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Nonlinear Factor Analysis as
a Statistical Method
Ilker Yalcin and Yasuo Amemiya

Abstract. Factor analysis and its extensions are widely used in the
social and behavioral sciences, and can be considered useful tools for
exploration and model fitting in multivariate analysis. Despite its popu-
larity in applications, factor analysis has attracted rather limited atten-
tion from statisticians. Three issues, identification ambiguity, heavy
reliance on normality, and limitation to linearity, may have contributed
to statisticians’ lack of interest in factor analysis. In this paper, the sta-
tistical contributions to the first two issues are reviewed, and the third
issue is addressed in detail. Linear models can be unrealistic even as an
approximation in many applications, and often do not fit the data well
without increasing the number of factors beyond the level explainable
by the subject-matter theory. As an exploratory model, the conventional
factor analysis model fails to address nonlinear structure underlying
multivariate data. It is argued here that factor analysis does not need
to be restricted to linearity and that nonlinear factor analysis can be
formulated and carried out as a useful statistical method. In particular,
for a general parametric nonlinear factor analysis model, the errors-
in-variables parameterization is suggested as a sensible way to formu-
late the model, and two procedures for model fitting are introduced and
described. Tests for the goodness-of-fit of the model are also proposed.
The procedures are studied through a simulation study. An example from
personality testing is used to illustrate the issues and the methods.

Key words and phrases: Latent variable modeling, multivariate data
analysis, identification, test of fit.

1. LINEAR AND NONLINEAR
FACTOR ANALYSIS

Factor analysis and more general structural equa-
tion modeling are used very widely in the applied
sciences. Gnanadesikan and Kettenring (1984) con-
ducted a comprehensive survey of literature in a
variety of fields to assess the role and use of mul-
tivariate techniques in applications. They reported
that, in five of eight surveyed fields, factor analysis
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was the most widely used multivariate method, and
that, in education, psychology, and sociology, factor
analysis was applied six to eight times more often
than the second most popular multivariate method,
discriminant analysis. Note that this survey was
conducted more than 15 years ago, before the explo-
sion in the use of structural equation modeling in
social science research. Factor and structural equa-
tion analyses utilize latent variable models which
express observed measurements or indicators in
terms of underlying unobservable characteristics
or traits. Such models seem to correspond very
well with the subject-matter theory in the social
and behavioral sciences, where unobservable but
well-conceived characteristics such as attitude, per-
sonality, and opinion are to be studied, and where
items or questions designed to measure or relate
to such characteristics can be constructed. In those
areas, the wide use of latent variable statistical
techniques has in turn had some impact on the
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way the subject-matter concepts and questions are
formulated quantitatively.
The idea behind latent variable modeling is use-

ful also in multivariate exploratory data analysis,
where some lower-dimensional structure of high-
dimensional data may be of interest, but may not be
directly observable due to errors. Nevertheless, only
a handful of statistical researchers have worked
on the development of factor analysis and related
methods. Some statisticians seem to be skeptical
about the usefulness and appropriateness of factor
analysis in applications. As a result, the coverage
of factor analysis and latent variable modeling in
graduate statistics education tends to be minimal,
and often does not reflect the current practice.
For a p × 1 observation Zt, from the tth individ-

ual, the standard factor analytic structure can be
expressed by a model,

Zt = g∗�f∗t � + �t
 t = 1
2
 � � � 
 n
(1)

where f∗t is a k × 1 underlying unobservable factor
vector, and �t is a p × 1 unobservable error vector
with mean zero. Here, g∗�f∗t � is a p-variate function
of f∗t , representing the fact that the true value (or
systematic part) of the p-dimensional observation
Zt lies on some k-dimensional surface (k < p). The
linear factor analysis model is a special case of (1)
with

g∗�f∗t � = �∗ +�∗f∗t 
(2)

where p× 1 �∗ and p× k �∗ are unknown param-
eters. A basic factor analysis assumption is that
all inter-relationships among observed variables are
explained by the underlying common factors but not
by the errors. Thus, the f∗t ’s and �t’s are assumed to
be independent, and the p components of �t are also
assumed to be independent. Hence, Cov �f∗t 
�t� = 0,
and the covariance matrix � of �t is diagonal. It is
also assumed that no relationship exists among the
distributions of the components of �t, so that, for
example, the p variances in � are generally unre-
lated. This assumption guarantees that the struc-
ture specified by model (1) is equivariant under a
scale or measurement unit change of any of the p
components of the observation Zt. Some practition-
ers may think that some of the models used in prac-
tice do not satisfy the independence assumptions for
f∗t and the components of �t. For example, the lin-
ear model (2) with a nondiagonal error covariance
matrix � (and with sufficient conditions on � to
identify parameters) is occasionally used. However,
such correlated error structure can also be written
in the form (1) or (2) with a diagonal � by taking
a view that any dependency is due to a common

underlying factor and by introducing additional fac-
tors accounting for the correlation between errors.
The general factor analysis model (1) provides a
very unrestictive and natural way to represent a
multivariate structure suggested by subject-matter
theory or conjectured by exploratory data analysis.
From a technical perspective, there are several

aspects of factor analysis that statisticians have tra-
ditionally considered as deficiencies, and that may
have contributed to their skepticism and lack of
interest. Three of these aspects are identification
problems, reliance on normality, and limitation to
linearity.
The identification problem in factor analysis ref-

ers to the fact that a particular lower-dimensional
structure in model (1) may be uniquely specified but
can be expressed using many equivalent parameter-
izations with different f∗t and g∗t of a similar form.
The linear factor analysis model (2) can be written

Z=�∗ −�∗C−1d+�∗C−1�Cf∗t + d� + �t

=�∗∗ +�∗∗f∗∗t + �t

(3)

and is not identified due to the possibility of
a nonsingular linear transformation of factors
f∗∗t = Cf∗t + d. For the general nonlinear model (1),
g∗�f∗t � defines a unique k-dimensional nonlinear
surface in the p-dimensional space, but the same
surface may be expressed using other g∗ and f∗.
The identification issue for nonlinear models is less
straightforward than the linear case. For the linear
model (2), the most widely used model fitting pro-
cedure is the maximum likelihood approach based
on the assumption of normal Zt, that is, normal f∗t
and normal �t. It is a common practice to apply the
normality based method to nonormal or discrete
data. This is the problem described as the heavy
reliance on normality. For the nonlinear model (1),
the normality issue is more complex in the sense
that normal observations Zt and nonlinear g∗ imply
nonnormal factors f∗t , and that normal factors f∗t
and nonlinear g∗ imply nonnormal observations Zt.
Although there is no inherent reason to restrict
g∗ in (1) to be linear, the models used in practice
have been almost exclusively limited to the lin-
ear model (2). This limitation has invited criticism
from statisticians in view of the fact that most tra-
ditional statistical methods have been extended to
accomodate some form of nonlinearity.
In this paper, Section 2 reviews statistical devel-

opment regarding the identification issue and the
heavy use of normality-based methods. Sections
3–8 address the problem concerning nonlinearity,
and deal with the general parametric nonlinear
factor analysis model. After a general discussion
in Section 3, our approach to the identification of
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the nonlinear model is covered in Section 4. Two
new statistical methods for nonlinear model fitting
and checking are introduced in Sections 5 and 6. A
simulation study is reported in Section 7. An exam-
ple where nonlinear factor analysis can be usefully
applied is described in the remainder of this section
and in Section 8. The Appendix presents the com-
puting algorithms for the two methods described in
Sections 5 and 6.
For our example, we use a part of a data set

obtained in a personality testing study assessing
the vocational interest of college students. The Self-
Directed Search test was designed to measure six
vocational personality aspects proposed by theory:
investigative, artistic, realistic, social, enterprising
and conventional. Dumenci (1993) applied the test
to 370 female and 305 male college students with
the eventual goal of explaining the vocational inter-
est aspects by their relationships to the personality
factors obtained through another personality test
based on the so-called big-five theory of personal-
ity. For the vocational interest data, he reports that
a linear model with six overall factors fits the data
very poorly for each gender group, and concludes
that the observed test scores are not consistent with
the six-aspect theory used in designing the test. As
a result, he abandoned the analysis relating the
theory-suggested vocational interest aspects to the
big-five personality factors. However, it should be
pointed out that the Self-Directed Search vocational
test items were carefully constructed based on the
six-aspect theory. In such construction, the develop-
ers may have known which items are supposed to be
related to each of the six aspects, but they may not
have been particularly thinking the relationships to
be linear. Thus, by expanding the scope of factor
analysis to include nonlinear models, it may still
be possible to fit a model consistent with the the-
ory, to use the fitted model to construct estimates
of the interpretable six aspects, and address the
subject-matter question regarding possible relation-
ships between the well-defined vocational interest
aspects and the personality factors.
To simplify and focus our discussion, we consider

