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Abstract: 

Stochastic inflation can be viewed as a sequence of two step processes. In the first step a 
stochastic impulse from short distance quantum fluctuations acts on long waves - the interaction. 
III the secoud step the long waves evolve seti-classically -- the propagation. Both steps mnst bc 
developed to address whether fluctuations for cosmic structure formation may be non-Gau&xn. 
We describe a formalism for folbwinq tbe nonlinear propagation uf lo,ng wavelength metric and 
scalar field fluctuations. We perform an expansion in spatial gradi2nrs of the ADM equations 
and we retain only terms up to first order. At each point the fields obey evolution equations 
like those in a homogeneous Universe, but now described by a local scale factor en and Hubble 
expansion rate H. IIowever. the different points are joined together through the momentnm 
constraint equation. The gradient expansion is appropriate for inflation if the long wave fields 
iwe smoothed over scales below e-“H-l. 0 ur equations are naturally described in thee Einstein- 
HamiltcwJacobi framework, which governs an ensemble of inhomogeneous universes, and which 
may be interpreted as a semi-classical approximation to the quantum theory. We find that the 
Hubhle parameter, which is a function of the local values of the scalar field, obeys a separated 
Hamilton-Jacobi equation that also governs the semi-classical phase of the wavefwctional. In our 
approximation, time hypersurface changes leave the equations invariant. However, the stochastic 
impulses which change the field ixdtial conditions are most simply given on uniform expansion 
factor hypcrsurfaces whereas propagation is most easily solved ~.n uniform Hubble hypersurfxes, 
in terms of a(~‘, H), the nonlinear analague of C of linear perturbation theory; we therefore pay 
special attention to hypersurface shifting. In partlculx, we describe the transformation process 
for the iluctuation probability functional. Exact general solutions are found fclr the tax of 
a single scalar field interacting through an exponential potential. FOX txample, we show t.hat 
quantum corrections to long wavelength evolution of the metric are rharacterist,icslly small using 
exact Green’s function solutions of the Wheeler-deWitt equation for this potential. Approximate 
analytic solutions lo our classical system for slowly evolving multiple sralar fields are also easy 
to obtain in this formalism, coutrasting with previous numerical a.pproach.es. 
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I. INTRODUCTION 

Current cosmological data have cast doubt on whether Gaussian scale invariant density 
fluctuations, generated by quantum noise during inflation, are sufficient to explain the large 
scale structure of the Universe. Alternative paradigms are perhaps required. The observations 
include the patterns in galaxy redshift surveys, v the angular clustering of galaxies on the sky,3 
the clustering of clusters,” and the magnitude and coherence of the large scale flow of galaxies.’ 
Although the interpretation of each of these is controversial, there is a strong hint that there 
is more large scale structure than the most successful version of the Gaussian scale invariant 
models, the adiabatic cold dark matter scenario, can accommodate. The alternative theories 
include various types of topological defects such as strings, domain walls and ‘cosmic textures’, 
late time phase transitions and various hydrodynamical and radiative processes in the later 
universe. They all predict non-Gaussian density perturbations of one form or another. Many 
theorists have been re-examining the inflationary paradigm to ascertain under what conditions 
either scale invariance or Gaussian statistics would break down. At the moment the consensus is 
that inRation driven by a single scalar field does lead to Gaussian fluctuations over the observable 
length scales, and is most likely to give a nearly scale invariant perturbation spectrum - although 
certain exotic potentials can modify this somewhat. However, with more than one dynamically 
important scalar field in inflation, the question is not whether scale invariance can be broken, 
but at what scale the breaking appears. %r (It is usually argued that it is unnatural for the scale 
to be in our observable range.) Broken scale invariance, but with Gaussian statistics maintained, 
can be addressed entirely within linear perturbation theory. Although its implementation can be 
technically tricky, it requires no new conceptual ideas. It is even self consistent at the quantum 
level. 

The non-Gaussian issue requires a qualitatively different approach, capable of treating non- 
linearities in field theory on inhomogeneous spacetimes, for both the gravitational field and the 
scalar fields. The beginningss of such a framework have been emerging over the past five years 
under the name ‘stochastic inflation’, in which a separation is made between short distance 
quantum fluctuations which oscillate on scales below the instantaneous Hubble radius and large 
distance fluctuations which are treated as classical fields. The short distance components com- 
municate with the long wavelength classical fields by stochastic noise terms. We believe that 
this approach should be vigorously developed at both the level of fundamental field theory to 
address the conceptual foundations8 and at the operational level to provide a calculational tool 
for quantitatively addressing those issues of nonlinear inhomogeneities of relevance for cosmic 
structure formation. 

This is the first in a series of papers formulating a stochastic inflation approach to fluctuation 
generation and evolution and leading to computation of observable field cor&gurations such as 
microwave background anisotropy patterns and large scale structures. In this paper we show 
how one can describe the long wavelength fields self consistently and evolve them from their 
initial conditions using a Hamilton-Jacobi approach. We do not explicitly include any short 
distance communication. In the second paper in this series (which will be referred to as SBZI”), 
we consider the stochastic evolution of the long wavelength fields as a sequence of two stage 
processes, a stochastic kick from short distance effects (diffusion) followed by free propagation 
(drift). The stochastic impulse effectively resets the fields to a new set of initial conditions for 
the next round of propagation. Thus the current paper treats the propagation phase, given the 
initial conditions. 

We find that the natufal variables for describing the dynamical state of the metric are the 
local expansion factor a(~‘, t) (or its logarithm, a = In a(&, t), which proves more useful) and 
the local Hubble expansion rate R(+j, t). These physical fields are useful for clarifying various 
aspects of the linear perturbation theory of inflation. Although, for a single scalar field, much 
analytic perturbation work”-” has been undertaken, a decisive step occurred when Bardeen, 
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Steinhardt, and Tucner’4 introduced a gauge invariant metric variable C which has the virtue of 
being a constant of motion once the wavelength of the perturbation exceeds the Hubble radius. 
There is a natural nonlinear generalization of C which we propose here which can be used to 
simplify the treatment of nonlinear interaction of many scalar fields among themselves and 
with the gravitational field during inflation, in spite of the complex interplay of scalar, vector 
and tensor modes of the metric. Our version of C is 3a evaluated on hypersurfaces with H 
constant; for nonzero wavenumbers, this agrees with the perturbation theory deli&ion. (This 
C is ~CBST where [ss~ is the original definition given by Bardeen, Steinhardt, and Turner; see 
Salopek, Bond, and Bardee*,? hereafter known as SBB.) In the variables a and H we can solve 
three dimensional nonlinear gravitational problems during the inflation epoch for fluctuations 
whose length scales are greater than the Hubble radius. Our approach also proves useful in 
semi-classical treatments. Historically, the long wavelength evolution for a Universe consisting 
of dust was first solved by Lifshitz and Khalatnikov,‘s and then extended by Eardley, Lang 
and Sachs.‘B They restricted their attention to comoviug hypersurfaces upon which Einstein’s 
equations could be solved. Our work may be viewed as an extension to inflation models where 
the pressure is not zero and there may be many scalar fields present. Our formalism applies to 
arbitrary time choices, thus making it a useful calculational tool for stochastic inflation. 

We consider the evolution of the metric and scalar fields from some initial classical config- 
uration defined on a space-like hypersurface assuming fluctuations have been smoothed out on 
scales smaller than the comoving Hubble radius, (Ha)-I. The evolution of regions separated 
by more than (Ha)-’ will roughly evolve like independent universes because there is no causal 
contact between the points. This separation is not exact because the various regions are con- 
nected by large scale gradients appearing in the gravitational and scalar field equations. We are 
thus motivated to perform a spatial gradient expansion of Einstein’s equations. In the eeroth 
order approximation all spatial gradients are set to zero, yielding the homogeneous Friedmann 
equations, which must be satisfied point by point. The next order equations, given in Sec. II, 
contain first order spatial gradient terms as well. The new ingredient is the momentum con- 
straint equation of general relativity. To this order it can be integrated exactly, showing that 
the Hubble parameter H($j) can only be a function of the scalar field +j and that there is no 
explicit dependence on the (arbitrary) coordinate time variable. The energy constraint equation 
(the usual Friedmann equation for R’) is then cast into a partial differential equation for H, 
which we call the separated Hamilton-Jacobi equation. 

In Sec. III we illustrate our formalism using analytic solutions for a single scalar field 
interacting with an exponential potential. We find that our equations conveniently isolate the 
‘growing mode’ of a single scalar field for arbitrary potentials. In this case, the simplest choice of 
time is 4 because the remaining equations are then easy to integrate; for multiple fields, the local 
scale factor of the Universe is the natural time choice. In Sec. III we also exhibit approximate 
solutions of the Hamilton-Jacobi system assuming slow rolling of fields. One can use this to, 
for example, derive analytically, yet quantitatively, fluctuation spectra for multiple scalar field 
models such as double inflation, which previously required a complicated numerical code (SBB). 

In Sec. IV we show how the long wavelength equations may be directly derived from the 
Hamilton-Jacobi formalism for inhomogeneous scalar fields and metric. To be consistent to first 
order in spatial gradients, one must solve both the energy and momentum constraints. A re- 
dundancy theorem,” which states that the momentum constraint is satisfied everywhere if the 
energy constraint is satisfied everywhere, does not apply in this situation. However we can sat- 
isfy the functional momentum constraint equation; indeed we obtain a general class of solutions 
to it. We also apply the Hamilton-Jacobi formalism to the evolution of the classical probability 
function for inhomogeneous fields, which is of relevance for cosmic structure formation studies. 
We develop a transformation theory relating the probability on different time hypersurfaces, 
which will prove useful for our later treatment of stochastic inflation. In Sec. V we discuss 
the quantum theory of long wavelength evolution, which is the natural arena for combining the 
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Hamilton-Jacobi approach with the probability evolution equation. This connects our analysis 
with the vast literature on quantum cosmology (see HalliwelP8 for a bibliography). In partic- 
ular, we must solve the mini-superspace Wheeler-deWitt equation at each point. Pi&i” and 
TeitelboimZo were the lirst to develop the quantum theory of long wavelength fields, which they 
referred to as the strong gravitational coupling limit, G = m;’ + co. We exhibit analytic 
Green’s functions of the Wheeler-deWitt equation for the case of an exponential potential. We 
use this to show that quantum effects on the long wavelength field propagation are small be- 
cause we smooth all field configurations on scales smaller than the Hubble radius; for the same 
reason, macroscopic objects behave classically. Once again, the momentum constraint equation 
relates different spatial points, but we encounter difiiculties satisfying it and the Wheeler-deWitt 
equation beyond the semi-classical level. 

II. SPATIAL GRADIENT EXPANSION FOR INFLATING COSMOLOGIES 

A. ADM Formulation of Einstein and Scalar Field Equations 

In the ADM formalism, the metric 

900 = -N’ +#jNiNj, goi = gio = Ni, &j = 7ijv 

is parameterired by the S-metric, 7;j and the lapse and shift functions, N and N’, which describe 
the evolution of the time-like hypersurfaces. The ADM form of the action for n minimally cou- 
pled scalar fields 41, . ...& coupled to Einstein’s gravity and self-interacting through a potential 
V(J) is2’ 

z = 1 Ir’&{ 2 R - +‘“QW~k - V(h) }, 

=/d&V&{ f+[@)R+KijKij-K1] 

f f [ (dk - Ni$kli)*/N2 - 4k1i$k’~] - V(4k) }. 

We have adopted the summation convention. Vertical bars denote 3-space covariant derivatives 
with connection coefficients determined from the ~ij. The 3-space curvature associated with the 

metric 7ij is c3)R and th e extrinsic curvature 3-tensor is 

Kij = 
( 
Nilj f Njli - 9)/(2N). 

The traceless part of a tensor is denoted by an overbar. In particular 

&j = Kij - ;K7Ur K = K;. 

The trace K is a generalization of the Hubble parameter that appears in isotropic cosmologies. 

Variation of the action with respect to N and N’ yields the energy and momentum constraint 
equations (see e.g., reference 22): 

r,,p _ 3~1 - @)R + qc = o, 

mP 

t7;,, - zKli + ++‘$kli = 0. 
mP 
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Variation of Z with respect to ~ij yields the dynamical gravitational field equations 

CVK 
- - N’Kli = -Nli,i + N( ;K,jB” + ;Ka + ;c3)R + $), 
at 

az; 
at t N/& - NllkK; - N%;,, = -Nli,, + +‘,,S, f N( Kz; f @)z; - -$$), (2.5) 

Variation of 1 with respect to $k gives the scalar field equations of motion: 

( 
aII+r 

at 
N’II+L,i)/N - KI@ - h’,i@/i+i - 6k(ili t g = 0, (2.6) 

where the scalar field momentum is 

II” = (#* - N’q$;)/N. (2.7) 

The energy density on a constant time surface is 

’ = i(H”h2 t ‘$k,i’$k’i) t V($k), (2.&z) 

and the stress 3.tensor is 

1 sij = Tij = bkli&k[j f YGj( TH ‘+‘* - )&,iC$kti - v(&)). (2.86) 

Although the goal is of course to solve these highly nonlinear coupled equations in a cos- 
mological setting, its realization is a long way off. Rather drastic approximations are required 
to make progress at the current state of the art in computational relativity. A highly successful 
approach is to assume homogeneity of the fields to give a background solution and linearization 
of the equations to describe deviations from spatial uniformity (e.g., SBB). The smallness of 
cosmic microwave background anisotropies and of large scale galaxy density contrasts provides 
some justification that the Universe we see may indeed be accurately described within this 
perturbation framework. Even if this criterion does hold for our local observable patch of the 
Universe, there is no reason to suppose that it will be valid on much larger scales. Further it is 
also possible that inherent nonlinearities may have played a role even in the patch we observe. 
Indeed, such inllationary models are the motivation for this current work. The attack on non- 
linear aspects of the inhomogeneous ADM equations has been very limited so far. Progress has 
been made if some symmetry has been adopted to restrict the spatial dependence to be in at 
most one variable, both numerically for spherical and planar systems, and analytically for some 
very restrictive classes of metrics. If the Universe is inRating another class of approximations 
is suggested, the stochastic inflation picture pioneered by Starobinski,8 in which the short dis- 
tance behavior of the fields communicates with the large distance structure through stochastic 
forces. In this paper, the equations for the long wavelength fields are obtained by systematically 
neglecting large scale gradients, which leads to a self consistent set of equations as we now show. 

