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Abstract

Magnetic resonance (MR) images are normally corrupted by random noise which makes the automatic feature

extraction and analysis of clinical data complicated. Therefore, denoising methods have traditionally been applied

to improve MR image quality. In this study, we proposed a 3D extension of the wavelet transform (WT)-based

bilateral filtering for Rician noise removal. Due to delineating capability of wavelet, 3D WT was employed to

provide effective representation of the noisy coefficients. Bilateral filtering of the approximation coefficients in a

modified neighborhood improved the denoising efficiency and effectively preserved the relevant edge features.

Meanwhile, the detailed subbands were processed with an enhanced NeighShrink thresholding algorithm.

Validation was performed on both simulated and real clinical data. Using the peak signal-to-noise ratio (PSNR) to

quantify the amount of noise of the MR images, we have achieved an average PSNR enhancement of 1.32 times

with simulated data. The quantitative and the qualitative measures used as the quality metrics demonstrated the

ability of the proposed method for noise cancellation.

Keywords: magnetic resonance imaging, 3D image denoising, 3D wavelet transform, bilateral filtering, enhanced

NeighShrink thresholding

1. Introduction

Three-dimensional magnetic resonance imaging (MRI)

has, during the last several decades, benefited from a

variety of technological developments resulting in

increased resolution, signal-to-noise ratio (SNR), and

acquisition speed. However, fundamental trade-offs

among resolution, acquisition speed, and SNR combined

with scientific, clinical, and financial pressures to obtain

more data more quickly, can result in images that exhi-

bit significant artifacts, e.g., noise, partial volume, and

intensity nonuniformity. For instance, the need for

shorter acquisition times for patients in certain clinical

studies often undermines the ability to obtain images

having both high-resolution and high SNR. Another

example concerns diffusion-tensor (DT) MRI that has

become quite popular over the last decade due to its

ability to measure the anisotropic diffusion of water in

structured biological tissue. DT MRI differentiates

between the anatomical structures of cerebral white

matter, which was previously impossible with MRI, in

vivo, and noninvasively. The effects of Rician noise on

DT MRI, however, are severe because of the inherent

nature of the process–higher tissue anisotropy produces

progressively lower intensities in diffusion-weighted

images that, in turn, are more susceptible to Rician

noise. The efficacy of higher-level post processing of

MR and DT-MR images, e.g., segmentation and registra-

tion, that assume specific models on regions of interests,

e.g., homogeneous, is sometimes impaired by even mod-

erate noise levels. Hence, it is necessary to remove the

noise from MR image.

The removal of noise from noisy data to obtain the

unknown signal is often referred to as denoising. Post-

processing filtering techniques with the advantage of not

to increase the acquisition time have extensively been

used in MRI denoising. Many image denoising methods

have been proposed in previous research. The conven-

tional approach [1,2] was proposed to estimate the

Rician noise level and perform signal reconstruction

using a maximum likelihood method. Anisotropic diffu-

sion [3-5] reduces image noise by considering a scale

space, and it has been adapted to suppress the Rician
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noise in MR image [6]. Moreover, anisotropic diffusion

filter combined with the Wiener filter [7] has been used

for MRI denoising, which spatially averages pixels

according to their correlation structure. The nonlocal

means filter has been applied for feature preserved MRI

denoising [8-12]. It builds an estimation of the restored

pixel value by weighted averaging over a large portion of

the pixels within the image. The weights are based on

the similarity computed by comparing the patches

instead of single point, and the edges and the details

can both be well preserved.

Recently, wavelets have become a popular tool in

various applications for data analysis and image pro-

cessing. Application of wavelets for denoising of MR

images has produced a large number of algorithms

[13,14]. Early study [15] was followed by multi-scale

products thresholding [16], which uses adjacent wave-

let subbands to detach the edges from noise. Complex

denoising of MR images using wavelets was proposed

by Zaroubi and Goelman [17]. The method produces

better SNR compared to the magnitude denoising

scheme. Wu et al. [18] proposed a wavelet-based back-

ground noise removal method in MRI. The proposed

method can be used jointly with existing denoising

methods to improve their effectiveness. Bilateral filter-

ing in wavelet domain has been shown to preserve the

edges efficiently [19]. Moreover, wavelet has been used

for MRI denoising in combination with Radon trans-

form, which estimates noise variance in different scales

[20].

