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A Backlund transformation for the Boussinesq equation is given in the bilinear form. 
It is shown that the Backlund transformation generates an important class of nonlinear 
evolution equations exhibiting N-soliton solutions. They are a modified Boussinesq equation, 
a higher order water wave equation introduced by Kaup and a coupled equation whose 
N-soliton solution reduces to that of the nonlinear Schrodinger equation with normal dis­
persion. The relation between the Backlund transformation and the inverse scattering 
method is also discussed. 

§ 1. Introduction 

In recent years it has been shown that a broad class of nonlinear evolution 
equations has multi-soliton solutions which describe collisions of pulse-like waves.n 
One of the analytical methods to obtain the solutions is the Backlund transformation 
which has its origin in the study of simultaneous differential equations arising in 
differential geometry.2> Seeger, Donth and Kochendorfer,3> and later, Lamb4> ap­
plied the Backlund transformation to find multi-soliton solutions of the sine Gordon 
equation. Wahlquist and Estabrook5> extended the transformation to the Korteweg­
de Vries equation and obtained a hierarchy of solutions which is a family of 
multi-solitons. After their work the Backlund transformations for several non­
linear equations have been found subsequently.a>-10) It has also been pointed out 
by many authors that the Backlund transformation is closely related to the inverse 
scattering scheme. 5>. a>. 9>-11) 

A new form of Backlund transformation was proposed by one of the authors 
(R.H.). 1~> It is written in terms of the transformed variables and new differential 
operators. An advantage of the form is that the transformation equations are 
linear with respect to each dependent variable. Examining the Backlund trans­
formation, we have found that some new nonlinear evolution equations are gener­
ated from it by suitable transformations of the dependent variables_m-15> The gen­
erated equations have N-soliton solutions under certain conditions. One of the 
results is that a modified Korteweg-de Vries equation is generated from the Back­
lund transformation for the Korteweg-de Vries equation. Another is that the Back­
lund transformation for the Toda equation generates a nonlinear network equation 
which reduces, in the special cases, to the nonlinear self-dual network equation, 
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798 R. Hirota and J. Satsuma 

the equation describing a Volterra system and a discrete Korteweg-de Vries equa­

tion. These results suggest not only close relationship among several already­

known nonlinear evolution equations but also a possibility of extending the class 

of nonlinear equations exhibiting N-soliton solutions. 

In this paper, we consider the following wave equation: 

flu_ flu _ 3 1Yu2 _flu =O 
()t2 ()x2 ()x2 ()x4 ' 

(1·1) 

which was first presented by Boussinesq16> to describe the motions of long waves 

in shallow water (for this reason, we call Eq. (1·1) the Boussinesq equation). 

This equation is also a continuum approximation to equations for one-dimensional 

nonlinear lattices. m An N-soliton solution of Eq. (1·1) has been obtained by the 

dependent variable transformation method. 18> It has also been shown that the in­

verse scattering scheme may be applied to Eq. (1·1) .19>• 20> 

In § 2 we rewrite the Boussinesq equation in bilinear forms through a variable 

transformation. Then we give a Backlund transformation for the resultant equa­

tion. It is shown in § 3 that an important class of nonlinear equations can be 

produced from the Backlund transformation. New variables are introduced for 

this purpose and the Backlund transformation is rewritten to express nonlinear 

evolution equations. They are a modified Boussinesq equation, a higher order 

water wave equation introduced by Kaup and a coupled equation whose N-soliton 

solution reduces to that of the nonlinear Schrodinger equation with normal dis­

persion. It is also shown that the inverse scattering scheme for the Boussinesq 

equation is reproduced from the Backlund transformation. In § 4 we show one­

and two-soliton solutions of the equations generated from the Backlund transforma­

tion using a kind of perturbational technique. Finally in § 5 we show an N-soliton 

solution of the equations. 

§ 2. Backlund transformation for the Boussinesq equation 

In order to find a Backlund transformation for Eq. (1·1), we rewrite Eq. 