B. The Spatial Gradient Expansion of the ADM and Scalar Field Equations 

It is reasonable to expand in spatial gradients whenever the forces arising from temporal 
changes in the fields sufficiently exceed the forces from the spatial gradients. A standard example 
of this occurs in linear perturbation theory, when one solves the perturbation equations for 
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evolution ‘outside of the horizon’: a typical time scale for evolutionary changes is the Hubble time 
H-l, which is assumed to exceed the gradient scale ale-‘, where k is the comoving wavenumber of 
the perturbation, suggesting we expand in powers of k/Ha. Once nonlinear terms are included, 
the expansion parameter is not so straightforward. However provided we are interested in 
structure on scales larger than the horizon, it is reasonable to expand in the nonlinear analogne 
of (Ha)-‘V. This is particularly appropriate for inflation models. For example, in linear 
perturbation theory, spatial gradients become exponentially negligible after a few e-foldings of 
expansion beyond k = Ha. 

It is therefore a useful approach to split the fields (e.g., &(t, zj) = #,$k t 4th) into smoothed 
long wavelength ‘background’ fields q&(t, rj) and residual short wavelength fluctuating fields 
+lk(t,zj). It is not clear how to come up with a gauge invariant form for this split which is 
useful. In this paper, we shall assume there is a gauge with coordinates t, z’ in which $bk has 
the form 

d’bk(t, 2) = / S(t, z - +‘)+k(tr r’+‘, (2.9) 

where S is a smoothing function whose Fourier transform falls off at high spatial momentum. 
Below we argue that there is a preferred time-like hypersurface within the stochastic inflation 
framework in which this is a reasonable definition. In order to ensure that $bk remains the same 
in another gauge, the relation between &k and & is found by transforming this convolution 
form. The relation in the new gauge will then not be as simple. The rigorous definition of 
C$bk is problematic since it depends upon the specific choice of time-like hypersurface; i.e., 
the smoothing is not gauge invariant. For stochastic inflation, the natural smoothing scale is 
the comoving Hubble length, (Ha)-l and the natural hypersurfaces are those on which Ha is 
constant, at least within linear perturbation theory. lo In that case, a fundamental difference 
between 4th and &k is that the short wavelength components are essentially uncorrelated at 
different times while longer wavelength components are deterministically correlated. 

By convolving the ADM equations with S, we get equations for the background fields; sub- 
tracting these from the original equations gives the equations for the fluctuating fields. The 
nonlinearity makes these two sets of equations very complicated indeed unless suitable approxi- 
mations are made. The philosophy here is to expand in the spatial gradients of e.g., &k which 
operate on the background fields and to treat the ternw explicitly depending upon the fluctuat- 
ing fields (e.g., 4fk) that appear in the background field equations as stochastic forces describing 
the connection of the short wavelengths to the long ones. In this paper, we focus on the gradient 
expansion and set the fluctuating field +fk to zero. We do include its influence in the form of 
initial conditions for the background field. We retain only those terms which are at most first 

order in spatial gradients, neglecting such term8 as &lil;, &,kli &ii, @)R, c3)Rj, and Tj. The 
terms involving second derivatives of &fk and the second spatial derivatives of the fluctuating 
part of the metric variables give the stochastic forces, which are treated in SB2. Since we are 
neglecting the fluctuating fields, we shall also drop the subscript bk in the following. 

The equations simplify considerably if we set the shift N’ to zero. The evolution equation 

(2.5) for the traceless part of the extrinsic curvature is then add/ = KK;. ysing K = 

-ah(&)/(Nat) from eq.(2.1), where 7 is the determinant of 7ij, the solution is f7; cx y-l/‘. 

Since during inflation 7-1/2 E a-g, where a is the overall expansion factor, zk decays extremely 

rapidly. We can therefore set %?i to zero in the following - although the xi # 0 case where 
the long wavelength gravitational radiation evolves in time also turns out to be tractable.23 The 

most general form of the J-metric with vanishing zk is 

7ij = 2(t, Zj) hij(zj), a(t, d) c exp[a(t, zj)], (2.10) 
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where the time dependent conformal factor a(t, zj) is interpreted as a spatially dependent ex- 
pansion factor. It is more convenient for us to work in a. The time independent J-metric, hii( 
which we assume has unit determinant, describes the 3-geometry of the confmmally transformed 
space. Within linear perturbation theory, a(t, zj) would contribute only to the scalar perturba- 
tion modes, whereas the vector and tensor modes are time independent, reflecting the constancy 
of hij(+j). For the scalar modes, if the longitudinal gauge is chosen, then a(t, zj) can be written 
as the sum of a homogeneous a(t) and Bardeen’s gauge invariant metric variable +~(t,+j). 
Based on the work of Lifshitz and Khalatnikov I6 for a dust dominated Universe, Starobinski’ 
suggested that an equation of the form (2.10) is valid in synchronous and comoving gauge. From 
OUT development, this form follows for an arbitrary choice of the lapse function. 

Since a(t, zj) is interpreted as a scale factor, we now use the Hubble parameter 

qt, S) z h(t, ,j)/N(t, d) = -~(t, d)/3 

in place of the trace K of the extrinsic curvature. The momentum constraint equation (2.3) can 
now be written 

4* 
Hli = -TIP #Ii,+ 

mP 

(2.11) 

In the general solution, H is a function of the scalar field values and of time: 

~(t, zj) z ~($~(t, 21, t). (2.12a) 

The scalar field momenta II+l = N-‘& must then obey 

(2.12b) 

We now show that the time dependence of H arises only through its dependence upon &. 
Comparing the evolution equation (2.4) with the time derivative of equation (2.12a), 

m.i = x9,i (~,,+xLiwd. 
= -!$g,: t gg,,. 1 

we see that 

(3,. = O, 
hence H(t, zj) = H(&(t, 2’)). 

Thus if one can neglect second order spatial gradients, then the comoving gauge for a scalar field 
$ = cumtant is identical to the uniform Hubble gauge. This equivalence breaks down when the 
stochastic forces are included which do depend upon second order spatial gradients.” 

From equation (2.12b), we also see that the scalar field momenta at a point are functions 
only of the scalar field values at that point: IIbb(t,zj) = lP(&(t,zj)). We need to show 
that these results are consistent with the rest of our equations. By differentiating the energy 
constraint equation, now in the form Hz = (87r/3)~/mg, with respect to & while holding t 
fixed, we obtain 

II+‘(g), av 
+3HrI*'tG =o. 



By comparing with the scalar field evolution equation (2.6) and using the identity 

(!g), = IPh (E), t (fg),,, 

we verify that the functional form I@(&) has no explicit time dependence. 

With the neglect of second order spatial gradients, the complicated ADM and scalar field 
equations of Sec. A reduce to the simple collection of background field equations: 

Ifa =g F ($)' + Gv(4j)* 
(2.13b) 

(2.14~) 

These equations describe point by point the nonlinear evolution of the scalar and gravitational 
fields smoothed over the horizon in an inflating patch of the universe. These equations look 
similar to those of the Hamilton-Jacobi formalism of classical mechanics,l’ a connection we 
explore in detail in Sec. IV. In anticipation of our findings there, we refer to (2.13b) as the 
separated Hamilton-Jacobi equation, abbreviated as SHJE. 

Instead of explicitly finding the function H(&), we could instead work directly with the 
equations of motion, which reduce to 

$(&$k t 3H&$k t g = 0, 

H'= $-[;~(&h)'t v(h)], 
k 

(2.15a) 

(2.15b) 

with the neglect of second order spatial gradients. In particular, with the synchronous gauge 
choice N = 1 (together with the N’ = 0 condition), the field equations look just like the 
familiar homogeneous equations for inflation models, point by point. Fluctuations are described 
through spatial variation in &, u and H. However, we would have to ensure that the initial 
inhomogeneous data satisfies the momentum constraint equation VH = -(47r/m~)IIm’V~k. 
The momentum constraint would, then, hold at later times because of the equations of motion, 
whereas in the Hamilton-Jacobi formalism, it is automatically satisfied at all times. 

If there are many scalar fields, the SHJE is a partial differential equation in & space. One 
way to solve it is by the method of characteristics, which involves integrating trajectories using 
equations (2.15). The initial value problem is specified by a surface f(&) = 0 upon which the 
Hubble parameter is constant. A trajectory emanates from each point on this surface, with 
the direction of each initial velocity given by Vf and with the magnitude given by the SHJE. 
Each path may then be integrated independently using eqs. (2.15), and H(&) may then be 
found from a catalogue of trajectories. s4 However, in cases in which the functions H(&) can be 
found by other means, the Hamilton-Jacobi approach is more straightforward to implement. In 
particular, this is the case for the specific analytic solutions given in Sec. III. 
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Transformations of the time-like hypersurfaces do not upset the solutions for the metric nor 
the form of the equations (2.13, 2.14) in a first order gradient expansion. That is, given a new 
time variable T = T(t, zj), we can find coordinates Xj(t, zj) such that the shift remains zero 

and the form of the metric, -yij = exp[2&(T,Xj)]ilij(Xj) IS retained. This is demonstrated in 

Appendix A. Further, derivatives of a quantity Q(t, &) with respect to the two different time 
variables are equal up to second order spatial gradients: 

~mj = +GL 
where N1 = N~(cZ’/&) relates the lapse functions on the different hypersurfaces. This rela- 
tion explicitly demonstrates that eqs. (2.14) are invariant under arbitrary changes of the time 
hypersurfaces. Of course, we have implicitly assumed that the function T is non-singular. For 
some choices of physical interest, this is not be true, for example for 2’ = I#, if the scalar field 4 
undergoes oscillations. However, on restricted intervals it could still serve as a valid local clock. 

III. SOLVING THE HAMILTON-JACOBI EQUATIONS 

In this section we illustrate the usefulness of the Hamilton-Jacobi form of the long wave- 
length fluctuation equations, (2.13) and (2.14), by explicitly solving them in several situations 
of cosmological importance. In Sec. A an analytic example for a single scalar field interacting 
through an exponential potential is given. Jn Sec. B we analyze the general solution for a single 
scalar field and extend the Bardeen, Steinhardt and Turner gauge invariant metric variable 6 
which has proved so useful in linear perturbation theory to the nonlinear case. We extend the 
analysis to n scalar fields in Sec. C, showing that differentiation of the Hubble parameter solu- 
tion of the SHJE with respect to its n integration constants solves the field equations. We also 
argue that c-x is the most natural choice of time variable for this case. In Sec. D we show how 
approximate solutions may be obtained for multiple fields using the slow roll approximation, and 
extensions based upon it. For example, one may apply these results to determine analytically 
fluctuation spectra arising in double inflation as well as other multiple scalar field models. In 
Sec. E, we solve exactly the Hamilton-Jacobi equations for two scalar fields interacting with 
a specific separable solution to illustrate how the Hubble parameter may be a multi-valued 
function of the scalar fields. 

A. Exact Solution for a Single Idaton in an 
Exponential Potential 

An exponential potential of form 

V(4) = V, =xp(- 
d- 

T $+Pl 

has proved very useful for generating analytic results (with p > 1 required for inflation). For 
example, Lucchin and Matarresels gave an exact solution of the cosmological background equa- 
tions, and RatrazE has given some exact results for linear perturbation theory. The particular 
solution to the energy constraint equation (2.13b) 

Had4 = (zcl _ I,))’ =xPi-~+%wl 
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defines the attractor of Halliwell, z7 toward which all trajectories tend. A more complex para- 
metric solution H($) is required to describe the motion for arbitrary initial conditions. We 
obtain this by defining a new dependent variable, f, 

which transforms (2.13b) to 

A change of variables, f = cash(v) suggested by this equation yields the following parametric 
solution, H 3 H(u), 4 E qi(u): 

(3.2~~) 

$(u) = &,, - z(l - 1/(3p))-1 {u + (3~)~f lnIcosh(u) - fipsinh(u)l}, (3.26) 

where -co < u < tanh-‘[l/flp], (3.2~) 

or tanh-‘[l/fip] < u < 00. (3.2d) 

The constant of integration, &,,, must be spatially independent in order to satisfy the momentum 
constraint equation (2.11). There are two solutions corresponding to the case where the initial 
value of the parameter u is in the range (3.2~) or in the range (3.2d). The first case is in general 
double-valued, as shown in Fig.1. For these, &,, is the minimum value that I$ obtains. As u 
increases from -co to 0, 4 and H decrease, until a cusp in H(#J) is reached at the minimum &,. 
Near the turning point at &,, 

(3.3) 

The t (-) sign corresponds to motion to the left (right) in the figure. For positive u, 4 increases 

from &,, at u=O to co at u = tanl-‘[l/&J, while H continues decreasing, rapidly approaching 
the attractor solution which is marked by the broken line in Fig.1. The second range of u, (3.2d), 
applies to the case where the scalar field would be initially moving to the right in Fig.1 with a 
H(6) > H,,tt(#). As u decreases from positive values to tanh-‘(I/&), H quickly approaches 
&t. 

