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ABSTRACT:

The problem of developing practical suboptimal filters

for nonlinear systems is treated using a different approach.

The developed filter (El-F) is found to fill in the gap

between the Kalman and the Extended Kalman filters. A

numerical experiment to test the performance of the developed

filter is conducted and the results are shown.
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I. Introduction:

Estimation problems, and filtering among them, are basically

concerned with extracting the best information from inaccurate obser-

vation of signals.

From the control theory point of view, the problem of estimating

the state of dynamical systems plays an important role. Very often the

optimal control law sought for a dynamical system is some sort of a

feedback of its state. Take for example the control of a chemical

process, a nuclear reactor, maneuvering of a space craft, guidance and

navigation problems, and the problem of control and suppression of

structural vibrations. Also, sometimes, it is of interest to know the

state of a dynamic system. Take for example the tracking of moving

objects like satellites in orbits, and enemy missiles. These are just

a few examples of the application of this knowledge.

Fundamentally, the conditional probability density of the state

- conditioned on available observations holds the key for all kinds of

state estimators. The case of a linear dynamical system, with measure-

ments linear in the state variables, in the presence of additive

Gaussian noise, and under the assumption of full knowledge of the

system's parameters and noise statistics, has been optimally solved.

In that particular case, the conditional probability density is Gaus-

sian. A Gaussian density is characterized by only two quantities,

namely its mean and covariance. Therefore, the optimal linear filter

has a finite state, the conditional mean and thp conditional covariance,

and is widely known as the Kalman or the Kalman-Bucy filter. The
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Kalman filter provides the minimum variance unbiased estimates. Also,

the filter structures is linear, its gain and covariance can be pro-

cessed independently of the estimate even before receiving the observa-

tions. These features make the Kalman filter desirable and easy to

implement.

Unlike the linear case, the situation for nonlinear systems is

" .completely different. The conditional probability density is no longer

Gaussian even though the acting noise is itself Gaussian. In this case

the evolution of the conditional probability density is governed by a

stochastic integral-partial differential equation, Kushner's equation,

or equivalently by an infinite set of stochastic differential equations

for the momenis of the density function. Therefore, the truly optimal

nonlinear filter Is of infinite dimensionality, and consequently is of

a little practical interest. Therefore, the need for practical suboptimal

filters is apparent.

Inspired by Kalman's results, a great deal of research effort has

been directed towards extending the linear results and developing

practical schemes for nonlinear filters. Developments have relied on

two main schemes. One is concerned with approximations of the system

nonlinearities. The other is concerned with approximations of the con-

ditional probability density function. Several practical suboptimal

schemes have been developed and a huge amount of numerical .simulations

have been reported. A brief account and discussion of these suboptimal

filters is given in Emara-Shabaik (1979).

:°2



Still, the task of theoretical assessment of such suboptimal

schemes - in the sense of providing a measure of how far a suboptimal

filter is from being a truly optimal - has remained very hard to

achieve. It inherits the very same practical difficulty of the optimal

filter - infinite dimensionality - that one is trying to escape. There-

fore, the support of any such schemes has to rely heavily on computer

simulation and for that same reason not a single scheme can be claimed

always superior. There are cases when a particular filter has performed

better than others, while there are other cases where it has not. The

final judgement is left to experience and the special case at hand.

Consequently, the development of a new practical scheme will add to the

list of contributions.

The main theme of this paper and its companion, under preparation,

is to consider the nonlinear filtering problem from a different approach.

The approach taken here is to consider the problem as the combination

of approximating the system's description and solving the filtering

problem for the approximate model. As a result some new schemes are

developed. The problem formulation and the proposed solution are given

next followed by some numerical results.

3



II. Problem Formulation:

Consider the general nonlinear dynamical system whose state x(t)

evolves in time according to the following differential equation,

dx(t) = [A(t) x(t) + f(x(t),t)J dt + Q (t) dW(t) (1)

x(to ) = xo  t . t0

where

x(t) e Rn is an 'n' dimensional state vector.