(1·1) in a bilinear form with a dependent variable transformation. The bilinear 

form was first used to obtain an N-soliton solution for the Boussinesq equation. 18> 

Let f be defined by 

(2·1) 

Substituting Eq. (2 ·1) into Eq. (1·1) and integrating twice with respect to x, 

we have 

where we impose a boundary condition u=O at [x[=oo. The operators Dt and 

Dx in Eq. (2 · 2) are defined by 
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Nonlinear Evolution Equations 799 

(fj fj)n(fj fj)m 11 
= --- --- at x b t x I 
= ~ ~ I ~ ,;:, I ( ' ) ( ' ) I t~t' • 

ut ut uX uX 1 x~x' 
(2·3) 

These operators are convenient to deal with soliton problems. Some properties 

of them are listed in previous papers.l2l,W, 21l 

We propose a Backlund transformation for Eq. (2 · 2). It is written as 

(Dt +aDx2)f-f' =0, 

(aDtDx+Dx+Dx8)f-j' =0, 

(2·4) 

(2·5) 

where a is a parameter introduced for the following discussion. This Backlund 

transformation relates pairs of solutions of the Boussinesq equation, that is, if f 
is some solution of Eq. (2 · 2), f' defined by Eqs. (2 · 4) and (2 · 5) could be 

another solution of the same equation. We see that the transformation equations 

(2 · 4) and (2 · 5) are linear with respect to f or f'. 

Now we verify that if f is any solution of Eq. (2 · 2), f' defined by Eqs. 

(2·4) and (2·5) satisfies Eq. (2·2). It is easily shown (see Ref. 14)) that the 

following identities hold for the operators Dt and Dx: 

(Dx2f-f)f'f' -ff(Dx2f' f') =2Dx(D:Jlff') ff', 

(Dx"ff)J'f'-JJ(Dx"J' -J') 

=2Dx(Dx8ff') ff' -6Dx(D/ff') · (DJ-f'), 

Dt(Dx2ff') ff'=Dx[(DxDJf') ff' + (DJ-j') · (Dxff')]. 

Making use of Eqs. (2 · 6) and (2 · 7), we have 

P= [ (Dt 2 -D:/-D/)f-!Jf'f'-ff[(D/-D/-D/)f' f'J 

=2{Dt (DJ-j') ff' -Dx(Dxff' +Dx3ff') ff' 

+ 3Dx (D/f-f') · (D:Jlff')}. 

(2·6) 

(2·7) 

(2·8) 

Substituting Eqs. (2 · 4) and (2 · 5) into the above equation and noticing the iden­

tity (2·8), we obtain 

P= -2Dx{(aDt-3Dx2 )f-f'} · (Dxff'), 

which vanishes for a 2 = -3 by virtue of Eq. (2 · 4). Thus we have proved that 

Eqs. (2·4) and (2·5) with a2 = -3 constitute a Backlund transformation for Eq. 

(2·2)' 

§ 3. Equations generated from the Backlund transformation 

The Backlund transformation obtained in § 2 is written in the bilinear forms. 

We have developed a method of finding N-soliton solutions of the equations which 

can be written in bilinear forms.14l Thus it seems quite reasonable to expect that 
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800 R. Ilirota and J. Satsuma 

Eqs. (2 · 4) and (2 · 5) are the bilinear forms of a certain equation and the original 

equation has an N-soliton solution. In fact, several nonlinear equations are gener­

ated from Eqs. (2 · 4) and (2 · 5) by suitable dependent variable transformations. 

