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Jean PICARD

INRIA
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F-06560 VALBONNE (FRANCE)

ABSTRACT

In this paper. we are concerned with the asymptotic nonlinear filtering of one-
dimensional diffusions as the observation noise tends to zero. The intensity of
the signal noise may be normal, smallor large. We derive evaluations of the con-
ditional moments and obtain one- and two-dimensional approximate filters. We
give upper bounds for the approximation errors and compare these filters with

some classical suboptimal filters.

RESUME

Dané cet article, on etudie asymptotiquement le filtrage non linéaire des
diffusions unidimensionnelles lorsque le bruit d'observation tend vers zero.
L'intensité du bruit du signal peut etre petite, grande ou de taille normale. On
obtient des estimations sur les moments conditionnels ainsi que des filtres
approchés de dimension 1 et 2. Des majorations sur les erreurs d’approximation
de ces filtres et de quelques filtres classiques sont données, et ies différents

filtres sont comparés.
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1. Introduction

Consuler the one-dimensional nonlinear filtering problem where the sxgnal

process X; and the observation process Y;: satisfy
dX, = b(X,)dt + e7a(X,)dW, S (1)
dY; = h(X,)dt + £'-7dB, - (1.2)

In these equations, ¥; and B; are two mutually indepe,n’dent Brownian motions, &
and 7 are real parameters, b, o and h are real-valued functions (regularity
assumptions will be precised subsequently). We will assume that h is one-to-one.

First suppose that =0, so we have to study the problem
| dx, - b(X,)dt + o(X; )aW, - (1.3)
dY; = h.(X, )dt + edB; . (14.4)

If =0, then the trajectories of Y; are differentiable and
X; = h~\(1,) (1s)

So the signal process is eiactly observed. Now, if ¢ is positive small but different
" from zero, the t;bservations are slightly noisy and the filtering problem consists
of computing, for Borel measurable functions g, the conditional mean g of
g (X;) given the observations Y;, 0Ss S¢; the solution of this pfoblem is said to be
finite-dimensional if it can be expresséd by means of the solution of a finite-.
.dimensiona'l stochastic differential equation driQen by the observation process
Y. In the general case, the optimal filter is infinite-dimensional so we are
interested in Bnding finite-dimensional approximations valid as €-0. This is a
singular perturbation problem: since the trajectories of Y; are no more

differentiable, one cannot use (1.5) as an approximaté value for f, ..
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In [7], the authors consider the problem (1.3)-(1.4) with a constant function
o. Their method relies on Zakai's equation -a linear stochastic partial differential
equation whose solution is an unnormalized version of the conditional density.
They use some singular perturbation techniques on this equation to derive for-
mally, as £ tends to 0, asymptotic expansions of the conditional density in the
WKB form; then they deduce approximate ﬁnite-diménsioﬁal filters. As yet,

these expansions have not been justified.

'In this paper, we will prefer a method which does not involve Zakai's equa-
tion but two other Basic tools of the nonlinear filtering theory, namely the
Kallianpur-Striebel formula ({8]) and the semimartingale decomposition of g, for
regular functions g ([9]). The Kallianpur-Striebel formula expresses g, as the
quotient of two integrals over the space of signal trajectories; together with
some Girsanov transformations and some results on the time reversal of

diffusion processes, it will imply (theorem 5.1) that if M, is the solution of

“a(M;)
£

dM; = b (M, )dt + (dY,-h(M;)dt) (1.8)

with some initial condition My=my€R, then
X, = M, + 0(c) (1.7)

(the precise meaning of the term 0(e) will be explained in section 2).

Another important application of this method will consist of getting esti-
mates for further conditional moments of X;. This problem has been met in [1]:

defining
6 = Xg"fg (1.3)

asymptotic'estimates on ef and e:é were given in the case o{z)=0g, h(z)=z and
under some stétionarity assumptions. In this paper, we will generalize and
improve these results. For instance, if ¢ and h' are uniformly positive and with

some other regularity assumptions, it will be shown in section 8 that

el = s—:,—(f,) + 0(e%?) o (1.9)
o = 2 BIR TR 7 4 o(s0%) (1.10)

h'?
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eaf;;()?,) + 0(e57?) - (1.11)

Thgn we will use these evaluations to obtain accurate filters; in [5], the sem-
imartingale decomposition of J; was used for g(z )=z and g(z)=za'£o construct
some second-order filters; our technique will be similar and, moreover, we will
estimate the difference betv}een approximate and optimal filters. For instance,
it will be proved in theorem 7.1 that if (M;.R; ) is the solution of

dM, = b(M,)dt + fziazhv(u,)(dn-h(M,)dt-%l:#(M, )at)  (1.12)

dR, 1 5, ; by 1
W = —;O‘zh Z(M‘)R‘E,', 2(;) O'(Mt)Rg + ? ’ (113)

with some initial condition My=mg and Ry=7r>0, then
X; = M, + 0(e2?) (1.14)

Some classical filters can also be studied with this approach: it will appear that
the extended Kalman filter, the statistical linearization ([2]) and the modified
second-order filter ([5]) yield an error of order £. We will note that all these
filters have short memory as € tends to 0 (old values of the observation process
are needless): this stability property is essential in the proofs; this will also

- imply that the error estimates will be uniform as ¢ tends to infinity.

Now, what happens when y#0 ? In [4], the case y=1/2 is considered; it is
proved that the asymptotic problem is related to some control problem and a
WKB expansion for the conditional density is derived. Here we will assume .
7<1/2 because in this case, the filter has still a short memory and this condition
is necessary for our method to work; the behaviour of the filter will be similar to
the case y=0. However, the accuraby of our evaluations will decrease as y-»1,/2;
for instance, (1.9)-(1.11) will hold for y$1,/4. Note that we allow 7 to be negatlve

and in this case, the signal process has a large covariance noise.

N

Let us outline the contents of the paper. In section 2, we list the assump-
tions and we derive some easy estimates. In section 3, we find a probabilistic
representation of the a priori density of X;; from this result and the Kallianpur-

Striebel formula, we infer in section 4 a formula for the conditional density
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g(t.z) of X; and we compute its derivative with respect to z. The one-
dimensional filter (1.6), the estimates (1.9)-{1.11) and the two-dimensional filter
(1.12)-(1.13) are respectively derived in sections 5, 8 and 7. In section 8, we

study some classical filters and finally, we summarize the results in some tables.

2. Assumptions and first results
For every positive integer p, define 2(p) the space of real-valued functions -

p defined on IR such that ¢ is p times continuously differentiable and #®)(z) has
polynomial growth as z tends to infinity. Define also B(p) the subset of func-

tions p such that, for 1isp, ¢ is bounded.

We will assume that the initial law of the signal process is absolutely con-
tinuous with respect to the Lebesgue measure, with density pg. We will use the
function a defined by a=02/2. Now let us list the regularity assumptions on pg
and on the coefficients b, ¢ and k. They are indexed by a positive integer n

which will be specified for each result.

Aséumption (An)

(i) The functions b, o, h and log(py) are respectively in g(n+1), Q(an),

\ B(n+2) and D(n); the functions b /o and bh' are in B(1).

(ii) The functions h' and o are bounded and uniformly positive (i.e. they’are
bounded below by a strictly positive constant).

(iii) po is a strictly positive bounded function such that for every real c,

f“e"po(z)dz <™.

