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ABSTRACT

Context. This paper extends the models of Craig & McClymont (1991, ApJ, 371, L41) and McLaughlin & Hood (2004, A&A, 420,
1129) to include finite β and nonlinear effects.
Aims. We investigate the nature of nonlinear fast magnetoacoustic waves about a 2D magnetic X-point.
Methods. We solve the compressible and resistive MHD equations using a Lagrangian remap, shock capturing code (Arber et al.
2001, J. Comp. Phys., 171, 151) and consider an initial condition in u × B · ẑ (a natural variable of the system).
Results. We observe the formation of both fast and slow oblique magnetic shocks. The nonlinear wave deforms the X-point into a
“cusp-like” point which in turn collapses to a current sheet. The system then evolves through a series of horizontal and vertical current
sheets, with associated changes in connectivity, i.e. the system exhibits oscillatory reconnection. Our final state is non-potential (but
in force balance) due to asymmetric heating from the shocks. Larger amplitudes in our initial condition correspond to larger values of
the final current density left in the system.
Conclusions. The inclusion of nonlinear terms introduces several new features to the system that were absent from the linear regime.
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1. Introduction

It is now known that MHD wave motions (e.g. Roberts 2004;
De Moortel 2005; Nakariakov & Verwichte 2005) are om-
nipresent throughout the solar corona (Tomczyk et al. 2007).
Many solar instruments have observed various MHD wave
motions in the solar atmosphere: slow magnetoacoustic (MA)
waves have been seen in SOHO data (Berghmans & Clette
1999; Kliem et al. 2002; Wang et al. 2002) and TRACE data
(De Moortel et al. 2000). Fast MA waves have been seen with
TRACE (Aschwanden et al. 1999, 2002; Nakariakov et al. 1999;
Wang & Solanki 2004) and Hinode (Ofman & Wang 2008).
Non-thermal line narrowing/broadening due to Alfvén waves
has been reported by Harrison et al. (2002)/Erdélyi et al. (1998)
and O’Shea et al. (2003). More recently, Alfvén waves have
been observed in the corona (Okamoto et al. 2007; Tomczyk
et al. 2007) and chromosphere (De Pontieu et al. 2007), although
these claims are currently subject to intense discussion (Erdélyi
& Fedun 2007; Van Doorsselaere et al. 2008).

It is clear that the coronal magnetic field plays a fundamen-
tal role in the propagation and properties of MHD waves, and
to begin to understand this inhomogeneous, magnetised envi-
ronment, it is useful to look at the topology (structure) of the
magnetic field itself. Potential-field extrapolations of the coronal
magnetic field can be made from photospheric magnetograms,
and such extrapolations show the existence of important fea-
tures of the topology: null points – locations in the field where

⋆ A movie is available in electronic form at http://www.aanda.org

the magnetic field, and hence the Alfvén speed, is zero, and
separatrices – topological features that separate regions of dif-
ferent magnetic flux connectivity. Detailed investigations of the
coronal magnetic field, using such potential field calculations,
can be found in e.g. Brown & Priest (2001), Beveridge et al.
(2002), Régnier et al. (2008) or a more comprehensive review
by Longcope (2005).

The propagation of fast magnetoacoustic waves in an inho-
mogeneous coronal plasma has been investigated by Nakariakov
& Roberts (1995), who showed that the waves are refracted into
regions of low Alfvén speed. In the case of null points, the
Alfvén speed actually drops to zero.

McLaughlin & Hood (2004, hereafter referred to as Paper I)
solved the linearised, β = 0 MHD equations using a two-step
Lax-Wendroff numerical scheme. They found that in the neigh-
bourhood of a single 2D X-point, the fast MA wave refracted
around and accumulated at the null point. These key results have
been found to carry over from the simple 2D single magnetic
null point to two null points (McLaughlin & Hood 2005) and to
a more realistic magnetic configuration of a null point created
by two dipoles (McLaughlin & Hood 2006a). It should be noted
that the behaviour of the fast wave is entirely dominated by the
Alfvén-speed profile, and since the magnetic field drops to zero
at the null point, the wave will never reach the actual null for a
β = 0 plasma. McLaughlin & Hood (2006b) extended the model
of Paper I to include plasma pressure effects. This naturally led
to the inclusion of the slow MA wave and the introduction of a
β = 1 layer around the null point; representing a high β environ-
ment inside and low outside. Coupling and mode conversion is
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observed at locations where the sound speed and Alfvén speed
become comparable in magnitude (e.g. Zhugzhda & Dzhalilov
1982; Cally 2001; Bloomfield et al. 2006; McDougall & Hood
2007).

Waves in the neighbourhood of a single 2D null point have
been investigated by various authors. Bulanov & Syrovatskii
(1980) provided a detailed discussion of the propagation of har-
monic fast and Alfvén waves using cylindrical symmetry. Craig
& Watson (1992) mainly considered the radial propagation of
the m = 0 mode (where m is the azimuthal wavenumber) using a
mixture of analytical and numerical solutions. They showed that
the propagation of the m = 0 wave towards the null point gen-
erates an exponentially large increase in the current density and
that magnetic resistivity dissipates this current in a time related
to log η. Craig & McClymont (1991, 1993), Hassam (1992) and
Ofman et al. (1993) investigated the normal mode solutions for
both m = 0 and m � 0 modes with resistivity included. Again,
they emphasise that the current builds up as the inverse square
of the radial distance from the null point. All these investigations
were carried out using cylindrical models in which the generated
waves encircled the null point.

Reconnection can occur when strong currents cause the mag-
netic fieldlines to diffuse through the plasma and change their
connectivity (Parker 1957; Sweet 1958; Petschek 1964). In 2D,
reconnection can only occur at null points (Priest & Forbes
2000). Dungey (1953) reported that a perturbed X-point can
collapse if the footpoints of the field are free to move, Mellor
et al. (2002) looked at the linear collapse of a 2D null point, and
Imshennik & Syrovatsky (1967) described the collapse with an
exact, non-linear solution of the ideal MHD equations. However,
these papers did not include the effect of gas pressure, which
would act to limit the growth of the current density. In con-
sidering the relaxation of a 2D X-type neutral point disturbed
from equilibrium, Craig & McClymont (1991) found that free
magnetic energy is dissipated by oscillatory reconnection, which
couples resistive diffusion at the null to global advection of the
outer field. An example of oscillatory reconnection generated by
flux emergence within a coronal hole was recently detailed by
Murray et al. (2008). Finally, Longcope & Priest (2007) inves-
tigated the diffusion of a 2D current sheet subject to suddenly
enhanced resistivity. They found that the diffusion couples to a
fast MA mode which propagates the current away at the local
Alfvén speed.

