
Brazilian Journal of Probability and Statistics
2018, Vol. 32, No. 2, 374–421
https://doi.org/10.1214/16-BJPS347
© Brazilian Statistical Association, 2018

Nonlinear filtering with correlated Lévy noise characterized
by copulas

B. P. W. Fernando and E. Hausenblas
Montanuniversitaet Leoben

Abstract. The objective in stochastic filtering is to reconstruct the informa-
tion about an unobserved (random) process, called the signal process, given
the current available observations of a certain noisy transformation of that
process.

Usually X and Y are modeled by stochastic differential equations driven
by a Brownian motion or a jump (or Lévy) process. We are interested in the
situation where both the state process X and the observation process Y are
perturbed by coupled Lévy processes. More precisely, L = (L1,L2) is a 2-
dimensional Lévy process in which the structure of dependence is described
by a Lévy copula. We derive the associated Zakai equation for the density
process and establish sufficient conditions depending on the copula and L for
the solvability of the corresponding solution to the Zakai equation. In partic-
ular, we give conditions of existence and uniqueness of the density process, if
one is interested to estimate quantities like P(X(t) > a), where a is a thresh-
old.

1 Introduction

The objective in stochastic filtering is to reconstruct information about an unob-
served (random) process, called the signal process, given the current available ob-
servations of a certain noisy transformation of that process. Here, the underlying
problem is, that the unobserved problem may be corrupted by noise, and in addi-
tion, the observations made are usually again corrupted by some noise or random
errors. The main objective of stochastic filtering is to estimate an evolving dynam-
ical system usually called signal. That is, to extract the most precise information
about the underlying system and to filter out the “noise” in the observations. These
kind of problem appears in physics, engineering, and finance among others.

This measurement noise is modeled very often by a stochastic process of Gaus-
sian or Poisson type. In particular, the signal and the observation process can be
modeled either by a discontinuous or continuous random process. When both the
signal X and the observation Y have discontinuous paths, one can distinguish three
main frameworks. The first one is the case in which Y is driven by a counting pro-
cess or a marked point process. We can refer to Brémaud (1981), Ceci (2006),
Frey and Runggaldier (2001), Kliemann, Koch and Marchetti (1990), Lipster and
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Shiryaev (1989, 2001) among others for the results and advances made in this sit-
uation. The second framework is the case in which Y is driven by a mixed type
process, that it, Y can be viewed as a sum of marked point process and a diffusion
process. This case is the subject of recent papers of Ceci and Colaneri (2012), Frey
and Runggaldier (2010), Frey and Schimdt (2012), Frey, Schimdt and Xu (2013).
Finally, one can model the signal X and the observation Y by a jump-diffusion
processes, which is done for example, in Ceci and Colaneri (2012). In that works,
they also allow processes X and Y to be correlated and have common jump times.

In the present paper, we consider the filtering problem similar to the model
in Ceci and Colaneri (2012) but address the difficult situation where the sig-
nal and observation process are driven by two Lévy processes which are corre-
lated. To be more precise, in our model the state X and the observable Y solve
a stochastic equation driven by general Lévy processes. The Brownian part in X

may be degenerate. In addition, both processes are corrupted by a pair of two
purely discontinuous Lévy processes, where the dependence structure is given
by a Lévy copula. Here X is corrupted by the first process and the observa-
tion process is corrupted by the second process. By using the change of measure
method we derive the associated Zakai equation. Using copula, we were able to
calculate the diffusion coefficient in front of the random driving process in the
Zakai equation explicitly. We treat the case of finite and infinite Lévy measure
separately in Theorem 2.2 and Theorem 2.3. As mentioned in the abstract, we
were mainly interested in the case where one would like to estimate entities like
P(X(t) > a | Y(s),0 ≤ s ≤ t) = E[1(a,∞)(X(t)) | Y(s),0 ≤ s ≤ t], a ∈ R. Here
the main difficulty is that the function R � x �→ 1(a,∞)(x) is not twice differen-
tiable and one has to use the smoothing property of the infinitesimal generater
of the driving Lévy process of X (see Fernando Pani, Hausenblas and Razafi-
mandimby (2017)). Because of this, we also use the change of measure transfor-
mation and consider the Zakai equation. In this paper, we were able to specify in
Theorem 3.1 the exact conditions under which the density process exists and is
uniquely defined. In addition, we investigated the regularity of the process.

The organization of the paper is as follows. In Section 2, we introduce the prob-
lem and derive the Zakai equation for finite and infinite Lévy measures. In Sec-
tion 3, we consider the case where one is interested to estimate an entity like
P(X(t) > a), a ∈ R. Here, the main result is Theorem 3.1. Corollary 3.1 is an
example which illustrates the applicability of Theorem 3.1. In the appendix, we
summarize results that are necessary for the proofs of our main results. In par-
ticular, in Appendix A we introduce the Zakai equation as an evolution equation
taking values in Sobolev spaces. In Appendix B, we introduce Lévy copulas and
give known results necessarily for the proofs of our main results.

Notation 1.1. We denote by R+ the positive real half line, i.e. R+ = (0,∞), and
by R0+ the positive real have line including zero, that is, R0+ = [0,∞). For a mea-
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surable space (E,E), we denote by Bb(E) the Banach space of all bounded, real-
valued, E-measurable functions equipped with the supremum norm. For a metric
space (E,E), we denote by Cb(E) the Banach space of all bounded, real-valued
and continuous functions equipped with the supremum norm. Let us denote by S
the Schwarz space of all rapidly decreasing functions and S ′ its dual. For s ∈ R

and p ≥ 1 we denote by Hs
p(Rd) the Bessel Potential Spaces (or Sobolev spaces

of fractional order), that is,

Hs
p

(
Rd) := {

f ∈ S ′ : |f |Hs
p

:= ∣∣F−1(
1 + |ξ |2) s

2Ff
∣∣
Lp < ∞}

.

Here, F denotes the Fourier transform given by

Ff (ξ) = f̂ (ξ) = (2π)−d
∫
Rd

eiξT xf (x) dx, f ∈ L2(
Rd)

.

The space C
(n)
b (R) = {f : R → R : f is n times continuously differentiable and

bounded}.

2 Problem setting and the Zakai equation

As mentioned in the introduction, we consider the filtering problem with Lévy
noise. In particular, the state and observation processes are both perturbed by a
Lévy noise. Since in practice the noises in the state process and the observation
process are usually depending on each other, so we allow our model to have certain
dependence structure.

In the case of Gaussian variables, the dependence structure is described via a
correlation matrix. However for the non-Gaussian random variables, the use of
correlation coefficients is often misleading. Hence, we must choose the right tool
to describe the dependence structure for non-Gaussian noise. Here, copulas are
nowadays widely used in finance to express dependence of non-Gaussian random
variables. In Appendix B, we give a short summary on copula and some facts that
we need for the proof of our main results. For a more detailed introduction, we
refer to the books by Cherubini, Luciano and Vecchiato (2004), Nelsen (2006),
Malevergne and Sornette (2006).

Let (X1,X2, . . . ,Xn) be a random vector with marginal distribution functions
Fi , that is, Fi(x) = P(Xi ≤ x). By assuming F1, . . . ,Fn are continuous, one can
show that up to a transformation the random vector(

F1(X1),F2(X2), . . . ,Fn(Xn)
)

has uniformly distributed margins. The cumulative distribution function (U1,U2,

. . . ,Un) associated to (X1, . . . ,Xn) is defined by Ui = Fi(Xi), i = 1, . . . , n. For
any random vector (X1,X2, . . . ,Xn) with distribution F :Rn → [0,1] and contin-
uous marginal distribution functions Fi , the function

C : [0,1]n → [0,1]
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such that

C(u1, . . . , un) = F
(
F−1

1 (u1), . . . ,F
−1
n (un)

)
, ui ∈ [0,1], i = 1, . . . , n,

is called the copula. The existence of a copula C associated to given marginal
distribution F1, . . . ,Fn is ensured by following theorem.

Theorem 2.1 (Sklar’s theorem). Given an n-dimensional distribution function
F with continuous (cumulative) marginal distributions F1, . . . ,Fn, there exists a
unique n-copula C : [0,1]n → [0,1] such that

F(x1, . . . , xn) = C
(
F1(x1), . . . ,Fn(xn)

) ∀(x1, . . . , xn) ∈ Rn.

