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Abstract

In this paper right coprime factorization results are derived for i.

general class of nonlinear plants and stabilizing feedback controllers

Both input-output descriptions and state space realizations of th(

plant and controller are used.

It is first shown that if there exist stable right coprime factoriz~

tions for the plant and controller, and if a certain matrix of nonlinear

operators has a stable inverse then the feedback system is well-posed

and internally stable. The links between the right and left coprime

factorization for a stable plant controller pair will be explored for

this purpose. A generalization of the notion of linear fractional maps

is explored as a means of characterizing the class of plants stabilized

by this controller, and dually classes of controllers which stabilize

the plant.

It is then shown how to apply this theory to nonlinear plants

which have a state space realization of a given form. It is also shown

that if there exists a stabilizing state feedback for a plant in the

class of int crest, then there exists a right cop rime factorization for

the plant. Additionidly if there exists a stabilizing output injection,

then there will exist a stabilizing controller with a right coprime

factorization. An important sasumption in this work is to assume

that the plant and controller have the same initial conditions, an

approach is developed to allow for the stabfization of the plant by a
controller with a different initial condition. A similar approach may

also be used to stabilize a plant which has unmodeled dynamics.

These results, of course, specialize to familiar linear system ones,

and just as such linear systems results have had a wide application in

robust and adaptive control system design, it is believed that the re-

sults developed here will facilitate the development of corresponding

nonlinear robust and adaptive control system design.
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1 Introduction

The theory of coprime factorization and applications to the stabilization

of linear systems is well understood [23]. This theory has proven useful for

giving robust design procedures [2] and in providing a venue for the im-

plementation of adaptive control [19]. More recently there has been some

interest in generalizing these results to the nonlinear case. An important

challenge is to set the foundations for a general approach to the feedback

stabilization of nonlinear systems, while paralleling the linear systems de-

velopment as much as possible. Although experience has shown that in

many instances the nonlinear theory is surprisingly close to the linear the-

ory, it would be naive to expect to prove nonlinear generalizations of all

linear systems results. It seems crucial to some of the linear systems results

is in the application of the principle of superposition, which is of course not

permitted for nonlinear systems.

Some of the first investigations into the field of nonlinear factorization

analysis were carried out by Hammer in his papers [3,4,5,6,7]. An input-

output approach along with set-theoretic techniques were used to develop

a pre- and post-compensator pair to stabilize a given plant. Tay [18] used

this framework to develop the class of all pre-, post-compensator pairs that

stabilize a given plant. By using the concept of differential boundedness,

introduced in [6], Paice [14] was able to generate the class of all controllers

bounded-input stabilizing a given plant, This was further developed in

[15] to generate a result giving the classes of all plants stabilized by a

given controller, and to give some robust stabilization results for systems

within that framework. Note that these papers worked mainly with the left

factorization of a given plant, controller pair, and worked within a purely

input-output framework.

At the same time the theory using the right factorization was being

investigated, notably by Desoer [1] and Verma [20,21]. This work was also

conducted from within an input-output framework. The results obtained

in this work were similar to those obtained through the left factorization

approach, but linearity assumptions had to be invoked, for either the plant

or controller.

More recently there has been some interest in finding state space real-

izations of the factorization for nonlinear systems. Sontag (161 presented

results givin$ a ~ig~~ factorization for a C\MS of nonllnear plants, and linked

them to the problem of finding a smooth stabilizing state feedback map for

the plant of interest. Krener [11] presented results showing that right and

left factorization could be obtained for nonlinear plants with controller

and observer normal forms. Of particular interest here was the augmenta-
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tion of the plant by a unity feedthrough term, which appeared necessary

toobtain a left factorization. This is required also inthecompanion lrork

by Moore and Irlicht [12], in which afactorization theory isdevelope(l for

a quite general form of nonlinear plants, giving right factorization, and

left factorization for an augmented version of the plant. In [22] Verma

presented a construction of the right coprime factorization of a ger eral

continuous time nonlinear plant, while in [8] Hammer gives a construe tion

for discrete time systems.

Throughout this previous and present work it has become apparent hat

by making very few simplifying assumptions, a framework which C1Osely

mimics the linear factorization theory may be developed. It has become of

interest to see in what way the linear theory is dependent on the lines rit y

assumption, and to see how extensive a theory may be developed w bile

making only the minimum of assumptions on the class of plants ur der

consideration. It is the purpose of this paper to examine this question

Both the input-output framework and state space realizations of the

plant and controller shall be considered. First, from an input-output p( )int

of view, general results are derived showing the relationship between the

inverse of a matrix composed of right coprime factorization of the p] ant

and controller, and the well-posedneas and stability of the feedback ~ys-

tem. Dual formulations, in terms of using the left factorization shall zlso

be considered. A generalization of linear fractional maps shall then be de-

rived, offering a method of deriving the class of plants stabilized by a gi’ ~en

controller, or the class of controllers stabilizing the plant. Then, work-

ing with a general state space description of the plant, right factorizati( ms

and a stabilizing controller for a given plant are derived, and some of ~he

previous results derived are applied giving an approach to the stabili za-

tion problem which allows for differing initial conditions and unmode ed

dynamics. Specifically the paper is organised as follows.

Section 2 develops some of the basic concepts of factorization ana ly-

sis, and introduces the two main schemes, right and left factorization. In

Section 3 a nonlinear generalization of linear fractional mappings is int) 0-

duced and explored. In Section 4 we derive right factorization for a plant

for which there exists a stabilizing state feedback map. A controller is also

designed, based on the idea of constructing a stable state estimator for t le

plant, a right factorization for this controller is also presented. Throu~ ;h

the use of some of the results of Section 2 it is shown that these factoriz >

tions are coprime and that the plant controller feedback loop is stable. } n

approach to the stabilization of a plant with different initial conditions o

those of the controller through the use of Theorem 3.2 is also presented. 1n

Section 5 a special form of the nonlinear system is considered as a means ()f

obtaining left factorization. The main result of [15] may then be app}ic d

to give the class of all bounded input stable plants and controllers.
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2 Preliminaries

Consider the problem of stabilizing a nonlinear plant G: W) * C(Y) b

a controller K : C(y) + C(U), such that the closed-loop system shown in

Figure 1 is stable. For convenience we denote this feedback control system

{G, K}. Continuous time systems with real input spaces are considered.