As is shown in the following section, Eqs. (2 · 4) and (2 · 5) yield N-soliton solu­

tions for a 2 =- 3 or 1. So we show here that for these values of a, Eqs. (2 · 4) 
and (2 · 5) produce some nonlinear evolution equations depending on the types 

of dependent variable transformations. It is to be noted that Eqs. (2 · 4) and (2 · 5) 
are not the Backlund transformation for the Boussinesq equation in the case of 

a 2 =1. 
First ~vve introduce the following new variables: 

¢=log(!' /f), (3·1) 

p=log(ff'). (3·2) 

All terms of Eqs. (2 · 4) and (2 · 5) can be written by these ,-ariables.w Then 

Eqs. (2 · 4) and (2 · 5) reduce to 6l 

¢,-a[Pxx+ (¢x) 2] =0, (3·3) 

(3 ·4) 

where suffixes denote partial differentiations. 

3-1 A modified Boussinesq equation 

For a=,.,j':fi, eliminating pin Eqs. (3·3) and (3·4) and introducing a new 

Yariable v by v = i¢, we have 

(3. 5) 

Equation (3 · 5) may be considered as a rnodified Boussinesq equation ~which cor­

responds to the modified Korteweg-de Vries equation generated from the Backlund 

transformation for the Korteweg-de Vries equation.Hl, 15) 

3-2 1'v1iura' s transformation 

We show that one of the Backlund transformations, Eq. (2 · 4), reduces to 

a nonlinear transformation between Eqs. (3 · 5) and (1·1), which corresponds to 

the Miura transformation which transforms a solution of the modified Korteweg-cle 

Vries equation to that of the Korteweg-cle Vries equation.") 

vVe have identities (see Ref. 14)) 

(D/f' .f) /f'f =[log (f'f)J.rx + {[log (f' /f) ]x} 2 

= 2 (log f) xr +[log (f' /f) Jxx + {[log (J' /f)Jr} 2 , 

(D,f' .J) /f'f = [log(f' /f)],. 

(3. 6) 

(3 ·7) 

Substituting Eqs. (3 · 6) and (3 · 7) into Eq. (2 · 4) and usmg the relations 

u= (2logf)rx and v=i log(f' /f), we obtain 

' I 2 ' -1 u=zvo-x -,v, -za v,, (3. 8) 
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Nonlinear Evolution Equations 801 

which is a kind of Miura transformation. 
For a= iyl'!:, we find that u defined by Eq. (3 · 8) satisfies the Boussinesq 

equation if v satisfies the modified Boussinesq equation (3 · 5). In fact, substitution 

of Eq. (3 · 8) into Eq. (1·1) gives 

- (. a2 - . -1 a _j_ 2 a ) ( - -6 2 _j_ 2 ;-3 ' - ) - l- za - I -Vx Vtt Vxx Vx Vxx I v Vx.z.·'tt Vxx."CX 0 ax2 at ax 
3-3 1-Iigher order water wave equation 

For a= 1, Eqs. (3 · 3) and (3 · 4) are rewritten as 

by the transformations 

Pxx---'>- or/2 , 

(3 ·9) 

(3 ·10) 

(3 ·11) 

(3 ·12) 

A set of Eqs. (3 ·10) and (3 ·11) is a higher order water wave equation introduced 

by Kaup. 23> He found that this equation is derivable from the shallow water 
wave equation and solvable exactly by the inverse scattering method. 

3-4 Inverse scattering scheme for the Boussinesq equation 

Another choice for the new variables IS 

<f;=f' /!, 

w=2(logf).". 

By the use of these variables, Eqs. (2 · 4) and (2 · 5) are expressed as 

(3 ·13) 

(3 ·14) 

(3 ·15) 

(3 ·16) 

For a=iyl'!:, Eqs. (3·15) and (3·16) reduce to the 
for the Boussinesq equation discovered by Zakharov.19) 

operators L and r1 as 

mverse scattering scheme 

In fact, if \Ve choose the 

a3 ( a 1 a ) a - • L=4-+3 Wx---r-Wx +--J3zw,, ax3 ax ax ax (3 ·17) 

(3 ·18) 
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802 R. Hirota and J. Satsuma 

Eqs. (3 ·16) and (3 ·15) with a= ivcr are written as 

respectively, and the equation 

Lt=AL-LA 

reduces to the Boussinesq equation (1·1) noticing that u = W:JJ' 

(3 ·19) 

(3. 20) 

(3. 21) 

It is noted that in our case Eq. (3 ·17) contains no parameters and so it does 
not form an eigenvalue problem. 