There are several different types of copulas. The ones very frequently seen in
the literature are the independent copula defined by

C(u1, u2, . . . , un) = u1u2 · · ·un,

the Clayton copula defined for θ ∈ [−1,∞) \ {0} by

C(u1, u2, . . . , un) = max
([

u−θ
1 + u−θ

2 + · · · + u−θ
n − (n − 1)

]− 1
θ ,0

)
,

and the Gumpel copula defined for θ ∈ [1,∞) by

C(u1, u2, . . . , un)

= exp
(−[

(− lnu1)
θ + (− lnu2)

θ + · · · + (− lnun)
θ ] 1

θ
)
.

In a similar way, we can define the Lévy copulas which is a general concept
to capture jump dependence in multivariate Lévy processes. The Lévy copula is
described in terms of the Lévy measure. For more detailed introduction to Lévy
copula, we refer to the works of Cont and Tankov (2004, 2006) and Kallsen and
Tankov (2006). In addition, we summarize some basic facts in Appendix B. Since
the Lévy measure is usually σ -finite, the definition of a copula has to be extended
to a function acting on [−∞,∞].

For this purpose, let ν be a Lévy measure on Rn with marginal intensities
ν1, ν2, . . . , νn. Let I :R \ {0} → B(R) be given by

I(x) =
{
(x,∞) x > 0,

(−∞, x), x < 0.

Let Ui be the tail integral defined by

Ui(z) =

⎧⎪⎪⎨
⎪⎪⎩

sgn(z)νi

(
I(z)

)
for z ∈ R \ {0},

0 for z = ∞ or z = −∞,

∞ for z = 0, i = 1,2, . . . , n

(2.1)
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and

U(z1, z2, . . . , zn)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n∏

i=1

sgn(zi)

)
ν

(
n∏

i=1

I(zi)

)
for z1, z2, . . . , zn ∈ R \ {0},

0 for |zi | = ∞, i = 1, . . . , n,

ν
(
Rn)

for zi = 0, i = 1, . . . , n.

(2.2)

Now, for an n-dimensional Lévy process L, one can associate a Lévy copula H :
[−∞,∞]n → [−∞,∞] as

U(z1, . . . , zn) = H
(
U1(z1), . . . ,Un(zn)

)
, z1, . . . , zn ∈ R.

In fact, thanks again to Sklar-type theorem (see Kallsen and Tankov (2006), The-
orem 3.6) for each n-dimensional Lévy process with intensity ν and marginal in-
tensities νi , i = 1, . . . , n, there exists a Lévy copula H such that

U(z1, . . . , zn) = H
(
U1(z1), . . . ,Un(zn)

)
, z1, . . . , zn ∈ R. (2.3)

Now, let us proceed with the setting of our main problem. Let H be a Lévy cop-
ula and L = {L(t) = (L1(t),L2(t)) ∈ R2 : t ≥ 0} be a two dimensional pure jump
Lévy process with its marginal intensities ν1 and ν2. Let L0 be a compensated pure
jump Lévy process and W2 = {W2(t) : t ≥ 0} be a Brownian motion. We assume
that all these objects are defined on a probability space A = (�,F, (Ft )t≥0,P).
We also assume that L, L0 and W2 are mutually independent.

Let the signal process X be the solution of the following SDE with random
initial data X0:{

dX(t) = b
(
X(t)

)
dt + dL0(t) + dL1(t), t > 0,

X(0) = X0.
(2.4)

Here b : R → R is a Lipschitz continuous function. Also we suppose that the ob-
servable process Y solves the following SDE with random initial data Y0.{

dY (t) = g
(
X(t)

)
dt + dL2(t) + dW2(t), t > 0,

Y (0) = Y0,
(2.5)

where g : R → R is a twice differentiable mapping. Let {Xt : t ≥ 0} and {Yt : t ≥
0} be the filtration defined by Xt = σ({X(s), s ≤ t}) and Yt = σ({Y (s), s ≤ t}),
respectively. In addition, let X = (

⋃
t≥0 Xt ) and Y = (

⋃
t≥0 Yt ).

The filtering problem consists of determining at a fixed time t > 0 the con-
ditional distribution πt of the signal X given the information accumulated from
observing Y in the time interval [0, t]; that is, for f ∈ C

(2)
b (R), we are aiming to

compute the Bayes estimator

πt(f ) = E
[
f

(
X(t)

) | Yt

]
, t ≥ 0.
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In order to study about the normalized conditional density π = {πt : t ≥ 0},
one can mainly use two different methods. The first one is probability measure
transformation and obtain Zakai equation which solves the un-normalized con-
ditional density associated with normalized density π . Then discuss about π us-
ing Kallianpur–Striebel formula (see Bain and Crisan (2009), Proposition 3.16).
The second method is called innovation approach which directly gives Fujisaki–
Kallianpur–Kunita equation (called “FKK equation”). Normalized density π is the
solution of FKK equation. In this paper, we use the former method.

In the first step, we apply the Girsanov’s theorem to get a new measure Q

which is chosen in such a way that Y is a Lévy process over the probability space
(�,Y, (Yt )t≥0,Q). For this purpose, let Z = {Z(t) : t ≥ 0} be given by

Z(t) := exp
(
−

∫ t

0
g

(
X(s)

)
dW2(s) − 1

2

∫ t

0
g2(

X(s)
)
ds

)
, t ≥ 0. (2.6)

Note, that Z solves {
dZ(t) = Z

(
t−

)
g

(
X

(
t−

))
dW2(t),

Z(0) = 1,

over (�,F, (Ft )t≥0,P). Let Q be a new probability measure given by

dQ

dP

∣∣∣∣
Ft

= Z(t), t ≥ 0. (2.7)

As in the Brownian case, one can show the following proposition.

Proposition 2.1. If

E

[∫ t

0

∥∥g
(
X(s)

)∥∥2
ds

]
< ∞, E

[∫ t

0
Z(s)

∥∥g
(
X(s)

)∥∥ds

]
< ∞, t ≥ 0,

then under Q the observation process Y is a Lévy process. In particular, the σ -field
Y+

t = σ(Y (r) − Y (s), t ≤ s ≤ r) is independent to Yt .

Proof. Let Q be defined as in equation (2.7). First, note that by the Itô–Lévy de-
composition the continuous and discontinuous parts of Y are independent. In addi-
tion, under the new probability measure Q, the continuous part of Y is a Brownian
motion. We can also see that the pure jump process is not affected by the change
of measure. �

Setting V (t) = Z(t)−1, we obtain as in Bain and Crisan (2009), Eq. (3.30),
page 56, that

dP

dQ

∣∣∣∣
Ft

= V (t), t ≥ 0.
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Remark 2.1. The process V = {V (t) : t ≥ 0} defined by V (t) = Z(t)−1 solves on
(�,F,P) the equation⎧⎪⎪⎨

⎪⎪⎩
dV (t) = V (t)g

(
X(t)

)[
dW2(t) + g

(
X(t)

)
dt

]
= V (t)g

(
X(t)

)
dY c(t),

V (0) = 1.

(2.8)

(Y c denotes the continuous part of Y , i.e. the part of Y without jumps.)
Since the process W2(t) + ∫ t

0 g(X(s)) ds becomes a Brownian motion over
(�,F, (Ft )t≥0,Q), V is a (�,F, (Ft )t≥0,Q)-martingale.

The following result is an immediate consequence of Proposition 2.1. We also
refer to Bain and Crisan (2009), Proposition 3.15, page 56.

Corollary 2.1. If U is Ft−-measurable, then the law of the two random variables
EQ[U | Y] and EQ[U | Yt−] are the same over (�,F,Q). In particular, we have
Q-a.s.

EQ[U | Y] = EQ[U | Yt−].

Remark 2.2. Similarly it can be shown that if U is Ft -measurable, then Q-a.s.

EQ[U | Y] = EQ[U | Yt ].