A(t) is an 'nxn' real matrix.

f(x(t),t) is an 'n' dimensional vector valued real function.

x 0 Rn is an 'n' dimensional Gaussian random vector (GRV) with

E {x 0 1 0  (2)

and

Cov(xX) A E {(x0 - )(X - i)' = P (3)
o'x = -0 0 -0 0

w(t) . Rn is an 'n' dimensional Wiener process, and

dW(t) = W(t+dt) - W(t). Therefore,

E {dW(t)} = o for all t .to  (4)

and
Cov(dW(t),iW(t)) a E {dW(t) dW'(t)} - (Idt) (5)

Where I is the (nxn) unit matrix.

Q(t) is a real matrix, and

Q(t) Q (t) Q '(t) is a positive semidefinite (nxn)

matrix.
* E{.} denotes the expected value of .)
t Coy(.,.) denotes the covariance of C-).

4
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Also, consider the observations process dy(t) to be given by

dy(t) - [C(t) x(t) + h(x(t),t)] dt + R(t) dv(t) (6)

where

dy(t) Re is an 'm' dimensional observations vector.

C(t) is an.'mxn' real matrix.

h(x(t),t) is an 'Im' dimensional vector valued real function.

v(t) Rm is an 'm' dimensional Wiener process, and

dv(t) = V(t + dt) - V(t). Therefore,

E {dv(t)) = o for all t to (7)

and

Cov(dv(t), dv(t)) A E {dv(t) dv'(t) )= (Idt) (8)

Rh(t) is a real matrix, and

R(t) A R(t) R(t) Is a positive definite (nxn) matrix

We assume that xo, w(t), and v(t) are all independent of each other

for all values of tz t0 . Also, the assumption that equation (1) satisfies

the conditions for existence and uniqueness of soldtion given la

Arnold (1974), and Jazwinski (1970) is being made. This means that our

dynamical system (1) admits only one solution x(t),t-&to to be its state

trajectory in the mean square sense. Furthermore, it is assumed that

both f(x(t),t) and h(x(t),t) are continuous in x(t).

As it is noticed from equations (1), and (6), the system structure

is considered to be composed of two parts, a linear part plus a non-

linear part. Furthermore, we assume that the system behavior is dominated

by its linear part, That is to say,

.f(x(t),t)ll < 11 A(t)x(t). (9)



and

tIh(x(t),t) N < 1 C(t)xltlt (10)

where

1lzil is the norm of the vector z.

Equations (1) and (6) along with conditions (9) and (10) can be the

original system's description, what is sometimes referred to as system's

with conebounded nonlinearities. *Also, it can be a representation

obtained by linearization of a nonlinear system, where f(x(t),t)

and h(x(t),t) represent second and higher order terms. In this case

conditions (9) and (10) are valid as 'ong as the system's state x(t)

remains within a small neighborhood of the nominal (linearizing)

trajectory.

Accordingly, conditions (9), and (10) suggest that for a good guess of

the system state x*(t) the following approximate equations for the

dynamics and observations can be written as

dxl(t) [A(t) xl(t) + f(x*(t),t) ) dt + Q(t) dw(t) (11)

dy(t) - [C(t) xl(t) + h(x*(t),t) ] dt + R(t) dv(t) (12)

By virtue of continuity of the nonlinearities in x(t), we should note

the following. As x*(t) approaches xl(t), the approximate description

given in (11), and (12) approaches the true description in.(1), and (6).

In fact, the following equation

dx1(t) -[A(t)xl(t) + f(xl(t),t) J dt + Q h(t) dw(t),

X(to) 0 X0 , tato (13)

6



and equation (1) have the same solution both in the mean square sense

and with probability one.

Thus follows, the filtering problem of the system (1), (6) can be

considered as a unification of model approximation and state estimation

of the approximate model. In other words, first we approximate the

system description by finding a suitable x (t). Then, solve the optimal

filtering problem of the approximate model. The optimal filtering is

basically to seek the minimum mean square error estimate of the state

x(t) based on the available observations, Yt=[Y(S), to>stJ.

