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Nonlinear Feedback System Stability via
Coprime Factorization Analysis*

A.D.B. Paice! J.B. Mooret R. Horowitz!

Abstract

In this paper right coprime factorization results are derived for :.
general class of nonlinear plants and stabilizing feedback controllers
Both input-output descriptions and state space realizations of the
plant and controller are used.

It is first shown that if there exist stable right coprime factoriza-
tions for the plant and controller, and if a certain matrix of nonlinear
operators has a stable inverse then the feedback system is well-posed
and internally stable. The links between the right and left coprime
factorizations for a stable plant controller pair will be explored for
this purpose. A generalization of the notion of linear fractional maps
is explored as a means of characterizing the class of plants stabilized
by this controller, and dually classes of controllers which stabilize
the plant.

It is then shown how to apply this theory to nonlinear plants
which have a state space realization of a given form. It is also shown
that if there exists a stabilizing state feedback for a plant in the
class of interest, then there exists a right coprime factorization for
the plant. Additionally if there exists a stabilizing output injection,
then there will exist a stabilizing controller with a right coprime
factorization. An important assumption in this work is to assume
that the plant and controller have the same initial conditions, an
approach is developed to allow for the stabilization of the plant by a
controller with a different initial condition. A similar approach may
also be used to stabilize a plant which has unmodeled dynamics.

These results, of course, specialize to familiar linear system ones,
and just as such linear systems results have had a wide application in
robust and adaptive control system design, it is believed that the re-
sults developed here will facilitate the development of corresponding
nonlinear robust and adaptive control system design.
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t Work partially supported by DSTO Australia and Boeing (BCAC).
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1 Introduction

The theory of coprime factorizations and applications to the stabilization
of linear systems is well understood [23]. This theory has proven useful for
giving robust design procedures [2] and in providing a venue for the im-
plementation of adaptive control [19]). More recently there has been some
interest in generalizing these results to the nonlinear case. An important
challenge is to set the foundations for a general approach to the feedback
stabilization of nonlinear systems, while paralleling the linear systems de-
velopment as much as possible. Although experience has shown that in
many instances the nonlinear theory is surprisingly close to the linear the-
ory, it would be naive to expect to prove nonlinear generalizations of all
linear systems results. It seems crucial to some of the linear systems results
is in the application of the principle of superposition, which is of course not
permitted for nonlinear systems.

Some of the first investigations into the field of nonlinear factorization
analysis were carried out by Hammer in his papers [3,4,5,6,7]. An input-
output approach along with set-theoretic techniques were used to develop
a pre- and post-compensator pair to stabilize a given plant. Tay [18] used
this framework to develop the class of all pre-, post-compensator pairs that
stabilize a given plant. By using the concept of differential boundedness,
introduced in [6], Paice [14] was able to generate the class of all controllers
bounded-input stabilizing a given plant. This was further developed in
[15] to generate a result giving the classes of all plants stabilized by a
given controller, and to give some robust stabilization results for systems
within that framework. Note that these papers worked mainly with the left
factorizations of a given plant, controller pair, and worked within a purely
input-output framework.

At the same time the theory using the right factorizations was being
investigated, notably by Desoer [1] and Verma [20,21]. This work was also
conducted from within an input-output framework. The results obtained
in this work were similar to those obtained through the left factorization
approach, but linearity assumptions had to be invoked, for either the plant
or controller.

More recently there has been some interest in finding state space real-
1zations of the factorizations for nonlinear systems. Sontag [16] presented
results giving a right factorization for a class of nonlinear plants, and linked
them to the problem of finding a smooth stabilizing state feedback map for
the plant of interest. Krener [11] presented results showing that right and
left factorizations could be obtained for nonlinear plants with controller
and observer normal forms. Of particular interest here was the augmenta-
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tion of the plant by a unity feedthrough term, which appeared necessary
to obtain a left factorization. This is required also in the companion work
by Moore and Irlicht [12], in which a factorization theory is develope«| for
a quite general form of nonlinear plants, giving right factorizations, and
left factorizations for an augmented version of the plant. In [22] Verma
presented a construction of the right coprime factorization of a ger eral
continuous time nonlinear plant, while in [8) Hammer gives a construction
for discrete time systems.

Throughout this previous and present work it has become apparent “hat
by making very few simplifying assumptions, a framework which closely
mimics the linear factorization theory may be developed. It has become of
interest to see in what way the linear theory is dependent on the linearity
assumption, and to see how extensive a theory may be developed while
making only the minimum of assumptions on the class of plants urder
consideration. It is the purpose of this paper to examine this question,

Both the input-output framework and state space realizations of the
plant and controller shall be considered. First, from an input-output point
of view, general results are derived showing the relationship between the
inverse of a matrix composed of right coprime factorizations of the plant
and controller, and the well-posedness and stability of the feedback sys-
tem. Dual formulations, in terms of using the left factorizations shall ¢lso
be considered. A generalization of linear fractional maps shall then be de-
rived, offering a method of deriving the class of plants stabilized by a giren
controller, or the class of controllers stabilizing the plant. Then, work-
ing with a general state space description of the plant, right factorizations
and a stabilizing controller for a given plant are derived, and some of ' he
previous results derived are applied giving an approach to the stabiliza-
tion problem which allows for differing initial conditions and unmode ed
dynamics. Specifically the paper is organised as follows.

Section 2 develops some of the basic concepts of factorization analy-
sis, and introduces the two main schemes, right and left factorizations. In
Section 3 a nonlinear generalization of linear fractional mappings is intio-
duced and explored. In Section 4 we derive right factorizations for a plant
for which there exists a stabilizing state feedback map. A controller is also
designed, based on the idea of constructing a stable state estimator for t 1e
plant, a right factorization for this controller is also presented. Throujth
the use of some of the results of Section 2 it is shown that these factoriza-
tions are coprime and that the plant controller feedback loop is stable. An
approach to the stabilization of a plant with different initial conditions "o
those of the controller through the use of Theorem 3.2 is also presented. In
Section b a special form of the nonlinear system is considered as a means of
obtaining left factorizations. The main result of {15] may then be applied
to give the class of all bounded input stable plants and controllers.
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2 Preliminaries

Consider the problem of stabilizing a nonlinear plant G: C() v C(Y) by
a controller K : C(Y) — C(U), such that the closed-loop system shown in
Figure 1 is stable. For convenience we denote this feedback control system
{G, K}. Continuous time systems with real input spaces are considered.
Given a real vector space X, the space C(X) is the space of continuous
functions with continuous first derivative, mapping from some open interval
of R to X. Note that the results obtained apply equally to discrete time
systems as to continuous time systems.