Proof of Corollary 2.1. Since Y is a Lévy process over (�,F, (Ft )t≥0,Q), its
increments are independent. Hence, for all t > 0, the σ -algebra Y+

t− generated by
Y(s) − Y(t−), s > t is independent to Yt− under the measure Q. From Kallenberg
(2002), Proposition 6.6, page 110, the assertion follows. �

Fix t ≥ 0. Let πt be the conditional distribution of X(t) at time t ≥ 0. The
Kallianpur–Striebel formula gives for t ≥ 0 (see Bain and Crisan (2009), Proposi-
tion 3.16)

πt(f ) = E
[
f

(
X(t)

) | Yt

] =
∫
R

πt(x)f (x) dx = EQ[f (X(t))V (t) | Yt ]
EQ[V (t) | Yt ] .

Now, we introduce the density process of the un-normalized conditional distribu-
tion ρ = {ρt : t ≥ 0} which is the measure valued process defined by

ρt(f ) = 〈ρt , f 〉 = EQ[
V (t)f

(
X(t)

) | Yt

]
=

∫
R

ρt(x)f (x) dx, t > 0, ρ0 = π0.

We will see later on, that the process ρ = {ρt : t ≥ 0} is very useful to calculate
π = {πt : t ≥ 0}.



Nonlinear filtering with correlated Lévy noise 381

By Corollary 2.1, we have

EQ
[
f

(
X(t)

)
V (t) | Y] = EQ

[
f

(
X(t)

)
V (t) | Yt

] = 〈ρt , f 〉, t ≥ 0,Q-a.s.

We also introduce the process ξ = {ξ(t) : t ≥ 0} defined by

ξ(t) = EQ
[
V (t) | Yt

]
, t ≥ 0. (2.9)

Since V is a Ft -martingale over (�,F,Q) and Yt ⊂ Ft , it follows that for 0 ≤
s < t

EQ
[
ξ(t) | Ys

] = EQ
[
EQ

[
V (t) | Fs

] | Ys

] = EQ
[
V (s) | Ys

] = ξ(s).

Moreover,

ξ(t)πt (f ) = ρt (f ), t ≥ 0,

and

πt(f ) = ρt (f )ξ−1(t), t ≥ 0.

For these two formulas, we refer to Bain and Crisan (2009), Definition 3.17 and
Corollary 3.19, pages 58–59.

In the next theorem, we will derive the Zakai equation which is solved by the
un-normalized density process ρ = {ρt : t ≥ 0}. To do that, we need to introduce
some additional notations. A Lévy process L is characterized by its characteristic
function. In particular, there exists a function ψ :R �→C such that

ln
(
EeiξL(t)) = tψ(ξ), ξ ∈ R.

The infinitesimal generator of the Markovian semigroup of L is the so called
pseudo-differential operator given by

A0f := −
∫
R

eiξxψ(ξ)Ff (ξ) dξ, f ∈ C
(2)
b (R). (2.10)

Here Ff denotes the Fourier transform of the function f . The function ψ is called
the Lévy symbol of the Lévy process X, for more details on A0 and its properties
we refer to Fernando Pani, Hausenblas and Razafimandimby (2017). The follow-
ing theorem associates with the case where the Lévy measure of the two dimen-
sional Lévy process L is finite.

Theorem 2.2. Let L0 be a Lévy process with Lévy symbol ψ and A0 be the in-
finitesimal generator of L0. Let ν1 and ν2 be two finite Lévy measures defined on
the positive half real line, that is, on R+. Let H be a twice differentiable copula.
Let us denote the conditional Lévy measure of jumps of L1 given the jumps of L2
by

ν1,z2(U) =
∫
U

h(z1, z2)ν1(dz1), U ∈ B(R+),
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where

h(z1, z2) := ∂2

∂u1 ∂u2
H(u1, u2)

∣∣∣∣ u1=U1(z1)

u2=U2(z2)

,

and U1, U2 are the tail integrals of ν1 and ν2, respectively. Let g : R → R and
σ :R →R be Lipschitz continuous mappings. Then the un-normalized conditional
density estimator ρ = {ρt : t ≥ 0} is a solution to the following equation

〈ρt , f 〉 = 〈ρ0, f 〉 +
∫ t

0
〈ρs−, f · g〉dY c

s +
∫ t

0
〈ρs−,A0f 〉ds

+
∫ t

0
〈ρs−,�z2f 〉η2(dz2, ds), ∀f ∈ C

(2)
b (R),

(2.11)

where η2 denotes the Poisson random measure associated to L2 with intensity ν2,
the operators �z and A0 are defined by

�zf (x) =
∫
R+

[
f (x + z1) − f (x)

]
ν1,z(dz1), z ∈ R+, x ∈ R, f ∈ C

(2)
b (R),

and

A0f (x) = b(x)f ′(x) + A0f (x), x ∈ R, f ∈ C
(2)
b (R),

where the operator A0 is the infinitesimal generator of the Markovian semigroup
of L0 which is a pseudo-differential operator and defined through (2.10).

Remark 2.3. Since ν1 and ν2 are finite Lévy measures, the operator �z :
Hs

2 (R) → Hs
2 (R) is bounded for all z ∈ R and s ∈ R. This can be seen by ana-

lyzing the symbol φz associated to �z defined as

φz(ξ) =
∫
R+

(
eiz1ξ − 1

)
h(z1, z)ν1(dz1).

In fact, calculating the modulus of the symbol φz∣∣φz(ξ)
∣∣ :=

∣∣∣∣
∫
R+

(
eiz1ξ − 1

)
h(z1, z)ν1(dz1)

∣∣∣∣ ≤ 2
∫
R+

∣∣h(z1, z)
∣∣ν1(dz1) < ∞,

we see that |φz(ξ)| ≤ C for all ξ ∈R. Therefore, �z : L2(R) → L2(R) defined by

(�zu)(ξ) := φz(ξ)u(ξ), ξ ∈ R, u ∈ L2(R),

is a bounded operator. Using the spectral theorem (see, e.g., Engel and Nagel
(2000), Theorem 4.9, page 30) one sees, that �z acting on L2(R) as a multiplica-
tion operator corresponds via the Fourier transform to �z acting on L2(R). Next,
the operator F−1(1 + |ξ |2) s

2F is an isometry from Hs
2 (R) to L2(R). Hence, �z is

also bounded on Hs
2 (R). This implies that �z : Hs

2 (R) → Hs
2 (R) is bounded for

all z ∈ R and s ∈ R.
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Proof of Theorem 2.2. Let λ1 = ν1(R+) and λ2 = ν2(R+). Next, let us denote the
number of jumps of L2 in the time interval [0, t] by N(t), the jumps themselves by
{Y2,i : i = 1, . . . ,N(t)} and the jump times by {si : i = 1, . . . ,N(t)}. Then, given
the jumps of L2 in the time interval [0, t], L1(t) can be represented by

L1(t) =
N(t)∑
i=1

Y
1,i
Y2,i

, t ≥ 0,

where for z ∈ R \ {0} the random variable Y 1
z is distributed as ν1,z/λ1,z, λ1,z =

ν1,z(R
+). More rigorously, conditioned on the jumps of L2(t), L1(t) can be

viewed as a compound Poisson process having same jump times of L2(t) and the
size of each jump Y 1,i of L1(t) depends on the size of the jump Y2,i at time si .

By conditioning the process L1 given L2, we can write

f
(
X(t)

) = f (X0) +
∫ t

0
(A0f )

(
X(s)

)
ds + M(t)

+ ∑
1≤i≤N(t)

f
(
X

(
s−
i

) + Y
1,i
Y2,i

) − f
(
X

(
s−
i

))

= f (X0) +
∫ t

0
(A0f )

(
X(s)

)
ds + M(t)

+
∫ t

0

∫
R+

0

∫
R+

0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

× ν1,z2(dz1)η2(dz2, ds)

+ ∑
1≤i≤N(t)

f
(
X

(
s−
i

) + Y
1,i
Y2,i

) − f
(
X

(
s−
i

))

−
∫ t

0

∫
R+

0

∫
R+

0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

× ν1,z2(dz1)η2(dz2, ds)

= f (X0) +
∫ t

0
(A0f )

(
X(s)

)
ds + M(t) + M̃(t)

+
∫ t

0

∫
R+

0

∫
R+

0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

× ν1,z2(dz1)η2(dz2, ds),

(2.12)

where

M(t) =
∫ t

0
f ′(X(s)

)
dL0(s), t ≥ 0,
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and

M̃(t) = J (t) − R(t)

= ∑
1≤i≤N(t)

f
(
X

(
s−
i

) + Y
1,i
Y2,i

) − f
(
X

(
s−
i

))

−
∫ t

0

∫
R+

0

∫
R+

0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

× ν1,z2(dz1)η2(dz2, ds), t ≥ 0.