Given a real vector space X, the space C(X) is the space of continuous

functions with continuous first derivative, mapping from some open interval

of ‘R to ,-%’.Note that the results obtained apply equally to discrete time

systems as to continuous time systems.

Figure 1: The feedback system {G, K}.

Definition 2.1 [Well-posedness] The system {G, K} is well-posed if the

cIosed-loop system input-output operator from U1, U2 to el, e2, namely

[

I

1
-K ‘1

-G I
, exists.

In the sequel only those systems which are well-posed shall be considered.

In the following two sections the stability problem for the system {G, K}

is developed from an input-output point of view so as to keep the discussion

as general as possible. We partition the space C(X) into two subspaces,

Cb(%) and Cu (A?). The former consists of all signals in C(%) which are

bounded, or stable, while the latter consists of all signals in C(X) which

are unbounded. The signal z E C(X) is said to be bounded when IIzI I is

finite, for some norm II . ]1.

Definition 2.2 [BIBO Stability] A map F: C(U) I+ C(Y) is said to be

bounded-input, bounded-output stable (BIBO stable) when the image oj

C*(U) under F is contained in Cb(Y).

Definition 2.3 [Internal stability] The system {G, K), assumed we~t-

posed, is said to be internally stable ifl for all bounded-inputs Ul, U2 the

outputs YI, Y2 and el, e, are bounded. This is equivalent to

b ‘: risB’BOstab[e(2.1)
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Definition 2.4 [Bounded-Input Stability] The system {G, K}, as :umed

well-posed, is said to be c1, E2 bounded-input stab~e ifl for all inputs UL ~ <

t], Iwl < E2 the outputs Y1, YZ and el, ez are bounded.

Note that internal stability is a stronger condition than bounded-input

stability.

A factorization approach to the stabilization of the plant G is taken,

in analogy with the linear theory of Youla-Kucera parameterizations The

following definitions are taken from [15], and have been developed from

the point of view of preventing the nonlinear equivalent of unstable pole-

zero cancellations, and thus for linear systems specialize to right half >lane

coprimeness.

Definition 2.5 [Right coprimeness] Let Al, N be a right factorization for

G : C(U)+ C(Y)

(1= NAf-l , Iv : (7(s,) + C(Y))

M : C(Sr) + C(U) ‘2.2)

where M and N are BIBO stable mappings from the factorization space

C(S,) to the input and output spaces. Then M, N is a right coprime fac-

torization of G (rcf) iflfor all unbounded inputs s E CU(Sr), Ms or A“s is

unbounded.

Definition 2.6 [Left coprimeness] Let ~, N be a left factorization for

G : C(U) + C(Y)

(-J= jf-lfi , N : c(u) + C(sl)

if : c(y) -+ C(s,) (:!.3)

where ~, fi are BIBO stable mappings from the input and output sp~ ces

to the factorization space C(S1). Then M, H is a left coprime factorizat ion

of G {lcf) iff the set of a[l unbounded u EC“(U) such that Gu is boun ted

and Nu is bounded is the empty set, 0. ln other words, for all bounied

< E Ch(S]), ~-~~ is bounded or {u : flu = ~} is bounded, which is an

explicit dual statement of the definition for right coprimeness.

To prove coprimeness of a factorization, the definition may be test ~d

directly, or the following lemma may be used.

Lemma 2.1 Given a stable right factorization of G, as in (2.2), suppose

that there exists a BIBO stable mapping L: c(u) x C(y) I-+ C(S,) such tl at

[1
LM

N=z’
Z unimodular. (24)

Then G = NM-l is a right coprime factorization for G.
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Proofi Consider L: C(U) x C(y) ++ C(S,) a BIBO stable mapping which

satisfies (2.4), Suppose that N, 11 is not a coprime factorization for G.

Then there exists an unbounded s E C(S,) such that it4s and Ns are

both bounded. As L is 131B0, L ( fi~ ) = Z, is bounded, however ss Z

is unimodular, Zs is unbounded. This gives a contradiction, proving the

result. [3

Remark. In the case that L = [L, Lz ], this lemma specializes to

Lemma 2.1 of [15].

If the system {G, K} is well-posed and stable, assume that in addition

to having stable coprime descriptions for G as in (2.2) and (2.3) there are

factorization for K: C(y) = C(U). i,e

K = WV-l , u : C(sr) -+ c(u)

v : C(s, ) + c(y) (2.5)

I{=Q-lfi , 0: c(y)+ C(sr)

v : c(y) + C(SJ (2.6)

where V, U, ~, U are BIBO stable operators and C(51) and C(&) are the

factorization spaces.

In subsequent sections it will be useful to consider the stability and

well-posedness of the system {G, K} via the stability and existence of the

operators
[ % ~“ 1-1 and [ :fi : 1-’‘n ‘he ‘ormer Cwe ‘here

rcf ’s of G, K are used, the relationship is straightforward, whereas the

relationship is more complicated for lcf ‘s.

Right Coprime Factorization Results

The following theorem and lemma show well-posedness and coprimeness

are necessary and sufficient for the existence and stability of the operator

inverse.

Theorem 2.1 Given {G, K}, and G = NM-l and K = UV-l rcf’s as

in (2’.2) and (2.5), then {G, K} is well-posed ifl

[H ‘: 1-1 “is’s
and ts internally stable ifl

(2.7)

[: ‘: 1-1 ‘sBIBOs’able
(2.8)
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Proofi First we note that

[‘G‘: ]-’= [_;M-,-u:-’ ]-’

= {[3 --w”~lw}-’
(2.9)

It is straightforward to see (2.7) holds iff {G, K} is well-posed.

(+) Suppose that (2.8) holds, then for all a, b bounded we define c, d

as follows:

(:) = [~ -:1-’(0 (2.10)

c, d are bounded. Hence, by (2.9),

L=T’(:) = [f w) ‘2’1)
Under (2.2), (2.5) A4 and V are BIBO stable. Hence A4c and Vd are BIBO

thus showing that the system inverse operator exists and is BIBO.

