the role of nonlinearities of the 
problem in accelerating the rupture time as compared to the 
rupture time predicted by a linear analysis. Figure 4 is in 
good qualitative agreement with the behavior predicted by an 
analytical nonlinear theory20 for a system without any sur­
factants near the bifurcation point T= Tc. 

It is also interesting to follow the evolution of the pres­
sure profile Po(x,t) given by expression (28). Using Eqs. 
(26)-(28) and rewriting the pressure in term of the original 
variables, we visualize in Fig. 5 the evolution of the pressure 
p(x,t) for the same dynamical regime as in Fig. 3. Positive 
pressure p corresponds to regions of maximum thickness (the 
terms - 2B x and - Thxx are positive), while negative pres­
sure corresponds to regions of minimum thickness. The pres­
sure in this problem is an adiabatic variable, which is elimi­
nated in the final set (33) of NEE. The fluid motion and 
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---T=2 \ 
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·····T .. 1 I 
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time 

FIG. 4. Minimum of thickness hmin on the domain [O,L 1 plotted as a func­
tion of time for different values of T: 0.5; 1; 2; 3 with A =0.05; M=0.025 
and S c = lOon a system L = 72 using initial condition of Fig. 3. 
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FIG. 5. Variation of the pressure p(x,t)= -2ux- Thxx at successive times 
using PBC and the same initial conditions and parameters A, T, and M, as in 
Fig. 3. The pressure is positive in regions of maximum thickness while the 
pressure is negative in regions of minimum thickness. 

surface deformation are essentially due to the interplay be­
tween van der Waals, capilIary and Marangoni forces. 

(ii) For fixed values of parameters, the behavior of the 
film depends also on the length L of the film corresponding 
to the maximum periodicity allowed and on the wavelength 
of the initial disturbance Ai' If £> Ac but A;< Ac ' the initial 
wavelength is stable. In that case, a change of wavelength 
toward a longer and unstable one occurs, followed then by 
the rupture of the film (Fig. 6). The fluid and the surfadants 
again leave the region where the thickness of the film shrinks 
leading finally to rupture. 

(iii) Last, if L < Ac, the film is stable as any disturbance 
that might appear in the system has a stable wavelength 
(Ai<Ac a fortiori). The initial perturbance disappears as the 
surfactants transitorily fill the depletion zones of h while the 
fluid moves from the regions of maximum thickriess toward 
those of minimum thickness. The dynamics of this stabiliz­
ing procedure is thus exactly opposite to the one of rupture. 

Three different dynamics (immediate rupture, rupture af­
ter a change of wavelength or stability) may thus be ob­
served for a same set of parameters depending on the length 
of the system and the wavelength of the initial disturbance. 
These size related effects captured by numerical integration 
of the model and easily understood in terms of the linear 
stability analysis are reminiscent of the experimental obser­
vation that, in addition to curvature effects, small soap 
bubbles are genuinely more stable than bigger ones. 

The effects of the respective sizes of L, Ai' and Ac are 
recovered in a free film with FBC. In a long system such that 
At>Ac , the behavior will nevertheless differ depending 
whether the initial condition will be symmetrical or not with 
respect to the middle L/2 of the film. In a symmetrical sys­
tem, the film will rupture at the two minima adjacent to the 
edges (Fig. 7) whereas in an asymmetrical system, rupture 
occurs only near one edge (Fig. 8). In both cases, all param­
eters were exactly the same as in the situation of Fig. 3 for 
which PBC had been imposed. We see thus clearly that for 
FBC, the edges favor a rupture of the film in their vicinity 
contrary to PBC where the film breaks at each location of a 
minimum of the initial disturbance. The influence on the rup-
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FIG. 6. Rupture of a free film with PBC when the wavelength of the initial 
disturbance it; is smaller than the critical wavelength itr but L > itc . All the 
parameters are the same as in Fig. 3 except L = 42, m = 6 (hence it;= 14), 
and II.t=20. A change of wavelength toward a larger and 'unstable one 
occurs, leading finally to the rupture at t r= 407. 

ture time of the different physical parameters M, T, and A 
goes the same way for both cases. 