In this study, we proposed a 3D extension of the

wavelet transform (WT)-based bilateral filtering ideas

for Rician noise removal. Due to delineating capability

of wavelet, 3D WT was employed to decompose the MR

image into the approximation and the detailed sub-

bands. Next, bilateral filtering of the approximate coeffi-

cients in a modified 3D neighborhood improved

denoising efficiency and effectively preserved relevant

edge features. Meanwhile, the detailed subbands were

processed with a weighted NeighShrink (WNS) thresh-

olding algorithm. At the end, inverse 3D WT was per-

formed on the selected subbands to obtain final

denoised image. In the proposed method, the combined

property of 3D WT and the bilateral filter significantly

reduces the blurring of image features.

The structure of this article is as follows. First we

describe our proposed noise cancellation algorithm (Sec-

tion 2). Then, we explain our experimental methodology

and present the results with both synthetic and real

images (Section 3). Finally, Section 4 is devoted to dis-

cussion and conclusion.

2. Materials and methods

2.1. Rician noise estimation

One main source of noise in MRI signal is the thermal

noise. The signal component of the measurement is pre-

sent in both real and imaginary channels; each of the

two orthogonal channels is affected by white Gaussian

noise. An MR image is usually reconstructed by com-

puting the inverse discrete Fourier transform of the raw

data. The magnitude image of the reconstructed MRI is

used for visual inspection and for automatic computer

analysis. Since the magnitude reconstruction is the

square root of the sum of two independent Gaussian

random variables, the magnitude image data are

described by a Rician distribution [21].

The complex MRI data is given as

y = p + iq (1)

The noise in the complex raw data is zero mean

Gaussian noise and the spatial MR image is the magni-

tude of the noisy raw data. Therefore, the magnitude of

the noisy raw data z is given by

z =

√

(p + nre)
2 + (q + nim)2 (2)

nre, nim ∼ G(0, σ 2) (3)

i.e., z is corrupted by Rician noise. Under these condi-

tions, it is advantageous to take the square of the mag-

nitude MR image. Its expectation reads

E(z2) = E(y2) + 2σ 2
n (4)

And we could obtain an unbiased estimator of y by

taking

y ≈
√

max(0, z2 − 2σn
2) (5)

where the maximum function is applied to avoid phy-

sically meaningless complex values. Note that this

unbiasing procedure relies on a proper estimate of the

sn parameter. To this end, many methods have pre-

viously been reported [22-25]. They are mainly based on

the features of the Rayleigh background, for instance,

σn =

√

μ

2
(6)

where μ is the mean value of the background of the

squared magnitude of image, these methods are suitable

for our method as long as the MR image contains

background.
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2.2. 3D WT

Wavelets are orthogonal basis functions that delve data

into different spatio-frequency components. The deli-

neating capability of wavelet leads to better discrimina-

tion between the noise and the signal. In terms of

wavelet space decomposition, the separable 3D WT [26]

can be expressed by a tensor product by

V3 = (Lx ⊕ Hx) ⊗ (Ly ⊕ Hy) ⊗ (Lz ⊕ Hz)

= LxLyLz ⊕ LxHyLz ⊕ HxLyLz ⊕ HxHyLz

⊕LxLyHz ⊕ LxHyHz ⊕ HxLyHz ⊕ HxHyHz

(7)

where ⊕ denotes space direct sum, La and Hb, respec-

tively, represent the high- and low-pass directional fil-

ters along directions of a-axis, where a Î {x,y,z}.

Figure 1 shows a separable 3D decomposition of a

volume: after being applied on the rows and on the col-

umns, the analysis filters followed by a 2 to 1 decima-

tion are applied along the third dimension. After the

decomposition, eight subvolumes of lower resolution

were obtained: the approximation subvolume from reso-

lution ‘-1’ named LxLyLz and 7 subvolumes of details.

The separable 3D wavelet provided an equal decorrela-

tion of the original volume voxels in the three directions

and the wavelet-based denoising was achieved by modi-

fying the contents in the octant subbands, followed by

wavelet synthesis.