(+) Suppose that {G, K} is well posed and stable and that G = 1 ~A1-l

and K = UV - 1 are stable r-cl ‘s. Let

(~) = [-=1-’(~) :2.12)

then for all a, b bounded, we have e, f bounded. Define c, d as in ( 2.10),

note that as a, b and e, f are bounded, the following equations hold

(;) = (H)

(2.13)

(2.14)

As e is bounded MC is bounded, and since a and MC are bounded, (Yd is

bounded. Similarly, as b and f are bounded, Vd and Nc are bounded. By

coprimeness of NM-1, since Nc and Mc are both bounded, c is hour. ded.

Similarly, by coprimeness of UV - 1, d is bounded. This completes the

proof. c1
Hence the stability and well-posedness of the system depends on the

[ 1

-1
existence and stability of the operator _MN ‘vu . In fact the relal ,ion-

ship is somewhat stronger, coprimeness also results from the stabilif y of

this operator, as is explored by the following lemma.
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Lemma 2.2 Suppose we have G = NM-l and K = UV-l, such that the

operators M, N, U, V are BIBO stable. Then these are rcfs for G and K

ij they saiis~y (2.8).

Proofi Since the matrix inverse is stable we require that unbounded inputs

yield unbounded inputs. Consider x an unbounded signal, and consider the

action of the system as follows.

As x is unbounded, the output is also unbounded. Thus we must have Mz

or Nx unbounded, giving coprimeness of M, N. Considering the action of

[

M -u

1( )

o
-N V

for y unbounded gives coprimeness of U, V.
Y

•1

Left Coprime Factorization Results

1
The relationship between the operator _VN ‘Go

1

-1
and the stability

and well-posedness of {G, K} is not so clear. In the-linear case we have

that this operator is stable iff the system {G, K} is well-posed and stable.

The only similar result existing for the nonlinear case at present is in the

remarks to Lemma 4.1 of [15], which states that if the maps fi, N, ~, ~

are differentially bounded we have bounded-input stability of the operator

iff {G, K} is bounded-input stable. Differential boundedness is defined S-S

follows.

Definition 2.7 An operator F: C(X) ++ C(Y) is said to be differentially

bounded by 0~, E~ iflfor all signals al, az E C(X), if Ial – azl < EF then

la, -a~l <0.

More general results are elusive, although the following result may be

obtained.

Lemma 2.3 Suppose that for G and K, we have Icf’s as in (2.3), (2. 6),

then if

(2.16)

then it is necessary for the operators (~ – ~G)-l and (M – fiK)-l to

exist. Moreover the operators (~ - ~G)-l and (m – ~K)-l are ~tab~e if

[ ~fi ~ l-’isstabfe
(2.17)
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Proof: Consider the inputs ( ~ ) and(j) to (2.16). TherI we have

(0 = [-hm)

The results of the lemma follow from these equations. a

Remarks

1. The existence of (~ – tiG)- 1 corresponds to the scheme of [6] in

which the plant G is stabilized by a pre- and feedback-compensator

pair ~-1, O. Without the differential boundedness assumptions m en-

tioned above it is not clear how this result relates to the well-posedn ess

of the system {G, K}.

2. In the case that there exist lcf’s for G and K in which the ope w

tors ~, fi are linear it is possible to reproduce the linear theory “or

left coprime factorization. Currently there does not appear to be

any way to link stability and well-posedness of {G, K} to equatic ns

(2. 16), (2. 17) without this linearity assumption.

3 Fractional Maps

Let us now study a nonlinear equivalent of the idea of linear fraction d

maps, The idea is to develop a framework to characterize the class >f

stabilizing controllers fora givenplant,andthe ~&.~~~~~ant~st,awl~lzt,a

by a given controller. The first result concerns left coprime factorization M

for GS, “stabilized” by K in a restricted sense.

Theorem 3.1 Consider a well-posed and internally stable system {G, l’}

with left coprime factorization (2.3), (2.6). Consider also any plant ~~s
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such that

(~ – ~G.s)-l ezists, (31)

then G,s has a n“ght factorization

GS = Nskf~l , [t] =[:SP-UGJ1 ’32)
and satisfies the Bezout identity

~Ms – ~Ns = I. (3.))

If Ms, Ns are stable they are coprtme. Moreover defining an operator 9

from

S = MNs – fiMs = (tiGs, - fi)(ti - tiGs)-l (3.~ )

then under existence of the relevant inverse as in (2.16), Ms, Ns can le

characterized by a mapping on S as

(3.5)

Additionally, when K ‘stabilizes” G in the restricted sense of ($.1 7), the?!

Ms, NS will be stable iff S is stable. Furthermore, (3.4)-(3.5) give a bijec.

iion between the set of all plants Gs such that (3.1) holds, and the set Oa”

all operators S such that

Proof: Note that under existence of (p – ~Gs)-l we have

G.s = Gs(~ – tiGs)-l(~– ~Gs) = ~sM;l.

Thus verifying (3.2). Now show (3.3)

~Ms – ~N~ = ti(~ – ~Gs)-l – tiG(~ – /jGS)-l

= (V - tiGs)(~ - tiGs)-l = 1.

Combining GS = NsM; l and (3.3) proves (3.4). Now note that

l:fi:l[:l=[%~~sl’[~l

(3.6)

(3.7)

(3.8)

(3.9)

So under (2.16), (3.5) holds as claimed.
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Under our assumptions, including (2. 17) we have _Vfi ‘Mu ~nimod.

[1
[ 1

ular. Hence (3.5) gives ~~ [1stable iff ~ is stable. The Identity

mapping 1 is trivially stable, hence Ms, Ns are stable iff S is stab !e.

Now let us prove bijectivity of the maps (3.4)-(3.5), It is evide lt from

the equations that given an S such that (3.6) holds, Gs = iVS MF1 is

constructed from (3.5), and (3.1) holds. Similarly given Gs such th:lt (3.1)

holds, the S obtained from (3.4) will satisfy (3.6), as MS = (~Gs – 7)-1 is

invertible. Hence the mapping from each class to the other is well c efined,

and thus onto. To prove bijectivity it remains to prove that the images

under the maps are unique.