only the scale-level analysis of a small part of the
female data on items which were designed by the
test developer to correspond to the investigative
type factor. This factor is supposed to be measured
by four constructed scales: Activities (e.g., fixing
electrical equipment), Competencies (e.g., using a
microscope), Occupations (e.g., becoming a biolo-
gist), and a Self Estimate (e.g., rating themselves
on a particular investigative skill). We will use
Z1
Z2
Z3, and Z4, respectively, to denote the four
scales. Each scale score was obtained based on a

large number of items. By design, these four scales
are supposed to be four constructs of a common fac-
tor representing the investigative aspect. Thus, the
subject-matter theory suggests a one-factor factor
analysis model as a measurement model for this
part of the data. Figure 1 is a jittered scatter-plot
matrix of Z1
 � � � 
Z4 which shows a reasonably
strong relationship between every pair of the scales
along with nontrivial variation in every direction.
The linear exploratory (unrestricted) factor anal-
ysis model (2) with one factor (k = 1) fails to fit
the data well. The likelihood ratio goodness-of-fit
test statistic based on the assumption of normal
observations gives χ2 = 17�45 with 2 degrees of
freedom (p = 0�0002), and the one-factor linear
measurement model is rejected. The observed vari-
ables Z1
 � � � 
Z4 are discrete and skewed, and the
normal assumption is violated. But, as reviewed in
the next section, this goodness-of-fit test is valid in
large samples for most nonormal data.
The poor fit of the one-factor linear model for this

part of the data may have contributed to the failure
of the overall six-factor linear model in explain-
ing the entire data. Note that, for p = 4 observed
variables, the (unrestricted) linear factor analysis
model (2) can be fitted only with k = 1, and that
two or more factors cannot be fitted. Thus, no lin-
ear model fits this data well, because the linear
model with the maximum possible number of fac-
tors provides a very poor fit. Also, the scatter-plot
matrix in Figure 1 suggests that the relationships
among Z1
 � � � 
Z4 may not be linear. The nonlinear
relationships among observed variables partially
explain why the model with linear relationships
between the observed variables and a single latent
factor is rejected, but does not necessarily mean
that the one-factor theory is rejected in general.
Recall that these four scores were constructed to be
related in some manner to a common “investigative”
factor, and that the observed variables show moder-
ately strong monotone positive relationships among
themselves. Thus, it may be natural to consider
fitting a one-factor model with nonlinear relation-
ships between the observed variables and the factor.
This example will be revisited in Section 8 using
the nonlinear factor analysis approach developed in
Sections 4–7.

2. IDENTIFICATION AND NORMALITY IN
LINEAR MODELS

In this section, the statistical development and
relevant literature for the identification problem
and the reliance on normality based methods for
linear factor analysis are reviewed. The review
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Fig. 1. Scatter-plot matrix of the four scales designed to measure the investigative type personality.

here focuses only on those references directly rele-
vant for our approach to nonlinear factor analysis
development, and is not meant to be exhaustive.
The linear model (2) uniquely defines the k-

dimensional linear factor space in the p-dimensi-
onal observation space. But, as indicated in (3),
the factor space can be parametrized in various
ways using different definitions of f∗t . The tra-
ditional parameterization used by psychologists
assumes a standardized factor vector f∗t with zero
mean and identity covariance matrix. This does
not remove the indeterminacy associated with rota-
tion or orthogonal transformation of f∗t using an
orthogonal C in (3). Although this parametrization
was originally introduced for computational ease,
the practice of rotation spread widely. The casual
use of factor rotation especially in conjunction with
interpretation and inference has become a source
of statisticians’ skepticism and criticism concerning
factor analysis. However, in recent years, the use
of this parameterization allowing rotation has been
largely replaced by another type of parameteriza-
tion of the linear model (3). Starting with Jöreskog
(1970, 1973) and culminating in Jöreskog and
Sörbom (1989), structural equation modeling based
on the so-called errors-in-variables parametriza-
tion has been developed. As the popularity of the
structural equation modeling increased, so did the
use of the same parameterization for the linear fac-
tor analysis model (considered a special case of the

structural equation model). Additional support for
the parametrization was provided by those working
in the area of errors-in-variables. See, for example,
Fuller (1987, Section 4.3). The errors-in-variables
parameterization places the identification condi-
tions only on the coefficient matrices, and leaves
the distribution of the factor vector unrestricted.
The factor vector f∗t is identified as the “true values,”
and is measured with error by the k corresponding
components of Zt. By placing, without loss of gener-
ality, such k components as the last k components,
we write Zt = �Y′

t
X
′
t�′ for �p− k� × 1 Yt and k× 1

Xt, and write (3) in the form

Yt=� +�ft + et

t = 1
2
 � � � 
 n


Xt= ft + ut

(4)

where �t = �e′t
u′t�′
 ft is the k × 1 factor identi-
fied as the true value of Xt, the �p − k� × 1 � and
�p− k� × k � are unknown factor-loading or rela-
tionship parameters. In terms of model (3), the iden-
tifying restrictions are

�∗ =
(
�

0

)

 �∗ =

(
�

Ik

)
�

The errors-in-variables linear model (4) defines the
factor vector unambiguously without possibility of
rotation, and allows interpretation based on the
equivalence to the errors-in-variables regression
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of Yt on Xt. The use of this parameterization has
largely removed statisticians’ criticisms of linear
factor analysis associated with factor indetermi-
nacy and rotation, as well as with their effect on
interpretation.
For many years, factor analysis methods based

on the assumption of normally distributed obser-
vations have been applied to various obviously
nonnormal data. This practice, along with the
limited development of methods designed for non-
normal data, was another source of the criticism
of factor analysis. As in many other statistical
methods, the initial statistical interest in factor
analysis was the development of efficient esti-
mation methods under normality assumptions.
However, unlike other traditional statistical meth-
ods, this development was conducted over a very
long period of time, because the computation of
the maximum normal likelihood estimator was not
straightforward. Initiated by Lawley (1940, 1941,
1943), the development of a practical algorithm
for such an estimator was not completed until
Jöreskog (1967, 1969) and Jennrich and Robinson
(1969). With the development of computer pack-
ages, the normality-based factor analysis became
the standard method in applications, regardless
of the actual distributional form. As a result, the
attention to nonnormality was neglected for some
time. Browne (1984) considered an asymptotically
distribution free estimation procedure. In the late
1980s and early 1990s, statistical research was con-
ducted to assess the appropriateness of the use of
normality-based packages in the factor analysis of
nonnormal data without specifying a particular dis-
tributional form. Note that if model (3) holds for
the nonnormal observation Zt, then at least one of
f∗t and �t must be nonnormal. Amemiya, Pantula,
and Fuller (1987) and Browne (1987) showed that,
in the errors-in-variables formulation (4), the max-
imum normal likelihood estimators of unrestricted
�
�, and the error variances have a common limit-
ing covariance matrix for a broad class of random
or fixed ft as long as �t is normal. Partially based
on the foundational work of Anderson and Rubin
(1956), Anderson and Amemiya (1988) proved that
the limiting covariance matrix of the maximum
normal likelihood estimator of possibly restricted �
in (4) is the same for virtually any normal or non-
normal �t and any normal, nonnormal, or fixed ft,
provided ft and the p-components of �t are all inde-
pendent. Amemiya and Anderson (1990) showed
that various goodness-of-fit test statistics have a
common chi-square limiting distribution under the
general linear factor analysis model (3) with any �t
and any random or fixed f∗t given the independence

of f∗t and the p-components of �t. Using a differ-
ent approach Browne and Shapiro (1988) derived
related results for a class of linear latent vari-
able models. Subsequently, a series of psychometric
papers on the same topic have followed. See, for
example, Hu, Bentler and Kano (1992) and Satorra
(1992). These results imply that the blind use of
the normality-based packages for factor analysis of
nonnormal data can produce useful information. In
particular, the standard errors and goodness-of-fit
test results printed out by the existing packages
based on normality are in fact appropriate for a
large class of nonnormal data, provided that the
errors-in-variables parameterization (4) is used,
and that the basic independence assumption given
following model (1) is taken as a part of the factor
analysis model formulation. In addition to provid-
ing further statistical support for the use of the
errors-in-variables parameterization, these results
have partially dispelled the previously held view
that heavy reliance on the normality-based pack-
ages tends to produce inappropriate inferences and
limits the practical usefulness of factor analysis.