Note that the coefficients are not allowed to depend on the time. This more
general case could also be studied with the method that we are going to
describe, but the results would be slightly weaker and the formulas less read-
able... The minimal assumption will be (A0) and it will be assumed throughout
this paper. '
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Now, let (X and 0Y be two copies of the ‘space-of continuous functions from
[0, into R, define 1 = ¥ xQ¥ and (X;,Y;) the canonical process of :

X (w1,02) = wi(t) and Yy(wiwa) = wa(t)
If 0Ss <¢ and if Z, is a Borel measurable process onnﬂ, then E:(Z ) will denote the
o-algebra generated by Z,. sSust, and we will note E‘ (z )=£_‘:’(Z) .F__" =£‘ (x.7)
and 5:5_ Fix two real numbers £>0 and y<1/2. Assumption (AO) is"amply

sufficient to ensure the existence and the uniqueness of a solution PX to the

martingale problem defined on f¥ by the generator

L= .‘:""’a.(z)—‘—iz—+b(;7:)i . (2.1)
and the initial condition
PX(Xo€dz) = polz)dz | (2.2)

Let PY be the standard Wiener measure on 1Y and define on (1 the probabilities

-]

P=pPX®pPY (2.3)
and P satisfying

= exp[——é_% (' r(X,)ar, -%f‘ha(xs)ds) (2.4)
dP € o . - _ Y .

F
-$

for every t20. It follows from the Girsanov theorem that (X;,Y;) satisfies (1.1)-
(1.2) where (W;,B,) is a (1:‘ .P) Brownian motion. Remark that these probabilities

depend on ¢, so, since we are going to want ¢ to tend to 0, we should write a sub-
script or superscript £ somewhere; nevertheless, for the readability of the equa-

tions, we will not do this. We will proceed similarly for processes depending on &.

It will turn out that our problem involves a boundary layer at £=0; more
precisely, we shall deal with processesv'Z, which will be of order &*, but only on
each time interval [¢g,+%[; for small values of £, they will be of order &" for some
r<k but the value of 7 will be needless for us. This is why we put the following
definition: if Z; is a measurable procéss (depending on ¢) defined on (), we will
write Z; =0 (e*) if there exists 5>0 and r (which may be negative) such that for

any t,>0 and 15g <=, there exists  such that.
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k r ) '
‘:“-}Q_Hzt”q sCe an# Sup [1Z:llg SCe 3  (29)

for £<¢g (note that £4 does not depend on ¢ and ¢g). With this definition, we can

state and prove the following technical lemma.

Lemma 2.1 Let Z; be an E‘-adap-ted process such that for some r, each moment

of Z g is dominated by-s',_ and, for some a>0,
-1 1 te
dZ; = F—(—{" +A)dt .+ ';'./—g_dpt (2.6)

where

(*) Apisan g“-adapted process satisfying
A, =0(c*) (2.7)

(**) p; is an E‘ continuous martingale such that <p,p>; is absolutely continu-

ous and .

d <p.p>;

T 0(e%) (2.8)

(***) ¢ is an {"___" -adapted process such that, for some constant C>0,
Zi&2C22 (2.9)

Then Z; = 0(&*).

Proof

Fix an even integer ¢ >2 and write 1to's formula

qzg~!

d<p,p>
SRRy e 4 e de (2.10)

dt

- -1 ,4-

azf = L (28 (-t +a)+152287"

By means of classical martingale inequalities, one can deduce that the gth
moment of Z; is finite and

2 Bl2f) s L (-cEzA Bz ez Ry )

On the other hand, if 7 4and T are two positive numbers such that 1/7+1/7=1,
by studying the function (a.b)-ab/(a"+b7) defined on R?, one can prove that
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this function is always bounded _by. 1. ‘Ap'plying this result with r=q,
a=(3/C)e~1/4|4,| and b=(C /3)4-119|Z, |97}, we obtain

4287 < Sz8+ (2ye-tag (2.12)
S'milarly, with 7 =g /2,
d<p, d<p.p: o
ezt s 3(:C1)Zi+‘ . 1)) e UG (2.13)
Thus
LE(zs) s —;-,—P%mtzz] + (%)*-‘E[m , (214)

+ %(.@(%%_l)qﬂm[(M)q/z]

From classical estimates on solutions of ordinary differential inequations, for

any t2s20,

E[2f] < E[Z8]expi- _q_gL;s_); s sup E[4g] | (2.15)

2(9_*.1)_ g2 gfﬁﬁi‘.‘_ q./2
(g gue Bl (— 5 — )1

Now we use the assumpiions on A and d<p,p>/dt and we choose &g sufficiently '
small so that it satisfies (2.5) for these two processes; the lemma then follows
from (2.15) used first for s =0 to obtain the estimate on all the time interval and
secondly for s =¢4/2 to obtain the estimate on [tg,+=[. ® | |

The filtering problem consists of computing, under the probability P,

gt = E[H(Xt)lf‘(y)] A (2.18)
for some measurable functions g. We want to derive asymptotic expressions for

this conditional ‘mean, valid as ¢ tends to 0. Here is a family of filters with an

" error bound of order Ve:

Proposition 2.2 Assume {(A0). Let mq be a real number, let U; and V; be E‘(Y)-

adapted proqessés (depending on &) such that
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Uy =0(e?"V?), V,=0(1)

and for some constant number ¢>0, Vy 2c. If M; satisfies the equation

v .
dM, = (b(M,)+U,)dt + F_‘;—;(dn - h(M,)dt)
with the initial condition Mg=my, then

Xg"Mg = 0(\/5)

Proof

The processk X~ M is a solution of

@ (X=M,) = =~ ( (X -R (M)t + (5 (X,)=0 ()t - Uy

+ (o(X,)dW, -V, dB;)

This equation can be written in the form (2.8) with a=1-2y,
Ay = -0, = 0(Ve)
dp; = Ve(o(X,)dW,~V,dB,)
¢ = Ve(h(Xy)-h(My)) ~ e727(b (X,)~b (M)
Therefore

(X —M;)¢, 2 (cinfh'(z) - 8“2”sgp b'(z)) (X —M, P

(2.1 7).
(2.18)

(2.19)

(2.20)

(2.21)
(2.22)

(2.23)

(2.24)

The coefficient of the right side is positive if £ is sufficiently small so we can

apply lemma 2.1 and prove the proposition. =

The simplest choice for U and V is to take U =0 and V =constant, so an

immediate corollary is:

Corollary 2.3 Assume (AQ). Let mg and v>0 be real numbers and define M; the

solution of the equation

v

th = b(Mt)dt + —zl—_a

(dYy — h(M,)dt)

(2.25)
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with the initial condition Mg=m,. Then X;-M; =0 (Ve).

“Remarks

1. The initial value Xy~M, is not necessarily small. Actually, from inequation
(2.15), there ié an initial layer whose duréti-on is of order £“=~e"""_"’ » SO, even if
the evaluation M is not accuraté. it is quickly improved. We will s-éy that the
filter has short memory. If one wénts to study the behaviour of the filter for
small times, one can use t‘.he‘timeAchange =t /€172, then, after é normalization,
it turns out that the state and observation noises have the same order of magni-

tude, so we are reduced to the problem of [4].

2. Recall that the estimate {2.19) is uniform as ¢ tends to infinity, though the

signal process may have unbounded moments.

3. An immediate consequence of proposition 2.2 is
X,~M, = 0(Ve) © (2.26)

We will prove that the variance of the filter is exactly of order €, so the estimate
(2.19) is the best possible one. However, (2.26) can be improved; subsequently, ~
we will consider several filters satisfying the assumptions of proposition 2.2, and

our purpose will consist of choosing the processes U and V to get better bounds.

4. Let us consider the simple filter
: v
dM; = F_;;(d}’, —h(M,;)dt) | (2.27)

Then the equation for X;—M; can again be written in the form (2.8) with the
same a and p; but with 4,;=¢'"*b6(X;) and ¢;=v(h (X;)~h(M,;)). From lemma 2.1,
the estimate (2.19) is still valid provided that the moments of b(X,) are dom-
inated by £27- 172, If we only want to obtain an estimate on bounded time inter-
vals [, T] this condition holds as soon as y£1/4; if ¥>1/4, we can estimate
X;—-M, by "% The difference between (2.25) and (2.27) consists of dropping the
drift coefficient b. Why can we do this for small y? Since the filter has short
memory, to obtain an estimate at time ¢, the law of the signal process has not to
be considered on the entire time interval [0,£], but only on a small interval
before ¢, and it is well-known that, for uniformly elliptic diffusions studied on a
small time interval, the drift coefficient is negligible with respect to the diffusion
coefficient. This explains why the filter (2.27) may be acceptable. However, the

larger 7 is, the longer the filter memory is, the more influential the drift is and
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therefore if we neglect it, the quality of the filter decreases more. quickly as 7

increases.