Since L0 be a compensated pure jump Lévy process, the process M = {M(t) : t ≥
0} is a martingale over (�,F, (Ft )t≥0,Q). First, observe that we can write for a
function φ

N(t)∑
i=1

φ(Y2,i) =
N(t)∑
i=1

∫
R+

φ(z2)η2
(
dz2, {si}).

In addition, we have by the tower property

E
[
J (t) | k = N(t), (z2,1, . . . , z2,k) = (Y2,1, . . . , Y2,k)

]
= E

[ ∑
1≤i≤k

f
(
X

(
s−
i

) + Y
1,i
Y2,i

) − f
(
X

(
s−
i

)) ∣∣∣
k = N(t), (z2,1, . . . , z2,k) = (Y2,1, . . . , Y2,k)

]

= E

[ ∑
1≤i≤k

E
[
f

(
X

(
s−
i

) + Y
1,i
Y2,i

) − f
(
X

(
s−
i

)) | Y2,i = z2,i

] ∣∣∣ k = N(t)

]

= E

[ ∑
1≤i≤k

∫
R+

{
f

(
X

(
s−
i

) + z1
) − f

(
X

(
s−
i

))}
ν1,z2,i

(dz1)
∣∣∣ k = N(t)

]
.

(2.13)

Using the representation above, we get

· · · =
N(t)∑
i=1

∫
R+

∫
R+

{
f

(
X

(
s−
i

) + z1
) − f

(
X

(
s−
i

))}
ν1,z2(dz1)η2

(
dz2, {si}).

Replacing the summation by the integral with respect to the time, we get

· · · =
∫ t

0

∫
R+

0

∫
R+

0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

ν1,z2(dz1)η2(dz2, ds) = R(t).

Now we want to show that EQ[M̃(t) | Yt ] = 0, t ≥ 0. Fix t ≥ 0. Then

EQ[
M̃(t) | Yt

] = EQ[
J (t) − R(t) | Yt

]
= EQ[

J (t) | Yt

] −EQ[
R(t) | Yt

]
(2.14)
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= EQ[
EQ[

J (t) | F1
] | Yt

] −EQ[
R(t) | Yt

]
= EQ[

R(t) | Yt

] −EQ[
R(t) | Yt

] = 0,

where F1 = {k = N(t), (z2,1, . . . , z2,k) = (Y2,1, . . . , Y2,k) : k ∈ N} ⊆ Yt . Under the
new probability measure Q, the process V = {V (t) : t ≥ 0} solves the following
SDE

dV (t) = V (t)g
(
X(t)

)
dY c(t), t > 0,V (0) = 1,

where Y c denotes the continuous part of Y which is a Brownian motion under
Q, adapted to (Yt )t≥0. Since V is driven by the continuous part of Y , and L0
independent from W2, no correlation terms involving the process V appears. Thus,
we get

f
(
X(t)

)
V (t) = f (X0) +

∫ t

0
V

(
s−)

dM(s) +
∫ t

0
V

(
s−)

dM̃(s)

+
∫ t

0

∫
R+

0

V
(
s−) ∫

R+
0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

× ν1,z2(dz1)η2(dz2, ds)

+
∫ t

0
V (s)g

(
X(s)

)
f

(
X(s)

)
dY c(s) +

∫ t

0
V (s)(A0f )

(
X(s)

)
ds.

Taking into account that M is a martingales over (�,F, (Yt )t≥0,Q) with (2.14)
and taking conditional expectation together with the Fubini theorem Applebaum
(2009), Theorem 1.1.8, to the entity above, we get

EQ[
f

(
X(t)

)
V (t) | Yt

] = EQ[
f (X0) | Y0

] +EQ

[∫ t

0
V

(
s−)

dM(s)
∣∣∣ Yt

]
︸ ︷︷ ︸

=0

+EQ

[∫ t

0
V

(
s−)

dM̃(s)
∣∣∣ Yt

]
︸ ︷︷ ︸

=0

+EQ

[∫ t

0
V (s)(A0f )

(
X(s)

)
ds

∣∣∣ Yt

]

+EQ

[∫ t

0
V (s)g

(
X(s)

)
f

(
X(s)

)
dY c

s

∣∣∣ Yt

]

+EQ

[∫ t

0

∫
R+

0

V
(
s−) ∫

R+
0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

× ν1,z2(dz1)η2(dz2, ds)
∣∣∣ Yt

]

= f (X0) +
∫ t

0
EQ[

V (s)(A0f )
(
X(s)

) | Yt

]
ds
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+EQ

[∫ t

0

∫
R+

0

V
(
s−) ∫

R+
0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

× ν1,z2(dz1)η2(dz2, ds)
∣∣∣ Yt

]

+EQ

[∫ t

0
V (s)g

(
X(s)

)
f

(
X(s)

)
dY c

s

∣∣∣ Yt

]
.

By imitating the calculations associated with (2.13) and (2.14) for∫ t

0
V

(
s−)

dM̃(s) =
∫ t

0
V

(
s−)

dJ (s) −
∫ t

0
V

(
s−)

dR(s),

we could show that

EQ
[∫ t

0
V

(
s−)

dM̃(s)
∣∣∣ Yt

]
= 0.

In the next step, we show that

EQ

[∫ t

0
V

(
s−)

dM(s)
∣∣∣ Yt

]
= 0.

Since
∫ t

0 V (s−) dM(s) is Ft -measurable, it follows from Remark 2.2

EQ

[∫ t

0
V

(
s−)

dM(s)
∣∣∣ Yt

]
= EQ

[∫ t

0
V

(
s−)

f ′(X(
s−))

dL0(s)
∣∣∣ Yt

]

= EQ

[∫ t

0
V

(
s−)

f ′(X(
s−))

dL0(s)
∣∣∣ Y]

.

(2.15)

By following to Bain and Crisan (2009), page 60, the proof of the part (ii) of
Lemma 3.21, similar arguments, we get

EQ

[
εtE

Q

[∫ t

0
V

(
s−)

f ′(X(
s−))

dL0(s)
∣∣∣ Y]]

= EQ

[
εt

∫ t

0
V

(
s−)

f ′(X(
s−))

dL0(s)

]

= EQ

[∫ t

0
V

(
s−)

f ′(X(
s−))

dL0(s)

]

+EQ

〈∫ t

0
iεsrs dY c(s),

∫ ·
0

V
(
s−)

f ′(X(
s−))

dL0(s)

〉
t

= EQ

[∫ t

0
V

(
s−)

f ′(X(
s−))

dL0(s)

]

+EQ
∫ t

0
iεsrs

∫ ·
0

V
(
s−)

f ′(X(
s−))〈

dY c(s), dL0(s)
〉
t = 0,

(2.16)
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where εt = 1 + ∫ t
0 iεsrs dY c(s) is a member of the total set define in Bain and

Crisan (2009), page 355, (B.19). This implies that EQ[∫ t
0 V (s−) dM(s) | Yt ] = 0

for any s ∈ [0, t]. Since X(s) and V (s) are Fs-measurable, we have

EQ[
V (s)(A0f )

(
X(s)

) | Yt

] = EQ[
V (s)(A0f )

(
X(s)

) | Ys

]
.

Since Y c(t) is Yt -measurable and is a Q-Brownian motion, it follows from Borkar
(1989), Lemma 1.2, and Corollary 2.1

EQ

[∫ t

0
V (s)g

(
X(s)

)
f

(
X(s)

)
dY c

s

∣∣∣ Yt

]

=
∫ t

0
EQ[

V (s)g
(
X(s)

)
f

(
X(s)

) | Yt

]
dY c

s (2.17)

=
∫ t

0
EQ[

V (s)g
(
X(s)

)
f

(
X(s)

) | Ys

]
dY c

s .