Note that (3.5) shows that for each S there exists a unique pair Ms, Ns.

M;l = ([, (),[j -?]-l[:])-l (3.10)

so it is necessary that S satisfy (3.6) for M; 1 to exist. Further th~ plant

(;.s so obtained will satisfy (3.1). Hence the conditions (3.1) and (3 6) are

equivalent. The bijectivity of the maps (3.4)-(3.5) is now established [.

The map from S to G as defined by (3.2) is onto (subjective), as for all

G such that (3.1) holds we have an S as given by (3.4) which maps to G.

TO prove one to oneness (injectivit y) consider that there exist SI and S2. .
such that Gs, = Gs,. Then the S’s of (3.4) are the same, giving

(fiNs, - fiMs,) = (fiNs, - fiMs,)

[0 n[_j ;][_; :]-1[:1]=

[0 u[_j:][-; :]-’[;2]

[011[:] = q:’]
S1=S2

:3.11)

(’3.12)

(1.13)

(: .14)

(:.15)

Hence the mapping is injective. This gives bijectivity of the maps, thus

completing the proof. ❑
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Remarks

1.

2.

3.

4.

A dual result to this involving right factorization of G and K, and

giving a left factorization for Gs is elusive at the moment, unless

additional assumptions are made. However, dualizing in terms of

interchanging the roles of G and S gives an expression for S when

G.s is expressed in terms of rcf’s of G, K, as shown in the following

theorem.

In the case that (~ – ~G)- 1 exists, then the theorem gives Gs = G

iff S = O. i.e, given a left factorization of G, K we can get a rcf for

G, also for K as is shown in the dual to this theorem, Theorem 3.3.

In the linear S case the expression for Gs simplifies to give Gs =

(fi + s@-’(N + Sv).

This theorem is of interest in the work done by Hammer [6], and by

Tay and Moore [18]. In this work the plant G is stabilized by a pre-,

post-compensator pair V-1, U, so that the question of well-posedness
. .

and stability of the system is reduced to that of the existence and

stability of the operator (~ — ~G)- 1. This theorem shows that any

plant Gs for which this system is well posed is related to a nominal

plant G by means of (3.5), and is parametrized by the operator S.

Furthermore, as (~ – OG$)-l = A4s, the system is stable iff S is

stable. Thus the theorem gives the class of all plants stabilized by

the pre-, post-compensator pair ~-1, u.

Theorem 3.2 Consider a well-posed and stable system {G, K) with right

coprime factorization (2.2), (2.5), so that existence and stability condi-

tions (2. 7) and (2.8) hold. Consider a map S such that (M - US)-l

exists. Then S has a right factorization ,$’= PGD~l given by

[2]=[:] (M - US)-l, and MDC – UP~ = I. (3.16)

Further there exists a plant Gs such ihat

Gs = NDG – VPG = (N - VS)(M - US)-l (3.17)

[f%] =[3-:]-’[_L] (3,18)

Moreover this gives a bijection between the class Of ali operators S such

iftat (M – LJ$-~ exists and the class of all plants such that
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Proof: The details of the proof of this result are the same of thosl ) of the

previous theorem, as they are dual results, interchanging the roles o f S and

G. o

Remarks

1.

2.

3.

In the case that the plant and controller, and their factori~ ations,

are linear, the conditions (3.1) and (3.19) are equivalent, as ale (3.6)

and the existence of (M + US)- 1, The theorems then give the same

result.

These results may be readily dualized, interchanging the roles of the

plant and controller.

Note that these theorems provide a natural setting for generati mg the-.
class of all plants stabilized by the controller K, and in the dua I case,

the class of all controllers stabilizing a given plant. Theorem 3.1 may

be applied to the main results of [15] to generate the class of all >lants

bounded-input stabilized by a given controller. By assuming Iin earit y

of K, it is possible to show that the cIass of all controllers stat ilized

by K can be generated by Theorem 3.2. More general resuls are

elusive at this time, so that it is not possible to say whether G; will

be stabilized by K.

4 State Space Factorization Descriptions

Consider now a state space approach to the factorization of nonlineal sys-

tems. Starting from a quite general state space description for a continuous

time plant, stable right factorization are developed, based on the assl~mp-

tion that the state equation of the plant is stabilizable by nonlinear : tate

feed back. The development parallels the development of the theorj for

linear systems.

Nonlinear System Class

Given a real vector space X, define the space of trajectories withir X,

C(,~) as in Section 2, first derivative. Any function which is contin~ ous

and has continuous first derivative is called Cl.

Consider that a plant G(xo): C(U) * C(y) is an operator, dependent

on the parameter Z., which maps inputs U(.) to outputs g(.). Furtherm~ )re,

consider that G~xO\ lm.s state space ~esc<~ption of the form

G(zO) : x = ~(z, u), y = h(z, u), z(O) = *O.
(4.1)

A fundamental property of differential equations that we shall be ex-

ploiting is the existence and uniqueness of solutions of the differential e( pm-
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tion. The following theorem, adapted from [10], and stated without proof

is useful.

Theorem 4.1 Let f: X w X be a C1map and let X. ~ X. Then there

exists a unique maximal open interval (a, b) containing O, and a unique

function z: (a, b) * X satisfying

x = j(z), 2(0)= X(J. (4.2)

Remarks

1. Note that a, b maybe equal to plus or minus infinity. In the case that

b is finite, the system is unstable, with finite escape time. Similarly

if a is finite, the reverse time system has finite escape time.

2. This theorem also gives results for the time varying case, and for

systems of the form of (4.1), as is explored in the following corollaries.

Corollary 4.1 Let j: X x ‘R = A! be a C1map, and let Z. 6 X. Then there

exists a unique maximal open interval (a, b) containing O, and a unique

function x: (a, b) * X satisfying

x = f(z, t), 2(0)= Z(J. (4.3)

() ()
f(x, t)

Proofi Let y= ~ , and g(y)= ~ . As fis C1, gis Cl, now

apply Theorem 4.1. u

Corollary 4.2 Let f:.% x U w ,% be a L?lmap, and let X. E X. Then given

u E C(U) there exists a unique maximal open interval (a, b) containing O,

and a unique function x: (a, b) H X satisfying

x = f(z, u(t)), z(o)= Zo. (4.4)

Proofi Given u 6 C(U) set g(c, t)= f(z, u(t)) which is Claa ~ and u are

both Cl, and apply the previous corollary. a
In order to guarantee existence and uniqueness of solutions it is assumed

that the map ~(., .) of (4.1) is Cl. Unless otherwise stated all functions in

the work to follow shall be assumed to be C1.