Let us conclude this section with an immediate consequence of lemma 2.1

and proposition 2.2. This result will be used a great deal throughout this work.

Corollary 2.4 Let M; be a process satisfying the assumptions of proposition 2.2
and let Z; be a process such that each moment of Z, is dominated by some "

and
az, = ?_}_57[(-& +B,)dt + Cy(d¥—h(M,)dt)] (2.28)

where ¢ satisfies the assumption (***) of lemma 2.1 and B, and C; are E‘-

adapted processes such that
-1
B;=0(e*) and C,=0(c¢ %) (2.29)

Then Z; = 0 ().

3. A formula for the a priori density

From now on, the regularity assumptions are (A1). Then it is well-known
that for every ¢, the law of the variable X; is absolutely continuous with respect
to the Lebesgue measure and that its density p(¢,z) is solution of the Fokker-

Planck equation
p=L" (3.1)
where L® is the formal adjoint of L:
L*p = *(ap)" - (bp) (3.2)

Equation (3.2) is a forward partial differential equation, so, after a time reversal,
its solution is given by the Feynmann-Kac formula. Actually, the purpose of this
section is to derive a more precise representation formula for p. We are going
to use the time reversal of the signal X. So fix a time ¢ >0, consider the subspace

0! of ¥ made of the continuous functions from [0.t] into R and define on this

[
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subspace
X,=X;-, and F (X) = F:"’(X) (3.3)
. B‘ = )
‘(m order to get readable formulas, since ¢ -is fixed, we mll not mark the depen-
;dence on.t in:the notations). Define also. p(s,x) p(t=s,7) L
Proposmon 3.1 Assume (A1). There ensts on QO a probability P equivalent to the
restriction of PX to (0, such that
dX, = (2e¥a'-b)(X,)ds + £70(X,)dF, (3.4)

Jor some (E_. (X).P) Brownian motion W,, and P(X,edz )=p(t.z)dz. Moreover,

P7(0.Xp) = p(t.X,) expf (7a-b)(X;)ds  a.s. (3.5)
or equivalently,
P(EX) = polXo) —or expf(e%"~b s s (3.6)

Proof ‘ '

We prove the proposition in the case y=0; it is then sufficient to replace o by ¢7¢
to obtain the general case. The existence of a probability P such that (3.4) is
_satxsﬁed with the initial distribution p(t.z)dz results from the existence of a

solution to the martingale problem defined by the generator
. d d
(20. -b )(I)E + a(z)-&-x—a

We have to prove that P is equivalent to PX and that (3.5) holds. First suppose
that (A2) is satisfied; then p(s.z) is C'? and, by applying It5's formula to the

function log 7 (s .z ), one obtains
—r —_— = ' t E o\ }
p(t.X;) = p(0.X,) exp J UEA(S-X.)dWs : (3.7)
+f (3+(2a b)P—+a1’——aL)(s X,)ds
p

and, by the Fokker-Planck equation (3.1),
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plt.X)= i(oio>exp[{ ‘ o%(sf,)di - { “(a"-b '+a?'§><s Jr'.-)ds] (3.8)

This formula can then be extended to the set of assumptions (A1). Let P*® be the

positive measure defined on {If by

- — —— =2 — .
%.;— = exp{.{‘a%(s 'X3)Ws _{t a%—(s.Xs)ds} (3.9)
From (3.8),
daP* _ Po(Xe) 2NV '
& = 50X exp { (a"-b")(X, )ds - (3.10)

so this density is the value at time ¢ of a positive P-local martingale with value 1

"

at time 0, and which is bounded when 5(-0 is fixed (because po, b' and a¢" are
bounded). This implies that the local martingale is a martingale with mean value
1, so P* is a probability. If we prove that P* is the restriction of PX to-ﬂ‘ then
(3.5) will follow immediately from (3.8) and the proposition will be proved. From

the Girsanov theorem, there exists a (F (X),P*) Brownian motion ¥;* such that
bt
dX, = (2a'-b+2a2-)(s.X, )ds + o(X,)dW}* (3.11)
y

and :i’-o has law p (¢,z )dz. On the other hand, from the theory of time reversal of
diffusions ([10]), the process

W= ‘/' '(qu+~£g£-x*(u X, )du) | (3.12)

is a (E‘(X).Px) Brownian motion and if one reverses the equation (1.3) of X,

one obtains {after taking into account the relation between backward and for-
ward Itd integrals) that X, also satisfies equation (3.11) with #* replaced by #**
(in particular, W*=#**). Thus the process X has the same law under PX and P*
‘so the two probabilities coincid'e on E‘ (X)=£t (X) =m -
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4. Formulas for the conditional density
Fix a trajectory y of the observation process (such that y (0)=0) and define

N = expigigy ([ R (K )y ()= 5 [ oK. )ds) (41)

whete the integral with respect to y is to be understood .as a notation for
: : ‘
h(Xe)y (t) - ,0/ y(s)dh(X,)

This integration by parts convention will be used several times in this paper; the

' integral is also the limit of
]
f h(X,)dy™ (s)
0

where y™ is any setiu'ence of differentiable functions which converge to y ([11]).
Write A} in the form

A = exp';;—z,[ya o) + [ -y (GDERK)-grEKI s (a2)

|

From the assumptions, Lh(z) has at most linear growth as z-+= and h%z) has

+ _{ ‘(v (t)-y (s))oh'(X,)dW,

at least quadratic growth, so the Lebesgue integral is upper bounded. Moreover,
oh' is bounded and exp(ch (X,)) is integrable for every c, so, whenever the tra-
jectories y are uniformly bounded, the moments of A} are uniformly bounded.

Therefore, the Kallianpur-Striebel formula can be written in a robust form as

Elg (X)IE, ()= @) AQ) as (43)

with
Til(g) = Elg (X )\¥] | L (44)

where the expected value is computed over the space (ﬂx.Px ). Thus an unnor-

malized conditional density of X; is given by

3(t2) = EVIX=c]p(t.a) = Elp(t XONIXi=z] . (45)

We can express p(¢,X;) with equation (3.8); the Radon-Nikodym derivative
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transforms the P¥ -integral into a F-integral and after the time reversal, we

obtain

" Proposition 4.1 Assume (A1). For each observed trajectory y, the unnormalized

conditional density of X; is expressed as

F(t.2) = Elpo)Wexp [ (a8}, )is | Xo=z] (4.6)
If we note y(s)=y(t)=y (¢t -s), then N} can be written as

N = explolr ('R BT (s)- 5 [*h3E,is) ()

One can note that one could have derived this formula more directly by
using a Feynmann-Kac formula on the Zakai equation, but we will also need the
more precise result proved in proposition 3.1. Our goal is the study of the
asymptotic behaviour of ¢ as £-0. By means of a Girsanov transformation, we
are going to focus the probability around an observable path m{s) which will be
chosen in next section; one has to think that, if y were differentiable, the func-

tion m(s) would be close to A~!(y(s)).