€1
U > G Y1

e
Y2 K 2 U2

Figure 1: The feedback system {G, K}.

Definition 2.1 [Well-posedness] The system {G, K} is well-posed if the
closed-loop system inpui-oulput operator from uy, uy to ey, ez, namely

[I-K

-1
- 1 ] , exisis.

In the sequel only those systems which are well-posed shall be considered.

In the following two sections the stability problem for the system {G, K}
is developed from an input-output point of view so as to keep the discussion
as general as possible. We partition the space C(X) into two subspaces,
Cy(X) and Cy(X). The former consists of all signals in C(X') which are
bounded, or stable, while the latter consists of all signals in C(X) which
are unbounded. The signal z € C(X) is said to be bounded when ||z|] is
finite, for some norm || - ||.

Definition 2.2 [BIBO Stability] A map F:C(U) — C(Y) is said to be
bounded-input, bounded-output stable (BIBO stable) when the image of
Cy(U) under F is contained in Cy(Y).

Definition 2.3 [Internal Stability] The system {G, K}, ossumed well-
posed, 1s said 1o be internally stable iff for all bounded-inputs uy, up the
oulpuls yy, y2 and ey, ex are bounded. This is equivalent to

I -k 17"
‘ G ‘I‘} is BIBO stable. (2.1
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Definition 2.4 [Bounded-Input Stability] The system {G, K}, as:umed
well-posed, is said 1o be €1, €5 bounded-input stable iff for all inputs u,| <
€1, Juz| < €2 the outputs y1, y2 and ey, ez are bounded.

Note that internal stability is a stronger condition than bounded-input
stability.

A factorization approach to the stabilization of the plant G is taken,
in analogy with the linear theory of Youla-Kucera parameterizations The
following definitions are taken from [15], and have been developed from
the point of view of preventing the nonlinear equivalent of unstable pole-
zero cancellations, and thus for linear systems specialize to right half »>lane
coprimeness.

Definition 2.5 [Right coprimeness] Let M, N be a right factorization for
G:CU)y— CY)

G=NM"1 | N:C(S)—-C())
M :C(S;) = CU) 2.2)

where M and N are BIBO stable mappings from the factorization space
C(S;) to the input and outpul spaces. Then M, N is a right coprime fac-
torization of G (rcf) iff for all unbounded inpuls s € Cy(S:), Ms or Ns is
unbounded.

Definition 2.6 [Left coprimeness] Let M, N be a left factorization for
G:CU)y— C)

G=M"N |, N:CU)—C(S)

M C(y) — C(S]) (13.3)
where M, N are BIBO siable mappings from the input and output spcces
to the factorization space C(S)). Then M, N is a left coprime factorization
of G (Icf) iff the set of all unbounded ueCy(U) such that Gu is boun led
and Nu 15 bounded is the emply set, 0.~ In other words, for all bounled
¢ € Cy(&), M~ is bounded or {u : Nu = (} is bounded, which is an
ezplicil dual statement of the definition for right coprimeness.

To prove coprimeness of a factorization, the definition may be testzd
directly, or the following lemma may be used.

Lemma 2.1 Given a stable right factorization of G, as in (2.2), suppose
that there exists a BIBO stable mapping L: C(U) x G(Y) v C(S;) such that

L{ AN/I } = Z, Z unimodular. (2.4)

Then G = NM~! is a right coprime factorization for G.
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Proof: Consider L: C(U) x C(Y) — C(S,) a BIBO stable mapping which
satisfies (2.4). Suppose that N, M is not a coprime factorization for G.
Then there exists an unbounded s € C(S;) such that Ms and Ns are
both bounded. As L is BIBO, L( %: ) = Zs is bounded, however as Z
is unimodular, Zs is unbounded. This gives a contradiction, proving the
result. a

Remark. In the case that [ = [ L, L, ], this lemma specializes to
Lemma 2.1 of {15].

If the system {G, K} is well-posed and stable, assume that in addition
to having stable coprime descriptions for G as in (2.2) and (2.3) there are
factorizations for K:C(Y) — C(U). i.e

K=0v-l | U:C(S)—Cl)

V:C(&) — C) (2.5)
K=Vv-l0 |, U:CQ)—C(S)
V:CQ)—CS8) (2.6)

where V, U, V, U are BIBO stable operators and C(8) and C(S,) are the
factorization spaces.

In subsequent sections it will be useful to consider the stability and
well-posedness of the system {G, K} via the stability and existence of the

-1 b -1
M U 2 4
Y and [ N ] . In the former case where

ref’s of G, K are used, the relationship is straightforward, whereas the
relationship is more complicated for lcf’s.

operators

Right Coprime Factorization Results

The following theorem and lemma show well-posedness and coprimeness
are necessary and sufficient for the existence and stability of the operator
inverse.

Theorem 2.1 Given {G, K}, and G = NM~! and K = UV~-! ref’s as
in (2.2) and (2.5), then {G, K} is well-posed iff

-1
[ _A]lv _VU ] ezists (2.7)

and 15 wternally stable iff

[M—U

-1
] . 2.8
N v :l is BIBO stable (2.8)
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Proof: First we note that
I -k o —pv-r )Tt
-G I - -NM-} I

B

AT

-N vV

It
— —A—

It is straightforward to see (2.7) holds iff {G, K} is well-posed.
(<) Suppose that (2.8) holds, then for all a, b bounded we define ¢, d

as follows:
-1
(5) - [54T°G) om

¢, d are bounded. Hence, by (2.9),

[—IG ~1K]—1<Z) - [Aol 3](;) (2.11)

Under (2.2), (2.5) M and V are BIBO stable. Hence Mc and Vd are BIBO
thus showing that the system inverse operator exists and is BIBO.