Along the attractor solution, the relation between the scale factor at each point zj and 4 
is found by dividing (2.14b) by (2.14 a and integrating, giving the linear law ) 

44, “9 - 440,zj) = (477PY ($J - h)/mP, (3.4a) 

which prescribes the point by point evolution of the expansion factor between the comoving 
hypersurfaces at times 4 and $0, as shown in Fig. 2. This figure also illustrates how to transform 
from spatial fluctuations in a on constant 4 hypersurfaces to spatial fluctuations in 4 on constant 
a hypersurfaces, which is relevant for the treatment of perturbations in stochastic inflation as 
we describe in Sec. B. 
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Remarkably, one can solve for the a($, zj) trajectories analytically in the general case as 
well, using the methods described in Sec. C: 

(3.46) ~(4, zj) - a($~, zi) = b(4) - b(h), 

b(4) z -;l1ig1 
m 

= (47rp)i 2 - (4?rp)i J$l - 

The linear law (3.4a) is recovered if 4 or -&,, is large. 

We are primarily interested in the regime where inflation occurs, in which case we must 

have p t 3p < 0, i.e., (II$)s < V. In Fig. 1, this region is given by H(4) < m HsR(~), where 
the ‘slow roll down’ Hubble parameter is 

HSRG (s)‘Vf(#). 
P 

The solution (3.4) is still valid in the upper non-inflating region above this line, whereas the 
region below HsR($) is forbidden. 

B. General Metric Fluctuation Formula for a 
Single Scalar Field in an Arbitrary Potential 

For a single scalar field with a general potential, one can view the separated Hamilton- 
Jacobi equation as a first order ordinary differential equation in the time variable 4. Each 
solution H(qi,Z) is characterized by a single parameter I, uniquely determined after one has 
specified Ho at 4 = &,. For example for the exponential potential, Z can be taken to be &,. As 

in Fig. 1, we must always have H(4) > HSR and also have H(4) < ~HSR for inflation to 
occur. Two different solutions, H(+,Zl), and H(&, Za), will approach each other exponentially 
rapidly, at least ifZ1 and Z* are close to one another. Letting AZ = Zs -ZI, we have, on comoving 
(constant 6) hypersurfaces, H($, Zz) - H($,Zl) G (aH/E’Z),+ AZ for linear perturbations. Taking 
the derivative of the SHJE with respect to Z at fixed 4, we have 

( a~(yy~)I = 2 (a;a$)l = -3 (&I/@),. 

In deriving the last equality, we have applied (2.14a,b). The solution of this equation may be 
written as 

a(+,4 - Q(&Z) = -; ~I(aH/aZ),(hZ)l t 5 h I(aHlW.dh~,Z)l. 

(With Z = &,, this is what was used to obtain eq.(3.4c) for the exponential potential.) The 
conclusion, 

H(hZz) - H(hA) = (aHlaZ).+AZ = ==p[-344,b)l AZ, (3.5) 

is that all solutions rapidly approach one another in the inflationary regime. The transient 0: 
exp[-3cr] corresponds to the decaying mode which always appears in cosmological perturbation 
theory.‘* In this sense, during infiation the solution of the separated Hamilton-Jacobi equation 
is unique up to small perturbations. (This result is not valid generally for multiple fields because 
of the multi-valued nature of H(q&) as is shown in Sec. E.) 
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Given a solution of the SHJE, we now wish to integrate the trajectory equations, (2.14a,b). 
Since H z H(4), 4 is the simplest choice for our time coordinate if there is a single idaton 
field. With the lapse function 

wdJ,+ = -($)/($, 

given by eq.(2.14a), substituted into eq.(2.14b), the trajectories a(+,zj) can be integrated, 
yielding 

where the function 

a(Azj) - a(hrzj) = b(4,Z) - b(hI), 

b(qb,Z) z -+$ /+; Hzdq5r. 

W’ 

(3.6) 

(3.7) 

is independent of spatial coordinates, but, of course, depends upon the parameter Z needed 
to specify the specific H(4,Z). A s a consequence of the momentum constraint equation, I is 
a global constant independent of space and time. (This is not necessarily true for multiple 

fields.z3) Consider a fiducial spatial point I d. The (nonlinear) metric fluctuation on constant 4 
surfaces taken relative to this point is 

which is constant in time, 

~a($, &) q a(+, zj) - a(6, &) (3.8) 

A~x(&, rj) = Aa(&,, +j). (3.9) 

Bardeen, Steinhardt, and Turner” introduced an extremely valuable gauge invariant vari- 
able ( defined in linear perturbation theory. The definition which is appropriate for connection 
with our work here is that C/3 is the fluctuation in Q on uniform Hubble parameter hypersurfaces: 

C(H, &) E 3(a(H, 2) - E), (3.10) 

where ii is a suitable spatial average of a. (The best choice seems to be 35 = In (exp[3a])V, 
with the average over a comoving volume V.) Since for one field H=constant surfaces coincide 
with &constant surfaces, the quantity 3Aa(&, &) is the nonlinear generalization of C. The 
importance (and beauty) of [ for a single scalar field is that it remains constant outside of the 
horizon even as the field passes from a vacuum energy dominated regime through an oscillating 
regime about its potential minimum, even though II+ can vanish and da/d# can become singular. 
Equation (3.9) expresses the conservation of < in the nonlinear framework. Once we have set 
the initial value, Aa(&, zj), we have the complete solution. 

In SBB, we showed that Aa is constrained to be very small in popular models of galaxy 
formation. For example, in the adiabatic scale invariant Cold Dark Matter Model Aol(&) % (l- 
3) x 10-s to explain the two-point correlation function of galaxies. Determining the amplitude 
of the initial fluctuations Aa(&, zj) in inflation models can be a very complicated problem, 
even if we linearize in the fluctuations occurring inside the horizon. In this paper, we adopt 
a crude model for the fluctuations which contains the essence of the more detailed treatment 
of SB2. In stochastic inflation, the long wavelength fields are modified by the action of short 
wavelength fluctuations as they cross the horizon, become time coherent and contribute to the 
amplitude of the long wavelength fields. This initial value is set on a surface of constant Ha. 
Because H is changing slowly during inflation compared with the changes in the expansion factor, 
the Ha=constant surfaces are approximately those of constant LX. In this paper, we take the 
fluctuation (b$),(ao, 2) = $(ao, z) - $(cQ, 2s) as a function of position relative to our fiducial 
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position z. to be given at time ao. The stochastic addition to the scalar field fluctuation at time 
a0 when the Hubble parameter is Ho is proportional to the Hawking temperature, Ho/(2?~) 
at that time, (64),(u,,z) UC &/(2?r); the stochastic addition to the metric approximately 
vanishes (except for the small diffmnces between Ha and H). A useful conceptual picture is 
to think of the background fields as receiving a series of impulsive kicks from the fluctuating 
stochastic forces while in between kicks they evolve according to the background equations 
(2.13) and (2.14). For simplicity here we assume there is one stochastic impulse at ag and follow 
the subsequent evolution. In SB2, we present a more general formalism for dealing with the 
fluctuations in which stochastic and drift forces are treated together and demonstrate that the 
approximations made here are reasonable cmes provided the fields are evolving slowly. We also 
demonstrate that although stochastic kicks may change I, it remains spatially independent. 

We therefore need to connect the spatial fluctuation (6b),(ao,z) in 4 on a constant Q 
hypersurface to one in a, (&x)+(4 r,, + on a constant 4 surface, so that we can make use of the ) 
solution (3.9). A geometric representation of the transition from a constant a surface to one of 
constant 4 is shown in Fig. 2 for the case of an exponential potential. The solid and short dash 
diagonal lines represent trajectories. (The long dash are lines of constant phase, see Sec. IV.) 
Given (a+)=, a fluctuation spread over the thick horizontal line, one must evolve each spatial 
point independently to obtain (ba)+ to obtain the spread over the thick vertical line. Thus the 
metric fluctuation on constant I$ surfaces is 

(3.11) 

When equation (3.11) is linearized and Fourier-transformed, it describes the mode by mode 
evolution of the amplitude in linear perturbation theory. In that case, the interpretation of (a@), 
is as a Gaussian random perturbation with power spectrum P, = k3/(2rz)16~(k)lz, where 6$(k) 
is the Fourier amplitude, and ag is the time at which the wavenumber k equals Ha. (See SBB). 
For general potentials and small fluctuations (64), o Ho/(k), we recover the usual result,“-” 

A44) = 2(~~;~)o = -($); (3.12) 

In particular, this is usually used with the slow roll approximation, 3H$/N = -W/B@. 

For the exponential potential, an exact result can be given. For example, for the attractor 
(steady state) solution b(4) = (47rp)‘“($ - ~$~)/mp, we have 

if we take (a#~)- x Ho/(25r). Thus to have p = CJ(lO), one would require that Ho/m7 = lo-’ 
to agree with observations of cosmic structures.’ 

C. Multiple Fields and the Integration of Trajectories 

The separated Hamilton-Jacobi equation (2.13b) 1s a fist order nonlinear partial differential 
equation for n scalar fields whose complete solution depends on n constant parameters, I,. The 
general solution of the cosmological background field equations follows from this, as in the 
classical mechanics analog~e.~” In this subsection we use a = In(a) as the natural choice for the 
time parameter since in general for many fields there will be no preferred & hypersurfaces. 
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Using a proof similar to that leading to eq.(3.5), we now show that the solutions H E 
H(&,Ik) of (2.13b) with differing Ik also approach each other rapidly. Differentiating (2.13b) 
with respect to 1h gives 

Hz 2 -$-h,g, =-$;hl$ 
c ah w 

The time derivative a/i% is evaluated along a physical trajectory, dj/N = -[dp/(4*)](8H/a#j). 
This equation may be integrated exactly with the help of (2.14b): 

e -3=Jk = g- (gg), , 

where the Jk are integration constants independent of time. Jmitating (2.14a), we have intro- 
duced the numerical factor, m$/(4r). Thus the difference in H for different I’s decreases as 
emau, as in Sec. B. Solving (3.14) for #j = bj(lk, .7&,(l) gives the trajectories as functions of a. 
This is the complete solution: given arbitrary initial conditions at a = a~, one may choose the 

parameters I,, Jk so that e-30o Jk = $z) BH(~~(Q),L)/~L -md @(he(~)) = -+=/(4~) 
BH(&(ao),I~)/&& are satisfied. More generally one may view the Hubble function as the gen- 
erator of a canonical transformation from (&, II@‘) to the new canonical coordinates (Ih, Jk), 
which are constant parameters. In most cases it is difficult to find an n-parameter solution of 
the separated Hamilton-Jacobi equation. An explicit solution for n = 1 was given in Sec. A, 
where a was integrated as a function of 4 by diKerentiation of I$, throu h (3.14). Analytic 
cases for many fields including gravitational radiation are given elsewhere. 25 

The new canonical momenta Jb are functions of position but not of time. For one scalar 
field, J(z)/J(ro) is just the conserved quantity exp[3Aa] (eq.(3.9)), i.e., exp[C], where zo is the 
fiducial point relative to which spatial fluctuations are measured. With many fields there are 
n constants Jk(z)/Jk(zo) which describe the nonlinear state of the system just as the single 
constant C does in the single inflaton case. In the many field case, the nonlinear version of C, 
defined by eq.(3.10) in terms of uniform Hubble parameter surfaces, is still constant. Hence the 
{ Jk} provide a more powerful description than the single variable C. (In general, the Hamilton- 
Jacobi equation for multiple fields is valid point by point, and the parameters Zk may also depend 
upon I. The consequences of this point are explored by Salopek.13) 

Although we showed in Sec. I1.B that the choice of time surface is essentially arbitrary in 
eq. (2.14), the variable a is the best motivated choice since it does not appear in the SHJE, 
which leads to the natural expression of the trajectories as functions of a according to equation 
(3.14). It is also monotonically increasing in inflationary models, hence is a viable clock at all 
times unlike the scalar fields. (For a more general discussion of the problem of time in general 
relativity see Umuh and Wald?) 

D. Numerical and Approximate Solutions of the 
Separated Hamilton-Jacobi Equation 

Since the Hamilton-Jacobi equations are analytically solvable only for special cases, it 
is worthwhile to develop approximate methods, the most important of which is the slow roll 
approximation”s~30 in which the momentum terms are ignored in the Hubble function. 

D.l The Slow Roll Approximation for a Single Scalar Field 
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For one field, neglecting the aH/&,+ term in the SHJE gives the zeroth order approximation 

H,t, = H:R 3 9 8a V(4). 
P 

Although higher accuracy may be obtained by substituting Hco, into the right side of the SHJE, 

fql) = +w [l + z 4 py], a4 (3.15b) 

higher order terms in this series only slowly improve the accuracy over the zeroth order ap- 
proximation. We have tried a number of other expansions, but none have proved generally 
useful. 

As a concrete example, we use the quadratic potential V(C$) = m”@/Z. Even for this simple 
V, the SHJE cannot be solved analytically since, as we have seen in Sec. IILA., H(4) is singular 
whenever I$ changes direction. In Figure 3, the solid curve shows a numerical integration of the 
background scalar field equations of motion (2.15), beginning at 4 = Lomb, well into the slow 
roll regime. Note the number of cusps in H in this case, associated with the oscillations near the 
bottom of the potential well. The other curves show the zeroth and fist order approximations, 

+qlm = $6, $ Q/m = ; r- 1+ 12x. 
4 

A nice feature of this potential is that the solution scales in m according to H = mf(+); one 
only needs a solution for a single m to obtain all other solutions that begin in the slow roll 
regime. As mentioned in Sec. B, Hco, = RSR defines the envelope for allowed solutions. Figure 
3 shows that H(o 
approximations t h 

is accurate for 6 > Imp and H(I) is accurate for 4 > 0.3779~. Higher order 
an Htl, do not aid matters much. 