2.3. 3D bilateral filtering

For 2D image denoising, the original 2D bilateral filter

[27] computes the similarity of two pixels by comparing

the similarity of the two pixels’ square neighborhood

centered at the pixels. In a similar way, the similarity of

two voxels in 3D image is determined by comparing the

similarity of their cubic neighborhood centered at the

voxels. For a given size, the cubic neighborhood con-

tains more voxels than the square one. Thus, even for a

small neighbor size, some voxels similar to the voxel

being processed in a certain extent have low weight

when using 3D neighbors. But, if 2D square neighbor is

Figure 1 Separable 3D wavelet decomposition. The downward arrow denotes downsampling.

Wang et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:40

http://asp.eurasipjournals.com/content/2012/1/40

Page 3 of 14



used to compare similarity in 3D images, many voxels

not very similar to the voxel being processed will

involve in the decision of the new value. To address this

issue, we employed a new neighbor for computing the

similarity of two voxels. The modified neighborhood

consisted of one square in a plane and one line in

another axis that was normal to the plane. The square

neighbor and the line were both centered at the voxel

being studied, as shown in Figure 2.

The neighborhood that consists of a square and a line

contains part of the 3D structure of the voxel’s neigh-

borhood and contains fewer voxels than the cubic

neighbor. Thus, more similar voxels could be identified.

The 3D bilateral filter with improved neighborhood is as

follows:

f (i, j, k) =
1

C

∑

(p,q,m)∈O(i,j,k)

wd(i,j,k)(p, q, m) · wr(i,j,k)(p, q, m) · g(p, q, m) (8)

wr(i,j,k)(p, q, m) = exp

(

−

∣

∣g(p, q, m) − g(i, j, k)
∣

∣

2

2δ2
r

)

(9)

wd(i,j,k)(p, q, m) = exp

⎛

⎝−

∣

∣

∣
(p − i)2 + (q − j)2 + (k − m)2

∣

∣

∣

2δ2
d

⎞

⎠ (10)

C =
∑

(p,q,m)∈O(i,j,k)

wd(i,j,k)(p, q, m) · wr(i,j,k)(p, q, m) (11)

where g(p, q, m) represents the intensity value of voxel

at position (p, q, m) of volume, O(i, j, k) represents the

modified neighborhood of voxel at position (i, j, k), f(i, j,

k) represents the filtered value, wd and wr are spatial

and radiometric components of the bilateral filter,

respectively, the parameters δd and δr control the beha-

vior of the weights.

2.4. 3D WNS thresholding

Recent study on wavelet thresholding evolves as block

processing, in which the coefficient is most likely to

contain signal if its neighborhood also contains signal

coefficient. This method is called NeighShrink [28].

Zhou and Cheng [29] have improved it by optimally

choosing the NeighShrink parameters based on Stein’s

unbiased risk estimate (SURE). We extended the

Neighshrink algorithm into 3D domain as following:

For the 3D wavelet wijk coefficient to be shrunk, con-

sider a cubic neighborhood Bijk centered at wijk, as

shown in Figure 3. The size of neighborhood is repre-

sented as 3 × 3 × 3. For S2
ijk =

∑

(p,q,m)∈Bijk

w2
pqm , the

NeighShrink shrinkage formula is given by [29]

⌢

θ ijk = wijk max

(

1 −
λ2

S2
ijk

, 0

)

(12)

where
⌢

θ ijk is the estimator of the unknown noiseless

coefficient and l is the threshold. The optimal l for

each of the high-frequency subbands is estimated using

SURE.

In the Neighshrink method, all the wavelet coefficients

are shrunk to achieve the purpose of denoising. The

Figure 2 Modified neighborhood in 3D wavelet domain.

Figure 3 An illustration of the neighboring window centered

at the wavelet coefficient to be shrinked.
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result of this may be the noise is reduced while the

structural details important in medical image are

blurred. As shown in a previous study [29], the over-

smoothing could be compensated by exploiting the

neighborhood statistics over a pixel to be denoised. By

taking advantage of the essential feature of wavelet coef-

ficients known as energy clustering within each subband,

a 3D WNS method was proposed to preserve the struc-

tural information in MRI.

Let WDi
pqm denotes the wavelet coefficient at location

(p,q,m) in subband Di which belongs to {LxHyHz,

HxLyHz, HxHyLz, HxHyHz}, and KLHH, KHLH, KHHL, KHHH

represent different weights of different wavelet sub-

bands, respectively, as shown in Figure 4. Weighting fac-

tors were determined according to the 3D Directional

Filter Banks (3D DFB) developed by Lu and Do [30].