(=) Suppose that {G, K} is well posed and stable and that G = ITM~!
and K = UV~ are stable rcf’s. Let

<;) - [—IG _-IK]—I(Z> 2.12)

then for all a, b bounded, we have e, f bounded. Define ¢, d as in (2.10),
note that as a, b and e, f are bounded, the following equations hold

a Mc-Ud
( b ) = [ —Nc+Vd] (2.13)

() - (%)

As e is bounded Mc is bounded, and since a and Mc are bounded, /d is
bounded. Similarly, as b and f are bounded, Vd and N¢ are bounded. By
coprimeness of NM~1 since Ne¢ and Me are both bounded, ¢ is bour ded.
Similarly, by coprimeness of UV !, d is bounded. This completes the
proof. O

Hence the stability and well-posedness of the system depends on the
-1
existence and stability of the operator [ _Afv ‘VU ] . In fact the relaiion-

ship is somewhat stronger, coprimeness also results from the stability of
this operator, as is explored by the following lemma.
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Lemma 2.2 Suppose we have G = NM~! and K = UV ™1, such that the
operators M, N, U, V are BIBO stable. Then these are rcfs for G and K

if they satisfy (2.8).

Proof: Since the matrix inverse is stable we require that unbounded inputs
yield unbounded inputs. Consider z an unbounded signal, and consider the
action of the system as follows.

M U z Mz -U0
[—N v](o) = [——Nx—VO]‘ (2.15)
As z is unbounded, the output is also unbounded. Thus we must have Mz
or Nz unbounded, giving coprimeness of M, N. Considering the action of

[ _Afv "VU } ( 3 ) for y unbounded gives coprimeness of U, V. &

Left Coprime Factorization Results

= - -1
The relationship between the operator [ _VN 1.;] ] and the stability

and well-posedness of {G, K} is not so clear. In the linear case we have
that this operator is stable iff the system {G, K} is well-posed and stable.
The only similar result existing for the nonlinear case at present is in the
remarks to Lemma 4.1 of [15], which states that if the maps M, N, U, V
are differentially bounded we have bounded-input stability of the operator
iff {G, K} is bounded-input stable. Differential boundedness is defined as
follows.

Definition 2.7 An operator F: C(X) — C(Y) is said to be differentially
bounded by Of, er iff for all signals a1, a; € C(X), if lay — as] < ep then
fa; —az} < 8.

More general results are elusive, although the following result may be
obtained.

Lemma 2.3 Suppose that for G and K, we have lcf’s as in (2.3), (2.6),
then if
~ ~ -1
Vv U .
[ N ] ezists, (2.16)
then 1t is necessary for the operators (V- TG)-! and (M -~ NK)~! to
ezist. Moreover the operators (V — UG)~* and (M — NK)~! are stable if

. 1
Vv U .
- p . 217
[ N ] is stable (2.17)
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Proof: Consider the inputs ( ° ) and ( ) to (2.16). Then we have

Ve
o8
N—’
fl
e
|
N
R
h
|
TN
o R
8 8
—’

~Nay + Mb,
( ay ) — ( (M~"N~K)_ly )
by - K(M - NK) 1y
The results of the lemma follow from these equations. a
Remarks

L. The existence of (V — UG)~! corresponds to the scheme of [6] in
which the plant G is stabilized by a pre- and feedback-compensstor
pair V=1, U. Without the differential boundedness assumptions men-

tioned a.bove 1t is not clear how this result relates to the well-posedress
of the system {G, K}.

2. In the case that there exist lcf’s for G and K in which the ope ‘a-
tors V, M are linear it is possible to reproduce the linear theory ‘or
left coprime factorizations. Currently there does not appear to be
any way to link stability and well-posedness of {G, K} to equaticns
(2.16), (2.17) without this linearity assumption.

3 Fractional Maps

Let us now study a nonlinear equivalent of the idea of linear fractional
maps. The idea is to develop a framework to characterize the class Jf
stabilizing controllers for a given plant, and the class of plants stabilizd
by a given controller. The first result concerns left coprime factorizatioas
for G, “stabilized” by K in a restricted sense.

Theorem 3.1 Consider ¢ well-posed and internally stable system {G, F'}
with left coprime factorizations (2.3), (2.6). Consider also any plant Csg
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such that L
(V ~ UGs) ! exists, (31)

then Gs has a right factorization

- M I DA -
Gs = NsM3! | [ N:] = [GS ](V—UGS) ! (3.2)
and satisfies the Bezout identity

VMs —-UNs = L (3.3)

If Mg, Ns are stable they are coprime. Moreover defining an operator S
from 5 _ 5 o
S = MNs-NMs = (MGs—- N}V -UGs)™! (3.4)

then under existence of the relevant inverse as in (2.16), Ms, Ns can le
characterized by a mapping on S as

el =15 v LE) (.5)

Additionally, when K “stabilizes” G in the restricted sense of (2.17), ther
Ms, Ns will be stable iff S is stable. Furthermore, (3.4)-(3.5) give a bijec.
tion between the set of all plants Gs such that (3.1) holds, and the set o
all operators S such that

M3 = ([ I 0] [ _‘;7 ;;J ]_1 [ L D—l exists.  (3.6)

Proof: Note that under existence of (V — UGgs)~! we have
Gs = Gs(V-UGs)™ (V- UGs) = NsMg1. (3.7)
Thus verifying (3.2). Now show (3.3)

VMS - ONS

l

V(V-0Gs)™ ~ UGV - UGs)™*  (3.8)
(‘7 - UGs)(V - 0G5)-1 = I

Combining Gs = NsMg5*' and (3.3) proves (3.4). Now note that

V. U1 Ms VMs—-ONs | _ [ I
L =1 - 4 = . (3.9)
-N M NS MNS - NMg S
So under (2.16), (3.5) holds as claimed.
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Under our assumptions, including (2.17) we have _‘.;7 ;;7 ] tnimod-
ular. Hence (3.5) gives %g ] stable iff [ é ] is stable. The identity

mapping I is trivially stable, hence Mg, Ng are stable iff S is stable.