3. NONLINEAR FACTOR ANALYSIS

In applications of factor analysis, linear models
(2) are used almost exclusively. Statisticians have
considered this practice as a limitation of factor
analysis in view of the fact that most other tra-
ditional statistical methods have been extended
to accomodate some form of nonlinearity. The
wide and long use of the normality-based linear
factor analysis packages contributed to the prac-
tice in social and behavioral sciences of trying
to explain the subject-matter relationships only
through covariances and correlations. The popular-
ity of this practice has in turn resulted in neglect
of the possibility of nonlinear relationships and in
lack of motivation for development of a nonlinear
factor analysis. However, when applied scientists
try to represent some subject-matter theory in a
latent variable model, they may have a reasonably
good idea about the number of underlying factors
and their possible monotone relationships to the
observations, but they often do not have a definite
idea about the actual form of the relationships.
The appeal and appropriateness of factor analy-
sis in practice rarely come from a particular model
form, but usually lie in the basic principle of dis-
tinguishing observed and latent variables and of
explaining relationships through a certain number
of underlying factors. There are situations where
subject knowledge indicates the inappropriateness
of linear models and suggests a particular form of
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nonlinear model. For example, in aptitude or ability
testing, a test with low difficulty tends to discrimi-
nate poorly between subjects with high ability, but
to discriminate well between those with low ability,
implying possible nonlinear relationships between
the test scores and abilities. Also, the scores of
constructed scales or tests fall in certain ranges,
while the underlying abilities, attitudes or per-
sonality traits can be interpreted more naturally
as unbounded and continuous random variables.
Then, the relationship between the observed scores
and underlying factors cannot be linear. In these
situations, a model allowing nonlinear structures
is much more realistic, and corresponds more
closely to the subject-matter theory. When the
subject-matter theory suggests nonlinear relation-
ships, fitting such nonlinear models is much more
desirable than the use of ad hoc linear models.
Additional needs for considering nonlinear factor

analysis comes from the practical difficulty, often
encountered and pointed out in the behavioral and
social sciences, that a linear model with factors sug-
gested by the subject-matter theory frequently does
not fit the data well and a good fit can be obtained
only with a larger number of factors than originally
suggested. This phenomenon may not necessarily
mean the inadequacy of the theory, but may merely
suggest the possible existence of nonlinear struc-
ture. Further motivation for considering the general
model of the form (1) is that applied scientists, for
example, psychologists, prefer to work with models
directly expressed for the observed variables of their
interest and are rarely willing to transform the mea-
surements familiar to them, for example, the scores
of constructed scales.
In the popular structural equation modeling, the

overall model consists of two parts: a structural
model representing relationships among latent
variables and a measurement model expressing
relationships between observed and latent vari-
ables. Linear factor analysis models have been
exclusively used as measurement models. However,
the inadequacy of linear measurement models can
affect the fit of the overall system of equations,
and may possibly lead to an erroneous rejection
of the proposed structural model for latent vari-
ables. Capabilities to consider nonlinear factor
analysis models as measurement models can poten-
tially expand the scope of the structural equation
modeling.
Considering nonlinear models is also important

when a factor analytic model is used in exploratory
multivariate data analysis. The ability to model pos-
sibly nonlinear lower-dimensional structure hidden
in high-dimensional data would enrich the set of

available statistical tools. Examination of data plots
with the errors-in-variables view that errors occur
in directions of all axes can be informative in reveal-
ing the inadequacy of linear models and in suggest-
ing nonlinear models. If any possible underlying
nonlinear relationships among observed variables
are detected, then linear models are inappropriate.
With the understanding that errors appear only in
the directions of axes, some nonlinear models for
underlying relationships can be suggested by scat-
ter plots.
The concept of nonlinear factor analysis was initi-

ated by Bartlett (1953). McDonald (1962) discussed
the basic notions of nonlinear factor analysis, and
introduced a model which is nonlinear in factors
but linear in factor loadings, for example, a model
with observed variables being polynomials in fac-
tors except for errors. He proposed a two-step esti-
mation procedure. First, a linear orthogonal factor
model is fitted and the scatter plots of estimated
factor scores are used to detect possible nonlinear-
ity. If a “significant” nonlinear relationship is seen
on the plots, the function representing the relation-
ship is estimated. The paper states that this proce-
dure has some potential problems and limitations in
practice. One severe restriction is that the number
of variables need to be very large compared to the
number of considered factors so that a linear model
with a large number of terms possibly represent-
ing powers of underlying true factors can be fitted.
An empirical application of this method is given in
McDonald (1965). McDonald (1967a, b) focused his
discussion on models which are simple polynomials
in factors, and applied the procedure introduced in
his first paper. McDonald (1979) suggested a model
fitting method for a parametric version of the gen-
eral nonlinear model

Zt = g∗�f∗t ��∗� + �t
 t = 1
2
 � � � 
 n
(5)

where g∗ is a p-variate function of f∗t indexed by
an unknown parameter vector �∗. His method esti-
mates �∗ and f∗t by minimizing

lr = 1
2 log �diag Q� − log�Q��
(6)

where

Q = 1
n

n∑
t=1
�Zt − g∗�f∗t ��∗���Zt − g∗�f∗t ��∗��′


and estimates the error variances by the diago-
nal elements of Q evaluated at the estimates of
�∗ and f∗t . His method reduces to the maximum
normal likelihood estimation, if the model is the
unrestricted linear model and if the maximum
likelihood estimates of the error variances are all
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positive. Little discussion was given to the identi-
fication issue. Etezadi-Amoli and McDonald (1983)
applied the method suggested by McDonald (1979)
for the polynomial factor analysis model (5) with
all p components of g∗ being polynomials in the
elements of f∗t . They suggested the use of n times
the minimum of the criterion lr in (6) as a chi-
square test statistic for the fit of the model with
some unspecified degrees of freedom. They provided
some discussion of the identification issue from the
rotation point of view and mentioned that the iden-
tification problem for the general polynomial model
is not expected to be simple.
Kenny and Judd (1984) suggested an approach

to structural equation model fitting with a single
equation involving a cross product or a quadratic
factor term. Their approach can be used for fitting
a quadratic factor analysis model (with multiple
quadratic relationships) under strong distributional
assumptions, although the implementation can be
tedious. Jöreskog and Yang (1994, 1997) gave fur-
ther development of the Kenny–Judd method. A
similar moment-based method was suggested by
Mooijaart and Bentler (1986) for quadratic factor
analysis. These methods rely heavily on the nor-
mality of the underlying factor and error vectors.
Wall and Amemiya (2001) presented a modified ver-
sion of the Kenny–Judd type estimator that does
not require any distributional assumption. The
basic approach used in these papers is applicable
only for low-order polynomial (essentially second-
order) models, and does not extend to more general
nonlinear models. Also in the context of polynomial
structural equation analysis, Arminger and Muthén
(1998) considered a Bayes approach assuming the
normality of factors and errors. Treating the factors
as unknown constants, Wall and Amemiya (2000)
introduced a new method for fitting polynomial
structural equation models. Their procedure can
be used for any single polynomial model in a sys-
tem of equations, but is not directly applicable for
the general nonlinear factor analysis model being
considered here.
For an identifiable version of the general para-

metric nonlinear model (5), Amemiya (1993a, b)
introduced a single-equation model fitting proce-
dure based on the instrumental variable approach.
His estimation procedure contains an adjustment
for parameter estimate bias due to nonlinearity.
Theoretical properties of the estimator based on the
so-called small-σ asymptotics were also presented
in support of the procedure. Yalcin and Amemiya
(1995) considered a class of additive nonlinear fac-
tor analysis models that are nonlinear in factors but
linear in coefficients. They proposed an approximate

conditional likelihood model-fitting procedure, and
used the small-σ asymptotics to derive the prop-
erties of parameter estimators and a fit statistic.
Compared to these previous papers by the current
authors, this paper treats more general nonlinear
models, and presents more comprehensive model
fitting procedures.
Some topics in structural equation analysis may

be considered to be tangentially related to nonlinear
factor analysis. Latent growth curve analysis fits
a model for an underlying trend over the observed
variables, typically measured over time, in terms of
a linear combination of known or unknown basis
functions. See, for example, McArdle and Epstein
(1987) and Meredith and Tisak (1990). In this type
of analysis, the interest is in estimating a single
trend over the observed measurements, and the
relationships between the observed variables and
factors are still linear. Another related topic is
structural equation modeling of dichotomous and
polytomous observed variables, as discussed by, for
example, Muthén (1984) and Jöreskog (1994). The
models used in such analysis represent nonlinear
relationships between the observed measurements
and factors, but the relationships are direct con-
sequences of the distributional assumptions on
the observed variables. This differs from the topic
of interest in this paper, that is, to explore and
express underlying nonlinear structure in continu-
ous or scale-level multivariate data.
In this paper, we consider the general nonlinear

factor analysis model (5) without imposing partic-
ular distributional forms for unobservable factors
and errors. Some examples of a typical component,
say the ith component, of g∗ in (5) are

g∗i �f∗t 
�∗� = β∗0 +
β∗1

1+ e�β∗2−β∗3f∗1t−β∗4f∗2t� 


g∗i �f∗t 
�∗� = β∗0 + β∗1eβ
∗
2f

∗
t 


g∗i �f∗t 
�∗� = β∗0 + β∗1f∗1t + β∗2f∗21t + β∗3f∗2t
+β∗4f∗22t + β∗5f∗1tf∗2t�

Note that the model does not have to be polyno-
mial in factors nor linear in the parameter �∗. We
suggest a nonlinear version of the errors-in-variable
parameterization as a means to deal with the identi-
fication issue in model (5), as discussed in the next
section. This parametrization also allows the sys-
tematic development of two statistical model fitting
procedures with a minimal condition on the num-
ber of factors to be fitted. Both of the proposed pro-
cedures, described in Sections 5 and 6, incorporate
some adjustments for bias due to nonlinearity. Also,
the procedures produce reasonable parameter esti-
mators without specific distributional assumptions
on the factor and error terms.
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4. IDENTIFICATION OF
NONLINEAR MODELS