Then, SDi

ijk will be calculated as follows:

SDi

ijk =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

(p,q,m)∈Bijk

KLHH(WDi
pqm)

2
Di ∈ LxHyHz

∑

(p,q,m)∈Bijk

KHLH(WDi
pqm)

2
Di ∈ HxLyHz

∑

(p,q,m)∈Bijk

KHHL(WDi
pqm)

2
Di ∈ HxHyLz

∑

(p,q,m)∈Bijk

KHHH(WDi
pqm)

2
Di ∈ HxHyHz

(13)

The estimator of the unknown noiseless coefficient
⌢

θ ijk is determined according to Equation (12).

2.5. Algorithm summary

The proposed 3D wavelet domain improved bilateral fil-

ter with the WNS thresholding (3DW-IBF) was sum-

marized as follows (see Figure 5):

(1) Compute the square of noisy MR image I to obtain

its square magnitude Isq.

(2) Use 3D WT to get the approximation coefficients

(LxLyLz, LxLyHz, LxHyLz, LxLyHz) and the detail coeffi-

cients (LxHyHz, HxLyHz, HxHyLz, HxHyHz) of Isq (see Sec-

tion 2.2).

(3) The bias in approximation coefficients is removed

by subtracting 4σ 2
n [15] (see Section 2.1).

(4) These unbiased approximation coefficients are

passed through the 3D improved bilateral filter (see Sec-

tion 2.3).

(5) Denoise the detail coefficients using 3D WNS

thresholding technique (see Section 2.4).

(6) Compute inverse 3D WT of the filtered approxi-

mation and the denoised detail coefficients to obtain the

estimate of Isq (see Section 2.2).

(7) The square root of the resultant gives the denoised

magnitude MR image.

3. Experiments and results

3.1. Experimental data description

We have carried out experiments with both simulated

and real data. To conduct the experiments over syn-

thetic data, three simulated MR images (T1, T2 and PD)

with 1 mm3 voxel resolution (8-bit quantization) from

the Brainweb phantom [31] were used. Each image con-

tained 181 × 217 × 181 voxels. To simulate Rician

noise, we added zero mean Gaussian noise to the real

and imaginary parts of the simulated MR data and after-

wards the magnitude image was computed.

To evaluate the proposed approach on real clinical

data, three datasets were used. Informed consent was

obtained from all volunteers in accordance with our

institution’s policies regarding human subjects. The first

dataset consisted of an MP-RAGE T1w volumetric

sequence (256 × 240 × 176 voxels with a voxels resolu-

tion of 1 mm3) acquired on a Siemens 1.5T Vision scan-

ner. The acquisition parameters were TR = 9 ms, TE =

4 ms, flip angle = 10°, TI = 2 ms, TD = 200 ms.

The second dataset was obtained with a TSE-FLAIR

volumetric sequence (256 × 256 × 160 voxels with a vox-

els resolution of 0.94 × 0.94 × 1 mm3) acquired on a Phi-

lips Gyroscan 3 Tesla scanner (Best, Netherlands) using a

sensitivity encoding (SENSE) acceleration factor of 2, TR

= 14 ms, and TE = 140 ms. Although parallel acquisition

techniques such as SENSE or generalized autocalibrating

partially parallel acquisitions introduce a spatially varying

noise variance across the image, we used this dataset

here to show the capability of the proposed approach on

MR images with spatially varying noise.

Finally, we have obtained an image with a particularly

large amount of noise by courtesy of Huiping Shi (Qiqi-

haer Medical College, Qiqihaer, China), as to assess the

performance of the methods under extreme conditions.

It was obtained on a 0.5 Tesla Neusoft-Philips, with para-

meters TR = 20 ms, TE = 5 ms, flip angle = 90°, field of

view = 26 cm, matrix = 256 × 160, slice thickness = 2

mm. The resulting 3D image has size 512 × 512 × 40

voxels. Its original values are in the range [0, 255].