3~5 Relation to nonlinear Schrodinger equation with normal dispersion 

Next we consider the case a=l. Then we obtain from Eqs. (3·15) and 
(3 ·16) 

(3 ·22) 

(3 ·23) 

where the independent variables are transformed as t--'>it and x--'>ix. Equations 
(3 · 22) and (3 · 23) are a coupled equation whose N-soliton solution reduces to 
that of the nonlinear Schrodinger equation with normal dispersion,21l' 241 

When we impose a conjecture 

1-2iwx=l</ll 2 , 

Eq. (3 · 22) reduces to Eq. (3 · 24), and Eq. (3 · 23) to 

i(I</JI 2)t- (</Jxx</J*-</1</J:':x) =0' 

(3 ·24) 

(3. 25) 

which are also an alternative expression of Eq. (3 · 24). Here the asterisk denotes 
complex conjugate. The conjecture (3 · 25) is confirmed by considering the bilinear 
form of Eq. (3 · 24). Equation (3 · 24) is transformed into a couple of bilinear 
equations 

(iDt-Dx")f' f=O, 

P-2Dx2ff=J'J'*, 

(3. 26) 

(3 ·27) 

through a variable transformation, f = f' / f with real f, 21l The former equation 
is equivalent to Eq. (3 · 22) and the latter to Eq. (3 · 25). Thus, considering the 
procedure to obtain N-soliton solutions, we see that a coupled equation (3 · 22) 
and (3 · 23) and Eq. (3 · 24) have the same N-soliton solution as that for <f!. 

§ 4. One· and two-soliton solutions 

In the preceding section, we have shown that several nonlinear evolution 
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Nonlinear Evolution Equations 803 

equations are generated from the Backlund transformation for the Boussinesq equa­

tion. Reversing the procedure generating those equations, we find that they can 

be reduced to the bilinear forms, Eqs. (2 · 4) and (2 · 5), by suitable variable 

transformations. Here we obtain one- and two-soliton solutions of the generated 

equations using a kind of· perturbational technique on Eqs. (2 · 4) and (2 · 5). 

We expand f and f' in Eqs. (2 · 4) and (2 · 5) as power series in a parameter f, 

f=1+ff1+f".f2+···, } 

f' = 1 + Ef/ + E".f/ + · · ·. 
(4·1) 

Substituting Eq. (4·1) into Eqs. (2·4) and (2·5) and equating the terms with 

the same powers in f, we have in the order of f 

Cf1-f/), +a Cf1 + f/)xx = 0 , } 

a (fl + f/)xt + (fl-f/)x + (fl-f/)xxx = 0 ' 
(4·2) 

and, m the order of f 2, 

and so on. Equation ( 4 · 2) is linear and can be easily solved. Equations in 

the higher order of f are linear equations with the known inhomogeneous terms. 

We can find particular solutions solving these equations successively. 

The simplest nontrivial solution is obtained by choosing the following set of 

starting solution of Eq. ( 4 · 2): 

f1=exp "'fj, 

f/ = exp('lJ +8), 

1J=Px-S2t+1J0 , 

(4·4) 

(4·5) 

(4· 6) 

where P and 'lj0 are arbitrary constants. Substitution of Eqs. ( 4 · 4) "--' ( 4 · 6) into 

Eq. ( 4 · 2) gives the dispersion relation, S2 2 = P (1 + P 2), and the phase factor, 

exp 8 = (Q -aP2 ) / (Q +aP2). For this starting solution all higher order terms in Eq. 