The aim of this paper is to extend the model used in Paper I
and Craig & McClymont (1991) to include finite β and nonlin-
ear effects. To realise this, we will be solving the compressible
and resistive MHD equations using a Lagrangian remap, shock
capturing code: LARE2D (Arber et al. 2001). The key results
from Paper I, i.e. for the linear fast wave, are that it demon-
strates refraction, that the wave energy accumulates at the null,
and that current density builds up exponentially at that point. We
believe it is important to extend this work to include nonlinear
effects since Paper I indicated a preferential topological location
for (ohmic) heating and we need to see if this observational pre-
diction persists when we consider larger (and hence nonlinear)
wave amplitudes. This paper will address three main questions
that naturally arise when extending Paper I into the nonlinear
regime:

(1) Does the fast wave now steepen to form shocks, and can
these propagate across or escape the null?

(2) Can the refraction effect drag enough magnetic field into the
null to initiate X-point collapse or reconnection?

(3) Has the rate of current density accumulation changed, and is
the null still the preferential location of wave heating?

The paper has the following outline: the basic setup, equations
and assumptions are described in Sects. 2, 3 details the nonlinear
fast MA wave behaviour and the resultant oscillatory reconnec-
tion is discussed in Sect. 4. We consider different amplitudes for
our initial condition in Sect. 5 and the conclusions are given in
Sect. 6.

2. Basic equations

We consider the 2D compressible and resistive MHD equations
appropriate to the solar corona:

ρ

[

∂u

∂t
+ (u · ∇) u

]

= −∇p +

(

1

µ
∇ × B

)

× B,

∂B

∂t
= ∇ × (u × B) + η∇2B,

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ

[

∂ǫ

∂t
+ (u · ∇) ǫ

]

= −p∇ · u + 1

σ
| j|2 , (1)

where ρ is the mass density, u is the plasma velocity, B the
magnetic induction (usually called the magnetic field), p is the
plasma pressure, µ = 4π × 10−7 Hm−1 is the magnetic perme-
ability, σ is the electrical conductivity, η = 1/µσ is the magnetic
diffusivity, ǫ = p/ρ (γ − 1) is the specific internal energy density,
where γ = 5/3 is the ratio of specific heats and j = ∇ × B/µ is
the electric current density.

The LARE2D numerical code utilises artificial shock viscos-
ity to introduce dissipation at steep gradients. The details of
this technique, often called Wilkins viscosity, can be found in
Wilkins (1980) and Arber et al. (2001).

2.1. Basic equilibrium and non-dimensionalisation

The equilibrium magnetic field structure is taken as a simple 2D
X-type neutral point. The aim of studying waves in a 2D config-
uration is one of simplicity. There are many complicated effects
including mode conversion and coupling, and a 2D geometry al-
lows us to understand and explain these behaviours better, before
the extension to 3D. The initial magnetic field is taken as

B0 =
B

L
(y, x, 0) , (2)

where B is a characteristic field strength and L is the length scale
for magnetic field variations. This magnetic field can be seen in
Fig. 1. Equation (2) is slightly different to that used in Paper I,
where the authors considered B0 = (x, 0,−z). This simply rep-
resents a π/4 rotation of our magnetic field and the key results
are still valid. Note that this magnetic configuration is no longer
valid far from the null point, as the field strength tends to infin-
ity. However, McLaughlin & Hood (2006a) looked at a β = 0
magnetic field that decays far from the null and they found that
the key results from Paper I remain true close to the null.

We will also find it useful to consider A, the vector potential,
where B = ∇ × A. In 2D and for the coordinate system used in
this paper, A = Az ẑ and our equilibrium vector potential is given
by:

A0 = A0 ẑ =
1

2

(

y2 − x2
)

ẑ. (3)
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Fig. 1. The equilibrium magnetic field. The red lines denote the separa-
trices and arrows indicate the direction of the magnetic field. The null
point is located at the origin, where the separatrices intersect.

We now consider a change of scale to non-dimensionalise all
variables. Let u = v0u

∗, B = BB∗, x = Lx∗, y = Ly∗, ρ = ρ0ρ
∗,

p = p0 p∗, ∇ = 1
L
∇∗, t = t0t∗, A = BLA∗ and η = η0, where

we let * denote a dimensionless quantity and v0, B, L, ρ0, p0, t0
and η0 are constants with the dimensions of the variable they
are scaling. We then set B/

√
µρ0 = v0 and v0 = L/t0 (this

sets v0 as a constant background Alfvén speed). We also set
η0t0/L

2 = R−1
m , where Rm is the magnetic Reynolds number, and

set β0 = 2µp0/B
2, where β0 is the plasma-β at a radius L from

the origin. This process non-dimensionalises Eqs. (1) and under
these scalings, t∗ = 1 (for example) refers to t = t0 = L/v0; i.e.
the time taken to travel a distance L at the background Alfvén
speed. For the rest of this paper, we drop the star indices; the fact
that all variables are now non-dimensionalised is understood.

We take the equilibrium density to be uniform, i.e. ρ = ρ0;
a spatial variation in ρ0 can cause phase mixing (Heyvaerts &
Priest 1983; De Moortel et al. 1999; Hood et al. 2002). We set
Rm = 104.

Finally, we consider the equilibrium plasma to be cold:
T = 0 K (i.e. β0 = 0) and, hence, ignore plasma pressure ef-
fects (as in Paper I). However, as we will see below, magnetic
shocks heat the plasma and so the plasma will not remain cold
(see e.g. Sect. 1.5 in Priest & Forbes 2000).

2.2. Initial and boundary conditions

Equations (1) are solved numerically using a Lagrangian remap,
shock-capturing code called LARE2D (Arber et al. 2001). The
equations are solved computationally in a square domain x, y ∈
[−20, 20] with a numerical resolution of 5120 × 5120. Zero gra-
dient boundary conditions are applied to the variables B, ρ, ǫ at
the four boundaries, and u is set to zero on all boundaries, i.e.
reflective boundaries. A damping region exists for x2 + y2 ≥ 6
and so all oscillations that enter this region are slowly damped
away. The (equilibrium) Alfvén speed increases with distance
from the null point and, hence, waves accelerate as they prop-
agate outwards. Since we do not want reflected waves to influ-
ence our null point, implementation of such a damping region is
essential.

As seen in Paper I, there are two natural variables to con-
sider in our system: v⊥ = (u × B) · ẑ = vxBy − vyBx and

v‖ = u · B = vxBx + vyBy. Here, v⊥ and v‖ are related to the
perpendicular and parallel velocity, respectively and, as seen in
Paper I, their implementation naturally simplifies the governing
equations, aids in MHD mode interpretation and (for v⊥) led to
an analytical solution to the linear, cold plasma equations.

In cartesian coordinates: vx =
(

v‖Bx + v⊥By
)

/ |B|2 and vy =
(

v‖By − v⊥Bx

)

/ |B|2. In polar coordinates: vx = v⊥ cos θ/r, vy =

−v⊥ sin θ/r, where r =
√

x2 + y2 and we take v‖ to be ini-
tially zero. We note that with our choice of magnetic null point
(Eq. (2)), if we drive any of the velocity variables, the system
will naturally develop a θ dependence.