3.2. Quantitative and qualitative metrics

The efficiency of the denoising methods was compared

quantitatively and qualitatively. For quantitative assess-

ment, the mean squared error (MSE) and the Structural

Similarity index (SSIM) [32] were evaluated. These mea-

sures were computed with the noise-free MR images as

the ground truth. MSE is an objective measure that quan-

tifies the deviation of estimated values from the true value

MSE =
1

M

M
∑

i=1

(I(i) − I0(i))2 (14)
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where I(i) and I0(i) are the pixel (voxel) values at posi-

tion i of the original image and the denoised image,

respectively. M denotes the number of the pixels in

each image. MSE yields the same relative ordering

among methods as the power signal-to-noise ratio

(PSNR) and the root mean squared error (RMSE):

PSNR = 10log10

2552

MSE
(15)

RMSE =
√

MSE (16)

Though, MSE is most commonly employed similarity

metric, it is not optimal with respect to the perceived

quality. Our second performance measure was the

SSIM, which was employed to study the structural and

perceptual similitude between the original and

denoised images. SSIM is an effective alternative that

improvizes the error measures and is also consistent

Figure 4 Weighting coefficients of 3D WNS thresholding.
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with the visual perception. As mentioned in previous

section, MRI consists of delicate structural details, for

which MSE is not sufficient to quantify the restored

information. Therefore, SSIM is also used to study the

structural and perceptual closeness between the

denoised and the original images. The SSIM index is

estimated locally over a 11 × 11 window, which moves

pixel-by-pixel over the entire image. The final value of

SSIM is the mean of SSIM index calculated over the N

local regions. The SSIM between the image X and Y is

calculated from

SSIM(x, y)N =
(2μxμy + c1)(2δxy + c2)

(μ2
x + μ2

y + c1)(δ2
x + δ2

y + c2)
(17)

where μ is the mean intensity, δ denotes the standard

deviation, and the constants c1 = 0.01, c2 = 0.03 were

chosen as recommended in Wang et al. [32].

SSIM(X, Y) =
1

N

N
∑

R=1

SSIM(x, y)R (18)

The value of SSIM lies between [-1, 1]. Alternatively,

the SSIM can also be given in percentage (%). Larger

value of SSIM means high similarity between the com-

pared images.

Visual assessment of the residual image was employed

for qualitative evaluation. The residual image was

obtained by subtracting the denoised image from the

noisy image [12]. The residual image was required to

verify the traces of anatomical information in clinical

image removed during denoising. So, this could reveal

the excessive smoothing and blurring of small structural

details contained in the image.

3.3. Validation on simulated dataset

We have compared, qualitative and quantitatively the

performance of our proposed algorithm with optimal

estimated parameters (Rneighbor = 7, δd = 5, δr = 1.5sn)

with other three state-of-the-art filtering algorithms: the

unbiased nonlocal means filter (UNLM) [12], the adap-

tive blockwise non-local means filter (ABONLM) [9],

and the 2D wavelet domain bilateral filter (2DW-BF)

[19].

Our algorithm was quantitatively compared, using the

synthetic data referred in Section 3.1. The values of

MSE and SSIM obtained for the synthetic data using the

aforementioned denoising techniques were tabulated in

Tables 1 and 2, respectively. The performance of 3DW-

IBF with weighted Neighshrink is better than UNLM,

ABONLM, and 2DW-BF with respect to the quantitative

metrics. Lower value of MSE and higher value of SSIM

showed that our method significantly outperforms

others.

The results on T1-weighted images were shown in

Figure 6. The original MR image (Figure 6a) and the

noisy image with 5% Rician noise added (Figure 6b)

were presented. Some structural details were smoothed

in the results obtained by the UNLM filter (Figure 6c).

While the UNLM filter could preserve the distinct edge

features, it failed to preserve small structural details.

The results obtained by the ABONLM filter (Figure 6d)

were better than those by the UNLM filter. However,

some regions were blurred and some useful information

was lost. We found that the 2D-WBF filter has the

coarse edge effect (Figure 6e) compared to our proposed

filter (Figure 6f).

The results on T2-weighted images with 7% Rician

noise added were shown in Figure 7. The result

Figure 5 Workflow of the proposed algorithm.
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Table 1 Comparisons of experimental results in MSE