(4·1) can be taken to be zero. Thus we have a solution for Eqs. (2·4) and 

(2·5), 

f=1+exp 1J, 

f' = 1 + exp ( 1J + 8) , 

(4·7) 

(4·8) 

which gives one-soliton solution of the equations generated from Eqs. (2 · 4) and 

(2 · 5). We note that this solution satisfies Eqs. (2 · 4) and (2 · 5) for arbitrary a. 

In order to obtain a two-soliton solution, we start with the following solution 

of Eq. (4·2): 

j;_ = exp 'lj1 + exp 'l/2 , (4·9) 
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804 R. Hirota and J. Satsuma 

where 

SJ;'=P/(1 +P;"), 

exp 6; = (S2; -aP/) / (Qi +aP/), 

(4·10) 

(4·11) 

(4·12) 

( 4·13) 

with P; and 7Ji0 being arbitrary constants. Substituting Eqs. ( 4 · 9) and ( 4 ·10) 
into the right-hand side of Eq. ( 4 · 3) and solving the resulting equation, we find 
the terms in the order o£ E2 in Eq. ( 4 ·1). They are given by 

.h = exp (r;1 + 'fJ2 + A1z), 

.h' = exp ('th + 'fJz + 61 + 62 + A12), 

exp A 12 = (P1S22- PzS21?~a2 ~_/_!{~!1- Pzi_ 
(P1S22 -PzS21Y -a2P/P/(Pl +PzY' 

(4 ·14) 

( 4 ·15) 

(4·16a) 

exp A.12 = (P1 -P2) [Pz{(a2~:I)IJ +_2~} J2d:P_1_ {-:= (~-::-1)£z -2_!1LS2zl. (4 . 1Gb) 
(P1 +P2) [Pz{(a2 -1)P~-2Pz} S21 +P1 { (a2 -1)Pz-2Pl} SJz] 

Equations ( 4 ·16a) and ( 4 ·16b) are compatible only for a 2 = -3 or 1. All terms 
higher than E2 in Eq. ( 4 ·1) can be taken to be zero for this solution and we 
obtain a solution associated with a two-soliton solution 

f=1+exp 'fJ1 +exp rJ2+exp(r;1 +r;z+A12), 

f' = 1 + exp (r;1 + 61) + exp ('fJz + 62) + exp (r;1 + 'fJz + 01 +82 + A12). 

§ 5. N-soliton solution 

(4·17) 

( 4 ·18) 

The form of two-soliton solutions ( 4 ·17) and ( 4 ·18) suggests to us a form 
of possible N-soliton solution. Here we show a priori a solution associated with 
the .iV-soliton solution and prove, by mathematical induction, that it satisfies Eqs. 
(2 · 4) and (2 · 5). We shall show in the following that the N-soliton solution, 
as \vell as the two-soliton solution, satisfies Eqs. (2 · 4) and (2 · 5) only when 
a 2 = -3 or 1. 

The solution is expressed as 

(N) N 

f = :E exp [~ A·ij,!l;/lrl-~ /1;1];], 
.u=O,l i<j i=l 

(N) N 

f' = :E exp[:E Aijfi;Prl- I.; p;(!];+ 6i)], 
J1=0, 1 i<j i=l 

\Yhere 

(5 ·1) 

(5 ·2) 

(5·3) 

(5·4) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/57/3/797/1941155 by guest on 20 August 2022



Nonlinear Evolution Equations 

exp 0; = (Q; -aP/) / (Q; +aP/), 

exp A .. = (PJ2r~PjS2iY-a2P/P/(P;-PjY 
' 1 (P;!Jj- PjS2;)2 - a2P/P/ (P; + PjY 

805 

(5·5) 

(5·6) 

Here P; and r;;0 are constants, L:;p~o. 1 is the summation over all possible combinations 
of /).1 = 0, 1, fJ2 = 0, 1, · · ·, /J.H = 0, 1, and L:;i~j is the summation over all possible 
pairs chosen from N elements. 