As shown in (3), the linear model (2) contains
the indeterminacy due to possible nonsingular lin-
ear transformation of f∗t . The parameter and factor
vector in the nonlinear model (5) can have a more
complex identification problem. Consider a one-to-
one nonlinear transformation f∗∗t = h�f∗t ��∗�, possi-
bly depending on �∗. Then (5) can be written in an
equivalent form

Zt=g∗
(
h−1�f∗∗t ��∗

)��∗�+�t=g∗∗�f∗∗t ��∗�+�t
(7)

with f∗∗t as the factor vector. If g∗∗�f∗∗t ��∗� can be
written in the form g∗�f∗∗t ��∗∗� for some �∗∗, then
models (5) and (7) cannot be distinguished based on
data, and the factor vector as well as the parameter
are nonidentifiable. That is, the model is not iden-
tified in general, because a given nonlinear struc-
ture can be expressed using different sets of f∗t and
�∗. With the possibility for nonlinear transforma-
tion of f∗t , the identification issue for the nonlinear
model (5) is not straightforward. Assuming a spe-
cific distributional form of f∗t may remove the pos-
sibility of nonlinear transformation. However, such
an assumption on the unobservable f∗t for the pur-
pose of identification is hard to justify and cannot be
used when, as in linear factor analysis, the practical
interest is in fitting models without specifying a par-
ticular distributional form for f∗t . Finding a generic
identification condition in terms of the parameteri-
zation of g∗ in the general model (5) seems difficult,
and may not be particularly useful. Instead, we sug-
gest here a simple and practical solution of consid-
ering only those models that are written in a known
identifiable form. As reviewed in Section 2, for lin-
ear factor analysis, the errors-in-variables parame-
terization provided an identifiable model and played
a key role in the theoretical development for nonnor-
mal data. The errors-in-variables version of the non-
linear model (5) can also be defined. We say model
(5) is in the errors-in-variables parameterization, if
the model can be written as

Yt=g�ft��� + et

t = 1
2
 � � � 
 n


Xt= ft + ut

(8)

where, with possible reordering of the components
of Zt, Zt = �Y′

t
X
′
t�′
�t = �e′t
u′t�′
Yt and et are �p−

k�×1, Xt and ut are k×1, ft is the k×1 factor vector,
g is a �p− k�-valued nonlinear function of ft and �
is the parameter for such a function g. In this form,
the factor ft is identified as the “true value” of the
observed Xt, and there is no factor indeterminacy.
With no possibility for transformation of ft, the rela-
tionship parameter � is unambiguously determined

provided that there is no redundancy among the ele-
ments of �. Thus, this errors-in-variables nonlinear
factor analysis model is identifiable. In addition, the
interpretation of model (8) is straightforward based
on that of multivariate nonlinear regression of Yt
with explanatory variable ft measured by Xt with
error. If some theory suggests particular nonlinear
models, we try to transform the models to those
given in (8) by possible reordering of the p compo-
nents of Zt, by an appropriate choice of one-to-one
h in (7), and by possible transformation of some ele-
ments of Zt. In our approach, the models that can-
not be transformed to the errors-in-variables form
(7) are not considered in the analysis, because their
identification status is unclear. This approach some-
what restricts the form of the general nonlinear
models (5) that can be considered. What we are
suggesting for practice is to try to write down mod-
els directly in the errors-in-variables form (8) with-
out going through the general form (5). That is, the
form (8) can be used as the starting point in spec-
ifying possible models for a given problem. In this
way, all models under consideration are identified
and can be fitted. This approach is in fact natu-
ral and practical in searching for plausible nonlin-
ear models in exploratory data analysis. Nonlinear
models in the errors-in-variables parameterization
can be easily suggested based on observed variables
through the measurement error regression interpre-
tation of scatter plots. For example, it would be diffi-
cult to suggest, based only on observations, a model
where each observed variable is a logistic function of
an unobservable factor. On the other hand, a sim-
ple scatter-plot matrix can easily suggest a model
where each of p− 1 observed variables is a logistic
function of the true value of the remaining variable.
Also, we do not consider a model where all observed
variables are polynomials in, say, two factors. Such
a model may not be identified without additional
conditions. On the other hand, a model where p− 2
observed variables are polynomials in the true val-
ues of two remaining variables is identified and can
be suggested by data based on plots. In some sense,
the errors-in-variables parameterization focuses the
model building on the relationships among the true
values of observed variables, avoiding the difficulty
of searching for an arbitrarily defined underlying
factor and its relationship to observed variables at
the same time.
In the next two sections, we will propose proce-

dures for fitting and testing nonlinear factor anal-
ysis models given in the errors-in-variables form
(8). Our procedures take advantage of the errors-
in-variables form and of recent ideas in statistical
model fitting. Some of the advantages of the errors-
in-variables parameterization in statistical analysis
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of the linear models are expected to carry over to the
nonlinear models. Throughout our development, we
also assume that

2−1�p− k��p− k+ 1� ≥ p�(9)

This condition assumes that the dimension k of
the factor vector cannot be very large compared
to the number of observed variables p. However,
this is a very unrestrictive condition, as it is iden-
tical to that required for the linear unrestricted
(exploratory) factor analysis. We assume this condi-
tion, because the general nonlinear factor model (5)
includes such a linear model as a special case, and
because it plays an important role in our model fit-
ting and checking procedures. Thus, our approach
to the general nonlinear model does not require
any more restrictive condition on the number of
factors than the linear case. Note that there is no
restriction on the dimension of the parameter vec-
tor � in g. Thus, for example, even with a small k,
a polynomial model of any order with any number
of mixed power terms can be fitted and estimated
with parameterization (8).
With the use of the errors-in-variables parame-

terization (8), some discussion of the literature on
nonlinear measurement error model analysis may
be relevant. Most existing methods for nonlinear
errors-in-variables models are summarized in three
books. Fuller (1987) presented estimation methods
for a single equation (with a single dependent vari-
able) when the measurement error variances are
either known or estimated. Carroll, Ruppert, and
Stefanski (1995) considered various nonlinear mea-
surement error situations with a single equation,
including those with a dichotomous dependent vari-
able and with availability of instrumental variables.
Cheng and Van Ness (1999) treated a single polyno-
mial model with either known error variances or
replicate observations. In the factor analysis prob-
lem addressed in this paper, replicate observations
are not available, error variances are unknown, and
multiple equations are involved. Hence, the existing
methods for nonlinear errors-in-variables analysis
summarized in these three books are not directly
applicable for our nonlinear factor analysis model
(8). In developing the model fitting procedures given
in the next two sections, we have favored meth-
ods that are as closely related to traditional fitting
methods for linear factor analysis models as possi-
ble, and that are accompanied by convenient and
interpretable tests for goodness-of-fit for the model.

5. EXTENDED LINEAR MAXIMUM
LIKELIHOOD METHOD

As described in Section 1, for the linear factor
analysis model, maximum likelihood estimation

under the normality assumption is the most widely
used model fitting method, and produces estimators
and test statistics with good properties even for
nonnormal data. For the nonlinear models, the nor-
mal likelihood itself may not be simple to handle.
In the nonlinear model (5), the normality of f∗t may
not lead to a simple distributional form for Zt, and
the assumption of normal Zt may not be meaning-
ful without the reasonableness of the corresponding
distribution for f∗t . Thus, the direct extension of the
normal likelihood approach to the nonlinear model
is not straightforward. However, we show in this
section that a maximum likelihood computational
algorithm for the linear model can be extended
naturally to the nonlinear model. The extended
procedure for the nonlinear model reduces to the
maximum normal likelihood method when the
model happens to be linear. The linear model algo-
rithm proposed by Pantula and Fuller (1986) takes
advantage of the factor analysis structure that the
observation is the sum of a lower-dimensional fac-
tor part and an error with a diagonal covariance
matrix, the structure applicable also for nonlin-
ear models. Their iterative algorithm for the linear
model alternates between the relationship param-
eter and the error variances. Given error variance
estimates, a relationship parameter estimate can
be expressed explicitly as a solution to a minimiza-
tion problem involving a ratio of quadratic forms.
The error variances are estimated by generalized
least squares applied to the elements of a residual
covariance matrix obtained using a given relation-
ship parameter estimate. Jöreskog (1967, 1977)
also suggests the use of some alternation between
the error variances and the relationship parame-
ters. Such an alternation can be directly extended
to the nonlinear cases, although each part becomes
more complex and the use of factor score estimates
is required.
The iterative maximum likelihood algorithm

for the linear model (4) in the errors-in-variables
parameterization consists of the following two
alternating steps. Given an estimate of the error
covariance matrix �̂, the updated estimate of the
relationship parameters � and � are obtained by
minimizing

n∑
t=1

v′t��
���−1��
 �̂�vt��
��
(10)

where
vt��
��=Yt − � −�Xt


���
��= �Ip−k
−��� �Ip−k
−��′�
(11)