Due to the fact that V (s−)
∫
R+

0
[f (X(s−) + y) − f (X(s−))]ν1,z2(dy) is a Fs− -

measurable random variable and �L2 = L2(s)−L2(s
−) is independent from Fs− ,

it follows again by Corollary 2.1

EQ

[∫ t

0

∫
R+

0

V
(
s−) ∫

R+
0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

ν1,z2(dz1)η2(dz2, ds)
∣∣∣ Yt

]

=
∫ t

0

∫
R+

0

EQ

[
V

(
s−) ∫

R+
0

[
f

(
X

(
s−) + z1

) − f
(
X

(
s−))]

ν1,z2(dz1)
∣∣∣ Yt

]

× η2(dz2, ds)

=
∫ t

0

∫
R+

0

∫
R+

0

EQ
[
V

(
s−)[

f
(
X

(
s−) + z1

) − f
(
X

(
s−))]

ν1,z2(dz1) | Ys−
]

× η2(dz2, ds).

By collecting all the results, one can conclude the theorem. �

In the case where the Lévy measure of L is σ -finite, the copula has to satisfy
certain scaling properties. Namely, we have to take H such that

lim
γ→∞

H(γu,γ v)

H(γ, γ )
= H(u, v), u, v ∈ R. (2.18)

Now we can formulate the following theorem for the case where Lévy measure
of L is σ -finite.

Theorem 2.3. Let L0 be a Lévy process with symbol ψ . Let ν1 and ν2 be two
σ -finite Lévy measures such that∫

|z|≤1
|z|ν1(dz) +

∫
|z|≤1

|z|ν2(dz) < ∞. (2.19)
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Let H be a twice differentiable copula which satisfies the scaling property
(2.18). Let

ν1,z2(U) =
∫
U

h(z1, z2)ν1(dz1), U ∈ B
(
R \ {0}),

where

h(z1, z2) := ∂2

∂u1 ∂u2
H(u1, u2)

∣∣∣∣ u1=U1(z1)

u2=U2(z2)

,

and U1, U2 are the tail integrals of ν1 and ν2, respectively. Let g, b :R→R and σ :
R → R are Lipschitz continuous mappings and g ∈ C

(2)
b (R). The un-normalized

conditional density ρ is a unique solution to the equation,

〈ρt , f 〉 = 〈ρ0, f 〉 +
∫ t

0
〈ρs−, f · g〉dY c

s +
∫ t

0
〈ρs−,A0f 〉ds

+
∫ t

0

∫
R
〈ρs−,�z2f 〉η2(dz2, ds), ∀f ∈ C

(2)
b (R),

(2.20)

where η2 is the Poisson random measure associated to L2 and the operators � =
{�z : z ∈ R \ {0}}, A0 are given by

�zf (x) =
∫
R

[
f (x + z1) − f (x)

]
ν1,z(dz1), x ∈ R, z ∈ R \ {0},

A0f (x) = b(x)f ′(x) + A0f (x), x ∈ R, f ∈ C
(2)
b (R).

Here A0 is the pseudo-differential operator associated with L0.

Remark 2.4. By taking f = 1 in (2.20) and taking into account that A01 = 0,
�z1 = 0, it follows that ξ solves

ξ(t) = 1 +
∫ t

0
ρs(g) dY c

s = 1 +
∫ t

0
ρs−(1)πs(g) dY c

s

= 1 +
∫ t

0
ξ(s)πs(g) dY c

s , t ≥ 0.

Second and third equalities hold due to Kallianpur-Streibel formula and the fact
that ρs(1) = ξ(s) respectively. Hence, the inverse ς = {ς(t) : t ≥ 0} of ξ is given
by

ς(t) = ς(0) +
∫ t

0
ς

(
s−)

πs(g)2 ds −
∫ t

0
πs(g) dY c

s

= ς(0) +
∫ t

0
ς(s)3ρs(g)2 ds −

∫ t

0
ς(s)2ρs(g) dY c

s .

Since g ∈ C(2)(R), one can easily show that ρ(g) = {ρt (g) : t ≥ 0} is bounded by
|g|Cb

and is well defined. Due to this fact and the Novikov condition, we can see
that the process ς exists and well defined.
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Proof of Theorem 2.3. To start with the proof, first let us cut off the small jumps
from the Lévy process L. For any ε > 0, let νε

1 = ν1(· ∩R \ (−ε, ε)), νε
2 = ν2(· ∩

R \ (−ε, ε)), and λε
1 = νε

1(R), λε
2 = νε

2(R). We denote by Lε
1 and Lε

2 the Lévy
processes corresponding to the Lévy measures νε

1 and νε
2 , respectively. As before,

Qε be a probability measure such that

dP

dQε

∣∣∣∣
Ft

= V ε(t), t ≥ 0,

where Xε solves{
dXε(t) = b

(
Xε(t)

)
dt + dL0(t) + dLε

1(t), t > 0,

Xε(0) = Xε
0

(2.21)

and V ε solves{
dV ε(t)=V ε(t)g

(
Xε(t)

)[
dW2(t) + g

(
Xε(t)

)
dt

]
,

V ε(0) = 1.
(2.22)

Let ρε = {ρε
t : t ≥ 0} be the un-normalized conditional density process given by

ρε
t (f ) = EQε

[
V ε(t)f

(
Xε(t)

) | Yε
t

]
,

and Y ε = {Y ε(t) : t ≥ 0} be the solution to{
dY ε(t) = g

(
Xε(t)

)
dt + dLε

2(t) + dW2(t), t > 0,

Y ε(0) = Y ε
0 .

(2.23)

Notice that under the probability measure Qε , the continuous part of Y ε is a Brow-
nian motion.

Let us denote the number of jumps of Lε
2 in the time interval [0, t] by Nε(t), the

jumps themselves by {Y2,ε,i : i = 1, . . . ,Nε(t)}, and the jump times by {sε
i : i =

1, . . . ,Nε(t)}. Then,

Lε
1(t) =

Nε(t)∑
i=1

Y
1,ε,i
Y2,ε,i

, t ≥ 0,

where {Y 1,ε,i
Y2,ε,i

: i = 1, . . . ,Nε(t)} is a family of independent random variables. For

any i = 1, . . . ,Nε(t), the random variable Y
1,ε,i
Y2,ε,i

is distributed by νε
1,z/λ

ε
1 with

z = Y2,ε,i . Now following the same calculations as in the proof of Theorem 2.2,
we get

f
(
Xε(t)

) = f
(
Xε

0
) +

∫ t

0
(A0f )

(
Xε(s)

)
ds + Mε(t)

+ ∑
1≤i≤Nε(t)

f
(
Xε(

s−
i

) + Y
1,ε,i
Y2,ε,i

) − f
(
Xε(

s−
i

))
,
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where Mε is a martingale and EQ[Mε(t) | Yt ] = 0. Put

νε
1,z2

(U) =
∫
U∩[(−∞,−ε]∪[ε,∞)]

h(z1, z2)ν1(dz1), U ∈ B(R).

Similarly as in Theorem 2.2, we denote the Poisson random measure correspond-
ing to Lε

2 by ηε
2. Thus, we can write

f
(
Xε(t)

) = f
(
Xε

0
) +

∫ t

0
(A0f )

(
Xε(s)

)
ds + Mε(t)

+ ∑
1≤i≤Nε(t)

f
(
Xε(

s−
i

) + Y
1,ε,i
Y2,ε,i

) − f
(
Xε(

s−
i

))

= f
(
Xε

0
) +

∫ t

0
(A0f )

(
Xε(s)

)
ds + Mε(t)

+ ∑
1≤i≤Nε(t)

f
(
Xε(

s−
i

) + Y
1,ε,i
Y2,ε,i

) − f
(
Xε(

s−
i

))

−
∫ t

0

∫
R

∫
R

[
f

(
Xε(

s−
i

) + z1
) − f

(
Xε(

s−
i

))]
νε

1,z2
(dz1)η

ε
2(dz2, ds)

+
∫ t

0

∫
R

∫
R

[
f

(
Xε(

s−
i

) + z1
) − f

(
Xε(

s−
i

))]
νε

1,z2
(dz1)η

ε
2(dz2, ds)

= f
(
Xε

0
) +

∫ t

0
A0f

(
Xε(s)

)
ds + Mε(t) + M̃ε(t)

+
∫ t

0

∫
R

∫
R

[
f

(
Xε(

s−
i

) + z1
) − f

(
Xε(

s−
i

))]
νε

1,z2
(dz1)η

ε
2(dz2, ds).