Proposition 4.2 Assume (A1), fiz a time t>0 and an observed trajectory y(s).
Let m(s), 0Ssst, be a bounded measurable function and put m(s)=m(t-s). If

& is sufficiently small, one can define on the space 0 a probability P such that
dp _ f (R (X,)-h (7 (s)))dF,~ “n X, )-h (7 (s)))%d 4.8
dﬁ‘-e 1—7 mASs a_z-,f( (X, (fn(s)))°ds (4.8)

The process )?5 is solution of

o(X;)

iy (R E )R (T (s ))ds + (2:7a'~b)(X,)ds + e70(X,)d W, (4.9)

dx, = -

with the initial law p(t,z)dz, for some (F (X).ﬁ) Brownian motion W. Let XZ be
Il =‘
the solution of (4.9) with the initial value Xi=z and define the functions

du

_a'(_u—i_ ~(4.10)

G(z) =
0

F(s,z) _/"h(") h(m(s)) 4, (4.11)

o(u)
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and the randoem variable
PY= = log po(X}) + %F(tff) + %{ ‘¢ (XZ)dn (7 (s)) - (4.12)
+ ;%{‘n(k‘:)@(s)—nm(s))as')
+ {‘ [ (()-h ()N 2 -2 e270)(Rz)
- Soieay oh () + (e¥7a =6 ") (X)]as
(where the integrals with réspect to h(M(s)) and ¥ are defined by integration-

by parts or by approzimation like \Y). Then the unnormalized conditional den-

sity g can be written as

T(t.2) = exply gy [ A3 ()as ~ 1F(0.2)) Elexppb] (4.13)

Proof
First we have to prove that the measure P defined by (4.8) is a probability if ¢ is

. sufficiently small or, equivalently, that the process .
R N, TN = 1 Ny »
Le = expl-— [* (R () -k (77 ()))d Wy~ s [* (b ()R (7 (w))) 2} (4.14)
€ () 2¢e 0 ,

| isaP martingale. Define

" .
H(z):{z-o—_(%‘%du (4.15)
From Ito’s formula
HX,) = H(To) + & [*h(F)dF, + [*(2etho+ o no- Ry -
)= o e{ h(Xu)qu+{ (5e ho'+=o—h'o==2)(X,)du (4.16)

we deduce
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I HX, )"H(Xn)
1 4

j'h(m(u))dv (4.17)

Ly =

f‘[(-—-—sz"ha'+ > ha——)(X) ,-h(h(x )-h (77 (u)))?]du

Fix e. It is sufficient to prove t.baf. conditionally with respect. to X, o, the process
L, is uniformly integrable. The function H is bounded below and the stochastic
integral behaves nicely, so we only have to study the Lebesgue integral. The
function inside the first parenthesis has at most quadratic growth and the
~ coefficient of 1/5"27 has at least quadratic growth; nevertheless, when ¢ is
sufficiently small, the latter part becomes predominant, so the Lebesgue
integral is upper bounded. Thus Pisa probability. Equation (4.9) is simply the

Girsanov theorem and it remains to prove (4.13). Let us write the density of 13 as

¢ h(X, )—h(m(s ) X

"2 o(%.) dX, (4.18)

&%

L e Fvn (s s +L [ (F)-h (R 275 - L \(X.
~germ BE)-REEN s + 2 [ (K )-h (RN~ )Xo )ds
On the other hand, if m(s) is differentiable, one can apply It3's formula to the
function F and obtain

t h(X, )*h(m(s)) -
o(X,) e

F(t.)?,)éf(o.?o) + f - (4.19)

+ —'—",; I “(oh (X )~ (e )(h (%) -h (7 (s ))es - S ‘0 (X, )dh (7 (s))

This formula is then éxtended to all functions 7w by an approximation argument.
From (4.19), we get an-expression for the integral with respect to )?;. we use it in
(4.18) to write dP /dP, and we multiply by the exponential of (4.12) to obtain

-

exp ol = pol¥e) N expl g F(0Xo)~ gy [ AR (s))as (4.20)

Bl%e

+ [*(eFa-b)(X, )ds}
[

where pl’ is p} * taken at z=Xg. Finally, if we transform the P-mtegral of (4.8)
into a P-mtegral and use {4.20), we obtain (4.13). =
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Equation (4.13) is not yet quite adapted to the asymptotic study of the
filtering problem but we are going to use it to calculate the derivative of -q, and
then we will be’ able to obtain asymptotic filters. Since the. derivatives of the
coefficients of the stochastic differential equation (4. 9) are bounded and Holder
continuous, we can choose ([8]) a modification of the family (XZ,z€R) such that

X. is alrnost surely dxﬁenttable with respect to z with derivative satisfying

[ax’] ox:

5| = 52 [—'8,12,<ah'u?:)wo?:)(nc?:)—n(ﬁ<s»»as.  (a21)

+(2c%e b 'Y(X2)ds + £70"(X2)dW, ]

It is easy to prove from this relation that

a[tl a}(—:_'a‘?: h' .3 2y, bo'~b'a, T
3s [o(X?) 0z | az( RETA L )(X) (4.22)

We immediately deduce that, if we define the functional

T A—;: 'S = . S ! -
T = i;%z—)) exp [-;,—1;7- [ron @aus [ (eou+6Z-b")(Xz) (4.29)

(where there is no more 77). then

axz

- = T{)= (4.24)

To study the differentiability of the variable plY=, we write (4..12) with the conven-
tion of the integration by parts, so we are reduced to study the regularity of
integrals depending on parameters; from our regularity assumptions, we obtain

that p¥* is differentiable with respect to z and its derivative is
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pfhv== (%(Z‘H;l Lt )u’(;g"_('” T o | (4.25)

+ ;21—2;{‘:1'<)?:)F:})~'<dy‘<s)-ﬁ<s>ds)'+ %{‘ 7'71(_:—)?.(3)% @ (s))
+ [ (eaO-u )@ as + L[ (L-2e0)n ()
HR @D -h (AN Y-S e20) (X)) as
From this equation, we are going to prove

Lemma 4.3 Assume (A1). For every t>0, the conditional density q(t,.) of X, is

a.s. differentiable and its derivative is given by

9'(t.z) _ _1hG)-h(m©) , Bl *exppt=] (4.26)
g(t.z) € o(z) ﬁ[expp}"’] '
Proof .
Since
;,a;exwf" =iV exppls (4.27)

and ¢"/¢ = g'/q, the lemma consists of integrating the two sides of (4.27) with

‘respect to P and inverting the 'ﬁ-integral and the z-derivative to obtain
ar~ ~ :
2z Elexppl ] = E[of 'V *exp o¥ *] (4.28)

Fix €. To justify this derivation, it is sufficient to prove that the family of random

variables
=L o texppy oaz
r—-x F3

is ﬁ-uniformly integrable as "z"'-’z:. This property will hold if we prove that, for
any bounded subset K of IR, the family ilﬁ[lpg(‘)-V'zexpp}‘"l'],zeK} is bounded
for some r>1. One can prove that all the moments of oY= are bounded, so we
bave to estimate I~E[| expp¥*|”]. We use equation (4.20) to write, for z €K,
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] |exppl#|"] S Cy ﬁun{%r | Xo=z] . (429)

(hel_'e. € is fixed, the constants may depend on it). Then one can prove that all
the moments of _X}' conditioned by X,=z are bounded so it is sufficient to esti-

mate:

IE[(—)' | Xo=2z] = E[(=% )'“’ | Xo=2] -~ (4.30)
dP dP ‘
From (4.17) and dP / dP= =L;), it follows that
P _ 72— L R (s)dF
e £ Cyexp Caosslslth, c""{ h(m(s))dWs - (4.31)
so
TGP yr-1 | T = T2 ¥ e
E[(==)"""| Xo=2] £ C3 E[exp{C4(r—1) sup Xs1 | Xo=z] (4.32)
dP Oss

From estimates on the moments of diffusion processes ([8]). tke right side of -
(4.32) is finite if (r—1) is sufﬁcxently small, and actually. one can prove that it is
uniformly bounded when z stays inkK. m

Now do not fix any more f(,:z; define the variables F,“). pt. p,(‘)'y by replacing z

by X, o in the corresponding variables with superscript z. Then

1 h(Xo)-h (m(0)) | ElpfVexppl | Xi]
o(Xo) Elexpo¥ | Xo]

H-(t Xo) = (4.33)

Moreover, from (3.5) and (4.20),

ool = L FOR) N expl IO o) gt [ Wi NAs) (430)

so, since the law of )?o is not afflected by the changes of probability laws, we

derive after simplifying the ratio-in (4.33) and reversing the time L
gy 2 LRE)RmE) | BN | X .
g " T e o). T B X -