Given �̂ and �̂, the updated estimate of � is
obtained by applying linear generalized least
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squares to the unique elements of

1
n

n∑
t=1

vt��̂
 �̂�v′t��̂
 �̂�
(12)

where the weight matrix is estimated using �̂ and
the previous estimate of �.
For the nonlinear model (8), we attempt to extend

the essential idea underlying this maximum like-
lihood algorithm for the linear model. It is neces-
sary to use a certain approximation to the nonlinear
function. The linear approximation is inappropriate,
leading to nonlinearity bias. Thus, a certain form
of quadratic approximation to the nonlinear func-
tion is utilized. This quadratic approximation to the
function g evaluated at the observed Xt is given by
an expansion around the underlying ft,

g�Xt��� �=g�ft��� +G�ft���ut
+ 1

2H�ft��� vec�uu

(13)

where

G�f ��� = ∂

∂f ′
g�f ���
(14)

H�f ��� = [
h1�f ���
h2�f ���
 � � � 
hp−k�f ���

]′

(15)

hi�f ��� = vec
[
∂2gi�f ���
∂f∂f ′

]



�uu = Var �ut�

and gi is the ith component of g. We also used the
vec operator that lists the elements of a matrix
in a column vector by stacking the columns of
the matrix. The approximation in (13) is based
on ignoring the terms of order higher than two
and on replacing utu′t with its expectation �uu.
This type of expansion was used by Amemiya and
Fuller (1988) for the bias adjustment in the non-
linear errors-in-variables problem. By the basic
assumption of factor analysis, ut is independent of
ft whether ft is treated as random or fixed. Thus,
given ft, the conditional moments of the right-hand
side of (13) can be obtained easily. As yet, (13) is
not a simple linear approximation and makes an
adjustment for the nonlinearity of g through the
second derivative term. Using (13), we obtain

Yt − g�Xt��� �=et −G�ft���ut
− 1

2H�ft��� vec�uu�
(16)

Based on this approximation, a quantity corre-
sponding to vt��
�� used in (10) and (12) can be
defined as

vt��
�
 ft�=Yt − g�Xt���
+ 1

2H�ft��� vec�uu�
(17)

The ���
�� in (11) for the linear model is the
covariance matrix of vt��
��, which is free of ft
and t. For the nonlinear model, the conditional
covariance matrix of (17) given ft depends on t, and
is given by

�tt��
�
 ft�= �Ip−k
−G�ft����
×��Ip−k
−G�ft����′�

(18)

Hence, an extension of the linear model iterative
procedure can be obtained by replacing vt��
�� and
���
�� in (10) and (12) by (17) and (18). For a non-
linear model, the minimization of the form (10) is
nontrivial, requiring some iterative procedure. How-
ever, the generalized least squares step correspond-
ing to (12) can still be given explicitly, because the
conditional expectation of vt��
��v′t��
�� given ft
is linear in �. Since (17) and (18) depend on ft,
some estimate of ft is needed at each iteration. Thus,
unlike the linear case, the nonlinear case requires
factor score estimation at each step. For this, we
can extend the linear errors-in-variables true-value
estimator based on a residual vector as given in
Fuller (1987, page 364). Using (17) as an approx-
imate residual, a simple factor score estimate given
a previous estimate f̈t of ft is

f̂t = Xt+�uuG�f̈t����−1
tt ��
�
 f̈t�vt��
�
 f̈t��(19)

Thus, the extended linear maximum likelihood
(ELM) method is an iterative process over three
sets of parameters, ft
� and �.
The Appendix gives explicit formulas needed for

the algorithm that incorporates modification for the
parameter space restriction and for numerical sta-
bility. The Appendix also gives an initial estimate
that can be used to start the iterative process. In
practice, a few iterations of this procedure need to
be performed. [In the context of a different problem,
Carroll and Ruppert (1988) gave the same recom-
mendation for a similar iterative method.] In our
experience, convergence of the parameter estimates
and the related goodness-of-fit statistic usually
occurred within four to five iterations. The ELM
estimates �̂, �̂ and f̂t are those values obtained at
the final step of the iterative algorithm. The gener-
alized least squares residual sum of squares in the
step corresponding to (12) serves as a test statis-
tic for the fit of the model and can be compared to
the upper percentage points of the chi-square dis-
tribution with d = 1

2�p− k��p− k+ 1� − p degrees
of freedom. For the linear model, this test statistic
reduces to the normal likelihood ratio test statistic
for the model fit. As in the linear case, the fac-
tor covariance matrix estimation is not required
during the iteration. If desired, an estimate of the
factor covariance matrix can be obtained easily
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once the estimates of other intrinsic parameters are
obtained. The Appendix gives a formula.
For the linear model, the maximum normal like-

lihood estimation has been recommended also for
fixed or nonnormal ft and nonormal �t. In fact, the
estimation of � and � minimizing (10) for a given
� is also the maximum likelihood estimators of �
and � for the linear model with fixed ft and known
�. Also, generalized least squares applied to (12)
makes sense without specifying the distributional
form of �t. Hence, we expect the ELM method
to provide a reasonable model fitting procedure
for a nonlinear model regardless of distributional
assumptions on ft and �t.

6. APPROXIMATE CONDITIONAL
LIKELIHOOD METHOD

The ELM model fitting procedure developed in
the previous section has some good properties espe-
cially when it is considered as an extension of the
linear model case. However, the algorithm requires
the computation of factor score estimates for all
individuals at each iteration step. Recall that the
factor score estimate for the k × 1 ft is essentially
based on the p × 1 Zt for each fixed t. Such indi-
vidual factor score computation and the evaluation
of various quantities at the estimated factor scores
may potentially introduce some numerical instabil-
ity and increased variability. In fact, our experience
and simulation study have shown that the ELM
procedure tends to produce some outlying values
of parameter estimates in small samples. This led
us to consider a model fitting procedure without
involving factor score estimation. To achieve this,
an expansion of g�ft�β� around the observed Xt is
used instead of (16), and all necessary quantities
are evaluated at Xt instead of ft to avoid the fac-
tor score estimation. Then, the approximate con-
ditional distribution of Yt given Xt is utilized in
developing a proper model fitting procedure. For the
linear model, this conditional approach is not as effi-
cient as the ELM approach which is, for this case,
the normal maximum likelihood estimation. In addi-
tion, some restriction on the distributional form of
ft and ut is required for the conditional approach to
be fully justified. On the other hand, for many prac-
tical situations, the computational simplicity of the
conditional approach is expected to produce more
numerically reliable parameter estimates in small
samples than the ELM approach.
To introduce this conditional approach, we

first assume hypothetically in model (8) that
ft∼N��
�� and �t∼N�0
��. Since Yt is non-
normal for any g nonlinear in ft, the likelihood

based on Zt cannot be written down explicitly.
To obtain a workable form of the likelihood, we
use the quadratic approximation to the function g
around the observable Xt, that is,

g�ft��� �=g�Xt��� −G�Xt���ut
+ 1

2H�Xt��� vec�uu

(20)

where G�f ��� and H�f ��� are defined in (14) and
(15), respectively. With this approximation, the
equation for Yt in (8) becomes

Yt
�=g�Xt��� + 1

2H�Xt��� vec�uu

+et −G�Xt���ut�
(21)

The conditional distribution of et−G�Xt���ut given
Xt is

N��vutt��+�uu�−1�Xt − ��
 	tt�
(22)

where

	tt = �vvtt − �vutt��+�uu�−1�′
vutt


�vutt = −G�Xt����uu


�vvtt =�ee +G�Xt����uuG�Xt���′

�ee = Var�et��

(23)

Using (21) and (22), the approximate conditional
distribution of Yt given Xt is

N�
t
	tt�

where


t = g�Xt��� + 1
2H�Xt��� vec�uu

+�vutt��+�uu�−1 �Xt − ���
The approximate likelihood function is a product of
the densities of Zt’s, and each density is the product
of the marginal density of Xt and the conditional
density of Yt given Xt. Thus, the approximate log
likelihood is, except for a multiplier �−1/2� and an
additive constant,

l = l1 + l2

where

l1 =
n∑
t=1
�log �	tt� + �Yt − 
t�′	−1tt �Yt − 
t��


l2 =
n∑
t=1
�log��∗� + �Xt − ��′�∗−1�Xt − ���


�∗ = �+�uu�

We observe that the normal marginal likelihood l2
is valid only for normal Xt = ft+ut. However, simple
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unbiased estimators,