By using same arguments in the proof of Theorem (2.2), we can show that for
t ≥ 0 we have EQε [M̃ε(t)|Yε

t ] = 0. Next, the process V ε = {V ε(t) : t ≥ 0} satisfies
under Qε the stochastic differential equation

dV ε(t) = V ε(t)g
(
Xε(t)

)
dY c(t), t > 0, V ε(0) = 1,

where Y c denotes the continuous part of Y ε and it does not depend up on ε. Since
V ε is driven by the continuous part of Y ε and the jumps times are given, there will
be no correlation terms in the formula for V ε(t). Thus, we get

f
(
Xε(t)

)
V ε(t) = f

(
Xε

0
) +

∫ t

0
V ε(

s−)
dMε(s) +

∫ t

0
V ε(

s−)
dM̃ε(s)

+
∫ t

0

∫
R

∫
R

V ε(
s−)[

f
(
Xε(

s−) + z1
) − f

(
Xε(

s−))]
× νε

1,z2
(dz1)η

ε
2(dz2, ds)

+
∫ t

0
V ε(s)f

(
Xε(s)

)
dY c(s) +

∫ t

0
V ε(s)(A0f )

(
Xε(s)

)
ds.
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Note that

Yε
t = σ

{
Yr : 0 ≤ r ≤ t, ε ≤ ∣∣�L2(r)

∣∣ < ∞}
.

Taking into account that Mε is a martingale over (�,F, (Yε
t )t≥0,Qε), the fact

that EQε [M̃ε(t)|Yε
t ] = 0 and taking the conditional expectation together with the

Fubini theorem (Applebaum (2009), Theorem 1.1.8), we get

EQε
[
f

(
Xε(t)

)
V ε(t) | Yε

t

]
= EQε

[
f

(
Xε

0
) | Y0

]
+EQε

[∫ t

0
V ε(

s−)
dMε(s)

∣∣∣ Yε
t

]
︸ ︷︷ ︸

=0

+EQε

[∫ t

0
V ε(

s−)
dM̃ε(s)

∣∣∣ Yε
t

]
︸ ︷︷ ︸

=0

+EQε

[∫ t

0
V ε(

s−)
f

(
Xε(

s−))
dY c,ε(s)

∣∣∣ Yε
t

]

+EQε

[∫ t

0
V ε(

s−)
(A0f )

(
Xε(

s−))
ds

∣∣∣ Yε
t

]

+EQε

[∫ t

0

∫
R

∫
R

V ε(
s−)[

f
(
Xε(

s−) + z1
) − f

(
Xε(

s−))]
× νε

1,z2
(dz1)η

ε
2(dz2, ds)

∣∣∣ Yε
t

]
.

By imitating the calculation (2.13) and (2.14) for∫ t

0
V ε(

s−)
dM̃ε(s) =

∫ t

0
V ε(

s−)
dJ ε(s) −

∫ t

0
V ε(

s−)
dRε(s),

we can again show that

EQε

[∫ t

0
V ε(

s−)
dM̃ε(s)

∣∣∣ Yε
t

]
= 0.

Next by following the same calculations done in (2.15) and (2.16), we can prove
that

EQε

[∫ t

0
V ε(

s−)
dMε(s)

∣∣∣ Yε
t

]
= 0.

Now, since Xε(s) is Fs-measurable we have

EQε
[
V ε(s)(A0f )

(
Xε(s)

) | Yε
t

] = EQε
[
V ε(s)(A0f )

(
Xε(s)

) | Yε
s

]
.

Note that since Y c(t) is Yε
t -measurable, we have similarly as in Theorem 2.2,

EQε

[∫ t

0
V ε(

s−)
g

(
Xε(

s−))
f

(
Xε(

s−))
dY c

s

∣∣∣ Yε
t

]

=
∫ t

0
EQε

[
V ε(

s−)
g

(
Xε(

s−))
f

(
Xε(

s−)) | Yε
s−

]
dY c

s .
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Since V ε(s−)
∫
R[f (Xε(s−

i ) + y) − f (Xε(s−
i ))]νε

1,z2
(dy) is an Fs−-measurable

random variable, L2 is a Lévy process with respect to (�,Y, (Yε
t )t≥0,Q

ε), we
obtain

EQε

[∫ t

0

∫
R

∫
R

V ε(
s−)[

f
(
Xε(

s−) + z1
) − f

(
Xε(

s−))]
νε

1,z2
(dz1)η

ε
2(dz2, ds)

∣∣∣ Yε
t

]

=
∫ t

0

∫
R
EQε

[∫
R

V ε(
s−)[

f
(
Xε(

s−) + z1
) − f

(
Xε(

s−))]
νε

1,z2
(dz1)

∣∣∣ Yε
t

]
× ηε

2(dz2, ds)

=
∫ t

0

∫
R

∫
R
EQε

[
V ε(

s−)[
f

(
Xε(

s−) + z1
) − f

(
Xε(

s−))] | Yε
s−

]
× νε

1,z2
(dz1)η

ε
2(dz2, ds).

Now collecting all the terms, we get

EQε
[
f

(
Xε(t)

)
V ε(t) | Yε

t

]
= EQε

[
f

(
Xε

0
) | Y0

] +
∫ t

0
EQε

[
V ε(s)(A0f )

(
Xε(s)

) | Yε
s

]
ds

+
∫ t

0
EQε

[
g

(
Xε(s)

)
f

(
Xε(s)

) | Yε
s

]
dY c(s)

+
∫ t

0

∫
R

∫
R
EQε

[
V ε(

s−)[
f

(
Xε(

s−) + z1
) − f

(
Xε(

s−))] | Yε
s−

]
× νε

1,z2
(dz1)η

ε
2(dz2, ds).

(2.24)

Now we would like to pass to the limit and to get the desired Zakai equation.
By Applebaum (2009), page 235, Corollary 4.3.10 and page 392, Theorem 6.5.2,
it follows Xε → X and Y ε → Y uniformly on compact interval almost surely.
Hence, the term EQε [f (Xε

0) | Y0] converges to EQ[f (X0) | Y0] as ε → 0. Fix
t ≥ 0. Because of the above fact, we apply Theorem C.1 to show that for any
s ∈ [0, t], Q-a.s.

EQε
[
V ε(s)(A0f )

(
Xε(s)

) | Yε
s

] → EQ[
V (s)(A0f )

(
X(s)

) | Ys

]
, ε → 0.

The Lebesgue dominated convergence theorem gives that∫ t

0
EQε

[
V ε(s)(A0f )

(
Xε(s)

) | Yε
s

]
ds

converges to
∫ t

0 E
Q[V (s)(A0f )(X(s)) | Ys]ds. Next, again applying Theo-

rem C.1 gives for any s ∈ [0, t] that EQε [g(Xε(s))f (Xε(s)) | Yε
s ] converges to

EQ[g(X(s))f (X(s)) | Ys]. Again the Burkholder–Gundy–Davis inequality and
the Lebesgue dominated convergence theorem gives that∫ t

0
EQε

[
g

(
Xε(s)

)
f

(
Xε(s)

) | Yε
s

]
dY c(s)
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converges to ∫ t

0
EQ

[
g

(
X(s)

)
f

(
X(s)

) | Ys

]
dY c(s)

as ε → 0. Our final goal is to prove that∫ t

0

∫
R

∫
R
EQε

[
V ε(

s−)[
f

(
Xε(

s−) + z1
) − f

(
Xε(

s−))] | Yε
s−

]
× νε

1,z2
(dz1)η

ε
2(dz2, ds)

converges to∫ t

0

∫
R

∫
R
EQ

[
V

(
s−)[

f
(
X

(
s−) + z1

) − f
(
X

(
s−))] | Ys−

]
ν1,z2(dz1)η2(dz2, ds)

as ε → 0. For the notational convenient, we use

U ε
t,z1,z2

= EQε
[
V ε(

t−
)[

f
(
Xε(

t−
) + z1

) − f
(
Xε(

t−
))] | Yε

t−
]

and

Ut,z1,z2 = EQ
[
V

(
t−

)[
f

(
X

(
t−

) + z1
) − f

(
X

(
t−

))] | Yt−
]
.