Now let us prove bijectivity of the maps (3.4)-(3.5). It is evideat from
the equations that given an S such that (3.6) holds, Gs = Ns V3! is
constructed from (3.5), and (3.1) holds. Similarly given G5 such that (3.1)
holds, the S obtained from (3.4) will satisfy (3.6),as Ms = (VGs—7)~1is
invertible. Hence the mapping from each class to the other is well cefined,
and thus onto. To prove bijectivity it remains to prove that the images
under the maps are unique.

Note that (3.5) shows that for each S there exists a unique pair Mg, Ng.

M3t = ([1 0][_‘}, }fr[é])_l (3.10)

so it is necessary that S satisfy (3.6) for M_;l to exist. Further the plant
Gs so obtained will satisfy (3.1). Hence the conditions (3.1) and (3 6) are
equivalent. The bijectivity of the maps (3.4)-(3.5) is now establishel.

The map from S to G as defined by (3.2) is onto (surjective), as for all
G such that (3.1) holds we have an S as given by (3.4) which maps to G.
To prove one to oneness (injectivity) consider that there exist S; and S,
such that Gs, = Gs,. Then the S’s of (3.4) are the same, giving

(MNs, - NMs,) = (MNs, — NMs,) '3.11)
[M-N][Zi]:[nz_ﬁ][ﬁz] (3.12)

N
5 2]'T4] o

[0 1][5{1}:[0 I][S{Z] (¢.14)
S = S, (4.15)

Hence the mapping is injective. This gives bijectivity of the maps, thus
completing the proof. a

303



A.D.B. PAICE, J.B. MOORE, AND R. HOROWITZ

Remarks

1. A dual result to this involving right factorizations of G and K, and
giving a left factorization for Gy is elusive at the moment, unless
additional assumptions are made. However, dualizing in terms of
interchanging the roles of G and S gives an expression for S when
Gs is expressed in terms of rcf’s of G, K, as shown in the following
theorem.

2. In the case that (f/ - (7(}’)"1 exists, then the theorem gives Gs = G
ff S = 0. i.e, given a left factorization of G, K we can get a rcf for
G, also for K as is shown in the dual to this theorem, Theorem 3.3.

3. In the linear S case the expression for Gs simplifies to give G5 =
(M + SU)=Y(N + SV).

4. This theorem is of interest in the work done by Hammer 6], and by
Tay and Moore [18]. In this work the plant G is stabilized by a pre-,
post-compensator pair V=!, U, so that the question of well-posedness
and stability of the system is reduced to that of the existence and
stability of the operator (V - (7G)‘1. This theorem shows that any
plant G's for which this system is well posed is related to a nominal
plant G by means of (3.5), and is parameterized by the operator S.
Furthermore, as (V — UGS)‘1 = Mg, the system is stable iff S is
stable. Thus the theorem gives the class of all plants stabilized by
the pre-, post-compensator pair V’l, U.

Theorem 3.2 Consider a well-posed and stable system {G, K} with right
coprime factorizations (2.2), (2.5), so that ezistence and stability condi-
tions (2.7) and (2.8) hold. Consider a map S such that (M — US)~!
exists. Then S has a right factorization S = P(;Dc',.1 given by

[ 5] =

Further there exists a plant Gs such that

[H(M—US)-‘, and MDg ~UPg = 1. (3.16)

Gs = NDg—~VPs = (N ~VS)(M - US)~! (3.17)

De)l _ [ M -vu]1'[ I
Moreover this gives a bijection between the class of all operators S such
that (M — US)™! ezists and the class of all plants such that

Dzt = ([ I 0] [ f?\r “ﬁj 1-1 [ _és D_l exists. (3.19)
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Proof: The details of the proof of this result are the same of thos: of the
previous theorem, as they are dual results, interchanging the roles of S and
G. 0

Remarks

1. In the case that the plant and controller, and their factoriz ations,
are linear, the conditions (3.1) and (3.19) are equivalent, as aie (3.6)
and the existence of (M + US)~!. The theorems then give the same
result.

2. These results may be readily dualized, interchanging the roles of the
plant and controller.

3. Note that these theorems provide a natural setting for generating the
class of all plants stabilized by the controller K, and in the dual case,
the class of all controllers stabilizing a given plant. Theorem 3.1 may
be applied to the main results of [15] to generate the class of all >lants
bounded-input stabilized by a given controller. By assuming linearity
of K, it is possible to show that the class of all controllers stal ilized
by K can be generated by Theorem 3.2. More general resul s are
elusive at this time, so that it is not possible to say whether G5 will
be stabilized by K.

4 State Space Factorization Descriptions

Consider now a state space approach to the factorization of nonlineas Sys-
tems. Starting from a quite general state space description for a continuous
time plant, stable right factorizations are developed, based on the assump-
tion that the state equation of the plant is stabilizable by nonlinear state
feedback. The development parallels the development of the theory for
linear systems.

Nonlinear System Class

Given a real vector space X, define the space of trajectories withir Y,
C(X) as in Section 2, first derivative. Any function which is contintous
and has continuous first derivative is called C!.

Consider that a plant G(zo): C(U) +— C(¥) is an operator, dependent
on the parameter g, which maps inputs u(-) to outputs y(-). Furthermore,
consider that G(’Lg\ has state space description of the form

G(zo) : &= f(z,u), y=h(z,u), =z(0)=zo. (1.1)

A fundamental property of differential equations that we shal‘l be ex-
ploiting is the existence and uniqueness of solutions of the differential equa-
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tion. The following theorem, adapted from [10], and stated without proof
is useful.

Theorem 4.1 Let f:X +— X be a Clmap and let o € X. Then there
erists a uniqgue mazimal open interval (a,b) containing 0, and a unique
function z:(a,b) — X satisfying

z = f(z), z(0) = =zo. (4.2
Remarks

1. Note that a, b may be equal to plus or minus infinity. In the case that
b 1s finite, the system is unstable, with finite escape time. Similarly
if a 1s finite, the reverse time system has finite escape time.

2. This theorem also gives results for the time varying case, and for
systems of the form of (4.1), as is explored in the following corollaries.