To estimate the degree of nonlinearity produced in models with a power law potential, 

V(4) = v,P, we consider the nonlinear response of the background fields to one e-folding’s 
stochastic impulse (64), applied 60 e-foldings prior to the end of inflation, corresponding to 
the scale of the current Hubble length today. Using HER in equation (3.11) for the metric 
fluctuations on constant 4 surfaces, we have 

*a(@, 2) = ; $ [2&(@).. t (a@:], 
P 

which is constant in time and depends only on the initial value of the scalar field, 40. The 
relation between the number of e-foldings from the hypersurface 40 to the hypersurface I$ at a 
given position is the solution of (3.6): 

4&,2j) - 4hzj) = i$( 4; - $2 ). 

For n = 2, t$,, Y 3.177~~ gives 60 e-foldings of expansion. Recall that the wns value for the 
fluctuations crossing the horizon in one e-folding is (6+), z H,,/(2a). Thus the ratio of the 
quadratic nonlinear term in (6+), to the linear one is (12x)-‘/am/mp. We require m z 
5 x lo-rmp to give fluctuations Aa at the observational level (- 2 x lo-‘) hence, as expected, 
the corrections to linearity are very small indeed, a conclusion which remains valid even with 
the inclusion of the fluctuations from all 60 e-foldings.10 

15 



For a quartic potential, V(#) = X$*/4, c#I,, z 4.4mp is required to get 60 e-foldings and 
X = 5 x lo-” is required to get the Aa amplitude at the observationally inferred value. The 
quadratic correction is then at the lo-’ level for one e-folding’s worth of stochastic impulse. 

D.2 The Slow Roll Approximation for Multiple Scalar Fields 

The slow roll approximation also gives an accurate treatment of fluctuations when there 
is more than one scalar field for a large class of potentials V(&). The great advantage of this 
approximation is that it does not depend upon any constants Ik and can quickly and elegantly 
yield quantitative results with much more simplicity than, e.g., our previous linear perturbation 
theory calculations.7 We illustrate this for the double inflation potential V(&) = V,(&)+V~(&), 
whose HSR is 

H SR = 4 ( s v,(h) + WP)) t 
The exact solution H’(&) does not maintain the separability of HiR, which can be seen at the 
level of the next order approximation. The equations of motion derived using (2.148) are the 
usual slow roll ones: 

&=--p=- + aH3-R 06 /ah 
N 4~ ah 3Hm 

*- m; aHsR --=- wwa 
N - - 4n a$, 3HSR 

(3.196) 

(3.19c) 

Assume that the field 61 is the one that dominates the energy density of the universe at 
late times. It is convenient to take it as the time coordinate, so the lapse is 

N=- 3Hm 

wah 

and the re maining equation of motion is 

which is solved by two independent integrations: 

J ” dch I 
61 @a .+,* wah = #la avdah 

(3.20) 

(3.21) 

(3.22) 

To obtain the metric fluctuations, we integrate (2.14b): 

~(d’z,.j) - u($zo, zj) = b(h) - b(&), (3.23~1) 

where 

(3.24b) 

The total expansion factor of the universe is therefore the product of the scale factors for two 
independent inflationary epochs, a result first derived by Starobinski.sl To generally obtain the 
metric fluctuations at some late time &, we f&t form a(&., z) - ~0, with the 41 integration 
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evaluated between &(a~, z) and 4 zc and the #I integration evaluated between &(a~, z) and 

he(z). We ha”= &fined he(z) = h(he, z). In Sec. B, we adopted the notation (b#~)~(z) E 
&(OIO, z) - &s for the fluctuations from the stochastic impulse at Q,J, and took it to vanish at 
our fiducial point 10. The fluctuation between the values at I and our fiducial point 10 is then 

*a(#s,z) = 442c,+) - 4he,a~) 

a?r 
J 

+..+(s+~).(zO) &(+;)&& & 

/ 

‘h+(66’1).(W) V,($,;)&,; 
-2 4 +po+(6b,).(.) wmwk) mp 410t(661),b) wdww;) 

877 
J 

h(C) V~(c$;)dqi; 
-7 

mp b,.(20) wdwhu 
(3.25) 

Recall that we have adopted the convention that (b&),(z~) = (6&)a(z~) = 0 for the fiducial 
point at 10. To find the last term in (3.25) we would have to make use of eq.(3.22): 

J 

h.(=) 

dlat(6dl).(r) alkfh = / 

+a. 

+2o+(s9.).(c) aZG2 
(3.26) 

at I and ~0, which can get messy. However in most cases of interest the first field will have settled 
into the trough of its potential and damped away, so that I$*. will be spatially independent, and 
the last integral in (3.25) vanishes. In this case, the result is very simple, just the sum of the 
fluctuations from the two phases of inflation. 31 If the stochastic impulse occurs in the first phase 
both (a&), and (6#g)a contribute fluctuations of amplitude Hs4(27r), giving a large amplitude 
response. If the impulse occurs in the second phase, after & has settled down to its potential 
minimum, then (a&), vanishes, and only 4s fluctuations contribute, but at a diminished level 
since H4(27r) has dropped so much. 

If we are explicitly interested in the time development of Aa we would need to evaluate 
(3.26), which is messy for all but the simplest potentials. To illustrate the main features, we 
adopt quadratic potentials, VI(&) = mf&/2, V,(C&) = 4&/2. In Fig. 4, we show the 
structure of the trajectories (solid lines) and lines of constant Hubble parameter (short dash) for 
m: = 377~:. Trajectories begin near the top of the plot where the energy density of the Universe 
is dominated by 41. They then descend toward the origin, and as they cross the long dash line, 
the Universe becomes &-dominated. When the Hubble decreases below ml, shown as the dark 
dash curve, the slow roll approximation breaks down because & begins to oscillate. Integration 
of (3.26) yields 

he(z) = [ho f (WI),(=)] ( [~20 + $‘;2).(z)l)m”m’, (3.26~) 

hence the fully time dependent amplitude of the metric fluctuations as a function of I& is 

Aa = 2 [241o(W& t (&&] t z [2qb10(6r$1)p + (64 

- $j (~)2m”m’ [[ho t (6&)c$ ( 11 f (6~),,0201)‘m”m’ - &,I. 
(3’27) 

The last term rapidly decays for 6s. < $lo giving an asymptotic formula for the fluctuations 
which is the sum of two single field eq.(3.17) contributions. These semi-analytic results give a 
simple qualitative understanding of the time evolution of ( revealed in the detailed numerical 
calculations of SBB as well as providing a rapid method for quantitative calculations. 
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E. A Separable Example for Two Scalar Fields 

In this subsection we use a two field analytic solution of the SHJE to illustrate the com- 
plexities that can arise in practice. In particular, we wish to address the behavior of the Hubble 
function when one of the scalar fields is oscillating in its trough, a point we could not deal with in 
Sec. D.2. In this case, we tind that at a given point in the & - & plane, the Hubble parameter 
is multi-valued which makes the Hamilton-Jacobi approach cumbersome to use for oscillating 
fields. 

In classical mechanics, the Hamilton-Jacobi equation is not particularly useful unless there 
are separable solutions. In this cosmological setting, we would like to fmd a separable solution 
which has a potential with a trough that the field settles into. The potential 

V(~JI,&Z) = =xp( - E-$-) u(h), (3.28) 

has this property. A class of solutions to the SHJE can be obtained by assuming H is separable: 

H(b) = =xp( - E$) @#I). 

The two-dimensional SHJE is satisfied provided E obeys 

E2 = 2 (1 - 1/(3P))--’ ($)” t + U(l$,)/ (I- 1/(3p)). 
(3.30) 

This looks like a one-dimensional SHJE equation, a similarity we can make more explicit by 
rewriting (3.30) as 

(3.31a) 

in terms of the variables 

$1 = ATWM, iq&; = u( d&) / Cl- 1/(3~)). (3.31b) 

If we can solve for the single scalar field trajectories J,(Z) and E(G) associated with 
eq.(3.31), then we can solve the two-dimensional problem as a function of E;. The equations 
of motion become 

&.=-4 
N 

~vQTGl=v( - E$-) $, 

42 
i =spexp(-E-$)i7, 

(3.32~) 

(3.326) 

(3.32~) 

It is advantageous to choose u as time so fi disappears from the 4s evolution equation, giving 

#1(n) - h(a.0) = sp (a - LIO). 
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If we reinterpret (3.33) to be an expression for a(&), we see that in the 42 time variable 
the remarkable feature that the evolution of the metric is independent of the first scalar field, 
whether it is inflating or oscillating, although the initial value CY(&~) will depend on the initial 
value &($so), just as in double inflation (SBB). 

By comparing d&/da with d&/d& we see that a is linear in & 

ii = (1 - 1/(3p)) a. (3.34) 

Therefore the 41 trajectory as a function of a is given in terms of the parameterieed one- 

dimensional trajectory &(s) by 

h(Q) = (1 - 1/(3P))-“‘& ((1 - 1/(3P))4. (3.35) 

As a concrete example consider U = mi#/2. In general, orbits will cross as shown in 
Fig. 5, where we have taken p = 1.01 (and the magnitude of ml is unimportant for this 
illustration). Given one trajectory, one may obtain all others by translating in the & direction, 
hence H(h, $1) will depend upon a continuous index, and a given point (&, &) may take on 
many values for the Hubble parameter. The lines ofuniform Bubble parameter H shown in Fig. 
5 are given by (3.29), 

&Imp = ~[@d=%i-h)lH]. (3.36) 

These curves each have cusps which would confuse the figure, so only small segments of the 
uniform Hubble lines are shown. 

IV. HAMILTON-JACOBI EQUATIONS FOR INFLATING COSMOLOGIES 

In this section, we demonstrate explicitly how the separated Hamilton-Jacobi equation, 
(2.13b), may in fact be derived from the Einstein-Hamilton-Jacobi equation and the functional 
momentum constraint for inhomogeneous long wavelength fields. We discuss the limitations 
inherent in following a truncated form of the full equations. We also relate the form of the prob- 
ability functional for ensembles of universes on various hypersurfaces which plays an important 
role in stochastic inilation. 

A. Overview of Hamilton-Jacobi Theory in General Relativity 

Although Misner, Thorne and Wheeler, a’ for example, extol the virtues of the Einstein- 
Hamilton-Jacobi equation as providing the fastest route to quantum theory, it has not been 
exploited in the study of inhomogeneous systems. Let us recall the basic framework. The action 
I of Sec. 1I.A in the ADM formulation is computed only for those 7ij(t, zj) and &(t, zj) histories 
which extremize it. In the inte 

B 
ration, the lower endpoint is taken to be on a hypersurface 

with J-geometry specified by 7ij upon which the initial scalar field values 4: are specified. 
This is considered fixed. The upper endpoint of the integration is taken to be a hypersurface 
with 3-geometry that of rij(zj) with scalar field values &(zj). Hamilton’s principal functional 
S[rij(rj), &(zj)] is just I computed this way, which can also be written as 

S[yij(rj), &(zj)] = lir: [,Tii 2 + d$] d% . (4.1) 
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The momenta conjugate to rij and & are 

(4.2a) 

= y’/2(& - N’&j). (4.2b) 

In terms of these momenta, the energy and momentum constraints (2.2) and (2.3) are 

0 = R(+) f 16?ry-lP 7” 7 I 

4 
T “A ” (7jmYil - iYij7ml) + ~(+,1 t 7”2v(bk) 

t [-g711’(3R) + ~7”27”~~,i~k,j] 

0 = T-&(z) = -2(7;p-.‘m) + S”-fl,,j f 2+&i. 
,m 

(4.3a) 

(4.3b) 

(4.4) 

The Einstein-Hamilton-Jacobi equation is (4.2) with the momenta expressed in terms of the 
functional derivatives of S given in (4.2). One can interpret S as a generator of a canonical 
transformation in terms of which the new Hamiltonian functional vanishes strongly. In this 
approach, the solutions of the HJ equation depend on a infinite number of parameters which are 
interpreted as new canonical coordinates .3z,23 The functional S can also be viewed as the phase 
of the wavefunction !l’[7ij, &] that appears in quantum treatments of the gravitational field in 

the semi-classical approximation: g = P 1 e ’ a is. P[7ij, &] is the probability functional for the 
3-geometry 7ij(Z) ad the SCOW field configuration 4k(z), which is of importance in the theory 
of fluctuations for cosmic structure, a connection we explore in Sec. D. 

Although significant progress with the full nonlinear system does not seem feasible, a rea- 
sonably large subclass of problems in which the fields only contain long wavelength contributions 
is tractable. The key approximation is to neglect the 
the case with no scalar fields, Pilati’D I 

4.3b) terms in the 7f = 0 equation. In 
and Teitelboim o have considered this same situation, 

which they lab&d the strong gravitational coupling limit, G E rn~’ -+ co. Their applica- 
tion was to quantum gravity (see Sec. V). In addition to incorporating matter fields, our long 
wavelength limit interpretation has the flexibility of allowing for interactions with short distance 
effects through the stochastic formalism. As B warm up we remind the reader how HJ works in 
mini-superspace model before turning to the long wavelength inhomogeneous model of interest 
to us. 