Algorithm Test image and noise level

T1-weighted MR image T2-weighted MR image PD-weighted MR image

1% 3% 5% 7% 9% 1% 3% 5% 7% 9% 1% 3% 5% 7% 9%

UNML 2.50 11.42 24.71 43.69 68.12 3.31 18.62 38.68 64.97 97.78 2.68 13.85 29.52 48.78 71.20

ABONLM 3.28 19.78 51.07 97.98 161.39 6.55 24.76 56.19 101.03 159.83 4.01 18.82 46.08 87.25 141.02

2DW-BF 3.08 11.56 26.06 51.56 62.26 7.23 20.33 57.30 68.27 90.03 3.65 15.19 30.63 43.67 62.77

3DW-IBF 2.07 8.20 15.11 22.31 29.58 4.62 15.54 29.21 50.10 67.38 3.52 11.18 20.65 26.12 41.58

Table 2 Comparisons of experimental results in SSIM

Algorithm Test image and noise level

T1-weighted MR image T2-weighted MR image PD-weighted MR image

1% 3% 5% 7% 9% 1% 3% 5% 7% 9% 1% 3% 5% 7% 9%

UNML 0.984 0.926 0.869 0.814 0.763 0.987 0.941 0.895 0.852 0.814 0.985 0.934 0.880 0.829 0.783

ABONLM 0.943 0.862 0.827 0.798 0.770 0.967 0.902 0.865 0.839 0.816 0.968 0.897 0.855 0.823 0.796

2DW-BF 0.967 0.929 0.931 0.896 0.873 0.991 0.948 0.899 0.867 0.856 0.997 0.930 0.881 0.836 0.830

3DW-IBF 0.989 0.934 0.921 0.913 0.908 0.989 0.942 0.916 0.901 0.882 0.988 0.946 0.903 0.890 0.855

Figure 6 Comparison of experiment results on T1-weighted. (a) The original MR image, (b) 5% Rician noise added, (c) results of the UNLM

filter, (d) results of the ABONLM filter, (e) results of the 2DW-BF filter, (f) results of the 3DW-IBF filter.
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obtained by the 2DW-BF filter (Figure 7e) reserved

more information than the result obtained by the

UNLM filter (Figure 7c) and that obtained by the

ABONLM filter (Figure 7d). However, the 2DW-BF fil-

ter smoothed the homogeneous regions. We observed

that the result obtained by our proposed filter (Figure

7f) could recover as much information as that by the

2DW-BF filter.

The results on PD-weighted image were shown in Fig-

ure 8. The noisy image with 9% Rician noise added was

presented (Figure 8b). We found that the interface

between gray and white matter in the result by the

UNLM filter (Figure 8c) was away from that of the ori-

ginal image (Figure 8a), and the result by the ABONLM

filter (Figure 8d) was oversmoothed. There was still

some obvious noise in the result by the 2DW-BF filter

(Figure 8e). Both the small structures and the

boundaries were preserved well by the 3DW-IBF filter

(Figure 8f).

3.5. Validation on clinical dataset

Since the original images already have noise, neither

ideal residual image nor quantitative results can be

obtained. The denoising results obtained for the T1-

weighted brain image were shown in Figure 9. The resi-

dual images of the UNLM filter (Figure 9c), the

ABONLM filter (Figure 9e), and the 3DW-IBF method

(Figure 9i) did not reveal significant anatomical informa-

tion. The residual image of the 2DW-BF filter showed

the extent of smoothing along the edges of the image

(Figure 9g). While the 2DW-BF filter could preserve the

distinct edge features, it blurs the heterogeneous regions

and hence, reduces the contrast between the gray and

the white matter regions. The results of filtering SENSE

Figure 7 Comparison of experiment results on T2-weighted. (a) The original MR image, (b) 7% Rician noise added, (c) results of the UNLM

filter, (d) results of the ABONLM filter, (e) results of the 2DW-BF filter, (f) results of the 3DW-IBF filter.
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images reconstructed from patient brain data were

shown in Figure 10. The ULM filter and the 2DW-BF

method left unfiltered noise in the image (Figure 10b, f).

With the ABONLM method, the edges were blurred,

reducing the image sharpness (Figure 10d). Alterna-

tively, with the 3DW-IBF method, the edges were pre-

served well and the contrast between the gray and the

white tissues were also preserved well (Figure 10h). The

results obtained for the T1-weighted brain image with

heavy noise were shown in Figure 11. With the 2DW-

BF method, the sharpness along the edges was

smoothed (Figure 11f). Comparing the results of the

ULM filter (Figure 11b) and the ABONLM method (Fig-

ure 11d), it was evident that the 3DW-IBF method pre-

serves well the details (Figure 11h).