Corollary 4.1 Let f: X xR — X be a C'map, and let 2o € X. Then there
ezists a unique mazimal open interval (a,b) containing 0, and a unique
function z:(a,b) — X satisfying

z = f(z,1), z(0) = zo. (4.3)

Proof: Let y = ( f ), and g(y) = ( f(:i’t) ) As fis Ct, g is C!, now
apply Theorem 4.1.
Corollary 4.2 Let f: X xU v X be a C'map, and let 24 € X. Then given

u € C(U) there exists a unique mazimal open interval (a,d) containing 0,
and a unigue function z:(a,d) — X satisfying

z = f(z,u(?)), z(0) = zo. (4.4)
Proof: Given u € C(U) set g(z,t) = f(z,u(t)) which is C'as f and u are
both C?, and apply the previous corollary. 0O

In order to guarantee existence and uniqueness of solutions it is assumed
that the map f(.,-) of (4.1) is C!. Unless otherwise stated all functions in
the work to follow shall be assumed to be C!.

Composition of Nonlinear Operators
Consider two operators of the form of (4.1), A(zo): C(U) — C(Y) and
B(vo): C(Y) — C(2).

A(zo) : &= fa(z,u), y=ha(z,u), 2(0)=zo (4.5)
B(v) : © = fg(v,y), 2 =hs(v,y), v(0) = vo {4.6)

306



COPRIME FACTORIZATION ANALYSIS

B(vo)A(zo): C(U) — C(Z) will have state

) - ( fB(lT{‘:"(li’(z), u)) ) '
() -(%) @

z = hp(v, ha(z,u)). (4.8)

i

Then the operator C(zq, vg)
space description

8-

C(xo,v0) : (

@.

Note that in general the dimension of the state of C(zg,vo) is equal to the
sum of the dimensions of the states of A(zo) and B(vp). In some special
cases, however, it may be possible to reduce the state, as shown in the
following lemma..

Lemma 4.1 Consider operators A(zo), B{vo) as given by (4.5), (4.6).
Then if

fe(z, ha(z,u)) = fa(z,u), zo=rwo (4.9)
then C(zo,v9) = C(zg,v0) = C(x0) is reduced to the form
C(zo) : == falz,u)z = hg(z, ha(z,u)), z(0)=zo. (4.10)

Proof: Suppose that (4.9) hold, and consider the evolution of the state
equations (4.5), (4.6). Substituting v(¢) = z(¢) into (4.7) gives

o(t) = fp(v(t), ha(z(t), u(?))) fB(z(t), ha(z(t), u(t)))
fa(z(t),u(®)) = £(t). (4.11)
Hence a solution of (4.5), (4.6) is v(t) = z(t), Vt. Note that fp, ha, fa

are C!functions. Hence by Theorem 4.1 this is the unique solution, and the
lemma is established. 0

H

Inverse Systems

In deriving later results it will be necessary to be able to invert a non-
linear operator of the form of (4.1). The following lemma shows that given
the existence of a map h#: X x J — U, associated with the map h of (4.1),
it is possible to invert the operator. The map h#(.,.) is called the pseudo-
inverse of h(-,-), and the map h(-,) is called pseudo-invertible, this is an
analogue of the reversible feedback function of [9]. Note that if A(-,-) is C!,
then A#(.,.)is C!.

Lemma 4.2 Consider an operator G(zq) as in (4.1), construct the opera-

tor S(zo): C(Y) — C(U) as follows.
S(vo) : v = f(v,h*(v,y)), u=h*(vy), v(0)=wvo. (4.12)
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Consider also that h¥ satisfies
h#(z,h(z,u)) = u Vz, u (4.13)
then S(zq) is a lefl inverse for G(zo), i.e S(z0)G(zo) = I, and if h¥#

satisfies
h(z,h*(z,u)) = v  Vz, u (4.14)

then S(zg) is a right inverse for G(zq), i.e G(z0)S(zo) = I. Moreover,
when h and h# satisfy both ({.13), then (4.14), S(zo) is an inverse for
G(zg), i.e

G-i(z0) = S(ao). (4.15)

Proof: Consider the state equation of the composition S(z¢)G(zo)
z = f(:l:, u) x(O) =9 (4.]6)
b= f(v,h#(v,h(z,u))) v(0) =z (4.17)

Note that by (4.13) we have for z = v, f(z,u) = f(v, h¥(v, h(z,u))).
Applying Lemma 4.1 gives z(t) = v(t), ¥t. The output equation for
S(z0)G(z0) thus becomes

z = h¥(v,h(z,u)) = u. (4.18)

This proves the first part of the lemma. A similar argument shows that
when (4.14) is satisfied G(x¢)S(zo) = I. This completes the proof. 0O

Remark. Note the dependence on initial conditions for ensuring that the
states remain equal for all time. This may be difficult to guarantee, addi-
tionally the error dynamics may be such that any small error is magnified.
The question of when it is possible to stably invert a function, i.e. invert it
and have the error dynamics such that any error will decrease with time,
is a difficult one, and is dependent on the particular functions f, h, h#.

Right Factorization for G

The development of a stable right factorization for the plant G(zy) is
critically dependent on the solution of the smooth state feedback stabi-
lization problem for the state equation of G(z¢). This is in itself an open
problem, and a treatment of such is beyond the bounds of this paper. Here,
the assumption is made that for plants of interest the stabilization problem
has been solved and that the solution is available.

Consider the state feedback map g(-,-): X x U + U, as in Figure 2, so
that the state equation for G(z¢) becomes

= f(z,g(z,u)), z(0) = zo. (4.19)
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g ————f g(‘l') f(:) f

Figure 2: State feedback g(-, ).

Assumption  For the plant G(xo) of (4.1) there exists a pseudo-
invertible C*map g(-,-): X x U + U such that the state equation (4.19)
is stable, and g#(-, -) satisfies both (4.13) and (4.14).
(4.20)
It is now possible to construct a stable right factorization for G(zo) as
1s explored in the following lemma. This lemma is equivalent to T 1eorem
3 of {22], and parallels the discrete time results found in [8].

Lemma 4.3 Consider a plant G(zo) such that there erists a map g(-,-)
satisfying (4.20). Then it is possible to construct a stable right factorization
for G(zq) as follows.