Now, by the Kallianpur-Striebel formula, the last ratio is simply
E[pf"Y | X, ,Y=y] and, since we have reversed the time, we write p{0¥ by

means of the variable I'{})= T, ¢ as
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pft = (22 ) L 2D O, | (4.39)

o= a,f R (X )TNy (s )= (m(s))ds) - f (X, rfdh(m(s))
+ [ a5 )T as + 2 12 -2e0)n(x, )
[] 0

+ (1 (X)-h (M2 Y-S0 (X, )i

Now if we fix no more the trajectory of Y,then the function m becomes an

F (Y)-adapted process M. If we assume that M, is a F (Y)-semimartingale, then
=g ot ]

the integrals with respect to y(s) and h(m(s)) become usual Ito integrals with
respect to Y, and h(M,) (for each fixed ¢, the integrated processes are
Et (X)\/F (Y)-adapted), so equations (4.23), (4.35) and (4.36) imply '

=8

Proposition 4.4 Assume (A1). Then the normalized conditional density q(¢t.z) of
X, is a.s. differentiable with respect to z and its derivative salisfies, for dny

E‘ (Y )-semimartingale M;,

1 h(X)-h(H,)

%(t X)) = - . %) + E[pfV | X, .g‘t(Y)] (4.37)
with
pE = (B () LRLKOIR Blol (4.38)

a(Xo)

= 2,f R(X )TN Y~ (M )ds) - — f (X) r{}dh (M, )
+ {‘(cz”a(a)-b")()(, )Tilds + -:jft [(%-25270’)11'(&)
. 0

(X =R (U)LY -2 o)) Irflas

and

I.(g) U(X )

__.1_ ¢ ' \ 4 g 2y _g_.l__ ,
o) © 61—27.[ oh (Xu;du+_[(zs 00" +6ZL~b")(X, )du (4.39)
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5. A one-dimensional filter

In previous section, the process M; appears as a control process and we
have now to choose it; we want the last term of (4.37) to be negligible with

respect to 1/¢; if we define

F(t.z)= fzﬁ@—_h_(M_‘)du

o o)
the density q(¢,z) will then behave like the normalization of exp{‘—'F(t z)/E).
This function has a unique maximum at z=M‘/ and is very small outside any
neighbourhood of M; (if & is linear and o is constant, this is the density of the
norrrial law with mean M; and variance eg/h’). Therefore M; will be a good
approximation for the optimal filter )'(;. We are going to take for M; the solution
of a differential equation of the type described in section 2 and we have to
choose U and V. As in remark 4 of section 2, the smaller y will be, the better the

approximate filter will be.

Theorem 5.1 Assume (A1). Let mq be a real number and let M; be the solution of

the equ&tion
M, ' .
dM; = b(Mg)dt + ‘:—(l_t?)(dYg"h(Mg)dt) _ (51)
with the initial condition My=mg, Then
- 2_g |
XM, = 0(e\e? ) . : (5.2)

Proof . 4
‘Since ¢ is bounded below, we can apply proposition 2.2 and we obtain a first esti-
mate X;-M,; =0 (\/E_). We can also choose gg sufficiently small so that
H ? 3 » ’r 1—27 b ' - .
c Eu;lfdh ‘Eﬁolﬂd-l"to al(;)l (z)>0 (5.3)
If we note ¢y and c; the lower and dpp'er bbunds of o, from (4.39),

cz clt- o
95 2 el Cltz0)) (5.4

if eSeg. On the other hand, after rémarking that
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dh(M,) = (bh'+ePah")(M,)ds + ‘ﬂ:;—_t{:)-(d)’,—‘h(Ms)ds) (55)
one can write {(4.38) in the form
plV = ¥y (XoMo)TEY + :{157—{ ‘Yol M, )T Yds ~ (5.8)

+owm ) “YalXy MOTENAY, ~h (M, )ds)

with the notations

wi(z.m) = 2 (z) + LA(LAM) e

volz .Tn,) = —i‘-"a—'('g‘—)- + (ca® -2 "—20°h )(z) (5.8)
+ ()R (m( ()~ 5o )(e) + LI

Yolz.m) = oh'(zt),zza)h'(m) : ~. oo

Now, we estimate these terms. The moments of ¥(X.M,) are dominated by 1/,
so from (5.4),

¥1(Xo.Mo)T§Y = 0(*) ~ (5.10)

for any k. To study the integral involving ¥, we cut the integral over [0,t] into
an integral over [0,s,] which is negligible because T, is very small, and an

integral over [sqt]; on this interval, we remark that since h and bh' are
1
->-27

Lipschitz, the process ¥2(X;.,M,) is dominated by 1\/e? . Therefore we prove

from (5.4) that
1 (e = .
E,_a,{ Ya(Xs M, )T{ds = 0(1ve? ) - (5.11)

Now, let us consider the last term which is to be studied:
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E;iz,{ '- "h'(xj,)(}f;‘"(”‘)F,S‘)(dn—h(us)ds)a f - (5.12)

= o 5oy (o (K= ah (M)) A (K- ()T s

+ 1 J-t uh'(X, )-oh'(M,)

(1
A

=0(1)

This last estimate is proved like (5.11) and by estimating the L? norm of the sto-
chast/.ic integral by the L? norm of the square root of its quadratic variation. By

summing up (5.10), (5.11), (5.12), we derive
_1.-2-, » )
pfV=0(1ve? ) ' (5.13)
After takihg the expected value of this equatioh conditioned by X, v::"(Y). we

deduce from proposition 4.4

%(h (X;)(XT)(M”) = 0(1ve® ) - (5.14)

%(t.x,) +

so, by multiplying by o(X;) and conditioning by 1="" (Y),

. . 1.
STl () + L@ MNa(t2)az =0(1ve ) (5.15)

where we have also deduced from (5.14) the (almost sure) integrability of the -
function inside the integral. Thus the function gg' is almost surely Lebesgue
integrable with respect to z, as well as o'g (since ¢ is b.ounded) and (og)' (by
addition of the two previous functions). But the integral of (0g)' is necessarily 0

because, as z—i=, the only possible limit of og(¢,z) is 0. So, by the integration

by parts formula,

S og(t.z)dz = — [T (t.z)dz = 0(1) (5.18)

and consequently, from (5.15) and (5.18),

) . 8_ :
hou—h (M) = 0(eve? ) (5.17)

1
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By developing the function h around M; and since (X;—M; )?=0 (&), we obtain
he = h(M;) + h'(M,)(X, M) + O (e) (5.18)

so since h' is uniformly positive, (5.2) is proved from (5.17) and (5.18). =

Remarks

1. If y$1/4, the approximation error is of order € and, as 7+1/2, this error
order tends to Ve.

2. As in section 2, we can realize the growing influence of the drift as 7 increases

by considering the filter

dMg = O.T(f:{;‘;)'(dyt"h(Mg)dt) (5.19)

Restricting ourselves to bounded time intervals, or assuming that the moments

of b (X, ) are bounded, we can prove that
X - M, = 0(sve'™) (5.20)

so this filter is worse than (5.1) as soon as 7>0.

3. Consider the case h linear and o constant (i.e. the only nonlinearities are b
and the initial density py). Then one can improve the estimate (5.2). Indeed,
Valzm) = =" (z) + e [(z-m)b (2 )+b(2)-b(m)]  (5:21)

1
12y
so the estimate (5.11) can be replaced by O(e? '); moreover, ¥3 and the left

3
. - _.—27
side of (5.16) are zero. Finally, one obtains X;—M;=0(e? ). For the filter (5.19)

the error bound is 0 (¢!727).

We will need a slight generalisation of theorem 5.1; the proof of this result is

similar. .