Composition of Nonlinear Operators

Consider two operators of the form of (4,1), A(zo): C(U) w C(Y) and

B(VO):C(Y) = C(2).

A(20) : x = fA(~,~), ?4= ~A(~,~), z(O) = ‘o
(4.5)

B(vo) : v = fB(~,y), Z = hB(~,Y), v(o) = ?JO (4.6)
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Then the operator C(ZO, Vo) = BAA: C(U) w C(Z) will have state

space description

(“) (c(zll, u)) : : =
fA(x,~)

fB(V, ~A(~, ~))

Z = hB(7), h.A(Z,lL)).

)1

(4.7)

(4.8)

Note that in general the dimension of the state of C’(ZO, Vo) is equal to the

sum of the dimensions of the states of A(zo) and B(vo ). In some special

cases, however, it may be possible to reduce the state, as shown in the

following lemma.

Lemma 4,1 Consider operators A(xo), 13(vo) as given by (4.5), (4.6).

Then if

then C(zo, vo) =

C(zo) : i

fB(~,~A(~,~)) = fA(~,~) , ~0 = Vo (4.9)

C’(ZO, VO) = C(ZO) is reduced to the form

= f~(z, u)z = hE(2, hA(2, ~)), X(O) = 20. (4.10)

Proof: Suppose that (4.9) hold, and consider the evolution of the state

equations (4.5), (4.6). Substituting v(t) = z(t) into (4.7) gives

i(t) = ~E(~(t), hA(~(t), ~(t))) = ~B(~(t), hA(~(t), ~(t)))

= \A(~(t), ~(~))= ~(t). (4.11)

Hence a solution of (4.5), (4.6) is v(t) = ~(t), W. Note that f~, hA, f~

are Cl functions. Hence by Theorem 4.1 this is the unique solution, and the

lemma is established. [1

Inverse Systems

In deriving later results it will be necessary to be able to invert a non-

linear operator of the form of (4.1). The following lemma shows that given

the existence of a map h#: X x Y *U, associated with the map h of (4.1),

it is possible to invert the operator. The map h#(., .) is called the pseudo-

inverse of /i(., .), and the map h(., .) is called pseudo-invertible, this is an

analogue of the reversible feedback function of [9]. Note that if h(., .) is Cl,

then h#(., .) is C].

Lemma 4.2 Consider an operator G(xo) as in (4.1), construct the opera-

tor S(zo): C(y) * C(U) as follows.

S(vo) : v = f(v, h#(v, y)), ‘u = h#(v, y), v(o) = VO. (4.12,)
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Consider also that h# satisfies

hx(z, h(z, u)) = u Vx, u (4.13)

then S(ZO) is a left inverse for G(zO), i.e S(ZO)G(ZO) = 1, and if h#

satisjies

h(z, h#(x, u)) = U Vz,u (4.14)

then S(zo) is a right inverse for G(zo), i. e G(ZO)S(ZO) = 1. Moreover,

when h and h# satisfy both (4.13), then (4.14), S(ZO) is an inverse for

G(zo), i.e

(4.15)G-l(zO) = L$’($o).

Proof: Consider the state equation of the composition S(zo)G(zo)

x= f(x, u) $(0) = 20 (4.16)

v = f(v, h#(v, h(z, u))) v(O) = ro (4.17)

Note that by (4.13) we have for z = v, ~(z, u) = ~(v, h#(v, h(z, u))).

Applying Lemma 4.1 gives x(t) = v(t), Vt. The output equation for

S(ZO)G(ZO) thus becomes

z = h#(v, h(z, u)) = U. (4.18)

This proves the first part of the lemma. A similar argument shows that

when (4. 14) is satisfied G(ZO)S(ZO) = 1. This completes the proof. U

Remark. Note the dependence on initial conditions for ensuring that the

states remain equal for all time. This may be difficult to guarantee, addi-

tionally the error dynamics may be such that any small error is magnified.

The question of when it is possible to stably invert a function, i.e. invert it

and have the error dynamics such that any error will decrease with time,

is a difficult one, and is dependent on the particular functions ~, h, h#.

Right Factorization for G

The development of a stable right factorization for the plant G(zO) is

critically dependent on the solution of the smooth state feedback stabi-

lization problem for the state equation of G(zO). This is in itself an open

problem, and a treatment of such is beyond the bounds of this paper. Here,

the assumption is made that for plants of interest the stabilization problem

has been solved and that the solution is available.

Consider the state feedback map g(., .):X x U + U, as in Figure 2, so

that the state equation for G(zO) becomes

x = f(z) g(x, u)), z(o)= Zfj. (4.19)
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Jz7=E=J
Figure 2: State feedback g(., .).

Assumption For the plant G(xo) of (4.1) there exists a pseudo-

invertible Clmap g(., .):X x U w U such that the state equatiol I (4.19)

is stable, and gx(., .) satisfies both (4.13) and (4.14).

(4.20)

It is now possible to construct a stable right factorization for (2(zO) as

is explored in the following lemma. This lemma is equivalent to T leorem

3 of [22], and parallels the discrete time results found in [8].

Lemma 4.3 Consider a plant G(zO) such that there exists a mall g(., .)

satisfying (4.20). Then it is possible to construct a stable right factorization

for G(xo) as follows.

G(zo) = N(ZO)M-l(ZO) (4.21)

M(zcl) : im = f(~m ,9(~7n, s)), %= 9(~m, s),

Zm(o) = 20 (4.22)

N(WJ) : x. = .f(~n ,9(zn, s)), ?/= h(zn,9(zn, ‘)),

z.(o) = 20 (423)

Remarks

1.

2.

3.

By introducing the notion of detectability Verma [22] is able to prove

that this a coprime factorization. The notion of detectability u,;ed is

that if u and y are stable, then z is stable, and furthermore, th; ~t for

some,fl >0, 11211S ,41
[1: Il.