Paper I clearly demonstrates that the Alfvén speed (v2
A
=

B2
x + B2

y = x2 + y2) plays a vital role. Hence, it is natural to
consider either a polar coordinate system or a circular pulse. In
addition, as commented by McClements et al. (2004), a distur-
bance initially consisting of a plane wave is refracted as it ap-
proaches the null in such a way that it becomes more azimuthally
symmetric. Thus, it is appropriate to consider the evolution of
azimuthally symmetric perturbations. We expect the nonlinear
behaviour to be more complicated than the linear equivalent and
so, in order to clearly demonstrate the differences between the
two systems, in this paper we consider an initial condition in
velocity, such that:

v⊥ (x, y, t = 0) = 2C sin [π (r − 4.5)] for 4.5 ≤ r ≤ 5.5, (4)

v‖ (x, y, t = 0) = 0

where 2C is our initial amplitude. Initial condition (4) describes
a circular, sinusoidal pulse in v⊥. When the simulation begins,
this initial pulse will naturally split into two waves, each of am-
plitude C, travelling in different directions: an outgoing wave
and an incoming wave. In this paper we will focus on the in-
coming wave, i.e. the wave travelling towards the null point.
The damping regions will remove kinetic energy from the out-
going waves, and so they do not influence the null. The initial
condition produces a propagating disturbance that crosses mag-
netic fieldlines. Hence, we identify these waves as (initially) fast
MA waves.

By choosing a small value for C in Eq. (4), we can recover
the linear results from Paper I. This can be seen in Appendix A
where we set C = 0.001. For the nonlinear work described in
Sects. 3 and 4, we set C = 1. Different values of C will be con-
sidered in Sect. 5.

3. Nonlinear fast MA behaviour

3.1. Development of shocks (0≤ t≤ 1)

The evolution of v⊥ can be seen in Fig. 2 (0 ≤ t ≤ 1), Fig. 5
(1.4 ≤ t ≤ 2.8) and Fig. 6 (2.9 ≤ t ≤ 60), and the full evolution,
0 ≤ t ≤ 60, is available as an mpeg animation in the online
edition of the Journal.

From Fig. 2, we see that the initial pulse has split into two
oppositely travelling wave pulses, where both waves can be seen
at t = 0.1. In order to clearly show the wave behaviour, we have
plotted x, y ∈ [−5, 5], i.e. a square subsection of our total com-
putational box. Hence, only the incoming wave can be seen after
time t = 0.1. This figure can be compared with Fig. A.1, which
corresponds to the linear regime.

There are two key features to note from Fig. 2. Firstly, we see
that the incoming wave propagates across the magnetic fieldlines
and keeps its initial pulse profile, i.e. an annulus, and the maxi-
mum amplitude remains at C = 1. The annulus contracts as the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810465&pdf_id=1
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Fig. 2. Contours of v⊥ for a fast wave pulse initially located at a radius r = 5, and its resultant propagation at (Alfvén) times t = 0, 0.1, 0.5 and 1.
The black lines denote the separatrices and the null point is located at their intersection (the origin). The full evolution, 0 ≤ t ≤ 60, is available as
an mpeg animation in the online edition of the Journal.

Fig. 3. a) Plot of vx(x, 0) for −5 ≤ x ≤ 5 at t = 1. b) Plot of vy(0, y) for
−5 ≤ y ≤ 5 at t = 1. The red line indicates the location of the null point.
For x, y ≥ 0, we have plotted stars to indicate the grid resolution.

wave approaches the null point and this is the same refraction ef-
fect described in Paper I. This refraction effect occurs since the
(equilibrium) Alfvén speed is spatially varying.

Secondly, we note that the incoming wave pulse is develop-
ing an asymmetry: the wave peaks are propagating faster (rel-
ative to the footpoints) in the y-direction than the x-direction.
Thus, the wave pulse is developing discontinuities, where in the
y-direction the wave peak is catching up with the leading foot-
point, and in the x-direction the trailing footpoint is catching up
with the wave peak. These discontinuities can be clearly seen in
Fig. 3a (trailing edge in vx[x, 0]) and Fig. 3b (leading edge in
vy[0, y]). We have also indicated the grid resolution (using stars)
on the right-hand side of each subfigure which shows that the
developing discontinuity is well resolved.

This development of discontinuities was not reported in
Paper I as it is an entirely nonlinear effect, which arises be-
cause of our choice of a velocity initial condition (Eq. (4)). In
the nonlinear regime, specifying an initial velocity condition
also prescribes a background velocity profile, and this profile
can be seen in Fig. 4. It is this background velocity profile that
leads to the development of discontinuities on the leading edges
in the y-direction and on the trailing edges in the x-direction.
The vx (red arrows) and vy (blue arrows) contributions to this
background velocity profile can be seen in Fig. 4c. This phe-
nomenon is most easily understood by means of a simple 1D ex-
ample, details of which can be found in Appendix B. Note that
the background velocity profile prescribed by Eq. (4) appears as
the m = 0 mode in v⊥ but corresponds to the m = 2 mode in
cartesian components.

3.2. X-point collapse (1.4≤ t≤ 4)

The wave evolution between 1.4 ≤ t ≤ 2.8 can be seen in Fig. 5.
From the first row, 1.4 ≤ t ≤ 1.8, we see that the asymmetry seen

in Fig. 2 has now lead to the formation of shock waves. From the
second and third rows (2 ≤ t ≤ 2.5) of Fig. 5, we see that the
shocks above and below y = 0 have started to overlap (starting
at x ≈ ±1). This overlap leads to the development of hot jets.

The white box in Fig. 5 at t = 2 is analysed in Fig. 7a. By
considering the physical quantities along a line perpendicular to
the shock front, we see that there is an abrupt increase in den-
sity, temperature and, consequently, pressure (Fig. 7b). Bx in-
creases in magnitude, whereas By decreases, and both preserve
their original directions (Fig. 7c). Hence, the shock makes B re-
fract away from the normal and so we identify it as a fast oblique
magnetic shock. In the idealised limit u ‖ B, this would be called
a switch-on shock (see e.g. Sect. 1.5.2 in Priest & Forbes 2000).
It is interesting to note that the shock has heated the plasma and
so β � 0 in these locations.

The white box in Fig. 5 at t = 2.4 is analysed in Fig. 8.
Figure 8a shows a contour of v⊥ for 0 ≤ x ≤ 2, −1 ≤ y ≤ 1, and
we see that the overlap of the shock waves forms a triangular
“cusp”, which we call the shock-cusp. Figure 8b shows that these
hot jets heat the plasma, substantially more than the previous
shock heating (compare magnitudes of T from Figs. 7b and 8b).
These hot jets also significantly bend the magnetic fieldlines.