Theorem 5.2 Assume (A1). Let My be a {__"‘(Y)-adapted process such that M,
satisfies an equation of type (2.18) with V;2c >0 and

Uy = 0(cV?\e?") and V, = U(ng + 0(5‘/2§/:"27) (5.22)

Then the estimate (5.2) is still valid. Moreover, the condition V;2c>0 can be
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dropped if we know that X;—M,=0 (Ve).

8. Conditional moments

To improve the approximation described in preﬁous seét.ion. we can
increase the dimension of the approximate filtering equation; a classical method
to find two-dimensional filters is to approximate the differential equation
satisfied by the vector (fg,_e:a) with ¢; =X,—f¢. This is; genérally done by arbi-
trarily replacing the conditional moments e;;' , n23, by some values. Then, if one
wants to estimate the approximation error, one has to prove that the conditional
moments were correctlj chosen. The purpose of this section is the evaluation of
these moments. In previous section, we have used the first spatial derivative of

the conditional density; in this section, we will need further derivatives.

First, let us define a notation. If g'. 1sisn, are n functions defined on IR,

-we will note

ef' 0" = §<g*<x,>—a> -  (e1)

and ef "9" will be the conditional expectation of this variable. The identity func-

tion will be noted by X, so for instance, the second conditional moment e will

be noted from now on &},

Proposition 8.1 Assume (A2). Then -

EM = eoh'(X,) + 0 (6 2\ e227) (6.2)

Proof
Let M; be the solution of (5.1) and define -

1z h(w)-h(My) '
p(t.z) = q(t.z)exp(;{ @) ) (6.3)
‘Note tha£ equation (5.14) can be written a}s‘ T
| . 1,
E@xy=over ) (6.4)
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and let us now study further derivatives. Return to the probability ﬁ and the
reverse process Z’ of section 4. If we fix a trajectory‘ y of Y, lemma 4.3 can be

written as’

Z-(t ) = oV <exp p¥ =]
Elexp o]

From (A2), X7 is twice differentiable with respect to z and from (4.23), (4.24),

(8.5)

o T (6.6)
with
T®* = (DETN? - L @)= | (6.7)

D ) ' o
+ I‘.(f)".[’ (- -5 (ah’)'+(%ez"aa"+b%--b ')')(X.f)l".(‘fl‘du

If we differentiate (4.25), we obtain that the second derivative of p¥~ is

pfv = ST + L [ FE@mT e (69)

o S (R ()T (s)-h (s )s)

+ WEEROTE” + —lg [ vl (s TSP ds
. 0

+ o | VoRE A WTR (AT s )= (7 (s D))

(remember that the functions y; were defined by (5.7)-(5.9)). As in section 5,

one can justify the differentiation of equation (8.5) and obtain

£ (t,2) = =1 E[[(ofv=)2+pf¥=]exppp = 8.9
@ z [exppl’] P xpp ] ( )

So, if we do not fix z and y and if we return to the actual probability P,
%—(t X) = E[(of)2+pf? | £ (Y) . %] (6.10)

In previous section, we have estimated pf‘) We can proceed similarly for the pro-
cess pfa) given by (6.8): from (6.7), the variable T{J=T{?), , satisfies an inequality
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similar to (5.4); we can compute the derivatives of ¥, ¥2 and ¥3 and prove that

they are dominated respectively by 1,/¢, 1\/€~%” and 1. This implies that
L (t4) = 0(=7VAve ) » (6.11)
Therefore, from (6.4) and (6.11),
5 (olop)Y(t.X) = 0(e™V 2y e®) . (6.12)
so, by taking the conditional expectation, »

S (otop)) Lt.z)az = 0 (7 2y e) (6.13)

and after two integrations by parts,

S Teolot L)yt 2)az = 07 2y e™) (8.14)

(these integrations by parts are justified like in proof of theorém 5.1). Now,
oA L)) (t2) = (o @ SR ()-rm)) L(ez)  (615).

so, by using (6.15) in (6.14),
B[~ ok (X, 5+—€%<h (X)=h (M) lgtml =0(eV2ve®) - (5.16)

Since X;—X; is of order Ve ,

EL(h () ~h (M)PIE, (V)] = eon'(£,) + 0(e> 2y e2%) (6.17)

On the other hand,

E[(h (X:)-h (M))?|E (V)] - El(h(X)=Fe |, (V)] (8.18)
= (R (M)-hy)? = 0(ePe% )
from (5.17). This completes the proof of the proposition. ®

.Corollary 8.2 Assume (A2). Then

= e LR+ 0 ) (6.19)
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and more generally, if g and g; are functions of ’§(2), then

7 1= e LTI + 0> v et ) (.20)

Proof

It is sufficient to use theorem 6.1 and to remark
h(X;) - hy = R(X,) - h{(X;) + O(e) (6.21)
= h'(X, )X~ X,) + 0(e)

to check (B.19). For (8.20), we use similar relations for g, and g,. =

Formula (8.19) provides us with an estimate of the second conditional
moment announced in {1.8) but the evaluation aghx“CU(ig) is more interesting for
finding approximate expressions for )?; Indeed, )?, is solution of the differential

eguation

_~ ~ E‘u -~
dX; = bydt + ";E:E;(dyt ~h; dt) (6.22)

The choice of equation (5.1) for the approximate filter is therefore a posteriori

justified by the estimate of E{‘x.

Note that in proposition 6.1, the control process M; is only a tool in the
proof but is not involved in the result. As in section 5, one can prove that one
could have replaced it by any processbsatisfying the conditions of theorem 5.2.
Let us consider M, =h”(f;¢); then we immediately have M;—f,:o (e) so
X;—M;=0(~¢) and the condition V;2¢>0 of theorem 5.2 can be dropped; if we
write the differential of M; in the form.(2.18) then U, is easily estimated by
€2\ 27 and

2 .

= Ch'(M‘)

(8.23)
so the conditioﬁ '(5.22) on V is equivalent to proposition 6.1; thus we cannot use
directly this process to prove the proposition but we can check with this method
that the estimates (8.4) and (8.11) hold for M, =h"(l;,). So, from now on, let us
fix this process. Assuming (A3), we can derive (8.8) to obtain a process pf3¥-=
and then compute the third derivative of ¢ by differentiating (6.9):
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| 4"—;3« Xi) = E[(pf")° + 30f?0f + pf9 | EM.x%] (s2e)
The same type of calculation used previously yields
-f‘-’?-(t.x,) = O(s"'/EVE%_47) R (6.25)
With this result, we can estimate the third And fourth:condit'}onal moménts.
Proposition 8.3 Assume .(AS). Thgn -

7‘7

M = 26%(oh V(X)) + 0(e%\ 6% ) (6.26)
e - 3ezazhv'2(i}) + 0(52\/e3-?) (6.27)
Proof _ :
Let us first study the third moment. From (6.25),
1 : P
;(v(o(cw)')')'(t Xp)=0(e%e? ) (6.28)

so, after taking the conditional expectation with respect to _ﬁ_“(Y). integrating by -

parts and computing o(o(c(g /¢)")’),.
IE[—-:?(h (X)-h (M,))3+:32—ah (X ) (R (X, )-h (M) . (6.29)

1
= oloh Y} | £, ()] = 0(c= /252 ")

Moreover, with our choi;:e'of M,; h{M,; )=l:,, anci from (6.20),
Eloh (X)(h (X )=~he) | E, ()] = &) | (6.30)
= so(&h')’(f,) + 0(e¥3\/e2~%)
Estimatg (8.28) is then easily derived. To obtain the fourth moment, note that

S (a(alalh=h (1)) )Y (¢ X,) = 0(e" 2y 62 (8.31)

frbm which we deduce
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3
E{- (R 0)=h (M) + Zoh ()R (=R (M) | E, (V)] (8.32)
= 0(c™ve?)
where we have suppressed in the left side a term which was dominated by the

right side. Estimate (8.27) then follows from (6.2). =

Remark: Proposition 8.3 provides us with an asymptotic expression for the
third moment as soon as y<3,/8 and this expression is of order £2; however when
723/8, we have only proved that this moment is dominated by £72~%, When y
tends to 1/2, this quantity tends to £32 which is an estimate evident from pro-

position 2.2; therefore, we again notice that our method is less and less eflective
as y»1/2.