Now consider

EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

[
U ε

s,z1,z2
νε

1,z2
(dz1)η

ε
2(dz2, ds)

− Us,z1,z2ν1,z2(dz1)η2(dz2, ds)
]∣∣∣∣

≤ EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

[
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

]
× h(z1, z2)ν1(dz1)η

ε
2(dz2, ds)

∣∣∣∣
+EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

Us,z1,z2h(z1, z2)ν1(dz1)

× [
ηε

2(dz2, ds) − η2(dz2, ds)
]∣∣∣∣.

(2.25)

The first term in right-hand side gives

EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

[
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

]
× h(z1, z2)ν1(dz1)η

ε
2(dz2, ds)

∣∣∣∣
≤ EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

[
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

]
(2.26)
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× h(z1, z2)ν1(dz1)η̃
ε
2(dz2, ds)

∣∣∣∣
+EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

[
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

]
× h(z1, z2)ν1(dz1)1(−ε,ε)c (z2)ν2(dz2) ds

∣∣∣∣,
where η̃ε

2(dz2, ds) = ηε
2(dz2, ds) − νε

2(dz2) ds and (−ε, ε)c = R \ (−ε, ε). Ap-
plying the Burkholder–Gundy–Davis inequality, Hölder inequality and Jensen’s
inequality

· · · ≤ C(t)EQ

∣∣∣∣
∫ t

0

∫
R

[∫
R

(
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

)
h(z1, z2)ν1(dz1)

]2

× 1(−ε,ε)c (z2)ν2(dz2) ds

∣∣∣∣
1
2

+EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

[
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

]
h(z1, z2)ν1(dz1)

× 1(−ε,ε)c (z2)ν2(dz2) ds

∣∣∣∣
≤ C(t)

(∫ t

0

∫
R
EQ

∣∣∣∣
∫
R

(
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

)
h(z1, z2)ν1(dz1)

∣∣∣∣2

× 1(−ε,ε)c (z2)ν2(dz2) ds

) 1
2

+
∫ t

0

∫
R
EQ

∣∣∣∣
∫
R

[
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

]
h(z1, z2)ν1(dz1)

∣∣∣∣
× 1(−ε,ε)c (z2)ν2(dz2) ds.

Due to Assumption 2.19 and using simple arguments together with Theorem C.1
and Lebesgue Dominated Convergence theorem, we can show that the two terms
in above inequality, that is,

EQ

∣∣∣∣
∫
R

[
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

]
h(z1, z2)ν1(dz1)

∣∣∣∣2
and

EQ

∣∣∣∣
∫
R

[
U ε

s,z1,z2
1(−ε,ε)c (z1) − Us,z1,z2

]
h(z1, z2)ν1(dz1)

∣∣∣∣
converge to zero as ε → 0. Then by the Lebesgue Dominated Convergence the-
orem, the two terms in right-hand side of above inequality converge to zero as
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ε → 0. Let us consider the second term in the right-hand side of (2.25),

EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

Us,z1,z2h(z1, z2)ν1(dz1)
[
ηε

2(dz2, ds) − η2(dz2, ds)
]∣∣∣∣

≤ EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

Us,z1,z2h(z1, z2)ν1(dz1)

× [
η̃ε

2(dz2, ds) − η̃2(dz2, ds)
]∣∣∣∣

+EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

Us,z1,z2h(z1, z2)ν1(dz1)1(−ε,ε)(z2)ν2(dz2) ds

∣∣∣∣.

(2.27)

The Burkholder-Gundy-Davis inequality and Jensen’s inequality imply

· · · ≤ EQ

∣∣∣∣
∫ t

0

∫
R

∣∣∣∣
∫
R

Us,z1,z2h(z1, z2)ν1(dz1)

∣∣∣∣21(−ε,ε)(z2)ν2(dz2) ds

∣∣∣∣
1
2

+EQ

∣∣∣∣
∫ t

0

∫
R

∫
R

Us,z1,z2h(z1, z2)ν1(dz1)1(−ε,ε)(z2)ν2(dz2) ds

∣∣∣∣
≤

[∫ t

0
EQ

∣∣∣∣
∫
R

∫
R

Us,z1,z2ν1,z2(dz1)

∣∣∣∣21(−ε,ε)(z2)ν2(dz2) ds

] 1
2

+
∫ t

0

∫
R
EQ

∣∣∣∣
∫
R

Us,z1,z2ν1,z2(dz1)

∣∣∣∣1(−ε,ε)(z2)ν2(dz2) ds.

Again, arguing as before and using assumption 2.19, we see that the two terms in
right-hand side of the above inequality go to zero as ε → 0.

Summarizing, we have shown that for any t ≥ 0, EQε [f (Xε(t))V ε(t) | Yε
t ] con-

verges to EQ[f (X(t))V (t) | Yt ] Q-a.s. It is straightforward to see that the family
of processes [0, T ] � t �→ EQε [f (Xε(t))V ε(t) | Yε

t ] is tight. Hence, we know by
Theorem 7.8 by Ethier and Kurtz (1986), that the process EQε [f (Xε(·))V ε(·) | Yε· ]
converges to the process EQ[f (X(·))V (·) | Y·] in D([0, T ];R). �

3 Sufficient conditions for solvability of the Zakai equation

In practice, one is often interested in entities like

P
(
X(t) ≥ a

)
, a ∈R,

where a is a given threshold. This correspond to the case where f = 1[a,∞). Un-
fortunately, in this case f /∈ C(2)(R) and we cannot expect that equation (2.20) is
well-posed. One method to handle this problem is to treat equation (2.20) by the
semigroup approach. Let us denote the infinitesimal generator of the process L0
with the drift (that is

∫ ·
0 b(X(s)) ds) by A0. If A0 generates an analytic semigroup

with good smoothing property, then one can show the existence of a measure val-
ued solution to (2.20) even for the case where f = 1[a,∞). If the driving process
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L0 of the state process X is a Brownian motion, then the operator A0 in the Zakai
equation (2.20) is the Laplace operator with first order operator. However, if L0 is
a Lévy process of pure jump type,1 then A0 will be a pseudo differential operator.

There exists several approaches to deal with pseudo-operators arising from Lévy
processes. One way is to define the operator A0 associated with the symbol φA0 is
given by2

φA0(ξ) := ib(x)ξ +
∫
R

(
eiξz − 1

)
ν0(dz), ξ ∈ R.

Here, L0 is a Lévy process of pure jump type with intensity ν0. For a short account
on the associated symbol to a Lévy process we refer to Fernando Pani, Hausen-
blas and Razafimandimby (2017). More details can be found in the article of Hoh
(1998), and in the books of Jacob (2000, 2002, 2005).

It can be shown that A0 with domain D(A0) generates a strongly continuous
semigroup TA0 = (TA0(t))t≥0 on L2(Rd). This semigroup can be extended (or
restricted) to a semigroup acting on Hs

2 (Rd), s ∈ R. By analyzing the symbol
φA0 , one gets information about the smoothing properties of the semigroup TA0 =
(TA0(t))t≥0.

Definition 3.1 (Compare Fernando Pani, Hausenblas and Razafimandimby
(2017)). Let L be a Lévy process with symbol ψ and ψ ∈ Ck(Rd \ {0}) for some
k ∈ N0. Then the Blumenthal–Getoor index of order k is defined by

β := inf
λ>0|α|≤k

{
λ : lim|ξ |→∞

|∂α
ξ ψ(ξ)|

|ξ |λ−|α| = 0
}
.

Let

β+ := inf
λ>0|α|≤k

{
λ : lim sup

|ξ |→∞
|∂α

ξ ψ(ξ)|
|ξ |λ−|α| = 0

}
,

be the upper and

β− := inf
λ>0|α|≤k

{
λ : lim inf|ξ |→∞

|∂α
ξ ψ(ξ)|

|ξ |λ−|α| = 0
}
,

be the lower Blumenthal–Getoor index β− of order k. Here α denotes a multi-
index. If k = ∞ then Blumenthal–Getoor index of infinity order is defined by

β := inf
λ>0

α is a muliindex

{
λ : lim|ξ |→∞

|∂α
ξ ψ(ξ)|

|ξ |λ−|α| = 0
}
.