Note that the equation G(zo) = N(zo)lf - 1(xO) depends on tht: ini-

tial conditions being identical, so that the Remarks following Lel nma

4.2 are appropriate here aa well.

The requirement that g(,, .) be pseud~invertible is necessarY fo t in-

vertibN~t y of M (z o). It does not appear overly restrictive, as ix. the

linear case we have g(z, u) = FZ + u, so that g#(z, V) = Y - ~z,

where F is some matrix chosen such that A + BF is stable. Fur-

thermore, note that in [17], Sontag proves an input to state stat ility

result which gives a stability result satisfying (4.20). Specifically it
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is shown that for systems of the form of (4.1), a feedback law of the

form

g(z, u) = K(z)+ G(z)u (4.24)

where G(z) is invertible for all Z. In this caae we have

gx(z, v) = G(x)-l(v – K(z)) (4.25)

and the assumptions of (4.20) are satisfied.

Factorizing a Universal Controller

To illustrate the effectiveness of this approach to right factorization

we give a right factorization of a universally stabilizing controller due to

Nusbaum [13].

Lemma 4.4 Consider a jirst order S1S0 linear plant, with realization

G: i=az+bu S(0)=ZO

y=x
(4.26)

Where b # O. Then there exists a nonlinear controller which will stabilize

this plant for all values of a and b. The state equations are:

K: L=y(vz+l) v(o) = o
(4.27)

u = y(vz + l)h(v).

The proof of this lemma may be found in [13]. The function h(.) must

satisfy certain conditions to ensure convergence, see [13] for details. Note

that the function h(z) = e’ cm z satisfies these conditions.

Lemma 4.5 The controller K of (4.27) has a pseudo-invertible stabiliz-

ing state feedback, g(v, y) = y — v, and thus has a stable m’aht covn”me.
factorization K = UV-l given bg

u : z;= (’– Xu)(z:+

‘u= S(X: + l)h(zu)

v : X’v= (s.- z”)(z:+

y=s–zv

1) z“(o) = o

1) z“(o) = o

(4.28)

(4.29)

Proofi It is straightforward to see that g(., .) is pseudo-invertible. It is

now shown that w = (y – V)(V2 + 1) is stable. First note that ti = O ifl

Y = v. If v < y, then w >0, so u will grow to converge to y. If v > y,

then i <0, so v will converge down to y. Hence v will track y, and so if

y is stable v will be stable. Now apply lemma 4.3 to show that UV-l is a

stable right factorization of K, Following the remarks we note that this is

a ref.
n
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Stabilizing Controller

Following the linear theory a controller is designed based on the idea

of a state estimator. Consider that there exists a map /(., .):X x ~~ H X,

such that the state equation

v= j(?),u) - I(V, h(z, u) - h(v, u)) r)(o)= V(J (4.30)

acts as a state estimator for (4.1). i.e

Assumption For the plant G(zo) of (4.1) there exists a C*map

/(., .): x x Y * x such that (4.30) acts as a state estimator for G(zo),

in that for all Zo, Vo, as t-+ cm,v(t)- x(t).

(4.31)

It is evident that /(z, O) = O, VZ, otherwise when v(t) = z(t), j(t) #

i(t). As in the previous case of the design of a stabilizing state fe( ldback

map, the derivation of an /(., .) for a particular realization (4.1) is a. 1 open

problem, and as such is beyond the scope of this paper. The controller

A’(zO ): C(Y) + C(U) is then constructed as follows:

~i’(~o): Xk = f(z,, g(z,, o))- /(z,, y - /l(z,, g(z,, o))),

z~(o) = 2(J (4.32)

‘u = g(zk, o). (4.33)

The stable right factorization K = UV - 1 is realizable with state space

realizations

v(w) :x“ = f(z., g(zv, o))– (Z”, s),

2== ~(QJ,9(z”, 0))+ s, Zv(o) = I@ I4.34)

U(ul)) : i. = f(%, 9(QJ, 0)) – ~(z”, s),

u== g(zu, o), Zti(o) = Uo (4.35)

Coprimeness of these factorization is shown via Lemma 2.2. Consider

[ 1the inverse of the operator _MN ‘vu . First note that M(zO) and A’(zO)

have the same initial conditions, and the same state when driven fron i the

same input. Let us denote the identical states for these operators as x~.

Similarly V(zo) and U(ZO) have identical states ZV.

(0=(
g(zm, 51) – g(zu, o)

) (41.37)
52 + h(~., 9(~w, 0)) – ‘(zm> 9(zm, ‘1))
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From Lemma 4.2, invertibility of this system follows if it is possible tc

rearrange (4.3i’) to give S1, S2 in terms of u, ~. Note that

S1 = g#(zm, u + g(zv, o)) (4.38;

52 = y + h(cm, U + g(~v, O)) – h(Z”, g(Zv, O)). (4.39:

Hence the operator is invertible and has state space realization given by

(
f(tlm, u + g(v”, o))

f(% , 9( V”, 0)) - ~(%, y + ~(%, ‘u+ g(~”, 0)) - N%, 9(~”, 0)) )

(4.40)

(2) = (
9#(~m, u + 9(~., 0))

)y + h(%, u + 9(%, o)) - h(v”,9(%, o)) ‘

(3!)=(0 (4.41)

Note that for u = y = O and vm(0) = VV(0), tim = i. = ~(vv, g(v,, O)),

which is stable. In the case u # O, y # O it is not as clear that (4.40)

will remain stable, although the assumption (4.31) implies that the state

v. will mimic Vm, giving stability. In [16] and [17] it is proven that if a

system may be stabilized by state feedback so that for the zero input case

the system is stable, then the system may also be input to state stabilized.

Hence in this case it would seem that (4.40) will remain stable in the case

u # O, v # O, at least for bounded u, y, however precise results are elusive

at this time.

If this inverse operator (4.40), (4.41) is stable, Lemma 2.2 and Theo-

rem 2.1 can be applied to give coprimeness of the factorization and stability

of the system {G(zO), K(~o)}.

These results are summarized in the following lemma.