The hot jets set up new shock waves emanating from the
shock-cusp, and by considering the changes of physical quanti-
ties perpendicular to the shock front (similar to before), we see
that there is an abrupt increase in Bx and decrease in By, although
both preserve their original directions (Fig. 8c). Thus, the shock
makes B refract towards the normal, and we identify this as a
slow oblique magnetic shock. In the idealised limit u ‖ B, this
would be called a switch-off shock.

The structure of the hot jet is in good agreement with that
described by Forbes (1988, see his Fig. 15). In addition to the
slow shocks downstream of the tip of the jet, there is evidence
of slow shocks along the sides of the jet upstream of the tip (see
Fig. 8b). There are also kinks in the fieldlines at the tip of the jet,
indicative of a fast oblique magnetic shock. Thus, the jet heating
itself is accomplished by a combination of slow and fast shocks.
The abrupt jump in temperature and magnetic field at the tip of
the jet is also consistent with the jump predicted by Soward and
Priest (1982).

The fourth row of Fig. 5 shows that the shocks, both the fast
shocks and their overlap (the tails of the jets) have reached the
null point (at t = 2.6). The shocks have deformed the magnetic
field such that the separatrices now touch one another rather than
intersecting at a non-zero angle (called “cusp-like” by Priest &
Cowley 1975). That the perturbation can reach the neutral point

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810465&pdf_id=2
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Fig. 4. Our choice of initial condition for a) vx and b) vy at t = 0. This choice of initial condition prescribes a background velocity profile. c) Cartoon
representation of the vx (red arrows) and vy (blue) contributions to this background velocity profile, where the black lines denote the separatrices
and the null point is located at their intersection.

is a phenomenon not seen in Paper I (where the perturbation
reached the null after an infinite amount of time).

After time t = 2.6, we see that the shock wave can now pass
through the null point: entirely different behaviour to that seen
in Paper I. This is more clearly seen in Fig. 9a, which shows a
plot of vy(0, y) at t = 2.6 (just before null point is crossed) and
t = 3.0 (after null has been crossed).

3.3. Oscillatory Behaviour v⊥ (4.1≤ t≤ 60)

The evolution of v⊥ for 2.9 ≤ t ≤ 60 can be seen in Fig. 6.
We can see that the evolution proceeds in two separate ways.
Firstly, some of the wave now escapes the system: this propaga-
tion can be seen above and below the location of the null point.
Secondly, the (deformed) neutral point itself continues to col-
lapse and forms a horizontal current sheet. This can be clearly
seen at t = 4, and contours of jz are shown in Fig. 9b. Here,
current density can be seen at the four slow oblique magnetic
shocks, along (approximately) −0.2 ≤ x ≤ 0.2, y = 0 (i.e. a hor-
izontal current sheet), at the locations of our two shock-cusps
and due to the wave propagating away. Thus, we see that current
density forms at several locations. The formation of a current
sheet was not seen in Paper I (which reported the formation of a
current density line at the null point).

Returning to Fig. 6, we see that this horizontal current sheet
shortens in length (t = 4.1). This is because the jets to the left
and right of the origin heat the plasma, which begins to expand.
This expansion squashes the horizontal current sheet, forcing the
separatrices apart. The (squashed) horizontal current sheet then
returns to a “cusp-like” null point which, due to the continu-
ing expansion from the heated plasma, in turn forms a vertical
current sheet (t = 7). The evolution now proceeds through a
series of horizontal and vertical current sheets and displays os-
cillatory behaviour (as seen by Craig & McClymont 1991). At
t = 60, we see that the majority of the initial wave pulse has
propagated away from the X-point, and that the associated ve-
locities are negligible. It is also interesting to note that the final
state (t = 60) is non-potential; the separatrices for t = 0 are over-
plotted in red and there is clearly a small offset. This is due to
the finite amount of current left in our system (see below).

The oscillatory nature of the system can be clearly seen from
the time evolution of jz(0, 0) shown in Fig. 10. The red/blue lines
indicate maxima/minima in the system and the green line shows
jz(0, 0) = 0.8615, which is the limiting value of the oscillation.
We can see that there is no current density at x = y = 0 (i.e.
the location of the potential null point) before t = 2.6. This is

as expected since our initial wave pulse does not reach the null
before this time. At t = 2.6 we see a strong spike in the current
density: this is the result of our nonlinear wave reaching the null
point for the first time (see Fig. 5 at t = 2.6). At t = 4.4, the
current density associated with the triangular shock-cusps (from
the slow oblique magnetic shocks) reaches the origin; giving rise
to a second sudden spike in current density.

At t = 6.4, there is a third large spike in current density (op-
posite sign to previous two peaks). This indicates the formation
of the first vertical current sheet. The peak shortly following this
(at t = 7.4) is due to the current density associated with the tri-
angular shock-cusps from this vertical current sheet reaching the
origin.

The next peak in current density occurs at t = 11.8. This rep-
resents the formation of a second horizontal current sheet (see
Fig. 6 at t = 12). However, there is no secondary peak associ-
ated with this horizontal current sheet, unlike the previous two
current sheets.

From Fig. 10 we can see that at later times, the cycle of
maxima and minima continues, with each maxima (red lines)
associated with the formation of vertical current sheet and each
minima (blue) associated with a horizontal one. This oscillation
has a decreasing period, and the time taken to go from a hori-
zontal to vertical current sheet is shorter than vice-versa. This is
because the system finds it easier to form vertical current sheets
due to the asymmetric heating around the null point (see below).

We can also see that the oscillation in current density is tend-
ing to a constant value of jz(0, 0) = 0.8615. This is in agreement
with our statement above that the final state is non-potential. This
is because at the end of the simulation, the plasma to the left and
right of the neutral point is hotter than above and below, due to
the hot jets that formed and heated the (initially cold) plasma af-
ter t = 2. Consequently, the plasma pressure in greater to the left
and right of the null and hence the system finds it easier to form
vertical current sheets (due to the asymmetric heating). The final
state (Fig. 6 at t = 60) shows that the X-point is very slightly
closed up in the vertical direction, in agreement with jz tending
to a small positive value.

If the final state is in force-balance, we would expect the
pressure to be a function of Az, i.e. the plasma pressure should lie
along contours of Az if P = P(Az). Figure 11a shows that a plot
of Az(x, 0) and Az(0, y) against P(x, 0) (red) and P(x, 0) (blue)
yields a single curve, and from Fig. 11b, we can see that the
agreement between the pressure and contours of Az(t = 60) is ex-
cellent. This implies that although the final state is non-potential,
it is still in force-balance.
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Fig. 5. Contours of v⊥ at various (Alfvén) times between t = 1.4 and t = 2.8. Note that the amplitude varies substantially throughout the evolution,
and hence each row is assigned its own colour bar. The black lines denote the separatrices. The white boxes at t = 2 and 2.4 are analysed in Figs. 7
and 8, respectively.
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Fig. 6. Contours of v⊥ at various (Alfvén) times between t = 2.9 and t = 60. Note that the amplitude varies substantially throughout the evolution,
and hence each row is assigned its own colour bar. The black lines denote the separatrices. The red lines at t = 60 denote the potential separatrices.
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Fig. 7. a) Contour of v⊥ at t = 2 for 0.2 ≤ x, y ≤ 0.5. The black line
denotes the separatrix, the dotted, y = 4.382x − 0.938, and dashed,
y = −0.228x+0.341, white lines denote the lines perpendicular and par-
allel to the shock front, respectively. b) Plots of Temperature, T (red),
Pressure, P (blue), and density, ρ/100 (green), and c) plots of Bx (red)
and By (blue) perpendicular to the shock front.