Generally, according to theorem (6.6) of Jazwinski (1970), pp. 184;

and its specialization to linear systems; theorem (7.3) pp. 219 of the

same reference, the optimal filter imitates the dynamics of the system

and is linearly driven by the net observations. Therefore, guided by

these results, we will seek the optimal filter for the system in (11) and

(12) as a linear dynamic system driven linearly by the net observations.

The optimality of the filter is In the sense of achieving minimum mean

square error.

so, if we define the estimation error e(t) as

el(t)-x1 (t) - I(t) (14)

and the covariance matrix P(t) as
Pit)4- E((e,(t ) - i(t))(el(t ) - (t))'} (15)

Where i,(t) is an estimate of xl(t) based on Yt, and

el(t) - E {e,(t)} (16)

then,

(el(t)) = tr (E{el(t)e'l(t)))

-tr(P(t)) + tr(fi(t) ij(t)) (17)
is to be minimized.

7



III. Proposed Solution, Derivation of the (E-l) Filter:

According to our approximation the dynamic measurements can be

written as follows,

dxl(t) = [A(t)xl(t) + f(x*(t), t)] dt + Q (t) dW(t) (20)

dyl(t) = dy(t) - h(x*(t), t) dt = C(t) Xl(t) dt

+ R (t) dV(t) (21)

Then a linear filter structure can be sought as

dxl(t) =(t) t) 2l(t) + f(x*(t),t)] dt + K(t) dyl(t) (22)

where

B(t) is an 'nxn' matrix

K(t) is an 'nxm' gain matrix

B(t), and K(t) are to be chosen to provide a minimum variance unbiased

estimate. By definition, the estimation error is

el(t)= xl(t) - 21(t) (23)

8



Therefore,

iA
del(t) : dXl(t) - d~l(t) (24)

And by substitution of (20), (21), and (22) in (.24) above we get,

del(t) - A(t)xl(t)dt + Q (t) dw(t) - B(t) xl(t) dt

- (t) C(t) xl(t)dt - K(t) R (t) dv(t)

= [A(t) - B(t) - K(t) C(t)] xl(t)dt

+ B(t) el(t)dt + Q (t) dw(t)

- K(t) R (t) dv(t) (25)

It is desirable to have the estimation error independent of the state.

In this case large state variables can be estimated as accurate as small

state variables. Therefore, we may choose

B(t) = A(t) - K(t) C(t) (26)

Therefore, the dependence of the estimation error on the state is

eliminated.

Also, by choosing

-(to) " (27)
0 0

we have

del(t) - A(t) - K(t) C(t)J e,(t)dt + Q(t) dw(t)

- K(t) R(t) dv(t), eI(to) xo -o (26)

9



And

Nld (t) - [A(t) - K(t) c(t)J el1 t)dt, el(to) -o (29)

from which follows that

.e(t= o for all t _ to (30)

Hence, the estimate is unbiased. Next, we seek

the filter gain matrix K(t) that provides the minimum variance estimate.

By definition, the covariance matrix P(t) is

I ~~P(t) a E {(el(t) -e (t) )(el (t) - lt)}(31)

and due to (30)

P(t) = E {el(t) e'(t)) (32)

Straight forward manipulations show that P(t) is given by the following

di fferential equation,

* dP(t) = (A(t) - K(t) C(t)]P(t) + P(t)(A(t) - K(t) C(t)]'

+ Q(t) + K(t) R(t)K'(t) dt (33)

10



As the matrix differential equation for the covariance matrix P(t).