V. COMPARISON WITH FILMS ON A SOLID 
SUBSTRATE 

For the case of a film on a solid substrate, the basic 
equations (1)-(11) are the same as for the case of a free film 
but only for the Upper free surface h+(x,t)=h(i,t). It is 
now more natural to take the lower rigid surface at z= O. The 
geometry of the film is drawn on Fig. 19. Since the lower 
surface h(x,t) is rigid, Eq. (13) is replaced by a no-slip 
condition: 

u= v = 0 at the lower surface z = O. (39) 

This change in the boundary conditions profoundly affects 
the velocity field in the film. Indeed, for the same scaling 
(14) of the dependent and independent'variables in a small 
parameter € and the same expansion .(24) we have now at 
leading order" 

- (P6 + W)x+ Uozz=O, 

Priz=O, 

Uox+Voz=O, 

(40a) 

(40b) 

(40c) 
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FIG. 7. Rupture of a free film with FBC. All parameters are the same as in 
Fig. 3 except L = 84 and the initial condition is assigned to 
(h,r,u)=(O.5+0.05sin[kmx],1,0) with m=7 (>..;=24). The FBC favor 
rupture of the film near its edges and as the initial condition is symmetric 
with regard to the middle of the system, rupture occurs simultaneously at 
both edge~ at time t[=110. 

with W=Alh 3, and A =0(1) defined as previously by (4b) 
and p~ = E

Z P. The velocity variables and derivatives are unit 
order as E- >0. The choice of the scaling for the parameter A 
is dictated by the new condition (39) which allows one to 
determine directly the velocity field at zero order. This dif­
ferent scaling is justified by the fact that the gradient of pres­
sure and the van der Waals forces are playing here a role at 
leading order allowing to solve completely the problem at 
this order. On the other hand, in the case of a free film, Eq. 
(31a) shows that the gradient of pressure and the van der 
Waals forces appear only at order one. Their consideration at 
order zero would lead to an inconsistency in the velocity 
field. 

The boundary conditions read then at leading order: 

-p;=T*Hxx at Z=H, 

Uoz=-Mfx at Z=H, 

Uo=Vo=O at Z=O, 

H".+HxUo=Vo at Z=H, 

f'T+(fuoh=fxxISc at Z=H, 
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FIG. 8. Rupture of a free film with FBC and the same parameters as in Fig. 
6 but L = 72 and m = 6. The film is thus asymmetrical with regard to the 
middle of the system, and rupture occurs only near one edge at t f= 110. 

where we assume T*=E2T=0(1) with the dimensionless 
parameter T defined as previously [Eq. (7)]. On the other 
hand, the Marangoni number M defined as previously [Eq. 
(8)] appears now at leading order M=O(l). 

Two remarks are in order here. First, this set of equations 
is similar to the set of equations used by Jensen and 
Grotberg,17 who have taken directly the lubrication approxi­
mation for the flow inside the film. Second, the Marangoni 
effects due to the spatial gradients of the component a{f) 
arise here at the leading order. The gradient in f along the 
free surface induces a shear stress at the surface [see Eq. 
(40e)] and thus a Marangoni flow in the liquid film below 

l gas 

x 

FIG. 9. Sketch of a film on a solid substrate. The free surface is described 
by the equation z= h(x,t). The dashed line indicates its mean position at 
h=1. 
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and vice versa. It is thus expected that the presence of sur­
factants will influence more specifically the film dynamics 
than in the case of a free film. 

A straightforward integration of Eqs. (40a) and (40b) 
using boundary conditions (40d)-(40f) leads to the following 
velocity field: 

Uo=<Px( -Z2/2+ZH) - Mf xZ, 

with 

ip(x,t) = -A/H3+T*Hxx. 

(41a) 

(41b) 

(41c) 

It is easily seen that the tangential velocity U 0 is proportional 
to M. Furthermore, it varies along the normal axis Z and is 
zero at Z = O. The velocity profile for the tangential velocity 
is a superposition of a linear term in Z, proportional to the 
competition between the force due to the gradient of poten­
tial ipx and the Marangoni force, and a parabolic term in Z2, 
proportional to the gradient of potential. This contrast with 
the expression of the tangential velocity for the free film 
case, which is independent of the Z axis. The velocity field is 
completely determined here at zero order due to the condi­
tion (40f). 