4. Reconnection

From Sect. 3.3, it is clear that we have oscillatory behaviour in
our system. However, do we have reconnection? We demonstrate
that reconnection is occurring via the following two pieces of ev-
idence: firstly, in Fig. 12 we have plotted a selection of fieldlines

Fig. 8. a) Contour of v⊥ at t = 2.4 for 0 ≤ x ≤ 2, −1 ≤ y ≤ 1. The
black line denotes the separatrices, the dotted, y = −1.111x + 1.427,
and dashed, y = 0.9x−0.685, white lines denote the lines perpendicular
and parallel to the shock front, respectively. b) Contour of temperature
at t = 2.4 for 0 ≤ x ≤ 2, −1 ≤ y ≤ 1. The white lines denote magnetic
fieldlines (thick white line denotes the separatrices). c) Plots of Bx (red)
and By (blue) perpendicular to the shock front.

in our system at four different time slices, where red fieldlines
originate from x ∈ [−20,−19.99], y = ±20 and blue fieldlines
originate from x = ±20, y ∈ [−20,−19.99], all with equal sep-
aration of 0.01. The separatrices (which change in time) are
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Fig. 9. a) Plot of vy(0, y) for −2 ≤ y ≤ 2 at t = 2.6 (red) and t = 3.0
(blue). The perturbation has crossed the null point. The dashed line in-
dicates vy(0, y) = 0. b) Contour of jz at t = 4. The black lines denote
the separatrices.
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Fig. 10. Plot of time evolution of jz(0, 0) for 0 ≤ t ≤ 60. Insert shows
plot of time evolution of jz(0, 0) for 25 ≤ t ≤ 60 (same x-axis, different
y-axis). The dashed lines indicate maxima (red) and minima (blue) in
the system and the green line shows jz(0, 0) = 0.8615.

plotted in black. In order to clearly show the results, we have
plotted a subsection of our computational box: x, y ∈ [−0.5, 0.5].

At t = 0, all the red fieldlines from the top/bottom left corner
connect to the top/bottom right corner, and all the blue fieldlines
connect from the top left/right corner to the bottom left/right cor-
ner. The (potential) separatrices pass through x, y = [±20,±20]
and the origin, as expected from Eq. (2), and separate the red

Fig. 11. a) Plot of P[x, 0] (red) against Az[x, 0] and plot of P[0, y] (blue)
against Az[0, y]. b) Contour of plasma pressure at t = 60. Contours of
Az(t = 60) are overplotted in white and the separatrices are in black.

and blue fieldlines. Thus, if we have a change in connectivity,
we should see a red/blue fieldline cross the (evolving) separatri-
ces. Since we have reflecting boundaries (u = 0) and the value of
the vector potential, Az, on the boundaries does not change with
time, we can be confident that we are always plotting the same
fieldlines in each subfigure.

Figure 12 (t = 4) shows our choice of magnetic fieldlines
shortly after the formation of the first horizontal current sheet
(compare to Fig. 5 at t = 4). Here, we can see that one of our
red fieldlines has crossed the separatrices; indicating a change
in connectivity. Figure 12 (t = 8) shows our choice of mag-
netic fieldlines shortly after the formation of the first vertical
current sheet, and now we see that some of the blue lines have
crossed the separatrices and the red fieldlines are once again all
on the same side of the separatrices. At the end of our simulation
(t = 60), we see that more blue fieldlines have crossed the sepa-
ratrices. Thus, throughout the evolution of our system, we have
several changes in connectivity, giving us qualitative evidence
for reconnection.

Quantitative evidence for reconnection in our system can be
seen in Fig. 13. Here, we see a plot of the time evolution of
Az(0, 0), where changes in the vector potential at the origin in-
dicate changes in connectivity. Figure 13a shows a plot of the
time evolution of Az(0, 0). Before t = 2.6, Az(0, 0) = 0 as ex-
pected (no disturbance to the null point). After this time, we see
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Fig. 12. Selection of fieldlines in our system at times t = 0, 4, 8 and 60. Red fieldlines originate from x ∈ [−20,−19.99], y = ±20 and blue
fieldlines originate from x = ±20, y ∈ [−20, 19.99], all with equal separation of 0.01. The separatrices is plotted in black. The same fieldines are
shown in each subfigure.

Fig. 13. a) Plot of the time evolution of Az(0, 0), where we have overplotted a straight line fit: Az = −10−5 (8.615t + 148.434). b) Plot of the rate of
change of Az at x = y = 0 with straight line trend removed: −A1 = 105Az(0, 0)/ (8.615t + 148.434), where t = 2.6, 4.4 and 6.4 are shown in blue. c)
(Dashed line) Plot of the time evolution of the reconnection rate, i.e. −Rm ∂Az/∂t| (0, 0), (dotted line) overplot of evolution of jz(0, 0). The green
line shows −Rm ∂Az/∂t| (0, 0) = 0.8615.

that Az(0, 0) oscillates but also displays a clear trend that is tend-
ing towards a straight line: Az = −10−5 (8.615t + 148.434). This
straight line is associated with the final current density remain-
ing in our system, i.e.:

∂Az

∂t
=

1

Rm

∇2Az = −
1

Rm

jz. (5)

Hence, if our final state contains constant current density, say
jC=1, then we expect Az to change linearly in time. Assuming
jz → jC=1 and integrating Eq. (5) and comparing this to our
straight line, we see that jC=1 = 0.8615, which is in excellent
agreement with our estimate from Fig. 10.

Figure 13b shows a plot of the time evolution of A1 =

−105Az(0, 0)/ (8.615t + 148.434), i.e. we have removed the
straight line trend. We have actually plotted −A1 to aid com-
parison between Figs. 13a and 13b. We can clearly see the os-
cillatory nature of A1(0, 0) and that it tends towards a constant
value of −1 (which gives confidence that our straight line fit is
appropriate). We can also see that A1(0, 0) undergoes significant
changes at t = 2.6, 4.4 and 6.4 (overplotted in blue), where these
times correspond to the nonlinear wave reaching the X-point, the
first triangular shock-cusps reaching the null and the formation
of the first vertical current sheet, respectively.

Figure 13b shows us that A1(0, 0) is continuously changing
as it tends to −1, and thus reconnection is continuously occur-
ring until this time (t ≈ 50). Thus, whenever −A1(0, 0) oscillates
through −1, we are increasing or decreasing flux on one side or
the other of our final state.