Now, as in corollary 8.2, we can deduce other fourth conditional expecta-

tions and obtain the asymptotic expression
~049 2 0 '
&P = 36201979094 (R) + 0 (¥ Py e ) (8.33)

for any functions g,,...,g4 of 2(2) However, for the third moments, one has to be

more cautious; we note that from Taylor's formula,
= h'(X,)eX + -h--(x,)(e, P-cF) + D(es/z) (8.34)
so |
P = hE)TE + ShANENEE - @) + 07 (6.35)
and therefore, combining corollary 8.2 and proposition 8.3,

2 — .
g0 — ca-zﬁ'—’"—’;-l——ﬁﬁ‘—(x )+ 0(e2 et ) (6.36)

Similarly, one obtains

Proposition 8.4 Assume (A3) and let gy, gz and g be three functions of -B(3).
Then
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~919203 v v 200'h'—0%h" o '
& ""“H*[vlyzy f’—”—,;.a——+ (919293) —% h,z (%) - (8.37)
.‘.’.—47

+ 0(0:5/‘2\/8z )

In the following sections, we will need the two particular cases:

‘ od’ It
e = 2?25 _ (X)) + 0(c52ve? ) (6.38)

e = (b2 e2 ) (8.39)

(remember that G is a pﬁmitive function of 1/0).

Remark: If b is linear and o constant, then some terms disappear in the cal-
culations, and (6.19) and (6.36) can be improved as

~XX _ 2 3-2 1"7
el = e—’—l— +0(e>%) and e* = 0(e*2've? ) (6.40)

7. A two-dimensional filter

We are going to use the previous section to 1mprove the approximation of

provuled by corollary 8.2 and the approximation of X; provided by theorem
5.1. To this end, we have to find a good approximate equation for the vector
(X;.e2%):; the exact equation for X, is (6.22) and for vy =6 /¢, it is

ShXX N
—hdt)| - (1)

‘ P
dy; = ( )21/2 + 28"‘27:)5‘.—113

From (6.38), a nétural approximation of (X;,v;) would be the solution (M,.Q;) of

Qt

dM; = b(M,)dt + T h (Mt)(dYg h(Mg)dt-—Qgh"(Mg)dt) (7.2)
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a9 = —imgy (~hH(M)QF+20 "0 (M, )@, +o2 (M, ))at (7.3)

2_ogo
et~® R

(M, )(dY—h (M,)dt)

However, unless o is constant, the equation for the approximate variance _
involves a dY; term so Q; may become negative and the filter méy divé-rg‘e;' if we
neglect this term, the resulting filter will not be as good as one could expect. To
overcome this difficulty, we can for instance multiply this term by ¢(Q,) where ¢

is a smooth function which is equal to 1 on the interval [infg,/(2h')(z),+=[ and to
z

0 on a neighbourhood of zero; then Q; will remain uniformly positive; moreover,
since §; will be close to o/h'(M,), the probability of the event ¢(Q;)#1 will be
very small, so the dY; term will be well approkimated. Here, we are going to use
an alternative method: we will write an approizirnate equation for the vector
(}?,',Ef"c);_in this case indeed, from (6.39), the dY; coefficient of the second com-

ponent can be neglected.

Theorem 7.1 Assume (A3). Let mg and 7;>0 be real numbers and let (M,.R,) be
the solution of the system

R, € oh”

dM; = b(M,)dt + Fz—;azh '(M,)(dY,—h(M,)dt—E——h—,—(m)dt) (7.4)
BRe o L on2r)RE + 2(Lyo(u,)R, + 1 (7.5)
di = 61-27 t74v¢ o t/i%¢ el-a-, S . .

with the initial condition (Mg,Rg)=(mo,70). Then

& = edP(M,)R; + 0(e2\ve%) (7.6)

-~ 2—47
X, =My + 0(e¥?e? ) (7.7)

Remark that the estimate given by (7.7) is always better than the on€ obtained
in section 5 for a one-dimensional filter; it is dominated by e22 if 51,74 and by
¢ if y53/8. '

Proof
. First, note that equation (7.4) can be written in the form (2.18) with
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2y "
Up=-%-0%"(M)R; and V, = o*h'(M,)R,

(7.8)

On the other hand, one can easily derive from (7.5) that the process R; evolves

between two strictly positive constants, so the assumptions of proposition 2.2

are satisﬁed. We also derive from (7.4), (7.5) and Ito's formula that

' dkt h. t)] 1-27

with

= ﬂzh'z(Mg)Rg + O'h'(Mg)

B, = "27(—) oMy )Re — C"a’( 7 ) (M )(0 (M )+ Uy) - "‘( - (M) VE

= 0(e!"?"v¢)

Co= (-~ )(Mt)Vt 0(1)
We deduce from these equations and corollary 2.4 that
1 T1-
Rt = W(‘!‘) + O(C?AVS‘ 27)

Now this estimate implies that we can apply theorem 5.2 and obtain
) )
- =%
X,—M, =0(e\e?® )
Let us write the exact equation for &£
(“""‘) ero ~
def = ——p-dt + 287t + e¥dt + 5 (dY;—hydt)

with the notation #=LC=(b /0)-£27¢, If we consider the process

IME L

then we can write (7.15) in the form

Lo

| - 1 2 Ci o
dﬂ't = 31-27 (—a,u., +b‘ﬂt+1)dt + :l—_‘a(drg‘h‘ dt)

At(Rt (Mz ))dt + Bydt + Cy(dY,—h (Mt )dt)

(7.9) -
(7.10)
(7.11)
(7.12)
(7.13)

(7.14)

(7.i5) |

(7.16)

(7.17)

“with a;= (e, /e; )2 by=2e1-278F*® /65% and ¢;=éf™ /¢ On the other hand, by



developing the function G,

ata 10,0 \~oxy :
6% = — = = 5o (K)EX + 0(e%) | (7.18)

: 7
: 5~¢
= ——— + O(eavsz 7)

from the results of previous section on the third moments. Similarly,

~ ’ _1-47
eh = eFXn(X,) + 0 (2 \ve? ) (7.19)

and from (7.18), (7.19) and (7.14), we deduce

]
-~ >4
ufa = puf ®h'¥(X,) + 0(eve? ) : _ (7.20)

3o
= uf M) + 0(eve? )

With thessame method,

7 .
- 2 & ,
Heby = 26"y, 0@ (Xy) + 0(e2ve? ) ' (7.21)

7
~ 2%
= 26", o(2Y(K) + 0(eve? )

5_
= 27, o(2y(,) + 0(eve? )

and finally, from (6.39),

¢ = 0(e'?e? ) (7.22)

Now, if we write the equation for R—u in the form

@ (Ry=pe) = =gy |0%h AU )(Retise 22 202y oM, | Ry —pu it (7.23)
2
+ e—f“_—z;—(a.,—a'zh'z(Mf ))dt - %(b,—Ze“"”a(%)’(M,))dt

C¢ ~
- ‘;ﬁ,‘(dYg —ht dt)

then the coefficient of (R ~u)dt is uniformly positive if ¢ is sufficiently small, so
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we can apply corollary 2.4 and with the estimates (7.20)-(7.22), we obtain

R — g = 0(e\/e¥) (7.24)
On the other hand,
-GG ~XX $ ~XX <] :
e; e; >4 et 24
= = =— 4+ ) 2 =40 e? (7.25
b= = gy OVt S gt 0veE ) ()

so (7.8) follows from (7.24) and (7.25). Then we write the equation for )?, -M,; as

a(F-M,) = ~—eh: (M) (8 (R,)- -n(Mat  (r.26)

oo (4, (R~ (B)= & 2,

. ~hX -
+ (b —b(My))dt + c‘}""" (e‘T—RtUzh'(Mz)) (Y —h,dt)

Remark that if we note
¢ = Ryo®h (M, )(h (X, )~h (M) (n.27)

and Z,=:\”}-M‘. then, since A’ is uniformly positive, the assumption (2.9)/of

lemma 2.1 is satisfied. Let us estimate the other terms. From corollary 6.2,

ha=h (%)~ £ ",’:. (M) = 0(c%2v/e2%) (7.28)
We also have
- 8t
e1"%7(b,~b(M,)) = 0(e27\e2 ) (7.29)
and from (7.8),
5:""
—_— - R,o‘zh (M) = 0(e\/e*Y7) (7.30)

Now (7.7) follows from corollary 2.4. =

Remarks:
1. If b is linear and o constant, then by means of (8. 40) evaluations (7.6) and

(7.7) can be improved as

5
. 52
X =co®R, + 0(e2  \/e¥ %) | (7.31)
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Xe =M, + 0(e¥®\ve? ) - (7.32)
2. One can go on with this technique and derive more accurate filters by increas-
ing their dimension. However (see the beginning of this section), one has to be
cautious with the sign of the approximate conditional variance and modify the

filter so that it remains positive.