B. Homogeneous and Isotropic Mini-Superspace Model 

The simplest derivation of the SHJE from the full HJ equation occurs in a mini-superspace 
model of homogeneous scalar fields, &(t), evolving in a homogeneous universe with metric 
da2 = -N2(t)dt2 + e2a(t)(dz2 + dy* + d2) analogous to (2.10). The ADM action is 

I = 
I 

dtU Ne? [ - (4.5) 

where we denote U = j d3+ is the comoving volume of the Universe. The momenta are given by 

pa = as/&x = - 3m$ 4a lJe%/N, p+, = &7/B& = Ue3”&/N, 

20 



in terms of which the Hamiltonian is 

H = -2 U-‘e8”pi + ~U-1e-3np$, f Ue3av(,$k) = 0. 
P 

(4.7) 

The Hamilton-Jacobi equation (HJE) is obtained by substituting the derivatives of Hamilton’s 
principal function S for the momenta. The HJE is most transparently written in terms of the 
combination exp[-3a]S. If we assume this quantity is independent of (2, 

s = -~uewI(~k), 

then H must satisfy the SHJE. Furthermore, if we substitute (4.8) into (4.6), we fmd that the 
scalar field velocity is just the gradient of the Hubble parameter and we thus recover eqs. (2.14). 
However it is also clear that solutions to (4.7) exist for which exp[-3a]S is not a independent. In 
the inhomogeneous case, the momentum constraint prohibits these solutions. Lines of constant 
S are shown in Fig.2 for the attractor solution (3.1) of Sec. IILA. 

C. Inhomogeneous Long Wavelength Fields 

We now demonstrate that the solutions of the long wavelength version of the HJE and 
momentum constraint equations lead to a separation of variables in the Hamilton principal 
function analogous to that in eq.(4.8), point by point. In this section, we restrict ourselves to a 
single scalar field. 

In the long wavelength approximation, we neglect the (4.3b) second order gradient terms in 
the energy constraint functional N. Motivated by the results of Sec. ILB, we shall also assume 
that Hamilton’s principal function S G S[a, 41 is only a functional of 

o+y, 7 = dethjl, (4.9a) 

and of the scalar field. The gravitational momenta are then proportional to the 3-metric, 

6.5 1 ij6s 
r’+(z) = 67ijo = ir aa( 

which leads to the following constraint equations, 

(4.101~) 

(4.10b) 

The momentum constraint, which may be rewritten in the suggestive form 

~(c%F) = e-%&,i, (4.11) 
3% 

where ra(z) z aS/&x(z), can be solved following the same line of argument as in Sec. ILB: for 

given functions 4 and cv we conclude that e--30(2’)?ra (2’) is only a function 3F(++,Z) of the local 
value of the scalar field as welI as some integration constant 1, 

f++%a(d) = 3q+qd),q. (4.1%) 
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The scalar field momentum is then necessarily 

,-Wz’),+(,j) = E &$ (N4V (4.12b) 

On the right hand side, no local dependence on a(&) is allowed. The integration constant may 
actually be a functional Z[a, $1 of the fields 4 and a because X/8zi = 0 

The volume factor y’/s = e3m(ai) enters only in a separable way to preserve the density 
character of r” and ?rd. Substitution of eqs.(4.12) into the energy constraint ‘tl = 0 leads directly 
to the SHJE, (2.13b), provided we set 

q+j),z] = -~a[+(d),z]. 

The momentum constraint therefore serves to reduce the full class of solutions of the HJE to 
those which are separable and satisfy the SHJE. 

Although we have now completed OUT promised demonstration that eq.(2.13b) should rightly 
be called the separated Hamilton-Jacobi equation, it is of interest to integrate (4.12) to obtain the 
explicit form of the phase functional S. Consider the case when the functional 2 is independent 
of # and a; S is then essentially the same as the homogeneous result (4.8) 

S = -2 
I 

d31e3P(.i)H[~(+j),I], 

but it is valid point by point. The integral is convergent if one considers a ii&e patch of 
comoving space, corresponding, for example, to our observable Universe. 

There are however more complicated solutions if Z[a, #] is nontrivial: 

S = -4* /d%?@) H[4(zj),l(+,a)] - /‘g(T)dT. 
4 

This phase function describes the evolution of many universes, each with differing values of Z, 
which are defined implicitly through the relation 

g(Z) = -2 /d3ze3a(i)~(~(2j),z), 

where g is an arbitrary function, as is shown in Appendix B. This solution is used in the semi- 
classical treatment of Sec. V describing the wave functional of many universes. However, each 
distinct universe is characterized by a single value of Z, as we now show. Let us assume that 
g is not constant. Take a sequence of field configurations a(r), d(z), corresponding to one 
evolving universe. If eq.(4.15b) is satisfied at one time for a given Z, then it will be satisfied at 
all subsequent times with the same Z, since by eq.(3.14), 
in time. 

exp[kt(+j)] $$(#(d),T) is conserved 

Imposition of the momentum constraint, which has played such a crucial role in our anal- 
ysis, has effectively been neglected in the literature because a theorem proved by Moncrief and 
Teitelboim” showed that if Hamilton’s principal function satisfies the energy constraint every- 
where in space then it also satisfies the momentum constraint. (See also Kucharss for a more 
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general discussion of constraints). The reason we cannot apply this theorem is that, by ne- 
glecting second order spatial gradients, we have lost terms whose presence were crucial for the 
proof. For example, the Poisson bracket between our approximate Hamiltonian densities at two 
different points, 

‘j’) 
(4.16~) 

vanishes, whereas the exact Poisson bracket gives the momentum constraint: 

{x(zj),li(zj’)) = (Tij(zk)Ej(zk) t 7ij(lk’)l-lj(2k’))6~i(.k - 2’). (4.166) 

The Moncrief and Teitelboim (MT) redundancy theorem depends crucially on (4.16b). If one 

were to include second order gradient terms such as ~@l’ in (4.168), one would recover the 
exact Poisson bracket but this would take us back to the full nonlinear gravitational problem. 
(MT actually foresaw that their theorem would break down if one neglected second order terms. 
See also ref. 20) We conclude that within a spatial gradient perturbation framework, both 
momentum and energy constraints must be explicitly satisfied. 

A concrete example of a functional which satisfies the energy constraint for a scalar field 
with an exponential potential (Sec. III.A), but not the momentum constraint is, 

s=-[ 6T~T”)11/1 /d3~e3”(d)mfidC’)/m+’ cosh(,(a(zj) - Ji2;;+(zj)/mp - qzj)), 

where I(+) is independent of either a or 4. Unless 1(z) is suitably restricted, S is not even in- 
variant under reparameterizations of the 3-metric whereas the momentum constraint guarantees 
this property for the solutions (4.14) and (4.15) (Ref. 21, p.1187). 

Recalling that Hamilton’s principal function is the phase in semiclassical theory, a nice 
reinterpretation of the momentum constraint, implicit in (4.10b), is to recast it in terms of 

the phase of each cell volume, s(sG) = - !$-Ue3”H(&), as in (4.8): VS = paVa + p+,V$k. 

We also have 3 = pa& + p+,&, so the total spatial and temporal variation obeys dS(rj, t) = 

pdrj, W+j, t) +p+,(+j, t)&b( zj, t). That is, the local mini-superspace criterion dS = p-da+ 
p+,dqh must hold point by point and moment by moment. Within this language, the non-duality 
between a and & that seemed apparent in (4.10b) is therefore easily understood. 

D. Probability Functionels 

The probability functional P[rij, bk] for field configurations rij(zj) and +k(rj) has encoded 
in it the full history of the ensemble of universes. Time does not explicitly appear. It is an 
intrinsic quantity to be defined in terms of the fields .ss A typical choice for us is the measure of 
the local volume expansion factor det(7ij), i.e., of CL To find the probability that the fields $k 
have cordiguration +k(+j) at time ~0, we must determine the constrained probability functional 
P[h;j,$klO(zj) = a~] where hij z exp[-Za]y+ To evaluate this we need to make use of 
the conservation law that P[7,j, &] obeys (in the absence of stochastic forces) which expresses 
the vanishing of the divergence of a probability current in superspace. This follows from the 
Wheeler-deWitt equation (see Sec. V). 

Instead of presenting the general case we confine ourselves to the long wavelength approxi- 
mation where S (and P) are functionals only of the 3-metric determinant and the scalar fields. 
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We also only treat a single scalar field. We fist discuss the mini-superspace model of Sec. B. 
The conservation law for P is most conveniently expressed in terms of flows on superspace. 
Superspace has a geometry described by a super-metric 

ds= = GAsdXAdX , B (4.1i.a) 

x0 = a, X’ = #, and Go0 = - 2 Ue=” IN, Gll = U&-/N, (4.17b) 

designed to make the kinetic terms in the action 0: da ‘. The flow velocity is just the contravariant 
moment= pA, given by GABaS/aXB (eq.(4.6)); th e covariant momentum is pa = as/axA. 
The conservation equation for probability current is 

(pAqa = & aA(~~GABass) = 0, (4.18). 

where the semicolon denotes covariant derivative in mini-superspace. 

Let us choose a as our time measure. The constrained probability of observing a scalar 
field value 4, given a, is defined by 

(4.19) 

By integrating the equation of continuity over all 4, we find that 

/ 
P(q ~)JzGyas/ao)d~ 

is constant. However, from the definition of the momentum, (4.13, Goo(aS/aa) = & is unity for 
the Q time choice, and thus 

P(#laM =Kov’=-(a, $)d$ 

=K, U+H(h)] P(a, $)d#, 

where K, is some normalization constant. More simply, note that P(+) is just proportional 
to the A = 0 term appearing under the derivative in (4.18): 

P(#la) m Pl/TGOOa,S. (4.206) 

The notion of constrained probability was first introduced by deWitt.3’ For a more recent 
discussion, see Kandr~p.~’ 

One may generalize the above argument to other choices of time surface. For example if 4 
is the in&ton (as in Sec. III.D.‘L), we would wish to form 

P(ajq5)da =K+&t?P(a,$)do = 

K& [(I?-( - %aH/ab)] ~(a, 4)do. 
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where K-’ = J P(a, qS)mda is constant. (Again note that P(al4) is just proportional to 

the A =“, term appearing under the derivative in (4.18).) Since q 0: N-’ changes when 
different hypersurfaces are chosen, so the normaliaation K will also depend upon this choice. 
Thus the probabilities measured on different hypersurfaces may differ considerably because of 
the different G. The ability to transform from one to another is useful for stochastic inflation 
calculations.‘0 

The continuity equation for the probability current implies that P is conserved along clas- 
sical trajectories. Choosing a as the time coordinate, we find the following general solution for 
the constrained probability, 

P(4(a, 4(ao)), la) = J-‘p(4(ao)bo), J = a(4(a,4(ao)))/a(4(ao)). (4.22~~) 

Here, 4 E $(a, $(a.~))) describes the evolution of the scalar field as a function of time, a, and 
the initial field values, $(a~). J is the Jacobian of the transformation linking the Eulerian 
coordinates +(a, $(a~)) to the Lagrangian (‘initial’) coordinates ~(Q.o). Applying eq. (3.7), 
we find that J = [db(4o)ld4ollIdb(4)/d41; we can therefore write the solution in terms of an 
arbitrary function f: 

P(4b) = f(a - b(4)) Wd4. (4.226) 

For example, in the case of an exponential potential, b = Kp4/mp, eq.(4.22b) describes a 
form invariant probability. However, every time the system receives a stochastic kick we would 
generally expect the form to change. 

Our analysis can be generalized to inhomogeneous fields. The super-metric dsz(z) has the 
same form as (4.17), but varies from point to point, with U now interpreted as a cell volume of 
the scale we have smoothed over. We detine the probability functional on a(z) hyperswfaces to 

P[+)i=(z)] = P[,(z),4(z)]K, n ~G”(z)&, 
D 

where Ic, is a normalization factor. It is conserved because it is the first term appearing under 
the derivative in the functional equation of continuity for P, 

6x:(z) [P~GAa(46;&l] = 0. 

Since the configurations allowed in the probability functional should be required to satisfy the 
energy and momentum constraints, we expect that P must obey corresponding functional equa- 
tions expressing this. The energy constraint on P is (4.24). The momentum constraint on P can 
be derived within the context of canonical quantum theory, as we describe in the next section, 
and takes the same form as the momentum constraint equation obeyed by S: 

$ [&] ,i = & a,;(29 + $5 4,i(Zj). 

A consequence of this is that P[a,$ is reparameterization invariant under spatial coordinate 
transformations. Just as we showed for the phase at the end of IV.C, a transp,arent way to 
rewrite (4.25) which makes the invariance manifest is to use the density lnP(rJ,t) for a cell 
volume of size U (defined by $SlnP/&(&)). Th e momentum constraint is just VlnP = 
VU ahP/Bu + V4alnP/&#, requiring that coordinate changes respect the functional form of 
InP. 
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An explicit solution of (4.24), for a single scalar field with Hamilton’s principal function 
given by the general class of solutions (4.15a), is 

7’[4(z)la(z)l = fb(l) - b[4(l)l,+) - b[4P)1,...134(l)1$;4~W 7 (4.26) 

where f is an arbitrary function. This result may be verified using the identity (B.3a) in 
Appendix B. Usually one chooses all of the a(z) to be identical, in which case we interpret this 
functional to be the probability on a uniform a surface. 