G(zo) = N(zo)M~(zo) (4.21)
M(zo) : 2m = f(zm,9(zm,s)), z=g(zm,s),
zm(0) = 2o (4.22)
N(zo): 2n = f(zn,9(zn,s)), y=h(za,9(za,s)),
zn(0) = zo (4.23)

Remarks

1. By introducing the notion of detectability Verma [22] is able to prove
that this a coprime factorization. The notion of detectability used is
that if u and y are stable, then z is stable, and furthermore, that for

some 6> 0, llll < A1l | ¥ ] 1

2. Note that the equation G(zo) = N(zo)M ~}(zq) depends on th: ini-
tial conditions being identical, so that the Remarks following Leinma
4.2 are appropriate here as well,

3. The requirement that g{.,-) be pseudo-invertible is necessary for in-
vertibility of M(zq). It does not appear overly restrictive, as ir. the
linear case we have g(z,u) = Fz + u, so that g¥#(z,y) = y — Fz,
where F is some matrix chosen such that A + BF is stable. Fur-
thermore, note that in [17), Sontag proves an input to state stalility
result which gives a stability result satisfying (4.20). Specifically it
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is shown that for systems of the form of (4.1), a feedback law of the
form

g(z,u) = K(z)+ G(z)u (4.24)

where G(z) is invertible for all z. In this case we have

*(z,0) = G()"'(v - K(=)) (4.25)
and the assumptions of (4.20) are satisfied.

Factorizing a Universal Controller
To illustrate the effectiveness of this approach to right factorization

we give a right factorization of a universally stabilizing controller due to
Nusbaum [13].

Lemma 4.4 Consider a first order SISO linear plant, with realization

G: g=azx+bu z(0)==xp (4.26)
y==z .

Where b # 0. Then there exists a nonlinear coniroller which will stabilize
this plent for all values of a and b. The state equations are:

K: v=yr?+1) v(0) =0

u = y(v? + 1)h(v). (4.27)

The proof of this lemma may be found in [13]. The function k(-) must

satisfy certain conditions to ensure convergence, see [13] for details. Note
that the function h(z) = e® cos z satisfies these conditions.

Lemma 4.5 The controller K of (4.27) has a pseudo-invertible stabiliz-

ing state feedback, g(v,y) = y — v, and thus has a stable right coprime
factorization K = UV =1 given by

U: Zu=(s—zu)(z2+1) z,0)=0

u = s(z2 + 1)h(zy) (4.28)
Vi @y =(s-=z,)(zl+1) z,00)=0
noes (4.29)

Proof: It is straightforward to see that g(-,-) is pseudo-invertible. It is
now shown that v = (y — v)(v? + 1) is stable. First note that = 0 iff

=v. v <y, then v > 0, so v will grow to converge to y. Iff v > y,
then ¢ < 0, so v will converge down to y. Hence v will track y, and so if
y is stable v will be stable. Now apply lemma 4.3 to show that UV ~* .is a
stable right factorization of K. Following the remarks we note that this is

0
arcf.
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Stabilizing Controller

Following the linear theory a controller is designed based on the idea
of a state estimator. Consider that there exists a map I(-,-): X x [/ — X,
such that the state equation

v = f(v,u) = (v, h(z,u) — h(v,u)) ©v(0) =1 (4.30)
acts as a state estimator for (4.1). i.e

Assumption For the plant G(zo) of (4.1) there exists a C'map
I(-,-): ¥ x ¥ + X such that (4.30) acts as a state estimator for G(zo),
in that for all g, vy, as t — o0, v(t) — z().

(4.31)
It is evident that I(z,0) = 0, Yz, otherwise when v(t) = z(t), () #
z(t). As in the previous case of the design of a stabilizing state fecdback
map, the derivation of an I(-,-) for a particular realization (4.1) is a1 open
problem, and as such is beyond the scope of this paper. The controller
K(zg): C(¥Y) — C(U) is then constructed as follows:

K(zo):zry = f(xk,9(xr,0)) — U(zk, y — h{zk, 9(=x, 0))),
zx(0) = 2o (4.32)
u = g(z‘k,O). (433)

The stable right factorization K = UV ~! is realizable with state space
realizations

V(v):2, = flzy,9(zy,0)) — {(zy,s),

z = h(zy,9(24,0))+s, z,(0)=1wo 14.34)
U(UO) Ty = f(x,,,g(xu,O)) - I(mu,s),

u = g(z4,0), z4(0) = ug (4.35)

Coprimeness of these factorizations is shown via Lemma 2.2. Consider
the inverse of the operator [ _A}lv 'VU ] First note that M(zo) and N (z)
have the same initial conditions, and the same state when driven fron: the
same input. Let us denote the identical states for these operators as z,,.

Similarly V(z¢) and U(zg) have identical states z,.
M =-U Ty ,
~N 1% o) ’

(mm V= (gpllmalmsd V(28 - (( 2)
1.3

(3)= G ) Mm99
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From Lemma 4.2, invertibility of this system follows if it is possible tc
rearrange (4.37) to give s1, s2 in terms of u, y. Note that

s1 = 9#($m,u+y(zu,0)) (438,
s2 = y+h(zm utg(20,0)) - h(zy, 9(20,0)). (4.39

Hence the operator is invertible and has state space realization given by

(5 VT () (%)-
( (v, u+ 9(vs,0)) )

f(vv ) g(vu ’ 0)) b I(vIM y+ h(“m U+ g(vv y 0)) - h(v.,, g(vu s 0)))
(4.40)

( $1 ) _ ( g#(vm,u+g(v.,,0)) )
$2 N y+h(vm,“+9(vv,0))—h(vv,g(vu,o)) ’
vm (0) _ Zg

(v )= (%) (44D
Note that for u = y = 0 and v, (0) = vy(0), O = 9y = f(vy, g(vy,0)),
which is stable. In the case u # 0, y # 0 it is not as clear that (4.40)
will remain stable, although the assumption (4.31) implies that the state
vy will mimic v,,, giving stability. In [16] and [17] it is proven that if a
system may be stabilized by state feedback so that for the zero input case
the system is stable, then the system may also be input to state stabilized.
Hence in this case it would seem that (4.40) will remain stable in the case
u# 0, y # 0, at least for bounded u, y, however precise results are elusive
at this time.

If this inverse operator (4.40), (4.41) is stable, Lemma 2.2 and Theo-
rem 2.1 can be applied to give coprimeness of the factorizations and stability
of the system {G(z¢), K(z0)}.