8. Comparison with classical filters

Now, we are going to compare the filter obtained in previous section with
some classical two-dimensional filters given in [5] and [2]. We will try to make
clear the reasons for the differences of quality between these filters. ﬂowever.
we ha\vre to note that, since we have only upper bounds for the approximation
errors, a comparison of these bounds cannot prove that a filter is necessarily
better than another. All the filters are given by an approximate equation for
(;?,,,E{"); they will be studied with the same method we have previously used and

we will only give a sketch of the proofs for the first one.

8.1. Extended Kalman filter _
The extended Kalman filter is the approximation (M;,eQ;) of (fg,axx) which

is given by the equations

Q:

dM, = b (M,)dt + — k' (M,)(AY,—h (M, )dt ) -~ (8a)
d_Q‘_ - __!'_ (—h'z(M ) 2 1-5 UM 02 M 8
dt = g% 1)Q2+217%70 (M, )Qe + 0*(M,)) (8.2)

Like previously, we use some initial conditions {M,q0)=(m0.90). go>0 which are
not very important for our estimates. By proceeding as in previous section, we

prove that
Qe = 5 (M) + O(eV2vel?) (8.3)

and that the estimate of theorem 5.1 holds. The exact equation for v; =é}¥x/8 is
(7.1) and we study @ —v with the method we have used for R —u in previous sec-

tion; we have to compare the coefficients of equations (8.2) and (7.1). The



<
differences between the coefficients of the ordinary Ricatti part of the equations
L . s “~ .
' Y - .
are dominated by £\/¢2 , but, in the stochastic part, X s neglected; for this

term, we use the estimate (6.38), and unless o is constant, we only have

SREX 8

o 47,

; tg = 0 (1 VSE— ) . » - (8.4)
This implies that
Q - v = 0(e'Bye ) (8.5)
so
- = Qih'(My) + 0 ('R v/e%Y) : (8.8)
Then we write the equation for X-M as
s Qh(M) s Quh'(My) ,~ =
d(Xy-M,) = =t (h (K) -k (M)t ~ J;,T(z,—’-—(h, ~h (X))t (8.7)

+ (b =b(My))dt + = (———Quh'(M;))(dY; —h,dt)
€ £ , .

and deduce

X, =M, + O(eve? ) . (8.8)

Comparing (7.7) and (8.8), we note that (8.8) is worse than (7.7) if <3,/8 but _

they are identical if y23/8; in particular, the extended Kalman filter leads to an
error of order ¢ provided that 7<3,/8. We also note that the loss of efficiency for
* small values of 7 bas two origins; first, in the equation of é‘fa{. the coefficient é}"xx
of dY‘-;!; dt has been neglected, and second, in the equation off‘. the term ;z;
has been replaced by h(M,) whereas the filter of séction 7 ihvolved also the
second derivative of h. The first defect disappears if ¢ is constant, the second if
h is linear, so the estimate is not improved if only one of thede conditions is
satisfied. If bath pf them are satisfied, then the extended Kalman filter coincides

with the filter of previous section.
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.8.2. Statistical linearization

For a function g -and two real numbers m and Q >0, define

%(g.m.Q) = 75-22- [ (,)exp(_S__L | (8.9)

if the.integral is defined. Roughly speakmg the- staustxcal hneanzatlon consists
of replacing, in the state and observation equations, the processes b(X;), o(X;)
and h(X;) respectively by ¥(b,M;.eQ)+¥(b".M;.eQ }{X,—M,) , ¥(o.M,.cqQ;) and
¥(h M, 6Q ) +¥(h' M;,eQ, ) (X, —M,;) , where (M;,tQ;) is an approximation of
(X;.8)). The equations are

@

1_27‘1’(’1 .Hg,EQg )(dYg"‘I’(h M; SQg)dt) (8.10)

dM, = V(b .M;.£Q,)dt +

dq,

at _g_‘i?‘l;("Qtz‘l’z(h’7.M:,.€Q¢)+29t€‘-z7‘l’(b'th,-':Qt)""I’z(ath-CQz)) (8.11)

One can prove that this filter satisfies the same estimate (8.5)-(8.8) than the
extended Kalman filter. More precisely, by replacing, in the equation for M,
h(M,;) by ¥(h.M,,£Q,), we have suppressed the second defect, but not the first
one; however, if o is constant, then é}"m can be neglected so the statistical

linearization works like the filter of section 7.

8.3. The truncated, Gaussian and modified second-order filters

The so-called truncated second-order filter is obtained by neglecting the

- third and fourth conditional moments é}m and E{um(; the Gaussian filter is

obtained by neglecting 6;°* and assuming &X°°%~3(¢7*)2. For these two filters,
the approximate variance equation has a stochastic part, so it seems difficult to
study the the sign of the approximate variance and, if it happens to become
negative, the filter may diverge. Moreover, it is noticed in [3] that the truncated
filter involves an illogical approximation. So one generally rather considers the

" so-called modified second-order filter whose equations are

dM; = (b (M,)+ZQub"(M,))dt + clq_‘z,’h'(Mt)(dYt‘h(Mt)dt"%ch"(Mt)dt) (8.12)
d ( '
_dqt‘— - 'gr-—fa, (- QR 2(My )+26270" (M, )Qr + 0% (M, )+ £Qe (00" +0 %) (M) (8.13)

We still use the same technique to study it and it turns out that it behaves like

the statistical linearization: it satisfies (8.8) in the general case, but (7.7) if ¢ is
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constant and (7.32) if ¢ is constant and & is linear.

9. Summary of results

The three tables give the estimate for I?,—M, for the considered filters,

according to the value of y and the properties of the coefficients.

TABLEI r21/4
: o constant
General case | o constant .
L h linear
. 3_a
Filter (5.1) O(¢) -0(¢) 0(?® )
'Extended Kalman filter 0(s) 0(e) 0(e*27)
Statistical linearization
' 0(e) 0(e>?) 0(2-27)
Modified 2nd order filter
Filter (7.4)-(7.5) - 0(e2%) 0(e%®) 0(e2-?)
TABLE II 1/45y$3/8 |
o constant
General case o constant
' 4 “h linear
s 3 38
--.27 —-—27 -
Filter (5.1) 0(s% ) 0(e? ) 0(e? z.’)
9..-‘-’
Extended Kalman filter 0(e) 0(e) 0(e2® ) _
Stafiétical linearization . .
; 0(e) 0 '(e:"m”) 0 (8-2.-47)
Modified 2nd order filter -
247 20 34
Filter (7.4)-(7.5) 0(2 ) 0(s2 ) 0(2 )
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TABLE I 3,/857<1/2

m

All the cases

-
. Filter (5.1) 0(e? )
Extended Kalman filter
Statistical linearization 5,
>4

Modified 2nd order filter 0(e2 )

Filter (7.4)-(7.5)

10.
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