Inserting these expressions in the kinematic condition 
(40g) and the surfactants conservation relation (40h), we get 

H 1'= (Mf xH212 - ip xH3/3)x, (42a) 

f r=fxx/Sc+(Mf xfH- fipxH2/2)x. (42b) 

We end thus with a set of two NEE governing the position of 
the free surface and the surfactants concentration, instead of 
three NEE in the case of a free film. Rewriting these equa­
tions in terms of the original variables leads to 

ht = (Mfxh2/2- ¢xh3/3 )x, 

f t=f xx/Sc+(Mfxfh- f cPxh2/2)x, 

with 

(43 a) 

(43b) 

(43c) 

A linear stability analysis of the homogeneous steady state 
(1,1) of model (43) with fixed boundary conditions leads to 
the following dispersion relation: 

w2+w(~2)[k2T-3A+3(;c +M)] 

+ (k4/3)(;c + ~)(k2T-3A)=O. 
The critical wave number kc for which w=O reads 

k~=3A/T. 

(44) 

(45) 

This critical wave number is similar to the expression found 
by Ruckenstein and Jain2 for a film on a solid support and by 
Jensen and Grotberg17 for a liquid film with spreading of 
insoluble surfactants. It shows that, at leading order, the 
range of unstable wavelengths remains unchanged if the Ma­
rangoni number is increased. Besides, when comparing the 
square of the critical wave number for the free film [Eq. (38)] 
and for the film on solid substrate [Eq. (45)], we observe that 
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FIG. 10. Rupture of a film on a solid substrate with FBC when Ai and 
L>Ac • The parameters are L=50, m=7 (so that Aj=14.2), and A=5, 
T=30 (hence Ac=8.9), M=O.l, Sc= 10. Periodic initial conditions are 
imposed for the thickness h, while the initial concentration is set to its 
stationary value: (h,r) =( 1 +0.1 sinr kmx J ,1). For symmetrical initial condi­
tions, the film ruptures at the two minima adjacent to the edges at time 
t f = 1.6. 

it is larger by a factor of 2 in the case of a free film, leading 
to a smaller critical wavelength for a free film than for a film 
on a solid substrate. 

Equations (43) have been solved numerically using also 
finite difference methods but with an implicit scheme. 19 FBC 
conditions will be considered here, and we recall some re­
sults in order to compare with the corresponding situation for 
FBC for the free film. The chosen parameters are different 
now and correspond to the order of magnitude used to obtain 
the system of two NEE, i.e., we take A =0(1), T=0(l/£2). 
This clearly implies that the order of magnitude of the van 
der Waals forces must be higher for the film on solid sub­
strate than for the free film in order to induce rupture insta­
bility. 

The same regimes as in the case of the free film are 
recovered, i.e., three different behaviors can be distinguished 
depending on the relative size of L, Ai' and At:. As an ex­
ample, see Fig. 10. The dynamics of the film on a solid 
support being described by only two variables, the mecha­
nism for the rupture stabilized by surfactants can be under­
stood more easily than for free films and is the following: for 
an initial periodic disturbance of the film's thickness with a 
uniform distribution of surfactants, the potential ¢(x,t) be­
gins to rise beneath the depressions and falls at the elevations 
[see Eq. (42)]. So flows are generated in the film away from 
the depressions towards elevations, as shown by the value of 
the tangential velocity [see Eq. (41a)]. This flow produces 
gradients of surface tension and hence shear stresses that 
oppose the flow, following the tangential condition (40e). 
The concentration of surfactants is then high at the elevations 
(low surface tension) and nearly zero at the depressions 
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(higher surface tension). In Fig. 10, we have taken a small 
value of the Marangoni number (M == 0.1) in order to com­
pare with the case of a free film. For M == I, the tangential 
velocity induces a shear stress sufficiently large to accumu­
late rapidly the surfactants near the edges. 19 

Despite the similarity of the dynamical behavior for the 
case of film on solid substrate and the case of free film at 
small Marangoni number, there appears significant differ­
ences between the order of magnitude of the rupture times. 
Indeed in the case of films on a solid substrate, the dimen­
sionless rupture times are of the order one, which is about 
two orders of magnitude lower than in the case of a free film. 
This is explained by the fact that the van der Waals forces 
needed to induce the rupture are larger in the case of a film 
on a substrate. 