�̂ = 'X = 1
n

n∑
t=1

Xt


�̂
∗ =mXX = 1

n− 1

n∑
t=1
�Xt − 'X��Xt − 'X�′


are reasonable estimators of � and �∗ regardless of
the distributional forms of random ft and ut. Thus,
to estimate � and �, we consider l1 with �̂ and
�̂
∗
substituted. This is the so-called pseudolikeli-

hood approach. The l1, which is also a normal likeli-
hood, does not directly depend on the normality of ft,
but can be justified if the distribution of et and the
conditional distribution of ut given Xt are approxi-
mately normal. Note that l1 is only an approximate
likelihood, and that 	tt is not the exact conditional
covariance matrix. The use of such an approximate
expression for a covariance matrix in a role other
than a (possibly incorrect) weight for a quadratic
form (to be minimized) is known to produce esti-
mators with potentially poor properties. (See, e.g.,
Carroll and Ruppert, 1982, and van Houwelingen
1988.) Hence, instead of minimizing l1 with respect
to � and �, we separate the two parameters, and
iterate between the two. For the estimation of �
for a given value of �, we consider minimizing the
exponent part of the conditional likelihood l1 using
the approximate 	tt only as a weight. Given a value
of �, we take the conditional residual of the form
Yt − 
̂t, and apply the conditional generalized least
squares to the residual sum of squares matrix. An
explicit expression for the iterative process is given
in the Appendix. This iterative procedure should be
continued for a few iterations only. In our experi-
ence of the actual implementation, the estimates in
most cases converged within three to four iterations.
The final step produces the approximate conditional
likelihood (ACL) estimates �̃ and �̃. The general-
ized least squares residual sum of squares at the
final iteration can be compared to the chi-square
distribution with d = 1

2�p−k��p−k+1�−p degrees
of freedom for testing the fit of the model. This test
is based on the conditional distribution, and differs
from that for the ELM.
The minimization of the exponent part of l1 to

obtain an estimate of � may look somewhat simi-
lar to that used for the ELM procedure, but there
are some important differences. The quantity to be
minimized for the ACL is based on the approxi-
mate conditional distribution and uses the expan-
sion around Xt instead of around ft for the ELM.
Thus, for example, the second derivative bias adjust-
ment, based on similar ideas, has different signs
in the two approaches. Also, as given explicitly in

the Appendix, the function being minimized in the
ACL step is a quadratic form in some deviation
term with a given value of the weight. On the other
hand, within the ELM function, � appears in both
the deviation and the weight. Hence, the ACL min-
imization is considerably simpler than that for the
ELM.
For a special case of the linear model with normal

assumptions on ft and �t, the ACL procedure iter-
ated to convergence does not reduce to maximum
normal likelihood estimation. This is because the
information on �ee is not used to obtain an esti-
mate of �, and because some information about �
contained in l1 is ignored. However, for the linear
model, the resulting estimator possesses reasonable
efficiency and is simple to compute. Thus, we might
expect similar properties for the nonlinear model.
The convenient form of the approximate conditional
likelihood is appealing for handling a complex like-
lihood based on a nonlinear function of a random
factor. The ACL method with a simpler minimiza-
tion and without function evaluation at new factor
estimates in every iteration has a computational
advantage over the ELM method and is expected
to be more numerically stable.
For both ELM and ACL estimators and fit statis-

tics, the small-σ asymptotic theory could be applied
to derive approximate distributional properties
and to provide justification, although the details
can be extremely tedious. Some theoretical results
show that the small-σ asymptotic justification for
the ACL approach requires some distributional
assumption on ft and ut. In short, how much the
conditional mean of ft given Xt is allowed to depart
from the linearity depends on how small the error
variances are. For the practical use of the ACL, it is
necessary to choose the k components in the refer-
ence variable Xt in the errors-in-variables parame-
terization so that Xt is roughly normal or the error
ut is small. See Yalcin and Amemiya (1995). In the
asymptotics, the ELM approach may be preferred.
But, as we shall see in the next section, the finite
sample comparison is not that simple. To assess
the accuracy of the parameter estimates in either
approach, approximate standard error estimates
could be obtained using the small-σ asymptotics, or
some resampling procedures could be useful in tak-
ing advantage of the multivariate random sample
structure of the data.

7. A SIMULATION STUDY

A Monte Carlo simulation study was conducted to
assess the finite sample properties of the parameter
estimates obtained by the ELM and ACL procedures
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developed in Sections 5 and 6. Model (8) with p = 4
observed variables and k = 1 factor was considered.
For t = 1
2
 � � � 
 n, the model is

Y1t = β1 +
β2

1+ eβ3−β4ft
+ e1t


Y2t = β5 + β6ft + β7f
2
t + e2t


Y3t = β8 + β9ft + β10f
2
t + e3t


Xt = ft + ut

where the true parameter values for the coefficients
were chosen to be

�′ = �β1
 β2
 � � � 
 β10�
= �0
7
10
0�5
50
−5
0�1
65
−7
0�2��

We generated random samples, assuming

ft ∼N�20
36�
(
et
ut

)
∼N�0
 diag �ψee11
 ψee22
 ψee33
 ψuu���

To study the effect of the error variance size relative
to the total variance, we considered two sets of the
error variances,

ψeeii = δ Var�Yit�
 i = 1
2
3


ψuu = δ Var�Xt�

with δ = 0�1 and δ = 0�2 corresponding to cases with
error variances approximately 10% and 20% of the
total variances. (The numerical approximation was
used for Var�Y1t�). Two sample sizes, n = 300 and
500, were considered. For each of the four combina-
tions of δ and n, 1000 Monte Carlo samples were
generated. From each sample, initial estimates for
� and ψ described in the Appendix were obtained.
Using these initial estimates as starting values, a
step consisting of (E1)–(E3) in the Appendix was
iterated twice to obtain the extended linear maxi-
mum likelihood (ELM) estimates of � and ψ. Also
using the same initial values, a step consisting of
(A1) and (A2) in the Appendix was iterated twice to
obtain the approximate conditional likelihood (ACL)
estimates of � and ψ.
Table 1 presents the square root of the mean

squared error (RMSE) and the relative bias (RB =
bias/true value) for some selected parameters for
the four combinations of the sample sizes and vari-
ance ratios. Although the estimators of � may
not possess moments, these tables provide useful
summaries and comparisons of the estimation pro-
cedures. In addition, some boxplots are given in
Figure 2 and Figure 3 representing general pat-
terns of empirical distributions of the estimates.
In the boxplots, whiskers are drawn to the nearest

value not beyond 1.5 × (interquartile range) from
the quartiles. There were a few outliers hidden
in the boxplots. Such values were somewhat away
from the remaining values, but were not extreme
outliers.
For estimation of �, the initial estimator is the

ordinary nonlinear least squares estimator (as spec-
ified in the Appendix) which ignores the error in Xt.
As can be seen in the table and boxplots, the initial
estimator of � has a large bias which increases with
δ and does not decrease with n. In fact, the initial
estimator is so biased that all 1000 samples in some
cases give the values on one side (either larger or
smaller) of the true value. Thus, the ordinary non-
linear least squares estimator of � is useless unless
the error variances are very small. On the other
hand, the ELM and ACL estimators of � have small
biases, and the ACL is nearly median unbiased. The
small bias and the nearly symmetric empirical dis-
tribution around the true value are two common fea-
tures of the ELM and ACL estimators appealing for
practical use. The ELM estimator of � takes some
outlying values when the relative size δ of the error
variance is large or the sample size n is small. This
also affects the RMSE and RB, and may possibly
indicate the nonexistence of moments in some cases.
If we exclude a few outlying values, the ELM esti-
mator of � generally tends to have slightly smaller
variability than the ACL.
For estimation of ψ, the initial estimator given

in the Appendix is an unweighted estimator, while
the ELM and ACL estimators are weighted estima-
tors (with bias adjustment). As a result, the ELM
and ACL estimators improve largely over the initial
estimator in terms of variability. The performances
of the ELM and ACL estimators are similar to each
other, except that the ELM tends to have a smaller
bias but a slightly larger number of outlying val-
ues. As in estimation of �, the outlying values are
not extreme, and the number of samples contain-
ing them is very small. The estimation of ψ becomes
increasingly more difficult when the error variances
become large relative to the total variances.
Yalcin (1995) examines histograms of the param-

eter estimates, excluding the outliers. He reports
that the empirical distributions of the estimators
are approximately normal, that the ELM estimator
of a � parameter generally tends to be less variable
(excluding outliers) but more biased than the ACL,
and that, for estimating ψuu, ELM is less biased
but more variable than the ACL. In general, both
bias and variability decrease for both estimators as
the error variance decreases or as the sample size
increases. For estimating ψeeii, the two estimators
are generally similar.
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Table 1
Root mean squared error and relative bias for three estimators