Finally, we can calculate the reconnection rate in our system,
defined as ∂Az/∂t|(0,0), and we have plotted −Rm ∂Az/∂t|(0,0) in

Fig. 13c. We can clearly see the reconnection rate varies through-
out the simulation and tends towards a constant value. However,
from Eq. (5) we see that the reconnection rate is the same as
− jz/Rm and thus is expected to tend towards − jC=1/Rm. Indeed
we have overplotted the current density evolution (dotted line)
and the agreement is excellent.

5. Amplitudes C = 0.5 and C = 2

In this section, we examine the effect of changing the am-
plitude, C, of our initial condition in v⊥ (Eq. (4)). Here, we
consider C = 0.5 and C = 2, and the results can be seen in
Fig. 14. Comparing to Fig. 13, we can see that the overall
behaviour is very similar that of C = 1, where we observe
oscillatory reconnection and a cycle of horizontal and verti-
cal current sheets. Figure 14a shows a plot of the time evo-
lution of AC=0.5(0, 0), i.e. the flux function at the origin for
C = 0.5. We see that AC=0.5(0, 0) oscillates but displays a
clear downwards trend that is tending to a straight line: Az =

−10−5 (6.672t + 113.452). As explained in Sect. 4, this straight
line is associated with the final current density remaining in
our system. Figure 14b shows a plot of the time evolution of
−A2 = 105AC=0.5(0, 0)/ (6.672t + 113.452), i.e. we have de-
trended AC=0.5(0, 0). We can clearly see the oscillatory nature of
AC=0.5(0, 0). As before, the repeated changes in AC=0.5(0, 0) im-
plies that reconnection is continuously occurring in our system.

We can also calculate the reconnection rate in the
C = 0.5 system, defined as ∂AC=0.5/∂t| (0, 0) and we have plot-
ted −Rm ∂AC=0.5/∂t| (0, 0) in Fig. 14c. We see that the recon-
nection rate varies throughout the simulation and tends to a
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Fig. 14. a) Plot of the time evolution of AC=0.5(0, 0), where we have overplotted a straight line fit: AC=0.5 = −10−5 (6.672t + 113.452). b) Plot of the
rate of change of detrended AC=0.5 at x = y = 0, where −A2 = 105AC=0.5(0, 0)/ (6.672t + 113.452), where t = 2.6 is shown in blue. c) Plot of
the time evolution of the reconnection rate, i.e. −Rm ∂AC=0.5/∂t| (0, 0), where the green line indicates −Rm ∂AC=0.5/∂t| (0, 0) = 0.6672. d) Plot
of the time evolution of AC=2(0, 0), where we have overplotted a straight line fit: AC=2 = −10−4 (1.194t + 6.242). e) Plot of the rate of change
of detrended AC=2 at x = y = 0, where −A3 = 104AC=2(0, 0)/ (1.194t + 6.242), where t = 2.6 is shown in blue. f) Plot of the time evolution of the
reconnection rate, i.e. −Rm ∂AC=2/∂t| (0, 0), where the green line indicates −Rm ∂AC=2/∂t| (0, 0) = 1.1943.

constant value. From Eq. (5), we see that the reconnection rate
is also an excellent measure of the current density in the system,
tending to a final current density of jC=0.5 = 0.6672. Comparing
to Fig. 13c, we see that the current evolution is comparable in
nature but slightly smaller in magnitude. In addition, the final
current left in the system is smaller than jC=1 = 0.8615.

Figure 14d shows a plot of the time evolution of AC=2(0, 0),
i.e. the flux function at the origin for C = 2. As before, we see
that AC=2(0, 0) oscillates and displays a clear downwards trend
that is tending to a straight line: Az = −10−4 (1.194t + 6.242).
Figure 14e shows a plot of the time evolution of −A3 =

104AC=2(0, 0)/ (1.194t + 6.242). Again, we can clearly see the
oscillatory nature of the system. Figure 14d shows the recon-
nection rate, and therefore the current density evolution in the
C = 2 system. Comparing to Fig. 13c, we see the current evo-
lution is comparable in nature but slightly larger in magnitude.
The final current left in the system, jC=2 = 1.1943, is larger than
jC=1 = 0.8615.

We have also indicated t = 2.6 in Figs. 14b and 14e, i.e. the
time taken for the nonlinear wave to first reach the X-point in
the C = 1 system. We see that in the C = 0.5/C = 2 system, the
wave reaches the X-point after/before this time, since the shock
forms earlier and travels faster the larger the value of C.

6. Conclusions

This paper describes an investigation into the nature of non-
linear fast magnetoacoustic waves in the neighbourhood of a
2D magnetic X-point. We have solved the compressible and re-
sistive MHD equations using a Lagrangian remap, shock captur-
ing code (LARE2D). We consider a circular, sinusoidal pulse in
v⊥ as our initial condition in velocity (Eq. (4)), which naturally
splits into two waves and we focus on the wave travelling

towards the null point. Implemented damping regions remove
the kinetic energy from the outgoing wave. Initially, we consider
an incoming wave of amplitude C = 1.

Between 0 ≤ t ≤ 1, we find that the incoming wave prop-
agates across the magnetic fieldlines and keeps its initial pulse
profile (an annulus). The annulus contracts as the wave ap-
proaches the null point, and this is the same refraction behaviour
reported in Paper I, due to the spatial variation of the (equilib-
rium) Alfvén speed. We also note that the incoming wave pulse
is developing an asymmetry: the wave peaks are propagating
faster (relative to the footpoints) in the y-direction than in the
x-direction. The incoming wave develops discontinuities, where
in the y-/x- direction the wave peak/trailing footpoint is catch-
ing up with the leading footpoint/wave peak. The development
of shocks around t = 1 was not reported in Paper I, as it is a non-
linear effect, and arises because of our choice of a velocity ini-
tial condition: in the nonlinear regime, specifying an initial con-
dition in velocity also prescribes a background velocity profile
(Fig. 4). This phenomenon is demonstrated for a simple system
in Appendix B. In addition, our initial condition in v⊥ appears to
excite the m = 0 mode, but this corresponds to the m = 2 mode
in cartesian components.

For 1.4 ≤ t ≤ 2.8, we follow the asymmetry reported above
in the development of fast oblique magnetic shock waves. By
considering the physical quantities along a line perpendicular to
the shock front, we found an abrupt increase in density, tempera-
ture and (consequently) pressure. It is interesting to note that the
shock has heated the initially β = 0 plasma, thus creating β � 0
at these locations.