These results are summarized in the following lemma.

Lemma 4.6 Consider a plant G(z,), with state space description (4.1),
such that there ezist mappings g(-,-), and I(., -) satisfying (4.20) and (4.31)
respectively. Then there exists a controller K(zo) given by (4.32), (4.33),
and such that the system {G(z,), K(zo)} is stable. Furthermore, the right
factorizations of G(zo) and K(zo) given by (4.22), (4-23), (4.84), (4.35)
are coprime.

Remark. Note that this is only one possible approach to the stabilization
of nonlinear systems, albeit the one which is the most fruitful if we are to
take advantage of (4.20).
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Left Coprime Factorizations

With the formulation of the plant G(zo) as in (4.1) it does not appear
possible to generate stable left factorizations in the form of (2.3). In the lin-
ear theory the construction of the left factorizations is critically dependent
on being able to additively decompose the state of G(zq) into it’s stable
and unstable parts. The state of N, z, is the stable part of the state of
G, z. The state of M~!, z,, models the difference between these, giving
Z = Iy + Ty, as is shown in the following equations.

N : %, = Az, + Bu+ H(Cz, + Du),
s = Czxpn+ Du (4.42)
M~ . &, = Az, - Hs = Az, — H(Cz, + Du) (4.43)
G : 2 = Zp+2m = AlZn+2m)+ Bu = Az + Bu (4.44)

A nonlinear analog of this process is not possible in the framework devel-
oped in this paper. Other attempts have been more successful. In [12]
lcf’s were obtained by using a specialized version of (4.1). This approach
is explored in a following section.

Stabilization of Other Plants

A key objective of this paper can now be achieved by appropriate ap-
plication of Theorem 3.2. Thus consider the problem of stabilizing a plant
G(x1), where the initial condition z, is different from the initial condition
zo of the controller K(zo) and the “idealized” nominal plant G(zs). It
is then known that the system {G(z¢), K(zo)} is stable, but what about
{G(z1), K(z0)}7 A coprime factorization for G(z1) is N(z;)M~1(z,), and
by Theorem 2.1 it is straightforward to see that the {G(z1), K(z0)} is sta-

-1
ble if the operator [ _A';v 'VU ] ( o1 ) is stable, but this is likely to be

zg
difficult to prove. The difference between the nominal plant G(zo) and the
actual plant G(z,) can be parameterized by the map S(zo, 2,), of Theorem
3.2. From (3.18) and S = Pg D!, the following expression is obtained

S(zo, z1) :
“:) = f(w,9(wm,r1) + g(wy,0)) w(0) =
Uy = f(wm,g(wm,m1)) W (0) = o
Wy = flwy, 9(wy,0)) — l(wy, h(w, g(wem, 1)+ wy(0) = zo
g(wy,0)) — h(wy, g(wy, 0)) = h(wy,, 9(Wm, 1))
T2 = h(w:g(wmv 7'1) + g(wy,0))—

h{wy, glwy, 0)) — h(wm, g{wm, 1))
The following identity now holds
G(z1) = (N(zo)+ V(z0)S(zo, z1))(M (z0) + U(z0)S(=o, z1))"t. (4.45)
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Thus the effect of the different initial conditions may be modeled by the
additional inputs V(20)S(zo, 1), and U(z0)S(zo, 21).

Note that the application of Theorem 3.2 is not limited to this case. It
is possible to find an S(zo, z;) for any plant G,(z1) for which the operator
D! given by (3.19) exists.

5 Left Factorizations

In this section a restricted form of (4.1) is given, and it is shown how tlis
leads to a more complete factorization theory than that developed in tie
previous sections. These results are presented without proof, further deta ls
may be found in the companion paper by Moore and Irlicht [12].
Consider that the operator G(zg) has state space description given by

= A(z)z + B(z)u

Glzo) C(z)z + D(z)u

.’L‘(O) = ZXg. (5 )
Then the existence of a map g(-,-) = F(z)z + u satisfying (4.20) gives
a stable right factorization as developed in Section 4. The exact forms
of M(zo) and N(z) follow from the definitions given, and may be found
in Section 2 of [12]. Further if there exists a function I(-,-) = H(z)y
satisfying (4.31), it is possible to construct a controller K(z), with stable
right factorization U(zo)V{(zo)~1.

Working with this form of (4.1) is instructive as it illustrates mor:
clearly how the linear theory generalizes to the results presented in this
paper. Although further results do not appear attainable in this frame-
work, it does present a natural setting for the development of left coprime:
factorizations, and thus a more complete factorization theory.

Consider the generalization of (5.1) where there is an external signa.
Yw which is injected into each of the matrices A(-), B(-), C(-), D(-) as
follows:

Alyw)z + B(yw )U

Gy (1'0) : C(yw).’c -+ D(UW)“

z(0) = zo. (5.2)

i

Here y,, is a signal which is generated by a strictly causal filter W (wy)
acting on y, or u. Then by constructing the matrices F(yw), H(yw) such
that A(yw) + B(yw)F(yw) and A(y,) + H(yw)C(yw) are stable for all y,,
it is possible to construct stable right and left factorizations for Gy (zo) as
follows:

Gu(zo) = N(zo)M(zo)~!

ZTm = (Alyw) + B(yw)F(yw))zm + Blyw)sr
M{zg): wu = F(yw)zm + sr
l‘m(O) = Xp
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En = (A(yw) + B(yw)F(yw))zn + B(yw )S,.
N(zo): = (Clw) + D(yw)F (yw))zn + D(yw)sr
zn(0) = o
Gu(zo) = M(zo) ' N(zo)
g, = Alyw)r, + B(yw)u+ H(3w)(Clyw)z,+
N(:c ) D(yw )u)
0 $1 = C(yw)z, + D(yu )u
z,(0) = z0/2
5 g, = (Alw)+ H(yw)Clw))z, — H(yw )y
M(zp):  s9 = —Clyw)z, +y
£,(0) = wo/2

Note that as A(-), B(:), C(:), D(-) are matrices it is possible to add the
states of M~! and N to get the state of G,ie z = v, + z,, where y_ is
the state of M~1. The choice z, (z0) = zo/2 is somewhat arbitrary since
G(zo) = M(mg)~1N(ng) for all mg, ng such that mg/2 + no/2 = zo.