Initial ELM ACL

Parameter RMSE RB RMSE RB RMSE RB

n = 300 � = 0�1

β4 0.1132 −0�2093 0.0701 −0�0848 0.0073 0.0331
β5 8.7747 −0�1667 4.1434 −0�0176 2.7802 −0�0006
β10 0.0352 −0�1683 0.0155 −0�0140 0.0110 0.0036
ψee11 0.2792 −0�0853 0.1474 −0�0873 0.1534 −0�0555
ψee22 2.0480 −0�0900 1.3914 −0�0212 1.2358 0.0054
ψuu 0.9302 0.0475 0.5045 −0�0196 0.4576 −0�0449

n = 500 � = 0�1

β4 0.1115 −0�2120 0.0546 −0�0789 0.0563 0.0251
β5 8.5938 −0�1666 2.4003 −0�0193 2.3242 −0�0012
β10 0.0348 −0�1693 0.0087 −0�0158 0.0088 0.0033
ψee11 0.2182 −0�0799 0.1114 −0�0747 0.1165 −0�0416
ψee22 1.6591 −0�0903 0.9675 −0�0092 0.9386 0.0073
ψuu 0.7485 0.0781 0.3742 −0�0185 0.3724 −0�0437

n = 300 � = 0�2

β4 0.2015 −0�3868 0.0546 −0�2424 0.0563 −0�0826
β5 18.0742 −0�3544 9.9081 −0�0993 6.0836 0.0110
β10 0.0730 −0�3590 0.0343 −0�0407 0.0269 0.0306
ψee11 0.7565 −0�2245 0.3564 −0�0611 0.3487 0.0645
ψee22 6.8998 −0�2275 3.8092 −0�0165 3.1516 0.0400
ψuu 2.5832 0.1325 1.3115 −0�0257 1.4179 −0�1119

n = 500 � = 0�2

β4 0.2018 −0�3941 0.1461 −0�2303 0.1001 −0�0908
β5 18.0186 −0�3562 7.7465 −0�0878 4.7030 0.0029
β10 0.0725 −0�3593 0.0246 −0�0683 0.0208 0.0227
ψee11 0.6835 −0�2342 0.2608 −0�0452 0.2836 0.0711
ψee22 6.3766 −0�2361 2.6675 0.0013 2.4453 0.0397
ψuu 2.3628 0.1784 1.0265 −0�0256 1.2965 −0�1128

Overall, the computationally simpler ACL fitting
procedure is generally more stable than the ELM
and seems to produce estimators with at least sim-
ilar efficiency. Because the normality of the factor
and error vectors used in this simulation corre-
sponds to the ideal case for the ACL, and because
the ELM estimator is more efficient for linear mod-
els, the relative efficiency of the ACL against the
ELM may decrease for other distributional situa-
tions. But, for the studied situation, the factor score
estimation and the repeated evaluation of func-
tions at the score estimates in the ELM procedure
seem to result in finite sample instability, produc-
ing more outliers than the ACL. It may be possible
to develop further modification of the ELM so
that the occurrence of outlying estimates decrease
and the finite sample properties improve. These
and a number of other methodological and theo-

retical issues regarding nonlinear factor analysis
require further investigation. However, the results
of this study are promising for the ELM and ACL
approaches as practical model fitting procedures.

8. THE EXAMPLE REVISITED

In this section, the Self-Directed Search voca-
tional interest data of Section 1 is further analyzed.
Recall that the fit of the linear one-factor model
was very poor (p = 0�0002) and that no linear fac-
tor analysis model fits Z1
 � � � 
Z4 well. Based on
the scatter plots in Figure 1, it may be reasonable
to suggest that, except for measurement errors, Z1
and Z3 are quadratic functions of Z4, and Z2 is
either linearly or quadratically related to Z4. Thus,
as an exploratory nonlinear model, we might con-
sider a general quadratic model with Z4 as the
reference variable corresponding to the underly-
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Fig. 2. Boxplots for estimates of β10.

ing investigative factor in the errors-in-variables
parameterization (8) as given by

Zit=β0i + β1ift + β2if
2
t + εit
 i = 1
2
3


Z4t=ft + ε4t
 t = 1
2
 � � � 
 n�
(24)

This model is fitted to Z1
 � � � 
Z4 here using the
ELM and ACL procedures described in Sections 5
and 6. For both procedures, the estimates converged
after five iterations. The goodness-of-fit test statis-
tics for the whole system of equations introduced
in Sections 5 and 6 were computed. For the ELM
procedure, the statistic is χ2 = 4�37 with 2 degrees

of freedom �p = 0�11�. For the ACL, the statistic is
χ2 = 3�78 also with 2 degrees of freedom �p = 0�15�.
Thus, according to these goodness-of-fit tests, the
quadratic model (24) with one underlying factor for
the data Z1
 � � � 
Z4 canot be rejected. Figure 4 is
the scatter plots of Z1, Z2, and Z3 versus Z4 with
three fitted lines; linear factor analysis fit and two
quadratic factor analysis fits by the ELM and ACL.
By examining the first and the third plots, the inad-
equacy of the linear model in describing the data
is clear. The two quadratic fitted lines capture the
apparent curvature in the data. For Z1 and Z3, the



290 I. YALCIN AND Y. AMEMIYA

1
2

3
4

5
6

7
•

•

•••
••••
••
•
•

•

•••

Initial ELM ACL

n = 500, δ = 0.2

n = 300, δ = 0.2

n = 500, δ = 0.1

n = 300, δ = 0.1

1
2

3
4

5
6

7

•••

••

•

••••
•••

••

••••••

Initial ELM ACL

0
5

10
15

••••
••••••
••

•

••

•••••••••••••
•••
••
•

••••••
•

Initial ELM ACL

0
5

10
15

•••
••••••••
•••

••

•

•

•••••••••••
•••
•

••

••••••
••
•

Initial ELM ACL

Fig. 3. Boxplots for estimates of ψuu.

ELM fit with near monotonicity may make more
sense from the subject-matter point of view. The
good fit of the quadratic model with one factor does
not deny the subject-matter theory that these four
scales measure a common underlying trait, and
indicates that the data for this particular set of
students are not necessarily inconsistent with the
theory used to design the investigative aspect part
of the vocational interest test. On the other hand,
if the analysis was restricted to linear models, then
the only possible conclusion would be that this data
set and the one-factor theory are not compatible.
By expanding the analysis to include the possible

nonlinear models, a well-fitting exploratory model
based on the one-factor theory was found. If we
trust the theory used in designing the test, then
we can use the fitted quadratic model to represent
approximate relationships between one underlying
factor and the four observed scales Z1
 � � � 
Z4, and
to define an “investigative” factor corresponding to
the errors-in-variables parameterization used in
model (24). A similar analysis can be applied to
the remaining scale scores in the data set designed
to measure each of the five other vocational inter-
est aspects. Alternatively, for all scale variables,
a reasonable nonlinear factor analysis model with
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Fig. 4. Vocational interest data with the linear and quadratic �ELM and ACL� factor analysis model fits.

six factors matching the theory can be searched
using the techniques described in this paper. Either
way, if models with good fit are obtained, then
the six-factor score estimates corresponding to the
theoretical six vocational interest aspects can be
obtained. In the ELM procedure, factor score esti-
mates are computed at each iteration using the
formula (19). For the ACL method, the final fitted
model and a formula similar to (19) can be used to
obtain factor score estimates. For either procedure,
more complicated estimates without using a linear
approximation are possible, once the final fit of a
model is available. Then, such theoretically mean-
ingful factor score estimates and possibly their
covariance matrix estimate can be used to study,
through structural equation analysis, the relation-
ships between the vocational interest factors and
the personality factors, for example, based on the
so-called big-five theory, as originally intended by
Dumenci (1993).
This type of study using factor score estimates,

sketched above but not discussed here in detail,
enables the separate analysis and model-checking
of the measurement and structural parts of the
overall model and allows the incorporation of non-
linear measurement models. This approach also
makes the nonlinear exploratory model building
simpler by concentrating on a rather small number
of variables at a time. When, as in this example,
the theory suggests a particular number of factors
but not a particular form of relationship, the ability
to consider a broad class of nonlinear measurement
models allows the extraction of much more informa-
tion about the underlying factors from the observed
variables than the analysis restricted to linearity.
For applied problems such as this example, the
nonlinear factor analysis can provide alternative

procedures for fitting, building and checking mod-
els supported by the theory and can potentially
lead to new discovery. In other problems where
the theory suggests a particular nonlinear model,
the ELM or ACL procedure described in this paper
can be used to fit the model without resorting to
an approximate linear model nor an unwelcome
transformation. The nonlinear factor analysis also
increases the available tools for analyzing, explor-
ing, and describing multivariate data and can
possibly change the interpretation and the concep-
tualization of the latent variable modeling from
those mostly based on correlations and covariances
to those based on regression-like equations with
measurement error. This paper has shown that fac-
tor analysis can be a sound statistical method, that
nonlinear factor analysis and nonlinear structural
equation analysis are possible and useful, that the
ELM and ACL approaches can form bases for devel-
oping statistical procedures for such analyses, and
that more statistical investigation in this area is
desired.