A sample functional form that arises in most single in&ton models is the Gaussian-like 
form: 

734(~)la(~)l = =xp{ - i J / d32d3se3a(“)~($(zj),I)~-1(zj,yj) e3~(d)~(4(yj),q} 

&y ($$$,(4(ml) . (4.27) 

Here, t-‘(~9, yJ) is the inverse of a two-point correlation function. We have assumed that 
e~*MI/aI cx exp[3(a - b(4))], which follows from (3.7) and (3.14). Such a form could describe 
the spatial correlations that give rise to galaxy formation. Note that the connection between dif- 
ferent spatial points expressed through [-I in (4.27) cannot come from our truncated equations. 
For this reason, (4.27) does not obey (4.25). Within stochastic inflation, these connections arise 
from spatial correlations in the quantum fluctuations crossing the horizon and feeding the long 
wavelengths. Thus, a self consistent framework requires the explicit connection to the short 
distance forces.‘0~‘6 

V. QUANTUM EVOLUTION OF LONG WAVELENGTH FLUCTUATIONS 

Only within the quantum theory can the intimate relation between Hamilton’s principal 
function, S, and the probability functional P introduced in Sec. IV be properly appreciated. 
The wave functional ‘I![Tij, (bk] can be written in terms of a phase S and modulus P: * = P’/2ei5. 
Canonical quantization using Hamiltonian methods yields functional differential equations for 
* expressing the constraint equations, which, when written in terms of S and P, bear much 
similarity to the equations for S and P given in the last section; indeed they are identical in the 
limit in which tr + 0: in Sec. IV, we were dealing with the WKB limit of the quantum gravity 
theory.3’ Of course, the canonical quantization method has its unresolved controversies,18 but it 
is at least straightforward for the well studied homogeneous mini-superspace models for which the 
energy constraint (Wheeler-deWitt) equation is 811 that is required. Our long wavelength metric 
with its restricted degrees of freedom generalizes these homogeneous models.‘9~10 Indeed the 
Hamiltonian constraint commutes at different spatial points, so that at one point, the Wheeler- 
deWitt equation is the same as for homogeneous mini-superspace models. We solve exactly the 
Wheeler-deWitt equation with finite h for the case of an exponential potential, the principal 
analytic model of this paper (Sec. B). (W e restrict the discussion in this section to one scalar 
field only. We also set h = 1 in the subsequent equations.) 

As in the last section, the issue of the averaging volume, U, arises. In mini-superspace, 
it is the comoving volume of the Universe. We view U as the comoving horizon volume when 
fluctuations in our observable Universe expanded beyond the Hubble radius during inflation, 
as motivated by our long wavelength framework in which we spatially average the full theory 
over the horizon size. Since U is much larger than the Planck volume, quantum corrections to 
long wavelength evolution are necessarily small. We conclude that quantum corrections to the 
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WKB solutions of Sec. IV are unimportant for galaxy formation and do not result in significant 
non-Gaussian modifications on observable scales. 

In Sec. C we discuss the functional momentum constraint, which must also be explicitly 
satisfied along with the functional Wheeler-deWitt equation. We find that the long wavelength 
Wheeler-deWitt equations do not, in general, satisfy the momentum constraint except in the 
WKB limit. We have not been able to construct a self consistent quantum theory of long 
wavelength fields. Since the short wavelength components are integrated over to yield the long 
wavelength quantum theory, our construction based on a wave functional of the long wavelength 
fields may be fundamentally flawed. 

A. Review of Canonical Formalism 

Throughout this section, we consider the case of a single scalar field only. In the canonical 
approach to the quantum theory of the gravitational field, the Hamiltonian and momentum con- 
straints, eqs. (4.3) and (4.4), are expressed as functional operator equations acting on the wave- 
functional ‘9, with the momenta replaced by the functional derivatives x7ii (z) = -i6/6yij(Z) 
and T+(Z) = -i6/154(2): 

T-i(z)* = 0, ‘Hi(+)rY = 0. (5.1~2, b) 

In the long wavelength approximation we drop all second order spatial gradients. We further 
assume that *[a,41 depends on the metric only through the volume factor, a(c) = ln(r(z))/6, 
in which case the constraints become, 

2n -e-w=)p - -e @ 1 -34.) ha - 3mg 6a(z)l + e3”‘“‘v(~(z))] * = 2 64(ZY 0. (5.2~~) 

(5.26) 

The above expressions must be regularized to be meaningful. Here we split the spatial space into 
cells of equal comoving volume, U, and replace the functional derivative by an ordinary partial 
derivative, 6/60(r) + W1a/&h(z). With this substitution, the Wheeler-deWitt equation is 
the same as that for homogeneous mini-superspace, except that it holds point by point (over 
cells of volume U). Although it generally has operator ordering ambiguities, for our choice of 
variables (5.2a) gives the correct ordering. It can be recast in a manifestly field reparametrization 
invariant form3e 

-+J” + NUV(4,)S = 0. (5.3) 

All covariant derivatives are taken with respect to the metric (4.17~~). Note that for a single 
scalar field the Wheeler-deWitt equation is independent of N; i.e., it is conformally invariant in 
the super-metric. However, this is not necessarily true for multiple fields unless one explicitly 
introduces a term D( R’J! coupled to the Ricci curvature of the super-metric. Otherwise the time 
surface issue would have to be addressed. 

To make contact with the classical analysis of Sec. IV, we express the complex wavefunction 
in polar form, * = P1laeis, and split (5.3) into real and imaginary parts: 

2p-lllpv2iA~A 
2 

+ ;SmAQ + NUV(4k) = 0 (5.5a) 

[d=EPSq ,A = 0. 
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The phase and modulus have a quantum nature since the first term in (5.5a) is actually propor- 

tional to ha, hence of quantum origin. The remainder is the classical Hamilton-Jacobi equation 
(4.7). Further, eq. (5.5b) is just the equation of continuity (5.4). We now recognize these as 
the WKB or semi-classical limit of the quantum equations in which tL + 0. In these equations 
h always appears in the combination h/U. Hence the semi-classical limit h + 0 is essentially 
equivalent to the infinite volume limit, U + 00. In these cases S + SCl, Hamilton’s principle 
function of Sec. IV, and P + P,i, the classical probability function of Sec. IV. 

However, it is not P we want, but the constrained probability on a specific time hypersur- 
faces. As in Sec. IV, we do this (up to a constant normalization factor) on a surface of constant 
a through the pa operator: 

P(4lcY) = i(g* - WE) = -2lYl$$ (5.6) 

It is conserved, as one may readily verify through the equation of continuity 

i[vq’w’ - w*)] ,* = 0, (5.4) 

which follows from (5.3). In the general inhomogeneous case, one replaces the partial derivative 
by a functional derivative at point E. 

The probability function, eq.(5.6), which coincides with our classical definition, (4.20b), is 
positive for an expanding Universe. However, one of the problems with the quantum theory 
is that P(4la), may become negative, depending on the sign of -as/&. We do not consider 
this a major problem, at least in the semi-classical limit, since a would have ceased to be 
a viable time coordinate. For if -BS/Ba changes sign, then, by continuity, it must at some 
time vanish. Within our long wavelength equations this would imply that the positive definite 

quantity fU-‘e-6a($$)’ t V(4,) in eq.(4.7) would vanish as well, describing a Universe which 

is static and with no matter energy. Of course if we consider universes with positive three 
curvature @)R, -as/&x does change sign, and Q can be a valid time coordinate only for either 
the expanding or contracting portion of the spacetime. With quantum fluctuations, it is no 
longer clear that P(4la) will always remain positive. In fact, our exact quantum solutions to 
the Wheeler-deWitt equation can have apparently negative values of the probability. 

B. Analytic Long Wavelength Wheeler-deWitt Solutions in an Exponential Potential 

Even for the quantum theory, the exponential potential leads to analytic solutions, which 
we display here. By making a change of variables, one may reduce the long wavelength Wheeler- 
deWitt equation describing a single scalar field with an exponential potential into a Klein-Gordon 
equation. By constructing analytic Green’s functions, we can explore the entire solution space. 
Although there are numerous solutions depending upon boundary conditions, the Feynman 
Green’s function, which includes the Vile&n wavefimction37.3s as a special case, is particu- 
larly useful because it describes an expanding Universe with a scalar field rolling down the 
potential. By contrast, other Green’s functions such as the retarded one, an example being 
the Hartle-Hawking wavefunction have components which describe contraction. We show that 
quantum corrections to the long wavelength evolution of the probability function derived from 
the Fey-an Green’s function, which is of relevance for galaxy formation, are usually small. 

The Green’s function is a solution of eq. (5.3) with a delta-function term iS(a - ao)b(# - 

40)/m added to the right hand side. (The factor off has been inserted for later convenience.) 
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To transform the Wheeler-deWitt equation into a Klein-Gordon form for a massive field, we 
change variables: 

e =exp(3a - $$+/m~) cosh( & - v”i%a$/m,) , 

f =exp(3a - 

The inverse transformation is given by: 

a = 3(1- 1/(3&J)) l [ lu(2 - f’) _ tad-‘(f/e) 
2 43 19 
hl(e’ - f2) 

d =&3p))% 2@ -1 
- t&(f/e)]. 

(5.8~) 

(5.86) 

Note that e must be positive and that (f 1 < e. The exponential term in (5.7) is proportional to 
the attractor solution of the classical Hamilton-Jacobi equation (See eqs. (4.8) and (3.1)). The 
argument of the cash and sinh is a constant along the attractor trajectory, eq. (3.4~~). The new 
coordinates are plotted in Fig. 6. The super-metric line element now becomes, 

~2 = +(I - 1/(3p))-’ ( -de’ t df’)exp-3a t ~#/w)/N, (5.9) 

and the Green’s function equation simplifies to: 

Pry a=* -- - + n’q = S(e - eo)6(f - fo), with .’ = U’V@z$/(67r(l - 1/(3p))). 
ael afa 

(5.10) 

Changes of variables in the Wheeler-deWitt equation have also proven to be useful in numerical38 
and analytic solutions 40 of homogeneous closed Universe models. 

We wish to describe an inflating Universe with a scalar field moving down the potential. The 
appropriate boundary conditions for the Green’s function are the Feynman boundary conditions. 
The Feynman Green’s function ‘Zp can be expressed” in terms of a Hankelfunction of the second 

kind Hi’) (consult Abramowits and Stegun42 for notation): 

*( f F e, ;eo, fo) = $&‘)[K(J(e - eo)l - (f - fo)l - ic)], 

where c is a positive inIinitessimal. If the expression under the square root is positive, (e - eo)’ - 
(f - fo)’ > 0, the function is complex, 

*&e,f;eo, fo) = ; [Jo(& - Q)’ - (f - f#) - G%(K& - eo)l - (f - fo)‘)], (5.11b) 

whereas it is purely imaginary for (e - e0)2 - (f - f,,)l < 0, 

*F(e, f; eo, fo) = $fo (&e - eo)l + (f - fo)2) (5.11c) 
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Here Ko is a modified Bessel function, which decays exponentially for large values of its argument. 
The constrained probability (5.6) has a very simple form: 

JY&b) = ‘{ 
1 - *, 

** 1 - exp - (1 - 1/&)[3(a - ao) t Ji%(4 - 40)/mPl+ 

1t& 

1 - exp - (1 t 1/&)[3(a: - (20) - a(4 - &l)/rwl > 
(5.12) 

for &I$ - $oi/mp < 3(a - a~ , and it vanishes elsewhere. This solution is shown in Fig. ). 
7 for several times. It is positive everywhere and is singular whenever the fields approach ‘the 
null trajectory,’ I$ - $ol/mp = -(a - ae); h ence it is not normalizable because its 
integral over 4 is divergent. However, linear combiiations of the various Feynman functions are 
not guaranteed to yield positive probabilities. The Hankel function phase is just S, which is 
negative, describing an expanding universe, as recommended by Vilenkin.37J8 

Other Green’s functions with differing boundary conditions are also of interest, but these 
are combinations of terms with positive as well as negative phase components. For example, the 
retarded Green’s function is essentially the first term of eq.(5.llb), 

*R(e,f;%fa) = &we -eel - If - f&+J(e -Q)’ -(f - f#). (5.134 

Unlike the Feynman function it vanishes for le - eel > If - fol. It is displayed in Fig. 88. If the 
initial value a0 is taken to be the zero volume limit, a0 --* -00, then e. and fo vanish, yielding 
the Hartle-Hawking’3 wavefunction for the exponential potential case: 

s!!aR(Q,ljs) = Q!R(e,f;O,o) = ~.T+exp(3a - J+,]. (5.136) 

As Fig. 6b shows, it describes a wave moving with uniform velocity and constant shape. ‘I! 
approaches a constant in the zero volume limit with C$ held fixed, as required by Hartle and 
Hawking. In a homogeneous closed model, which cannot be treated with our first order gradient 
expansion, (5.13b) would follow from the ground state wavefunction of the Universe. There has 
been much controversy in the literature over whether the Hartle-Hawking wavefunction or the 
Vile&n wavefunction offers a better description of the ground state of the Universe. For us, 
however, the ground state for long wavelength fields is irrelevant. By analogy with stochastic 
inflation, we consider the long wavelength Wheeler-deWitt equation as an evolution equation 
from some given initial wavefunction. This initial state is generated within the Hubble radius 
by short scale physics which has not been included in qor long wavelength treatment. (There 
may not even be a ground state, as for the inverted harmonic oscillator in ordinary quantum 
mechanics for which the evolution of some initial probability distribution using the S&&linger 
equation is still meaningful.) 

An interesting question is whether quantum gravity corrections will affect the fluctuations 
for galaxy formation. For the long wavelength component, the answer is probably no. Our 
version (5.2~~) of the Wheeler-deWitt equation is, of course, only an approximation to the full 
quantum system since all operators have been averaged on the comoving volume, U, which is 
justified only if it exceeds the comoving horizon volume, H --3e--3a. In this case, there is no causal 
contact between different spatial points, and they may be treated as independent universes, just 
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as explained in Sec. II. However, when a0 + -oo, the argument of the Hankel function in 
(5.11a1. 