VI. DISCUSSION 

The main purpose of this paper was to study the role of 
insoluble surfactants on the stability of free-liquid films, tak­
ing into account the influence of van der Waals attraction and 
surface tension. We have shown that the nonlinear dynamics 
of such a free film with insoluble surfactants can be de­
scribed by a simple model of three NEE for the evolution of 
the film thickness, the surfactants concentration and the tan­
gential velocity of the fluid in the film. This fact was not 
clearly recognized in two preliminary studies devoted to the 
same problem by Prevost and Gallez23 and by Sharma and 
Ruckenstein.27 The previous model of Erneux and Davies20 

of two NEE for the evolution of a free film devoided of 
surfactants is naturally recovered as a special case. 

A preliminary linear analysis of the model allows us to 
obtain the critical wave number of the problem, which de­
pends on the van der Waals attraction and surface tension. 
This value corresponds to a steady bifurcation point, inde­
pendent of the Marangoni forces. However, the physical role 
of the surfactant appears already: increasing the Marangoni 
number decreases the growth rate of the perturbation, and 
increases thus the time of rupture of the film. 

Numerical integration of the NEE shows that for both 
periodic and fixed boundary conditions, three different dy­
namical regimes related to size effects can be observed: rup­
ture instability, rupture after change of wavelength and sta­
bility. As concerns the rupture instability, we have carried out 
a parametric study for the role of van der Waals forces, sur­
face tension and Marangoni forces, which confirms the re­
sults of the linear analysis. It has been shown that the sur­
factant monolayer has a stabilizing effect on the growth of 
the instability. Moreover, the flow dynamics in a rupture case 
indicates that the surfactants will flow away from the depres­
sions of the thickness of the film to concentrate at its eleva­
tions. The boundary conditions influence also the dynamics 
in the sense that in large systems, PBC allow the film to 
rupture at all the minima while FBC distinguish between 
symmetrical or asymmetrical initial conditions, and the rup­
ture is favored in the vicinity of the edges. 

We have compared these results to those previously ob­
tained for the stability of liquid films on solid substrate. 19 It 
was clearly shown that the velocity field is quite different in 
the two cases, due to the different boundary conditions im-
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posed on the two surfaces. In the case of a free film, the SQ 
mode condition imposes zero normal velocity at the center of 
the film and no variation along z axis of the tangential ve­
locity. In the case of a film on a solid substrate, the no-slip 
condition at the rigid boundary is simply zero normal and 
tangential velocity. This difference leads to another simple 
model for the dynamics of a film on a solid substrate, involv­
ing only two NEE for the evolution of the film thickness and 
surfactants concentration. This result will clearly reject the 
assumption often stated,13.26 that the dynamics of a free film 
can be approximated by the dynamics of film of half thick­
ness on a solid substrate. 

Some perspectives remain open in the framework of this 
paper. First, it would be interesting to describe the traveling 
wave solutions which appear naturally as solutions of the 
linear set of equations for a steady-state with nonzero lateral 
velocity. Second, an investigation of the nonlinear problem 
in the vicinity of the steady bifurcation point in the presence 
of surfactants would shed new light on the behavior of the 
film near the rupture and allow comparison with the present 
numerical results. Third, it would be possible to extend the 
model in both geometries to interfaces with more general 
rheological behavior. In fact, if the interface possess surface 
viscosity, an additional term will appear in the constitutive 
equation for the surface. As already pointed out by Erneux 
and Davis,2o the result of Williams and Davisll for a film 
without surfactants would appear if f.Lsl f.L-+O while the Pre­
vost and Gallez14 result for tangential immobile surface 
would emerge for f.Lsl f.L-+oo. Eventually, different source 
terms could be taken into account for the change of surfac­
tants concentration (surface chemical reactions with fixed or 
mobile sites, adsorption-desorption of soluble surfactants ... ). 
In that sense, the present paper should provide a useful basis 
to understand the interplay between the reaction-diffusion 
terms and the convective terms in the film dynamics. 
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