Lemma 4.6 Consider a plant G(zo), wiih state space description (4.1),

such that there exist mappings g(., .), and 1(., .) satisfying (4.20) and (4.91)

respectively. Then there exists a controller K(xo) given by (4.32), (4.39),

and such that the system {G(zo), K(zo)} is stable. Furthermore, the right

factorization of G(zo) and K(zo) given by (4.$2), (4.23), (4. W), (4.3.5)

are cop~ime.

Remark. Note that this is only one possible approach to the stabilization

of nonlinear systems, albeit the one which is the most fruitful if we are to

take advantage of (4.20).
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Left Coprime Factorization

With the formulation of the plant G(zo) as in (4.1) it does not appear

possible to generate stable left factorization in the form of (2.3). In the lin-

ear theory the construction of the left factorization is critically dependent

on being able to additively decompose the state of G(zO) into it’s stable

and unstable parts. The state of N, Zn is the stable part of the state of

G, z. The state of X-1, Zm models the difference between these, giving

x = x. + Zm as is shown in the following equations.

fi:xn = Axn + Bu + H(Czn + Du),

s = Czn+Du (4.42)
~-l

Xm = Az. – ~s = Azm – ~(czn + DU) (4.43)

G: X=xn+zm = A(zn + Zm) + BU = Az + Bu (4.44)

A nonlinear analog of this process is not possible in the framework devel-

oped in this paper. Other attempts have been more successful. In [12]

lcj’s were obtained by using a specialized version of (4.1). This approach

is explored in a following section.

Stabilization of Other Plants

A key objective of this paper can now be achieved by appropriate ap-

plication of Theorem 3.2. Thus consider the problem of stabilizing a plant

G(ZI ), where the initial condition Z1 is different from the initial condition

Z. of the controller K(xo) and the “idealized” nominal plant G(zO). It

is then known that the system {G(zO), K(zO)} is stable, but what about

{G(xI ), K(zo)}? A coprime factorization for G(zl) is N(zI)A4-l(zI), and

by Theorem 2.1 it is straightforward to see that the {G(xl), K(zo)} is sta-

ble if the operator
[ ~ -:1-1(::)

is stable, but this is likely to be

difficult to prove. The difference between the nominal plant G(xo) and the

actual plant G(z1 ) can be parameterized by the map S(XO, Z1), of Theorem

3.2. From (3.1$) and S = P~D;l, the following expression is obtained

S(a),zl) :

w = f(~j 9(%, rl) + 9(~”, 0)) w(o) = xl

Wm = f(wm, g(wm, ?’~)) rum(o) = Zo

tiv = f(w”, g(w”, 0)) – ~(w”, h(w, g(wn, n)+ w“(o) = Zo

9(W, o)) – NW, 9(W, o)) – k(wm, 9(w~, rl)))

T2 = h(lo, g(wm, rl) + 9(W, o))–

Xw” , 9(W” , 0)) – M%, 9(W7I, ~1))

The following identity now holds

G(zl) = (N(zO) + v(zo)s(~o, *1))(~(~0) + ~(~o)s(zo, ‘l))-l. (445)
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Thus the effect of the different initial conditions may be modeled by {he

additional inputs V(ZO)S(ZO, Zl), and U(ZO)S(ZO, Zl).

Note that the application of Theorem 3.2 is not limited to this case. It

is possible to find an S(xo, Zl) for any plant G~(z1 ) for which the opera{ or

11~1 given by (3.19) exists.

5 Left Factorization

In this section a restricted form of (4.1) is given, and it is shown how tl is

leads to a more complete factorization theory than that developed in t ~e

previous sections. These results are presented without proof, further deta 1s

may be found in the companion paper by Moore and Irlicht [12].

Consider that the operator G(xo) has state space description given by

(5. .)

Then the existence of a map g(., .) = F’(z)z + u satisfying (4.20) giw, s

a stable right factorization as developed in Section 4. The exact forrr s

of A4(zo) and P/(zo) follow from the definitions given, and may be found

in Section 2 of [12]. Further if there exists a function /(., .) = H(z) y

satisfying (4.31 ), it is possible to construct a controller K(zO), with stab] e

right factorization U(ZO)V(ZO)-l.

Working with this form of (4.1) is instructive as it illustrates mor;

clearly how the linear theory generalizes to the results presented in thi ;

paper. Although further results do not appear attainable in this frame.

work, it does present a natural setting for the development of left coprim( !

factorization, and thus a more complete factorization theory.

Consider the generalization of (5.1) where there is an external signa

yW which is injected into each of the matrices A(.), B(.), C(.), D(.) as

foI1ows:

Gw(zo) : ;
= A(yw)z + B(?JW)U

= c(yw)z + D(yw )U
z(o) = Zo. (5.2)

Here yW is a signal which is generated by a strictly causal filter W(wo)

acting on y, or u. Then by constructing the matrices F(yW), FI(yW ) such

that A(YW) + B(YW)~(Y~) and A(y~) + H(YW)C(YW) are stable for all yW,

it is possible to construct stable right and left factorization for GW(xo) as

follows:

Gw(zo) == N(ZO)M(ZO)-l
Xm = (A(yw) + ~(yw)~(yw))Zm+ ~(yw)Sr

M(q)) : ‘u = F(yw)zm + S.

cm(o) = Zo
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in = (A(yW) + B(yW)F(yW))~n + B(yw)sr

N(zo) : y = (C(yw) + D(UW )F(yw))xn + L@ )s,

%(o) = 20

Gw(zo) = if(xo)-lzif(zo)
Xfi = A(yW)zfi + B(yW )U + ~(yW)(@W )Zfi+

N(zo) : ~1
D(yw)u)

= C(YW )~N + ~(Yw )~

Zfi(o) = zo/2

Xm = (A(yW) + ~(yW)C(yW))~m - ~(yw)y

fi(z~) : s~ = –C(yw)zti + y

Xfi(o) = z@/2

Note that as A(.), B(.), C(.), D(.) are matrices it is possible to add the

states of M-l and ~ to get the state of G, i.e z = Vfi + Z&, where Vti is

the state of fi-l. The choice Xti (zo) = Zo/2 is somewhat arbitrary since

G(xo) = fi(rno)-lfi(no) for all rno, no such that me/2+ no/2 = Zo.