At t ≈ 2, we observed that the shocks above and below
y = 0 began to overlap (starting at x ≈ ±1), forming a tri-
angular “cusp”: the shock-cusp. This led to the development
of hot jets, which substantially heated the local plasma and
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significantly bent the local magnetic fieldlines. The hot jets
set up slow oblique magnetic shock waves emanating from the
shock-cusp. In addition, there is evidence of slow shocks along
the sides of the jet upstream of the tip and we see kinks in the
fieldlines at the tip of the jet, indicative of a fast shock. Thus,
the jet heating itself is accomplished by a combination of slow
and fast shocks. It is interesting to note that the jet has a bimodal
structure consisting of a hot, narrow jet incased within a broader,
lower temperature jet, which is a feature that is not predicted by
steady-state reconnection theory.

The nonlinear wave, both the fast shocks and their overlap
(the tails of the jets), reach the null point at t = 2.6. The shocks
have deformed the magnetic field such that the separtrices now
touch one another rather than intersecting at a non-zero angle
(called “cusp-like” by Priest & Cowley 1975). However, as can
be seen at later times, the separatrices continue to evolve and
so this osculating field structure is not sustained for any length
of time. That the perturbation can reach the null point is a phe-
nomenon not seen in Paper I. The nonlinear wave then passes
through the null point, again entirely different behaviour to that
seen in Paper I.

After t = 2.6, The evolution subsequently proceeds in two
separate ways. Firstly, some of the wave now escapes the sys-
tem, corresponding to the wave that has passed through the null
point. Secondly, the (deformed) null point itself continues to col-
lapse and forms a horizontal current sheet. Current density ex-
ists in this horizontal current sheet, and also at the four slow
oblique magnetic shocks, at the location of the shock-cusps and
in the wave propagating away (as opposed to in the linear sys-
tem, where the current density accumulated at the null point).

After t = 4, the evolution proceeds as follows: the jets to
the left and right of the origin continue to heat the plasma,
which in turn expands. This expansion squashes and shortens
the horizontal current sheet, forcing the separatrices apart. The
(squashed) horizontal current sheet then returns to a “cusp-like”
null point which, due to the continuing expansion from the
heated plasma, in turn forms a vertical current sheet. The evo-
lution then proceeds through a series of horizontal and vertical
current sheets and displays oscillatory behaviour (as reported by
Craig & McClymont 1991).

At the end of our simulation (t = 60), we see that the major-
ity of the wave pulse has propagated away from the null point,
and that the associated velocities are negligible. It is also inter-
esting to note that our final state is non-potential: there is a finite
amount of current density left in our system ( jC=1 = 0.8615).
This non-potential state occurs because the plasma to the left
and right of the null point is hotter than that above and be-
low, due to the hot jets that formed and heated the initially
β = 0 plasma after t = 2. Consequently, the plasma pressure
is greater to the left and right and hence the final state shows that
the X-point is slightly closed up in the vertical direction. This
also explains why the time taken to go from a horizontal to ver-
tical current sheet is shorter than the reverse: the system finds
it easier to form vertical current sheets due to this asymmetric
heating around the null. We also found that the pressure is ap-
proximately a function of the vector potential, i.e. P = P(Az),
in the final state, indicating that although the final state is non-
potential, it is still approximately in force balance. Of course,
the system will eventually return to a potential state due to dif-
fusion, but this will occur on a far greater timescale than that of
our simulation (tdiffusion ∼ Rm = 104).

We provide two pieces of evidence for reconnection in our
system. Qualitatively, we observed changes in fieldline connec-
tivity (Fig. 12) and quantitatively we looked at the evolution

of the vector potential at the origin. We found that Az(0, 0) os-
cillates and displays a clear trend that was tending towards a
straight line: Az = −10−5 (8.615t + 148.434). This straight line
is associated with the final current density left in the system.
Thus, since we have both oscillatory behaviour in our system
and evidence for reconnection, we conclude that the system dis-
plays oscillatory reconnection (detailed by Craig & McClymont
1991, and reported more recently by Murray et al. 2008).

We then extended our study to look at the effect of changing
the amplitude, C, of our initial condition (Eq. (4)). Considering
both C = 0.5 and C = 2, we found that the overall behaviour
was very similar to the C = 1 study, i.e. oscillatory reconnection
and a cycle of horizontal and vertical current sheets. Looking
at the evolution of Az(0, 0) for the two systems, labelled AC=0.5

and AC=2, we saw that both oscillated and displayed a clear
downward tend. Again, this was associated with the final cur-
rent left in the system, where jC=0.5 = 0.6672 was smaller than
jC=1 = 0.8615, which were both less than jC=2 = 1.1943. Thus,
we conclude that a larger initial amplitude results in a larger
amount of current being left in the system at the end of the sim-
ulation, i.e. in the non-potential final state. Note that in the linear
limit, jC=0.001 = 0, since the wave cannot reach the null point in
a finite time.

Thus, we can now fully answer our three original questions
(posed in Sect. 1):

(1) Does the fast wave now steepen to form shocks, and can
these propagate across or escape the null?
The nonlinear behaviour is completely different to the lin-
ear regime. We observe the formation of both fast and slow
oblique magnetic shocks, and the nonlinear wave can now
cross, and thus escape, the null point. We have also seen that
the shocks (asymmetrically) heat the plasma such that β � 0.

(2) Can the refraction effect drag enough magnetic field into the
null to initiate X-point collapse or reconnection?
The nonlinear wave deforms the X-point into a “cusp-like”
point, which in turn collapses into a horizontal current sheet.
Expanding plasma to the left and right squashes the horizon-
tal current sheet and the system evolves through a series of
horizontal and vertical current sheets. Changes in the value
of the vector potential at the origin as well as changes in con-
nectivity demonstrate we have reconnection in our system.
Our final state is non-potential, but in force balance. Larger
amplitudes in our initial condition correspond to larger val-
ues of the final current left in the system.

(3) Has the rate of current density accumulation changed, and
is the null still the preferential location of wave heating?
The current density now accumulates at many locations, such
as along horizontal or vertical current sheets, along slow
oblique magnetic shocks and at the location of shock-cusps.
Current density can now also leave the system since the non-
linear wave can escape the null point. This was not the case
in the linear regime, where all the current density accumu-
lated at the null point exponentially in time.

The aim of this paper is to contribute to the understanding of
how nonlinear MHD waves behave in inhomogeneous, magne-
tised environments. Future work in this area will consider the
consequences of different initial conditions, such as utilising a
localised increase in pressure or internal energy in a β � 0
plasma. Such an initial condition is expected to introduce slow
waves and create a region around the null point where the sound
speed and Alfvén speed become comparable in magnitude, and
hence a layer where mode conversion could occur (e.g. Cally
2001; McLaughlin & Hood 2006b; McDougall & Hood 2007).
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Fig. A.1. Contours of v⊥ for a fast wave pulse initially located at a radius r = 5, and its resultant propagation at (Alfvén) times t = 0, 0.1, 1 and 3.
At t = 0.1, we can see the initial pulse has split into two, oppositely travelling wave pulses. The black lines denote the separatrices and the null
point is located at the origin.