4. Discussion and conclusion

The sources that introduce uncertainty in voxel intensity

are many and are generally derived from one of two

categories: thermal noise and physiological noise. Other

sources may also exist in the electronics of the acquisi-

tion system, such as digitization, but these can be mini-

mized in an ideal condition. Thermal noise is usually

considered as “white noise” because it is expected that

its power should be equal for all frequencies within the

readout bandwidth. Because MR images are recon-

structed using the Fourier transform, the variance that

characterizes the uncertainty due to thermal noise is

constant throughout the imaging volume. But the phy-

siological noise differs. In our study, we could only esti-

mate the variance that characterizes the uncertainty of

Figure 8 Comparison of experiment results on PD-weighted. (a) The original MR image, (b) 9% Rician noise added, (c) results of the UNLM

filter, (d) results of the ABONLM filter, (e) results of the 2DW-BF filter, (f) results of the 3DW-IBF filter.
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the MR measurement due to thermal noise. But we

expected to estimate the variance component due to

physiological noise such as flow, MR spin history effect.

To this end, it requires many repeated acquisitions. It

would also be difficult to isolate the variance due to

patient motion in such repeated measurements (which

is something the registration step is actually trying to

diminish). Therefore, we did not estimate the noise

introduced by physiological effects.

In this study, we proposed a 3D extension of the

wavelet domain bilateral filtering ideas for Rician noise

removal. Due to the delineating capability of wavelet,

3D WT was employed to decompose the MR image into

the approximation and the detailed subbands. Compared

to 2D WT, the inherent advantages of 3D WT is appar-

ent due to improved ability to model “through-plane”

structure. 2D denoising ignores through-plane signal

correlations; each slice is treated independently.

Figure 9 Denoising results of the clinical T1-weighted brain MR image. (a) The original image, (b) UNLM result, (c) UNLM residual, (d)

ABONLM result, (e) ABONLM residual, (f) 2DW-BF result, (g) 2DW-BF residual, (h) 3DW-IBF result, (i) 3DW-IBF residual.
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Consider a slender fiber tract. If the imaging plane is

orthogonal to the fiber axis, it would be much more dif-

ficult to distinguish the “structure” from spurious,

bright, noise pixel. 3D denoising uses structural correla-

tions from all three principle planes, and is robust to

fiber axis orientation.

Considering the similarities in the wavelet domain

where the data and noise can be efficiently discrimi-

nated, 3D bilateral filtering of the approximation coeffi-

cients in a modified neighborhood eliminates the higher

magnitude noise components carried into the approxi-

mation subbands. Utilizing a group of a square and a

line as neighbor to replace the original cubic neighbor

for weight estimation improves the computation accu-

racy. Noticing the fact that the wavelet subband coeffi-

cients of different orientations have different properties

of energy clustering, a WNS thresholding has been pro-

posed to threshold the noisy coefficients in the detailed

subbands. Exploiting the interscale dependencies among

the detailed coefficients tends to improve the perfor-

mance of wavelet thresholding, and thus, it also

enhances the denoising efficiency for MR images with

spatially varying noise. In summary, the utilization of

neighborhood similarities using wavelet domain bilateral

filter and Neighshrink improves the noise cancellation

efficiency and preserves the structural information

effectively.

Experiments were carried out on both simulated and

real datasets. Quantitative results using two different

quality measures show a better behavior of the proposed

scheme when compared to other state-of-the-art filters

for different noise levels.

Figure 10 Denoising results obtained on very noisy images acquired using a SENSE acquisition (factor 2). (a) The original image, (b)

UNLM result, (c) UNLM residual, (d) ABONLM result, (e) ABONLM residual, (f) 2DW-BF result, (g) 2DW-BF residual, (h) 3DW-IBF result, (i) 3DW-IBF

residual.
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An ideal filter for MR images with spatially varying

noise levels must be able to improve the image PSNR

while preserving image important structures and avoid-

ing the generation of artifacts. The results indicated that

parameter sn chosen as a constant in all image areas may

lead to the enhancement of noise-generated gradients in

high-noise areas that could be incorrectly identified as

anatomical structures of different tissue type characteris-

tics for the imaging modality such as vessels. Therefore,

it is necessary to derive a strategy that optimizes the

choice of sn with respect to the local characteristics of

the considered neighborhoods. Hence, this study can be

extended to make the choice of sn locally adaptive, opti-

mizing the denoising procedure for all the noise levels.
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