The initial condition for (33) is given by

P(t) E{(x,) - 0) (xo -70 )zP 0  (34)

Now, the optimization problem involving the choice of the gain matrix

K(t) can be stated as follows.

min WrPM)

K(s)

t <s5t
0~

Subject to conditions as given by equations (33) and (34) which is

the same as

min tr(P0 +J dP(t) ) tr(P) + min tr( JdP(t))
K(s) tKs

t55st 0 t6-St 0

Therefore, we seek K(s), tosst that minimizes

tr(fi') M fir(dP(t) )(35)
t t0 o



substituting for dP(t) in equation (35) we get

]it(P(t)) :ft(tr([A(t) - K(t) C(t)JP(t))
- to to

+ tr(P(t)[A(t) - K(t) C(t)J')

+ tr(K(t) R(t) Ki(t)) + tr(Q(t)))dt (36)

The integrand in (36) is a convex quadratic in K(t). According to the

theory of calculus of variations, the minimizing K(s), tossst is given
as the solution of the Euler's equation which reduces to a simple

algebraic equation in the present case, namely

at)tr(dP(t)) o (37)

Using the concept of gradient matrices and the formulae developed In
Athans, et.al.(1965), we get

OKtt(a)Ct ~) ~)C()(8

aK t) tr(K(t) C'(t) P(t))- P(t) C'(t) (38)

and

at)tr(K(t) R(t) K'(t)) *2K(t) R(t) (40)

12



Therefore the optimal gain is given by

-2P(t)C'(t) + 2K(t) R(t) o (41)

i.e..

K(t) = P(t)C'(t) R1(tM (42)

Substituting this result into equation (33). the covariance matrix

satisfies the following matrix Riccati differential equation,

dP(t) - [i(t)P(t) + P(t) A'(t) - P(t)C'(t)RC1 (t)C(t)P(t)

+ Q(t )] dt, P(t 0  = P 0  (43)

To summarize, the solution for the filtering problem of the approximate

model is given by

dl(t) - [A~t) 1(t) +f(x*(t),t)] dt + K(t) [dY(t)

- C(t) I(t)dt -h(x*(t),t)dtj

A

K(t) - P(t)C'(t)R1(t) (44)

dP(t) - [A(t)P(t) + P(t) A'(t) -P(t)C;(t)R
1l(t)C(t)P(t)

+Q(t)] d

P(t) a P0

13



According to the argument following equations (11) and (12), x*(t)

is required to provide the optimal solution of the following minimization

* pro bl em.

min J(x*(t)) E t~ i(x1() x*(t))O(x1(t) -X*(t)) (45)

then for every t 2! to setting 3J(x*(t))/ax*(t) =o we get

x*(t I E I.Mx1 tI - ^1 (t) (46)

Therefore, combining the results of equations (44), and (46) we get

the first of the developed filters, to be denoted as the (El-F) filter

namely,

-C(t) il(t) dt -h(-1(t).t) dt] x1( 0) (47)

K(t) =P(t)C'(t)R 1 (t) (48)

dP(t) =[A(t)P(t) + P(t)A'(t). - P(t)CO(t)R1l (tCMtPMt +Q(t) dt

P(t0) P P0  (49)

* .. It is straightforward to recognize that in case of a linear system,

i.e. fWxO),t and h(x(t),t) are identically zero or only functions of

time, equations (47), (48) and (49) reduce to the well known Kalman

filter.

14



Although the (El-F) is developed using a different approach, it bears

a close relationship with the extended Kalman filter (EKF) given in Jazwinsk (197(

The equations for the state estimate of both the (El-F) and the (EKF) have

the same structure. While the equations for the gain and covariance of

the (El-F) are different from those for the (EFK), they are identical

to those of the Kalman filter (KF). Therefore, unlike the (EKF), the

gain and covariance for the (EL-F) can be processed off line and prior

to receiving the observations. This is due to the fact that, the matrices

ACt) and C(t) in the (El-F) are different from the corresponding matrices

A(;(t),t) and Z(;(t),t) in the (EKF), they are no longer estimate dependent.

The two sets of matrices are related as follows,

A(A(t),t) A(t) + ax(t),t) x(t) =(t)

and

- C(t) + ah(x(t),t) I x(t) = -(t) (51)CUMA)~~ ~ Ct+ x(t) x(1

Therefore, the (El-F) has the gain and covariance computational

facility enjoyed by the linear filter, and moreover, it is of higher

sophistication since it accounts 'for otherwise neglected nonlinearities.