Finally, this work will also be extended to nonlinear wave be-
haviour in the neighbourhood of a 3D null point, and compared
to linear work by, for example, Galsgaard et al. (2003), Pontin
& Galsgaard (2007), Pontin et al. (2007) and McLaughlin et al.
(2008).
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Appendix A: Linear regime

In this Appendix, we numerically solve Eqs. (1) subject to initial
condition (4) and set C = 0.001. This recovers the linear results
for the fast MA wave seen in Paper I. This appendix has been
included because (i) it will be useful to directly compare the
linear and nonlinear systems subject to the same initial condi-
tion; and (ii) Paper I described a wave pulse driven in from one
of the boundaries, which is somewhat different from the setup
studied in the present paper. The results described below (simu-
lations using the LARE2D numerical code) are identical to those
in Paper I (simulations using a two-step Lax-Wendroff numeri-
cal scheme), and the results can be seen in Fig. A.1. We find that
the initial condition, as expected, splits into an outgoing wave
and an incoming wave. We concentrate on the incoming wave.
This wave propagates across the magnetic fieldlines and travels
at the Alfvén speed, and we identify it as a linear fast MA wave,
in a cold plasma (β = 0). The linear fast wave keeps its initial
pulse profile, i.e. an annulus, and the maximum amplitude re-
mains at C, and the annulus contracts as the wave approaches
the null point. Since the Alfvén speed is spatially varying, a re-
fraction effect focuses the wave into the null point.

As the length scales decrease, there is a build up of current
density, growing exponentially in time, while the velocity re-
mains finite in magnitude. Ohmic heating occurs preferentially
at the null point. The refraction effect and the preferential heat-
ing at the null point are the key results for linear, β = 0 plasma
fast wave propagation (Paper I). Note that since the magnetic
field, and hence the Alfvén speed, is zero at the null point, the
fast wave cannot cross the null point and never actually reaches
it.

Appendix B: Isothermal 1D HD equations

Consider the isothermal, one-dimensional, nonlinear hydrody-
namic equations:

∂ρ

∂t
= − ∂
∂x

(ρv) ,
∂v

∂t
+ v
∂v

∂x
= −1

ρ

∂p

∂x
, p = c2

sρ,

which is equivalent to Eq. (1) with u = vx̂, B = 0. Now let us
non-dimensionalise, i.e. v = v0v

∗, ρ = ρ0ρ
∗, p = p0 p∗, x = x0x∗,

t = t0t∗, where we let ∗ denote a dimensionless quantity and
v0, ρ0, p0, x0 and t0 are constants with the dimensions of the
variable they are scaling. We set v0 = x0/t0 and v0 = cs, i.e. non-
dimensionalise with respect to the sound speed. For the rest of
this appendix, we drop the star indices. Letting ψ = log ρ gives:

∂ψ

∂t
+ v
∂ψ

∂x
= −
∂v

∂x
,
∂v

∂t
+ v
∂v

∂x
= −
∂ψ

∂x
·

Adding and subtracting gives:

∂

∂t
(v + ψ) + (v + 1)

∂

∂x
(v + ψ) = 0,

∂

∂t
(v − ψ) + (v − 1)

∂

∂x
(v − ψ) = 0.

This can be solved in general by the Method of Characteristics:

v =
1

2
F [x − (v + 1) t] +

1

2
G [x − (v − 1) t] ,

ψ =
1

2
F [x − (v + 1) t] − 1

2
G [x − (v − 1) t] ,

where F and G are arbitrary functions, specified by the initial
conditions.

Now let us consider an initial condition in velocity:

v(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

D (1 + x) for −1 ≤ x ≤ 0
D (1 − x) for 0 < x ≤ 1

0 otherwise
, (B.1)

where D is our initial amplitude. This has a general solution

v(x, t) =
1

2
F [x − (v + 1) t] +

1

2
F [x − (v − 1) t] (B.2)

where F(x) = v(x, 0). Thus, we can see that the general solu-
tion consists of two waves, moving with speeds v + 1 and v − 1,
which can be thought of as v + cs and v − cs due to our choice of
non-dimensionalisation. We can see the evolution of initial con-
dition (B.1) in Fig. B.1, at times t = 0 (black lines), t = 1 (blue)
and t = 5 (red). In Fig. B.1a we see that the velocity pulse (initial
amplitude=D = 0.001) naturally splits into two waves, as ex-
pected from the solution, each propagating in opposite directions
with amplitude D/2. v(x, t) = 1

2
F [x − (v + 1) t] which, since v is

small, can be thought of as v(x, t) ≈ 1
2

F (x − cst) corresponds to a
disturbance travelling in the increasing x-direction (to the right),
whereas v(x, t) = 1

2
F [x − (v − 1) t] ≈ 1

2
F (x + cst) corresponds

to a disturbance travelling in the decreasing x-direction (to the
left). This choice of D represents the linear regime.

In Fig. B.1b we see the evolution of a velocity pulse of ini-
tial amplitude=D = 0.4. Again, the initial pulse splits into two
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Fig. B.1. Evolution of Eq. (B.1) at times t = 0 (black lines), t = 1 (blue) and t = 5 (red), for three choices of initial amplitude a) D = 0.001 (linear),
b) D = 0.4 and c) D = −0.4. Note we have plotted −v in c) to aid comparison.

oppositely travelling waves: one propagating to the right (located
≈x = 5) and one to the left (located ≈x = −5). However, we can
now clearly see the nonlinear effects: the two wave pulses are be-
ginning to “tip over” and shock, as expected for nonlinear waves.
However, non-intuitively, the waves are both developing discon-
tinuities, i.e. shock fronts, on the same faces. The pulse propagat-
ing to the right is developing a discontinuity at x ≈ 6, where the
peak is catching up with the the leading footpoint. Conversely,
the discontinuity developing in the pulse propagating to the left
is located at x ≈ −4, i.e. where the trailing footpoint is catching
up with the peak.

This asymmetry in the development of discontinuities can be
explained by Eq. (B.2) and can be thought of as follows: when
we set our initial condition in velocity, we are effectively pre-
scribing a background velocity profile, and it is this profile that
leads to asymmetry in our system (as opposed to the symmetry
present in Fig. B.1a). A choice of D > 0 corresponds to a pos-
itive background velocity profile that explains the development
of the discontinuities on the rightmost faces of both the left and
right propagating waves.

This explanation is confirmed by the evolution seen in
Fig. B.1c. Here, we set D = −0.4 and have plotted −v to aid
comparison with (a) and (b). We see that again the initial pulse
splits into two oppositely propagating disturbances (each with
amplitude D/2) and that both these pulses are developing dis-
continuities on the leftmost faces. This is in agreement with the
above interpretation, since a choice of D < 0 corresponds to a
negative background velocity profile.

Interestingly, the footpoints in all three subfigures are located
at the same locations. This is because the nonlinear effects are
only apparent at large amplitudes and so the footpoints propagate
at a speed of unity, i.e. cs.
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