A controller K(zO ) may be constructed, having left and right factoriza-

tion as follows:

ik = (A(gW) + B(yW)F(yW))l!~-

I<w(xo) :
H(YW)(Y – (C(YW) + ~(Yw)~(Yw))$k)

u f’(yw)z~
(5.3)

=

$h(o] = ~o

K(zc)) = U(ZO)V(UJ)-1

iv = (A(Yw) + ~(Yw )~(Yw))% + ~(Yw )s/
v(w)): U = (qYw) + qYw)f’(Yw))z” + SI

xv(o)= Z(J

Xu = (A(yw) + B(yW)F(gW))zu + B(yW)S,

U(zo) : y = F(yw)zu

2.(0) = Zo

K(20) = V(zo)+(l!o)

= (A(yw) tH(YUJ)C(YW)ZO–H(YW)Y

u(q) : : = qvw)~o

Xo(o) = xl)/2
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xv = (A(yw) + H(yw)c(yw))zv + (B(yw)+

V(zo) : ~2 =
li(ywp(yw))u

–F(yw)zt -t u

Zti(o) = zh3/2

As in Section 4 when there are no external inputs to the system, and

the initial conditions of the plant and controller are the same, the state of

J<W(z. ) will track that of GW(zo) giving stability of the system

{GW(ZO)KW(XO)}.

The problem then addressed is how to construct the signal yw such that

it may be included in the fractional descriptions of the plant and control. er

in a natural way. By making yW a function of the output y of G(zO), it

is possible to construct right and left factorization for G(zO) and K(s( ),

however difficulties are encountered in trying to derive left factorization M

of the controller which satisfy the Bezout identity VA4 – ON = 1. n

fact it is shown that with this particular formulation it is not possible o

construct a left factorization which satisfies this Bezout identity. To over-

come this problem the notion of an augmented plant ~(xo) = [G(zO)’ l]’

is introduced. The state of G(zo) is used to construct the signal yW zs

follows:

w(q)): ::
= A(ZW)ZW + B(XW)U

xv
Zw(o) = 20. (5.4)

=

Hence G(xo) = GW(zo) and the right factorization derived for G(xo) ar;

equal to those of GW(zo). The unity feedthrough term of the augmente( I

plant ensures that the input to G(zo) is available to the controller K(zO

which is constructed as follows.

K(ZO) : C(Y) x c(u) - c(u)

Xw = A(zW)zw + ~(ZW)U Zw(o) = 20
Xk = (A(zW) + B(~W)F(~~))~k–

~(%J)(Y – (C(zw) + D(zw)F’(%))zk) Zk(o) = r’o
(5.5)

Uk = F(xW)zk

Note that the state ZW is the same as that of W(zo), so that the signal fed

into the matrices A(.), . . . . D(.) in (5.3)and (5.2) are the same. It is shown

that if the system {~(zo)) K(zO)} is bounded. input stable, then them exists

a control~er ~(zo) such that the system {G(x O), K(zo)} is bounded-input

stable.

Factorization for the augmented plant and controller may now be con-

structed. The plant factorization may be given in terms of the previous

factorization, recalling that the signal yW is given by (5.4), as follows.
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g(x,)
= [ ‘(;”) 1 = ‘(’”)”(Z”)-l = ‘(z”)-’i(zo)

L J

M(xo) = M(zo) JV(zo) =

[1

ii(x,)
i-(m) = ~ M(w) =

N(zo)

M(zo)

M(z,) o

01 1
A left factorization for the controller may be written

K(x”)

V(x”):

O(x”) :

= V(z,)-w(z”)

Xw = A(ZW)ZW + B(ZW)U

% = (A(zW) + ~(XW)C(~w))Xv+

(B(zw) + H(XW)D(ZW))U

S2 = –F(zw)xv + ‘u

Zw = x“

Zv(o) = z“/2

Xw = A(XW)XW + B(XW)lJ

% = (A(zv) + ~(xW)C(zW))zo - ~(~w)y

.51 = F(xw)xo

Xw = x“

2.(0) = zo/2

The main result of [15] may now be applied giving the class of all sta-

bilizing plants and controllers as follows.

Theorem 5.1 Consider ihe system {~s(xfl, so), XQ(ZO, go)} as showl) in

Figure 3, where Jt(zo), l(zo), ti(zo), Y(zo) are Jcf’s of G(zo), K( 20)

rohich are differentially bounded. Consider also that

[

M(x,)

1
-N(q)‘1

4(X,) V(xo)
is BIBO stable. Then the system is min{&v, Efi}, rnin{co, Em) bount!ed

in~ut stable ifl the system {S(SO), Q(qo)}, o~l’igure 4 is (60 i-ov), (@tii-~m )

bounded inpui stable.

Remark, Note that the relationship between GS (SO, go) and S(SO) is t] ~at

described by Theorem 3.1. Dualizing this theorem in terms of intercha lg-

ing the role of the plant and controller gives the relationship betw >en

~Q(~”, q“) and Q(qo)
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u(q)

el

W1--Qz
U2 ti(xo) ez

M(zo)

Figure 3: The feedback system {~s(so, qo),

Xo, so)

rl
w; S(so) * sl

S2 .

Figure 4: The feedback system {S(s. ), Q(qo)}.
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6 Conclusion

In this paper a quite general approach to the stabilization of nonlinear

systems has been presented. The results given in the first two sect: ens,

considering the factorization approach from an input-output point of riew

represent the most general formulation currently available. To obtain fur-

ther results paralleling the linear theory, it is necessary to make simplif ~ing

assumptions, restricting the class of plants or controllers allowable.

The state-space approach presented considers the most general form ula-

tion possible, and is of interest mainly due to the way that it illuminates the

properties of the dynamical systems that are necessary to generate results

similar to those of the linear systems. Specifically the need for a stabili: ;ing

state feedback map, and a stable state estimator for the realization of the

plant is emphasized.

The final section presents a specialization of the work which gener; \tes

classes of bounded input stabilizing plants and controllers. This shows the

means by which the general input-output results currently available r lay

be applied to the stabilization of nonlinear systems.
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