Therefore, the El-F will be of an advantage over the EKF when on

line computations of the gain and covariance are not affordable due to

capacity limitations of on line computers. This is usually the case of

airborn and spaceborn computers.

15s



Furthermore. while the (EKF) has to be strictly interpreted in the

Ito sense, Emera-Shabaik (1980), it is not the case with the (El-F).

This is so because the gain K(t) as given by equation (48) is not estimate

dependent. On the other hand, if equations (1) and (6) are obtained

through linearization of some nonlinear system, where the system is being

continuously relinearized around the most recent available estimate then

the (El-F) and (EKF) are identically the same. So, in a sense the (El-F)

provides the missing link between the Kalman and extended Kalman filters,

and this credits the new approach of looking at nonlinear filtering.

16



IV. Numerical Experiment:

The Van der Pol oscillator:

The Van der Pol oscillator is characterized by the following

differential equation, Cunningham (1958).

:(t) - ci(t)(1 - x21t)) + x(t) = ( (52)

which describes a dynamical system with state dependent damping coefficient

equals - e(1-x 2 (t)) where c is a positive parameter. The damping in

the system goes from negative to zero to positive values as the value

of x2(t) changes from less than to greater than unity. The oscillator's

response is characterized by a limit cycle in the x(t), i(t) plane (the

phase plane). The limit cycle approaches a circular shape as c becomes

very small, it has a maximum value for x(t) equals 2.0 Irrespective of

the value of c. This type of oscillations occur in electronic tubes

which exhibit also what is known as thermal noise. Denoting x(t) as

lt), and i(t) as x2(t), equation (52) can be rewritten in a state

space formulation. Also, considering the existence of some noise

forcing on the system, we get.the following representation for the

Van der Pol oscillator.

ddxt(t)][ dt 0
It E 2 d

ILdx 2(t)] 1 3 [1 2(] -exi(t) x2(t)] d

h Q d[~(t)j (53)
L 2(t)1

17



Also suppose that the following measurement is taken

dy(t) = Xl(t) + x3 (01 dt + R4 dv(t) (54)

In (53) and (54) above (Wl(t) W2(t)]T is considered to be a two

dimensional Wiener process. Also, V(t) is a one dimensional Wiener

process. R is a positive nonzero real value, and Q is a (2x2) matrix.

The following values for noise statistics are considered.

Case # Qll Q12  Q22  R figures

Van der Pol 1 0.5 0.0 0.5 4.0 1 to 2

Van der Pol 2 5.0 2.0 5.0 10.0 3 to 4

Also e is taken to be 0.2

In the figures, the following symbols are used.

XI the i t h state, I a 1, 2

XIK the estimate of the t -h state provided by the (K-F)

XIE the estimate of the ith state provided by the (El-F)

XIEK the estimate of the ith state provided by the (EKF)

In both cases; as Indicated by figures 1, 2, 3, and 4, both the (El-F)
and.(EKF) provide very accurate tracking of the system's states while

the (KF) provides crude estimates.

18



V. Conclusions:

A new approach for nonlinear filtering is developed. Basically,

it consists of a model approximation technique combined with optimal

filtering of the approximate model. The resulting nonlinear filter

(El-F) has a structure that fits into the gap between the Kalman and

the Extended Kalman filters. On one hand it enjoys the same computational

facility for the gain and covariance enjoyed by the Kalman filter (KF).

While on the other hand it provides estimates on the same level of

accuracy as provided by the ectended Kalman filter (EKF).

19
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Figure 1. First state and estimates by Kalmian, El, Extended
Kalman filters.



Figure 2. Second state and estimates by Kalman, El, Extended
Kalman filters.
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Figure 3. First state and estimates by Kalmian, El, Extended
Kalman filters.



Figure 4. Second state and estimates by Kalman, El, Extended
Kalman filters.
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