,I 

sexp(3u - @+,,) = &(E#IeYP > &(E$)’ z 109, (5.14) 

is exceedingly large, since the correct level of fluctuations are produced when H/m? z 10d5 (see 
discussion after eq. (3.12)). One is justified in using the asymptotic expansion of the Hankel 

function Hi”(z) E me-‘(‘-*I’): h t e analysis is essentially classical to one part in a 
billion. however, it is quite possible that quantum gravity effects could affect the fluctuations 
for galaxy formation by altering the perturbations that arise within the horizon. One expects 
that something must happen here because scales less that the Planck length expand to encompass 
our present horizon size. 

To see more clearly that long wavelength quantum effects will not be of importance for the 
fluctuations useful for galaxy formation, consider a more general expansion solution, in which 
the Feynman function is smeared over a weight function, IV(&): 

g = 
J 

*F(e, f;% fO)W(h)% (5.15a) 

Consider, at fixed a, scalar field values which are far from the edges of the null trajectory, 
14 -&I < a(a - uo)mp; there, the argument of gF may be approximated as 

(Keeping away from the null trajectory is justified after the fact by noting that the wavefunction 
we obtain in (5.15b) has little weight on the null trajectory.) If the initial value 40 is chosen 

so that Keh-~+o/~s’ z lo’, motivated by the maximum fluctuation level allowed by 
observations, then one can apply the asymptotic expansion of the Hankel function, yielding 

*(a, 4) = = -PQ-&Gwm)la e-inerP(3P-J1;;T~lm~~ g(” _ Jq&lmp). 

The waveform g is 

(5.15b) 

d& W(~o)exp{ine(3aa-~~o/mp)eosh( (5.15~) 

To make this tractable, we assume that the weight function W(&) is sharply peaked about 

& = &,, the classical initial value. In this limit, we can show that g is related to the Fourier 
transformof W. For real g, the probability, P(+) = 6/cg2(a-~&/m~), evolves in a similar 
way to the classical evolution, eq.(4.22b). Thus we conclude that, provided the averaging volume 
is large compared to the Planck length and provided transients have decayed, long wavelength 
quantum effects are tiny. 
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The Klein-Gordon equation admits a complete set of wave solutions, ‘I? = exp[-i(we - kf)], 

with w = iv’-, where k is the ‘w.wenumber’. However, for these, narrow wave packets 
describe collapsing probability distribution_s, as we now show. If one sums over a narrow band of 
positive energy waves centered about k = k, with weight given by W(k), then it is a well known 

result that the wave form moves at the group velocity f/e = g(x), with a constant shape, 

t$ = J &W(k) /(we-kf) m ,-+‘.(%-i;f) g[$(@e - f),, 

where 

g[z] = J dkW(k)e-‘+-‘), 

which, for convenience, we shall assume has its maximum at I = 0. The constrained probability 

P(4,) = d 
Q~(E)rnp g’($X)e - f)$ ($(Q= - f) 

is explicitly conserved; for simplicity, g was assumed to be real. However, in the large a - ao 
limit it approaches a delta function. For example, the argument of ga may be written as 

-,-yqe3~-47&/mp si& 
@- 

fic#~/mp - sinI-‘(Z/n)] 

The point of maximum probability, z = 0, evolves according to the attractor solution of (3.4a), 
and its width decays exponentially, (Ac$~)‘/~ LX e -0(3-‘lp)11. This does not mean that a typical 
long wavelength wavefunction collapses, but rather that these solutions correspond to classical 
trajectories in the decaying mode. One must work to a higher order in k - ko, as given, for 
example, in the Feynrnan functions, in order to produce probability functions of physical interest. 
Furthermore, in order to describe the generic collapse of a wavefunction, one must somehow 
introduce short scale fluctuations.” 

The change of variables, eq. (5.7), is the crucial step in obtaining our exact solutions. We 
end this section by showing how it was obtained. The homogeneous Wheeler-deWitt equation 
is 

4?r a9 9~ ---_ 
3m$ ac? ay 

t 2U1V~ exp( 6a - 

When expressed in terms of null coordinates, 

u= 4-k ,r 3m; 

4Ka, 
2)= f$- 

i- 

3m+ 

4rrQ’ 

this equation has a simpler structure, 

4exp[ - ~(,-,,~~),]~{e~p[~(,+,i~~))v]~}tZO’V,U = 0. 

The obvious thing to do now is remove the exponentials through the change of variables 

z=exp[g(l-l/fip)u] and ~=exp[-g(I+I/fip)v], 
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and finally revert to a diagonal D’Alembertian, by introducing 

z=e-f and y=e+f. 

This yields the Klein-Gordon equation in the form (5.10). 

C. Inhomogeneous Fields 

As in the semi-classical theory of Sec. IV, we might expect to have difficulties satisfying the 
quantum version of the functional momentum constraint. Just as for the Hamiltonian constraint, 
the momentum constrain,t for the wavefunctional g = 7J’/2S has both real and imaginary parts. 
The real part of ‘%?‘311y gives the Hamiliton-Jacobi equation for S and the imaginary part yields 
the equation of continuity for the probability P, (4.24). The real part of 9*7-&g is the familiar 
momentum constraint on S, (4.10b), and the imaginary part is an identical equation for P, eq. 
(4.25). Taken together, the two imaginary parts impose the requirement that the probability be 
both field reparzuneterization invariant and spatial coordinate reparameterieation invariant. 

Since the energy constraint (5.2a) holds point by point, a natural long wavelength wave 
functional to adopt for an exponential potential is a product of Feynman Green’s wavefunction- 
als, one for each cell of coordinate volume U = d3r: 

q = Ij ~~~)[~=rp(3+‘) - ~d(.ww)] = rj +p [ - SC&U]. (5.16) 

We have taken ag = -oo. Writing it in terms of the one-point classical Hamilton-Jacobi 
principal function attractor solution, Scl,.tt (see eq. (3.1) and (4.&l)), makes the asymptotic 
N exp[iS,l&LT] semi-classical phase behavior manifest. To be more general, we could smear 
the Ha&e1 functions at each z over #o, as in Sec. B. Direct substitution indeed shows that the 
trial solution does not satisfy (5.2b); indeed even the real part of 9’7-&!P does not vanish. Thus 
in the quantum theory, the redundancy theorem, which states that if the energy constraint is 
satisfied then the momentum constraint is automatically true, breaks downs in the long wave- 
length limit as expected from Sec. IV. At the semi-classical level, however, it was found that 
subsets of the Hamilton-Jacobi solution space do satisfy the momentum constraint. 

We do not know how to proceed with this long wavelength formulation beyond the semi- 
classical level. Indeed it may be that the fluctuations must be semi-classical if one neglects 
second order spatial gradients, as signaled by commutation of the long wavelength Hamiltonian 
densities at different spatial points. Within a full quantum treatment it may be that the quan- 
tum communication between short and large scales invalidates the concept of a wavefunctional 
obeying long wavelength functional equations. ’ Since many of the issues raised by the problem 
of cosmic structure formation ultimately require us to address the quantum nature of * to get 
P, even an approximate quantum theory based on the long wavelength formulation would be 
worthwhile. 

VI. DISCUSSION AND CONCLUSIONS 

Misner, Thorne and Wheelera’ extol the virtues of the Einstein-Hamilton-Jacobi equation, 
for containing as it does “as muchinformation as all ten components of Einstein’s field equations” 
-provided its solutions are properly parameterized - and for providing the shortest “leap from 
quantum to classical dynamics.” In spite of this, the EHJ equation has not been widely to solve 
inhomogeneous problems in general relativity. This is similar to the situation in nonrelativistic 
dynamics in which the Hamilton-Jacobi formulation provides valuable insight but is not generally 
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a good calculational tool. The surprising thing in our long wavelength application to inflation 
is that Hamilton-Jacobi methods are extremely useful for rapidly providing quantitative results 
(Sec.1II.D). 

At the level of the first order spatial gradient expansion explored in this paper, the Hamilton- 
Jacobi equation does not contain as much information as advertised. Although there is a general 
theorem that the momentum constraint is redundant in the full theory, it is not so for our 
truncated system. Accordingly, a crucial ingredient in our analysis is a careful treatment of 
the momentum constraint which, if one neglects the evolution of gravitational radiation, gives 
the Hubble parameter as a function of the scalar field values, and some integration parameters, 
H E H(&, I&). Without the momentum constraint, the long wavelength equations describe each 
point evolving like a separate universe. The momentum constraint must be explicitly satisfied 
in order to provide the first order patching required to glue the points together. The momentum 
constraint was explicitly shown to restrict the solutions beyond the full set of solutions of the 
zeroth order equations. 

The momentum constraint provides the first level of patching required. The inclusion of 
higher order spatial derivatives modifies the energy constraint and scalar field equations as well. 
The ability to make a consistent approximation scheme at higher order is explicitly explored in a 
third paper in this series. a There, in a nonlinear extension of the longitudinal gauge (the same 
cx parameterization of the metric but a specific lapse defining the time foliation), second order 
spatial gradient terms are included. This gives both linear perturbation theory at one level and 
these nonlinear long wavelength equations at another, and provides a self consistent arena for 
matching the short distance and long distance fluctuations inherent in the stochastic approach. 

At this order, gauge issues are not significant. It is possible to include gravitational radia- 
tion, and it is not necessary to assume that the shift function vanishes.23 However, hypersurface 
shifts do play an important role in our formulation. Although we showed that the choice of time 
variable is arbitrary at tist order in the spatial gradient expansion, a is a natural time choice as 
long 8s the Universe continues expanding. Nonetheless other choices for time hypersurfaces are 
more useful in certain physical contexts. To determine matching with the short distance physics, 
it is natural to use a hypersurfaces to evaluate the 4 fluctuations crossing the horizon. In SB2, 
we argue that ln(lia) hypersurfaces, which are not that different from Q hypersurfaces in Mat- 
ing models, is a somewhat better choice in the stochastic framework. Once the initial conditions 
are set at horizon crossing, however, the propagation phase is much more easily calculated on H 
hypersurfaces; when one scalar field C# dominates the energy density, these are almost identical 
with the # hypersurfaces during inflation, but, as a time variable, H does not break down dur- 
ing scalar field oscillation at the end of inllation. Mation ends when H(&) > @ HsR(&), 
which translates to a critical value of the Hubble function or of the inflaton field; thus H surfaces 
tell us when the Universe reheated. On these surfaces, a fluctuations are precisely the nonlinear 
analogue of the C fluctuations of linear perturbation theory. We also described the hypersurface 
shifting techniques that are required to follow through this picture of initial conditions for C#J 
fluctuations specified on a surfaces, but propagation of a fluctuations occurring on a foliation 
of 4 surfaces. 

We found that the Hubble function solutions of the separated Hamilton-Jacobi equation 
were often multi-valued and characterized by different integration parameters, but that they 
rapidly approach each other as expansion proceeds. The loss of memory of detailed initial 
conditions signals the presence of an attractor solution. That transients are decaying and often 
ignorable lies at the heart of the calculational approach we take to stochastic inflation in SB2. 
Here, we have noted that analytic solutions of the evolution equations can often be found if one 
knows the detailed form of the attractor. The attractor may be as simple as the slow rollover 
Hobble parameter, which is approximately valid in a wide class of inflation models. For this case, 
we showed that fluctuations can be obtained analytically even for apparently complex models 
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with many scalar fields of dynamical importance, for which we previously resorted to numerical 
integration (SBB), such as double inflation. The attractor can also differ substantially from 
the slow rollover form, as we saw for inflation with an exponential potential. As several other 
researchers of inflation have found, and as we have extensively shown in this paper, and also 
show in SBZ, the exponential potential serves as a nice proving ground for ideas since it is so 
amenable to analytic solutions. 

Probability function& are fundamental to any stochastic description. To be meaningful 
they must be referred to the time hypersurface they are measured on, described here by con- 
ditional probabilities. We explored the transformation from one time surface to another, and 
related the probabilities to the modulus of the wavefunctional of the Universe. Although the full 
quantum theory is far from complete, we showed that the long wavelength approach is self con- 
sistent at the semi-classical WKB level where one considers only the phase of the wavefunction. 
During the propagation (drift) phase of evolution, quantum effects are small for the fluctuations 
of relevance to our observable patch of the Universe, within the local Hubble volume. 

This paper is really just one step to the larger whole of building a consistent short-long split 
for inhomogeneous early universe field theories. Although the approximate equations that one 
uses can not do justice to the full range of nonlinear behavior expected, we believe that they 
can be developed sufliciently to capture the essence of fluctuation generation and propagation 
in inflationary cosmologies and yet be amenable to numerical calculation. 

We would like to thank Jim Bardeen, Alex& Starobinski and Bill Unruh for stimulating dis- 
cussions on some of these issues. D.S.S. was funded by NSERC of Canada, the U.S. Department 
of Energy, and NASA at Fermilab (Grant No. NAGW-1340). J.R.B. was supported by NSERC 
and a Canadian Institute for Advanced Research Fellowship. We also thank John B&all for 
the hospitality of the Institute for Advanced Study where some of this paper was written. 