Substituting Eqs. (5 ·1) and (5 · 2) into Eq. (2 · 4), we obtain 
N N 

I; I; [-L;(,u.;-V;)Q;+a{L;(,u.;-v;)PY] 
,a=O,l v=O,l i=l i=l 

~ N N 
X exp [I; A;j (f!i/J.j + viv j) +I; (!J.i + V;) r;; +I:; viOi] = 0 . (5·7) 

i>j i=l i=l 

Let the coefficient of the factor exp (I;~~~ r;; + L::"~nt-1 2r;;) in Eq. (5 · 7) be D 1 (1, 
2, ···, n; n+1, n+2, ···, m). Then we have 

n n 
D1= I; I; cond(,u., v) [-I; (pi-V;)S2;+a{L; (,u.;-V;)Pi}2] 

tt=O, 1 li=U, 1 i=l i=l 

m (N) 

x exp [I; viOi +I; A.;j (U.i/J.j + V;V j)], (5·8) 
i=l i<j 

where cond (/J., v) implies that the summation over 11 and v should be performed 
under the conditions 

tt;=V;=1 for 

i = 1, 2, , n, l 
i=n+1,n+2, ···,m, 

i = m + 1, m + 2, · · ·, N. fl;=V;=O for 

Substituting Eqs. (5 · 4) "'""'(5 · 6) into Eq. (5 · 8) and introducing G; = fJ.;- li;, "\Ve find 

where 

D 1 (1, 2, ···, n; n+1, n+2, ···, m) =consti\(P~> P 2 , ···, Pn), 

(n) 

X II [- (f;V;-fjVj) 2 +a2 (G;P;-GjPjYJ, i<j 

(5·9) 

(5 ·10) 

where vi= vi +-Pl" and IIt2j indicates the product of all possible combinations of 
the n elements. Thus, Eqs. (5 ·1) and (5 · 2) would be a solution of Eq. (2 · 4) 
if the following identity holds: 

(5·11) 

Similarly we can show that Eqs. (5 ·1) and (5 · 2) would be a solution of Eq. 
(2·5) if 
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806 R. Hirota and J. Satsuma 

n n n 
= 2:.: (2..,; IJ;p;) [-a 2..,; f;IJ;P;v;+1+ (2..,; IJ;P;)2] 

6= ±1 i=l i=l i=l 

n (n) xrr (f;V;+aiJ;P;) II [- (f;V;-fjvJ2 +a2 (1J;P;-IJjPJ2] (5·12) 
i=l i<i 

holds for n=1, 2, ···, N. 
The identities (5 ·11) and (5 ·12) can be proved by mathematical induction 

used in the previous papers (they are cited in Ref. 14)). D 1 and D 2 are symmetric 
and even functions of Pr. P 2 , ···, Pn and hence, if we consider D1 and D2 to be 
functions of f 1Vr, f 2V 2 , ···, fnVm they become polynomials of variables 0r. 02 , ···, 0 11 

where 0; = fiVi. Di for j = 1, 2 has the following properties: 
(i) Di are symmetric polynomials of 01 , 02 , ···, 0n, 

(5 ·13) 

(5 ·14) 

The identities (5 ·11) and (5 ·12) are easily verified for n = 1. It is also shown 
that the identities hold for n=2 under the condition a2 = -3 or 1. Moreover, 
by a tedious but straightforward calculation, we can prove that the identity (5 ·12) 
holds for n=3 under the same value of a for n=2. Now we assume that the 
identities hold for n -1 and n- 2. Then, relying on properties (i), (ii) and (iii), 
we see that D1 and D2 can be factored by a polynomial 

of degree n (n -1) + 2n. On the other hand, we find that D1 Is a polynomial 
of 0r. 0 2 , ···, 0n of degree n(n-1) +n+2 and D2 of degree n(n-1) +n+3 at 
most. Hence D 1 and D2 must vanish for n. Thus we have proved that Eqs. 
(5·1) and (5·2) satisfy Eqs. (2·4) and (2·5) under the condition a 2 = -3 or 1. 
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