A controller K{z¢) may be constructed, having left and right factoriza-
tions as follows:

z = (A(yw) + B(yw ) F(yuw))2r—
LR i SO N
zr(0) = =z

K(l’o) :: U(:L’O)V(illo)—1

Zy = (A(yw) + B(yw ) F(yw))zs + B(yw)si
V(IO) : u = (C(yw) + D(yw)F(yw))zu + &
z,{(0) = ¢
Ty = (A(yu,) + B(yw)F(yw))‘”u + B(yw)si
U(IO) : y = F(yw)xu
(Eu(O) = Xy
K(zo) = V(zo)~1U(zo)
5 x, = (A(yw) + H(yuw)C(Yw)z, — H(yuw)y
U(zo): 1 = F(yw)xa
z,(0) = =zo/2
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g, = (Alyw)+ H(p)C(y))z, + (Blyw)+
V(:z: ) - H(yw)D(yw))u
RPN = —F(y)z, +u
z,(0) = =zof2

As in Section 4 when there are no external inputs to the system, sand
the initial conditions of the plant and controller are the same, the state of
Ky (zo) will track that of Gy (z0) giving stability of the system

{Gu(z0)Ku(z0)}

The problem then addressed is how to construct the signal y,, such that
it may be included in the fractional descriptions of the plant and control er
in a natural way. By making y, a function of the output y of G(zy), it
is possible to construct right and left factorizations for G(z) and K(z),
however difficulties are encountered in trying to derive left factorizatio s
of the controller which satisfy the Bezout identity VM ~ UN = I. 'n
fact it is shown that with this particular formulation it is not possible ‘o
construct a left factorization which satisfies this Bezout identity. To over-
come this problem the notion of an augmented plant G(zo) = [G(zo) 1)
is introduced. The state of G(zq) is used to construct the signal y,, s
follows:

A(zw)zw + B(zy)u

Lw

W (zo): ;;“

ol

zu(0) = 2zo.  (54)

Hence G(z0) = Gu(20) and the right factorizations derived for G(zo) ar:
equal to those of Gy (24). The unity feedthrough term of the augmentel
plant ensures that the input to G(z) is available to the controller K(zg
which is constructed as follows.

K(zo) : CV)x CU)— CU) ( y ) - up
Zy = A(Tw)zyw + B(zy)u z5(0) = zo
Ty = (A(.’cw) =+ B(zw)F(xw))xk— (5 5)
H(zw)(y = (C(2w) + D(zw)F(2y))zr) 2(0) = 2o '
up = Flzy)r

Note that the state z,, is the same as that of W (o), so that the signal fed
into the matrices A(-),..., D(.)in (5.3) and (5.2) are the same. It is shown
that if the system {G(zo), K(2¢)} is bounded-input stable, then there exists
a controller K,(z;g) such that the system {G(z0), K(zo)} is bounded-input
stable.

Factorizations for the augmented plant and controller may now be con-
structed. The plant factorizations may be given in terms of the previous
factorizations, recalling that the signal y,, is given by (5.4), as follows.
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G(zo) = [ G(}EO) ] = N(zo)M(zo)"! = M(zo) *Nizo)
Mizo) = (o) W) = [ e ]
N(zo) = [ N(Il'o) ] M(zo) = M(Oxo) (I) ]

A left factorization for the controller may be written

K:(:Eo) = 9(1‘0)_1d($0)

Ty = A(zw)ry + B(zy)u
z, = (A(zw)+ H(xw)C(zw)):cV+
V(zo): (B(zyw) + H(zw)D(zy))u
o) §9 = —F(-’Cw)l“.’ +u
f:(o) - :cg/Q
ty = A(Tw)Tw + B(zu)u
- g, = (A(zy)+ H(xw)C(2w))z, — H(zw)y
Ufzo) : &1 = F(zw)z,
Ty = Xg
2‘0(0) = 1‘0/2

The main result of [15] may now be applied giving the class of all sta-
bilizing plants and controllers as follows.

Theorem 5.1 C'olzsider the system {gs({o, s0), Kg(zo,4q0)} as shown in
Figure 3, where M(zo), N(zo), U(xo), V(zo) are lcf’s of G(zo),K(z0o)
which are differentially bounded. Consider also that

~1

M(zo) ~N(zo)
~U(zo)  V(zo)

is BIBO stable. Then the system is min{e,, €.}, min{e,, €.} bounled
input stable iff the system {S(so), Q(qo)}, of Figure { is (6,+6,), (6, +¢,,)
bounded input stable.

Remark. Note that the relationship between Gs (s0,¢0) and S-(sg) is that
described by Theorem 3.1. Dualizing this theorem in tern.ls of 1_ntercha 1g-
ing the role of the plant and controller gives the relationship betw:en

Ko(zo,go0) and Q(qo)-
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i}(-’l)o)hl "‘?" L?(l’()) €2

et}

N(xo)

T2
~2

17(:50) . U(xo)
ry
Spas)
- Gs(zo, s0)
e1f—ef N (z0) [+@—M(z0)~|—Jus
wy ——q{? CZ wa
Uz

Ko(zo, 90)

M(zo)

Figure 3: The feedback system {Gs(so, g0), Ko(=0, ¢0)}.

52

S(s0)

S1

Q(g0)

T2
——%‘ w;

Figure 4: The feedback system {S(so), Q(q0)}-
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6 Conclusion

In this paper a quite general approach to the stabilization of nonlinear
systems has been presented. The results given in the first two sections,
considering the factorization approach from an input-output point of siew
represent the most general formulation currently available. To obtain fur-
ther results paralleling the linear theory, it is necessary to make simplifying
assumptions, restricting the class of plants or controllers allowable.

The state-space approach presented considers the most general formula-
tion possible, and is of interest mainly due to the way that it illuminates the
properties of the dynamical systems that are necessary to generate results
similar to those of the linear systems. Specifically the need for a stabiliving
state feedback map, and a stable state estimator for the realization of the
plant is emphasized.

The final section presents a specialization of the work which generites
classes of bounded input stabilizing plants and controllers. This shows the
means by which the general input-output results currently available riay
be applied to the stabilization of nonlinear systems.
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