APPENDIX A: TIME HYPERSURFACE INVARIANCE 
IN A FIRST ORDER GRADIENT EXPANSION 

In deriving the long wavelength equations, (2.13) and (2.14), we did not make any special 
assumption about the time coordinate. These equations were valid for any time choice. In 
this appendix, we show explicitly that the long wavelength equations are invariant under an 
arbitrary time hypersurface transformation. In particular, we demonstrate that choosing a new 
time hypersurface, T = T(t, zj),, does not change the form of the 3-metric, eq.(Z.lO), provided 
OUI new spatial coordinates, X3 = xj(t, d), are projected orthogonally to surfaces of constant 
T, and if, further, one neglects second order spatial gradients. 

Assume that the new time surface T(t, +j) is arbitrary and choose B set of spatial coordinates 
Xj on a T = To hyperswface. Spatial coordinates on the other surfaces of constant T will be 
labeled by orthogonal projection of these initial spatial coordinates, giving us a complete set of 
new coordinates. This prescription ensures that the metric components g(T,X~) vanish. Along 

lines of constant Xj the old coordinates change according to &fi = TMs, where s is some 
arbitrary parameter, which we eliminate in favor of the new time parameter, T, 

dT = T,-dzQ = T,,T’“ds 

so that 

(g,.j = $2 (A.11 

We have thus found four of the sixteen tranformation derivatives relating the old and new 
coordinates. The remaining twelve will depend on the initial choice of Xj coordinates, so we do 
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not expect to obtain an explicit expression, but can obtain them differential equations which we 
now derive. The transformation matrix 

evolves in T according to 

Changing the derivative in Xj to one in zp gives 

($qXj = BL [&I,; 

(A.2) 

(A.31 

This expression allows us to verify that the orthogonality relation, 

B;T,, = 0, 

is constant in time; that is, the columns of the transformation matrix are tangent to a surface 
of constant T. The fist row of the matrix, 

can be substituted into eqJA.3) to yield 

c2L = r(&,.,- &$J.,l= (A.51 

The right hand side vanishes if we drop second order spatial gradients, hence to this order 
BL E Bi(Xj) is independent of T. 

By integrating zj along a line of constant Xj using (A.l) we obtain 

.j = fj(xj) + (A4 

in terms of an arbitrary spatial function fj(Xj) which, f or simplicity, w take to be fj = Xj. 
Thug ZJ and XJ di&r by a term that is fkst order in spatial gradients. A function 9 evaluated 
at +J or Xj will then be equal up to this order: 

s(zj) = g(xj + 
J g&T) 

= !JCxj) t B,j 
J 

&IT = g(xj) + second order terms.. 
30 ’ 

If we write the metric as Tij = exp[2u]h;j then the transformed /z;,j~ in the T-X system is a 
function only of the Xj coordinates: 

7b8,18 = eZ=(‘,2’)B:,(xj)Bf,(xj)h*l(zj) = ,s~.(t.xi)B,k,(xj)B:,(xj)hkl(xj). 
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This completes the proof that the form of the 3.metric given by (2.10) is invariant under arbitrary 
time hypersurface transformation since it may be written as a conformal factor multiplied by 
some 3-metric which is only a function of the spatial coordinates, X3. 

Finally, it is useful to note that there is a simple relation between time derivatives of a 
quantity Q on different hyperswfaces. Applying the chain rule and eq.(A.l), we find that 

(g),j = (~)z;/To + (~)tT’*/(ToT’o). 
Neglecting second order spatial gradients, the second term drops out leaving equation (2.16), 
which was used to show that the evolution equations (2.14) and the energy constraint (2.13b) 
are invariant under arbitrary time hypersurface changes if one neglects second order spatial 
gradient 6. 

APPENDIX B: FUNCTIONAL MOMENTUM CONSTRAINT SOLUTIONS 

We show that a general class of solutions of the functional momentum constraint equation 
(4.10b) for long wavelength classical fields is 

s = J d%P(~~)F[~(rj),Z] - /=g(I’)dP, (B&i) 

where 9 and F are arbitrary functions of one and two variables, respectively. Given F and 8, 
the functional Z is defined implicitly through 

g(Z) = JPze 3+i)F,3[d(+j),z]; (B.lb) 

The notation FJ denotes the derivative with respect to the second variable, Z. If we set F = 

-(m+/(4r))H[$(zj),Zj, as in (4.13), then this leads directly to Hamilton’s principal function 
(4.158). The functional Z can be determined by an iterative method: given the functions 4(z) 
and a(r), choose a sequence of I’s for which (B.lb) is satisfied to progressively higher accuracy. 

In Sec. IV.C, we showed quite generally that the solution to the momentum constraint 
equation is given by eq. (4.12), 

6s 

sa(lj) 
= 3~3u(sj)F[~(rj),Z(~,a)], & = ~3u(“i)F,t[~(.j),z(~,cr)]. (52) 

We can integrate S if we know what forms of the functional Z are allowed. Non-trivial constraints 
on Z follow from the integrability condition that derivatives commute in the infinite dimensional 
gradient appearing in (B.2). For example, [S/S+(#), 6/Sa(oj)]S = 0 implies that 

(B.3a) 

(the abbreviated notation F(zj) denotes the full expression appearing in (B.2)). The remaining 
cross derivatives are [a/64(&), 6/6+(yj)]S = 0 and [6/a(&), S/Sa(yj)]S = 0: 

[eWvi)~,,,3(yq] 6Ej) = [+W~,,,,(&)] 6&) = ” 
(8.36) 

37 



62 1 62 

(3.+W~$,(yj)] ba(yj) = [kW~i)F,z(~j)] act(d) = ’ 
(B.3c). 

The left side of (B.38) is a function only of yj and the right hand side is a function only of zj, 
implying that each is just a functional C which is independent of yj and zj. Because there an 
infinite number of variables appearing here, it proves illuminating to first consider a finite model 
with only 3 spatial points, denoted by 1, 2 and 3. Define al = a(l), a2 = a(2), a3 = a(3), as 
well as fi = #J(I), fa = b(2) and f3 = #(3). Eq. (B.3c) then becomes 

8’ = 3Ce 
aa1 

3”‘F,2(fl,q 

a’ = 3Ce 
aaz 

3”‘F,2(fi,q 

BI = 3&3’SF 

aa 
,df3,4 

(B.46) 

where I and C are functions of six variables, i.e., I E I(q, al,a3, fi, fi, fs). We can eliminate 
C from these expressions by dividing (B.4a,b) by (B.4c) and applying the relation 

(it3 (ii3 = - (23,~ 
yielding 

[&]1[e”“‘FJ(f3,1)] = -Fdfl,I) 

[&],[ev2(f3rI)] = -Fdfi,I) 

Holding I constant, one may integrate this equation: 

e3”‘q2(fi,I) t e3DzF2(f2,1) t e3”sF,3(f3,1) = g(I), 

with g(1) an arbitrary function of I. Repeating this analysis for (B.3a,b) leads to the same 
conclusion. In the infinite dimensional case, the sum over all spatial points becomes an integral, 
(B.lb), which is the general form of the functional 1 consistent with (B.2). 

We now wish to integrate (B.2) to determine the phase function, S. Define the functional 

Q by 

S = J d3ze3n(d)F[$(nj),Z] - Q. (L-1 
When substituted into (B.2) this gives 

6Q 62 

Gm =zJ(jq J d% e3+‘)F,2[~(zj),q 

6Q 6Z 

6a(yj) =ba(yj) J d3ze3a(E’)~,~[~(+j),I], 

Since the integral appearing in these equations is just g(l), the solution 

Q = J g(i?)dz’ 
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follows, which leads to (B.l). Although we have thus shown that Eq.(B.l) represents a general 
class of solutions. we do not know if all solutions are of this form. 
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FIGURE CAPTIONS 

Fig. 1: The analytic Hubble function He. given by eq. (3.2) for an exponential potential, 

V(4) = &XP(-$/$4/ mp ) with p = 2.0 is compared with the attractor solution H,tt and the 

slow rollover function HsR($). The scalar field begins with a large value of He., moves rapidly 
to the left, reaches its minimum at &,,, where He, has a cusp. The field then rolls down the 
potential, quickly evolving to the attractor Hat*. At all times H(4) must be greater than the 
HsR(#), which is typically a good approximation to Ha,, if the potential is very flat, p > 2. 

Above the curve (3/2)*/‘Hs~ the the Universe is not inflating. Even when inhomogeneities are 
incorporated, &,, must be spatially independent, and remarkably, the function H(4) is the same 
at all comoving spatial points in the long wavelength approximation. Thus if two spatial points 
have the same scalar field value then their Hubble functions must also agree. 

Fig. 2: Trajectories in the 4 - a plane are displayed for cosmologies driven by an exponential 
potential. The solid and short dash lines represent trajectories of the attractor solution (eq. 
(3.1) and (3.4a)). The long dash lines are surfaces of constant phase, S, of the Hamilton-Jacobi 
solution (4.8); they are orthogonal to the trajectories, as measured by the super-metric (4.17a). 
The thick solid lines illustrate the mechanics of a hypersurface transformation. The length of 
the horizontal line depicts a variation A+( ) a on a surface of constant a, which is analogous to 
the way the initial conditions for galaxy formation are set when a scale crosses the Hubble radius 
during inflation. The length of the vertical line represents the variation Aa on a constant 4 
surface, which gives the fluctuations in the nonlinear analogue of the metric fluctuation C. Long 
wavelength evolution in the time variable 4 is simple to calculate. To effect the hypersurface 
transformation the left endpoint is projected upward along a trajectory whereas the right is 
projected down, until their scalar field values coincide. 

Fig. S: The solid curve shows a numerical solution I&,“,,, of the Hamilton-Jacobi equation for 
a quadratic potential. At large values the scalar field follows the slow-roll solution HSR (long 
dash curve) and, even more closely, the next order improvement Htl,, eq.(3.15b) (short dash 
curve), then begins to oscillate when 4 = 0.35mp. As in the exact solution of Fig. 1, there is 
cusp behavior when the scalar field changes direction at zero field momentum and thus along 
the 61~~ curve. 

Fig. 4: Surfaces of constant Hubble parameter calculated using the slow rollover approximation 
(short dash curves) are shown for the two dimensional potential, V(&,q&) = m~4f/2+m~qi~/Z, 
with m: = 2mi. The trajectories (solid curves) fall towards the origin and are orthogonal 
to constant Hubble parameter curves. Above the long dash curve, & dominates the energy 
density of the Universe, whereas below it $2 dominates. This approximate solution breaks down 
when the Hubble parameter decreases below ml (heavy short dash curve) because 41 begins to 
oscillate (see Fig. 5). One may use these results to analytically calculate primordial fluctuation 
spectra arising from double infMion models (Sec. III.D.2). 

Fig. 5: A separable Hamilton-Jacobi solution is shown for two scalar fields rolling down a 
trough in the potential. Shown are surfaces of constant 61 (short dash) and their orthogonal 
trajectories (solid) for a potential which is a product of an exponential in $2 and a term quadratic 
in 41 (eq.3.28). The trajectories start in the slow rollover regime, but, as & increases, $1 begins 
to oscillate and damp. The trajectories eventually cross; hence the Hubble function may take 
on many values at the same point in the & - & plane. 

Fig. 6: The Wheeler-deWitt equation for a scalar field with an exponential potential is trans- 
formed into the analytically tractable two dimensional wave equation for a massive scalar field 
if one defines new fields e(a, 4) and f(a, 4), eq.(5.7). Th ese new coordinates must lie with the 
region defined by e > 0, IfI < e. Trajectories of the classical attractor, a = c&f constant, 

41 



are straight lines. The hyperbolae are surfaces where Hamilton% principal function S,rt is con- 
stant, i.e. where Q = &$&/(3m~) + constant. The Universe has zero volume at the initial 
singularity, e = f = 0. 

Fig. ‘7: The Feynman function, (5.11a), which includes the Vilenkin wavefunction as a special 
case, is the most useful Green’s function of the Wheeler-deWitt equation if one wishes to evolve a 
probability function giving the fluctuations for galaxy formation. Originating at CYO = 0, 40 = 0, 
the conserved probability P($la), eq. (5.12), is plotted at the three times a = 0.1,0.3,0.5 for 
a scalar field moving in an exponential potential with p = 2 (see Sec. 1II.A). It is positive for 

141 5 mam,, and vanishes elsewhere. The singular behaviour at the leading edges is 
removed if one smears over initial field values #JO, giving a solution which agrees well with the 
classical probability function if the initial comoving spatial volume is large, corresponding to 
K a 109. 

Fig. 8a: The retarded Green’s function, (5.13a), originating at a0 = 0, & = 0, is shown at the 
times a = 0.3 and 0.5, for the same situation as Fig. 7 except that here the wave amplitude, 
!P, is plotted. It is oscillatory for I#/ 5 ma-7 and vanishes otherwise. Since ‘Z’ is 
real, the conserved probability P(c$~ ) a vanishes, implying these boundary conditions for ‘J! are 
uninteresting for galaxy formation fluctuations. n = 10 is shown for plotting purposes, although 
fi N 10’ is preferred. 

Fig. 8b: The Hartle-Hawking wavefunction of the Universe, (5.13b), shown here at one instance 
in time, is just the retarded Green’s function originating at the singularity, ao = -co. It 
oscillates vigorously for large negative 4, but approaches B constant in the opposite limit. It 
moves in time Q as a wave of constant shape, with uniform phase velocity d$/du = &7&q/3. 
For closed homogeneous universes, this wavefunction follows from a specific choice of the ground 
state. However, we consider the inhomogeneous long wavelength Wheeler-deWitt equation as 
an evolution equation for an initial probability function which is generated by quantum effects 
within the Hubble radius, as suggested by stochastic inflation. Linear superpositions of the 
Feynman Green’s functions are then more relevant. IC = I is shown for plotting purposes. 
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