APPENDIX

The ELM and ACL algorithms are presented here
using explicit computational formulas. Some vector-
matrix operation notation is used. For a p×p sym-
metric A, let vech A be the 2−1p�p + 1� × 1 vector
listing the elements of A on or below the diago-
nal beginning with the first column. Let Kp be the
p2 × 2−1p�p + 1� matrix such that vec A = Kp
vech A. Also, define K+

p = �K′
pKp�−1K′

p, so that vech
A = K+

p vec A. For a p×p diagonal A with a = diag
A being the p × 1 vector of the diagonal elements,
let the p2 ×p matrix Lp be such that vec A = Lpa.
Define � to be the p×1 vector consisting of the diag-
onal elements of �ee and �uu. Then, vech � = K+

p

vec � = K+
pLp�.
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Initial Estimate

Both ELM and ACL procedures require some
initial values. An initial estimate ��0� of � can
be obtained by combining Amemiya’s (1993a, b)
single-equation instrumental variable estimates or
by minimizing

n∑
t=1
�Yt − g�Xt����′�Yt − g�Xt�����

An initial estimate ��0� can be obtained by applying
unweighted least squares to

m�0� = 1
n

n∑
t=1

r�0�t r�0�
′

t 


where

r�0�t = Yt − g�Xt���0���
That is, for the p × 1 ��0� satisfying vec ��0� =
Lp�

�0�,

��0� = (
C�0�′C�0�)−1C�0�′ vech m�0�


where

C�0� = K+
p−k�Lp−k


1
n

n∑
t=1

(
G�Xt���0�� ⊗G�Xt���0��

)
Lk��

For the ELM method, f �0�t = Xt serves as the initial
value for the factor scores.

ELM Algorithm

The ith step of the iterative ELM procedure con-
sists of the following:

(E1) f �i�t is obtained by

f �i�t = Xt +�
�i−1�
uu Ĝ�i−1�′

t �̂
�i−1�−1
tt v�i−1�t 


where

Ĝ�i−1�
t = G�f �i−1�t ���i−1��


�̂
�i−1�
tt =

[
Ip−k
−Ĝ�i−1�

t

](n− 1
n

��i−1� + 1
n
mZZ

)
×

[
Ip−k
−Ĝ�i−1�

t

]′



v�i−1�t = Yt − g�Xt���i−1�� +
1
2
H

(
f �i−1�t ���i−1�)

× vec�uu
�i−1�


mZZ =
1

n− 1

n∑
t=1

(
Zt −'Z

)(
Zt −'Z

)′



'Z = 1
n

n∑
t=1

Zt =
('Y′

t
'X′
t

)′



and G and H are defined in (14) and (15).

(E2) ��i� is obtained by minimizing
n∑
t=1

v̂′t����̂−1
tt ���v̂t���


where

v̂t��� = Yt − g�Xt��� +
1
2
H

(
f �i�t ��)

vec�uu
�i−1�


�̂tt��� =
[
Ip−k
−G�f �i�t ���

](n− 1
n

��i−1� + 1
n
mZZ

)
×

[
Ip−k
−G�f �i�t ���

]′
�

(E3) ��i� is obtained by applying generalized least
squares to

��i� = vech
1
n

n∑
t=1

v̂t���i��v̂′t���i���

For the p× 1 ��i� satisfying vec ��i� = Lp�
�i�,

��i� = (
Ĉ�i�′V̂−1Ĉ�i�)−1 Ĉ�i�′V̂−1 ��i�


where

Ĉ�i� = K+
p−k�Lp−k


1
n

n∑
t=1

(
Ĝ�i�
t ⊗ Ĝ�i�

t

)
Lk�


Ĝ�i�
t = G

(
f �i�t ���i�)


V̂ = 2
n2

K+
p−k

n∑
t=1

(
�̈
�i−1�
tt ⊗ �̈

�i−1�
tt

)
K+′
p−k


�̈
�i−1�
tt =

[
Ip−k
−Ĝ�i�

t

](n− 1
n

��i−1� + 1
n
mZZ

)
×

[
Ip−k
−Ĝ�i�

t

]′
�

The n−1mZZ modification in �E1�, �E2�, and
�E3� is for numerical stability when taking inverse
matrices in small samples. Step �E3� requires some
modifications related to the parameter space for �.
Because of the nonnegativity of variances, any neg-
ative element of ψ�i� in step �E3� should be replaced
by zero, and the remaining elements should be
reestimated by reduced generalized least squares.
In addition, a practically useful upper bound modi-
fication can be developed based on the observation
that, for the general nonlinear model with no lin-
ear relationship, the sample covariance matrix mZZ

estimates the sum of � and a positive definite
matrix. First, the largest root λ̂ of ���i� −λmZZ� = 0
is obtained. If λ̂ < 1+ 1

n
, then ��i� is unchanged. If

λ̂ ≥ 1 + 1
n
, then we set ��i� = 1

λ̂−n−1�
�i�. This mod-

ification prevents ��i� from becoming “too large”
and retains the variability due to the factor part
in mZZ − ��i�. The same upper bound modifica-
tion and reestimation due to the negative estimates
should also be incorporated in obtaining the initial
estimate ��0�.



NONLINEAR FACTOR ANALYSIS AS STATISTICAL METHOD 293

If an estimate of the factor covariance matrix
� = V�ft� is needed after obtaining the ELM esti-
mates �̂, �̂ and f̂t, then a simple unweighted
estimator

�̂ = 1
n

n∑
t=1

[(
f̂t− f̄

)(
f̂t− f̄

)′+�̂uuĜ
′
t�̂

−1
tt Ĝt�̂uu

]
−�̂uu

can be used, where

f̄ = 1
n

n∑
t=1

f̂t


Ĝt = G
(
f̂t� �̂

)



�̂tt =
[
Ip−k
−Ĝt

](n− 1
n

�̂+ 1
n
mZZ

)[
Ip−k
−Ĝt

]′
�

To guarantee the nonnegative definiteness of �̂, the
modification of Amemiya (1985) should be incorpo-
rated.

ACL Algorithm

At the ith iteration of the ACL procedure, esti-
mates of � and � are obtained as follows:

(A1) ��i� is obtained by minimizing
n∑
t=1

[
Yt − 


�i−1�
t ���

]′
	
�i−1�−1
tt

[
Yt − 


�i−1�
t ���

]



where



�i−1�
t ��� = g�Xt���+

1
2
H�Xt���vec��i−1�

uu

−G�Xt�����i−1�
uu m−1

XX�'Xt−X�

	
�i−1�
tt =�

�i−1�
ee +G̃�i−1�

t

[
�

�i−1�
uu −�

�i−1�
uu m−1

XX�
�i−1�
uu

]
×G̃�i−1�′

t + 1
n

[
Ip−k
−G̃�i−1�

t

]
mZZ

×
[
Ip−k
−G̃�i−1�

t

]′



G̃�i−1�
t = G�Xt���i−1���

(A2) ��i� is obtained by generalized least squares
applied to

m�i� = 1
n

n∑
t=1

[
r�i�t r�i�

′
t +A�i�

t

]



where

r�i�t = Yt − 

�i−1�
t ���i��


A�i�
t = G̃�i�

t �
�i−1�
uu m−1

XX�
�i−1�
uu G̃�i�′

t

+D�i�
t

[ n∑
s=1

D�i�′
s 	�i−1�−1ss D�i�

s

]−1
D�i�′
t 


D�i�
t =

∂g
(
Xt���i�

)
∂�′

�

For the p× 1��i� satisfying vec ��i� = Lp�
�i�,

��i� =
(
C̃�i�′Ṽ−1C̃�i�

)−1
C̃�i�′Ṽ−1 vechm�i�


where

C̃�i� = K+
p−k

(
Lp−k


1
n

n∑
t=1

(
G̃�i�
t ⊗ G̃�i�

t

)
Lk

)



Ṽ = 2
n2

K+
p−k

n∑
t=1

(
	̈
�i−1�
tt ⊗ 	̈

�i−1�
tt

)
K+′
p−k


	̈
�i−1�
tt =�

�i−1�
ee + G̃�i�

t

[
�

�i−1�
uu −�

�i−1�
uu m−1

XX�
�i−1�
uu

]
G̃�i�′
t

+ 1
n

[
Ip−k
−G̃�i�

t

]
mZZ

[
Ip−k
−G̃�i�

t

]′
�

An estimator of the factor covariance matrix �
can be obtained by mXX − �̃uu with modification
suggested in Amemiya (1985). The terms involving
n−1mZZ in �A1� and �A2� are included as a small
order adjustment for numerical stability. The lower
and upper bounds modifications used in �E3� should
also be incorporated in �A2�.
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