1We say that a Lévy process is of pure jump type if it has no Gaussian part.
2If A0 is the Laplacian, then φA0

(ξ) = ξ2.
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In many cases the index can be calculated directly from the symbol and is
known. A sequence of examples of the generalized Blumenthal–Getoor index,
like the symmetric α-stable process, tempered α-stable process, Meixner process
and normal inverse Gaussian process are given in Fernando Pani, Hausenblas and
Razafimandimby (2017).

Depending on the lower index of L0 and the marginal Lévy measures ν1 and
ν2 of the Lévy process L, one can prove that there exists a unique measure valued
process π = {πt : t ≥ 0} such that

πt(f ) = E
[
f

(
X(t)

) | Yt

]
, f ∈ Bb(R).

Theorem 3.1. Let us assume that

• X0 has distribution function F , which has a L2-integrable density with respect
to the Lebesgue measure;

• the symbol ψ0 associated to L0 has lower Blumenthal–Getoor index α−
0 > 1 of

order two;

• g ∈ Hδ
2 (R) ∩ C

(2)
b (R) with δ > 1 − α−

0
2 ;

• the symbol φ�z associated to the operator �z, has upper Blumenthal–Getoor
index β+ ≤ 1 of order two;

• there exists some function k :R+
0 →R+

0 , k(0) = 0, continuous at 0, such that

lim sup
|ξ |→∞

|φ�z2
(ξ)|

|ξ |β+ ≤ k(z2), z2 ∈ R; (3.1)

• for simplicity, we take L1 and L2 with positive jumps such that∫
|z1|≤1

|z1|ν1(dz1) +
∫
|z2|≤1

|z2|ν2(dz2) < ∞.

In addition, if there exists a number p ∈ (1,2] such that

β+

α−
0

<
1

p
and

∫
|z2|≤1

∣∣k(z2)
∣∣pν2(dz2) < ∞, (3.2)

then there exists a unique normalized conditional density π = {πt : t ≥ 0} such
that

πt(f ) = E
[
f

(
X(t)

) | Yt

]
, f ∈ Bb(R).

Moreover for f ∈ Bb(R), πt(f ) is given by

πt(f ) = σ(t) · ρt (f ),

where σ = {σ(t) : t ≥ 0} solves

σ(t) = 1 +
∫ t

0
ρs−(g) dY c

s , t ≥ 0,
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and ρ = {ρt : t ≥ 0} is the unique solution of the following equation⎧⎨
⎩dρt = A∗

0ρt dt + ρtg dY c
t +

∫
R

�∗
z2

ρt−η2(dz2, dt),

ρ0 = π0,
(3.3)

where A∗
0 and �∗

z2
are adjoint operators of A0 and �z2 .

The adjoint operators A∗
0 and �∗

z2
are defined as follows. Let σA0(x, ξ) be the

symbol of the operator A0. Therefore by using Shubin (2001), page 26, the adjoint
operator representation (3.37), the symbol of the operator A∗

0 can be read as

σA∗
0
(x, ξ) ∼ ∑

|α|≤1

∂α
ξ Dα

x σA0(x, ξ)

α! .

Similarly, the symbol φ∗
z (ξ) of the adjoint operator �∗

z2
is given by

φ∗
z (ξ) ∼ ∑

|α|≤s

∂α
ξ φz(ξ)

α! .

Proof of Theorem 3.1. We apply Theorem A.1 to get an H
1
2

2 (R)-valued solu-
tion, and then we show the existence of normalized conditional density by using
the Getoor’s lemma (Getoor (1975), Proposition 4.1, or Fernando and Sritharan
(2013), Lemma 3.9).

In fact, if we take � = 1
2 , then one can easily see that (3.1) and (3.2) imply

that A := A∗ and G := �∗ satisfy the assumptions of Theorem A.1. By Runst and
Sickel (1996), Theorem 1, page 190, we have

|ug|
H

�+δ− 1
2

2

≤ |u|H�
2
|g|Hδ

2
, u ∈ H

�
2 (R) and g ∈ Hδ

2 (R).

Therefore, by setting �(u) = u · g we also see that � satisfies the assumptions of
Theorem A.1 as well. Hence, from these observations we see that if the assump-
tions of Theorem 3.1 hold, then it follows from Theorem A.1 that there exists a

H
1
2

2 (R)-valued process ρ, such that for any t ≥ 0

ρt (f ) = EQ[
V (t)f

(
X(t)

) | Yt

]
, f ∈ B(R).

Second, let us fix t > 0 and set G = Yt as the σ -field on � and define the operator
T by

Tf (ω) = E
[
f

(
X(t)

) | Yt

]
(ω).

It is easy to check that T is a.s. linear and positive. Let {fn : n ∈ N} ⊂ Bb(R) be a
sequence with 0 ≤ fn ↑ f . But if fn → f in L∞(R), then one knows by Sobolev

embedding theorem that fn → f in H
− 1

2
2 (R). Since for t > 0 ρt is H

1
2

2 (R)-valued
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un-normalized density measure, ρt (fn) → ρt (f ). Here, one has to take into ac-
count that the density of X0 belongs ρ0 ∈ L2(R). In addition, since ρt (1) is well
defined and invertible (see Remark 2.4), we have

πt(fn) = ρt (fn)

ρt (1)
→ ρt (f )

ρt (1)
= πt(f ).

That is πt(fn) → πt(f ). Since for fn ↑ f , f − fn is a.s. positive, it follows that
T (f − fn) is also a.s. positive and, therefore, Tfn ↑ Tf .

Now, thanks to these two points we can infer from Getoor (1975), Proposi-
tion 4.1, or Fernando and Sritharan (2013), Lemma 3.9, that there exists a ker-
nel

μt : (�,Yt ) → (
R,B(R)

)
,

such that

E
[
f

(
X(t)

) | Yt

]
(ω) =

∫
R

f (u)μt(ω, du), f ∈ Bb(R). �

In the following corollary, we present an example to illustrate the applicability
of Theorem 3.1.

Corollary 3.1. Let L0 be a tempered α-stable Lévy process with α > 1 with Lévy
measure

ν(U) =
∫
U

|z|−α−1e−|z| dz, U ∈ B(R),

and ν1, ν2 are tempered β-stable subordinators, β ≤ 1, with Lévy measure

ν(U) =
∫
U

|z|−β−1e−|z| dz, U ∈ B(R).

Let g ∈ Hδ
2 (R)∩C

(2)
b (R) ⊆ C

(2)
b (R) with δ > 1− α−

0
2 . Let H be the Clayton copula

with index θ > 0. If the distribution of X0 has a L2 integrable density with respect
to the Lebesgue measure, then there exists a unique family of probabilities kernels
π = {πt : t ≥ 0} such

πt(f ) = E
[
f

(
X(t)

) | Yt

]
, f ∈ Bb(R).

Moreover for f ∈ B(R) the kernel πt(f ) is given by

πt(f ) = σ(t) · ρt (f ),

where σ = {σ(t) : t ≥ 0} solves

σ(t) = 1 +
∫ t

0
ρs−(g) dY c

s , t ≥ 0,
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and ρ = {ρt : t ≥ 0} solves⎧⎨
⎩dρt = A∗

0ρt dt + ρthdY c
t +

∫
R

�∗
z2

ρt−η2(dz2, dt),

ρ0 = π0,
(3.4)

where

�zf (x) =
∫
R

[
f (x + z1) − f (x)

]
ν1,z(dz1), z ∈R+, x ∈ R, f ∈ C

(2)
b (R).

Proof. By Theorem 1 of Runst and Sickel (1996), page 190, we have∣∣u(r)g
∣∣2
H

�−γ /α
−
0

2

≤ ∣∣u(r)
∣∣
H

�
2
|g|Hδ

2
.

Now fix z ∈ R \ {0}. In the first step, we will investigate the symbol φ�z of
�z. The operator �z is reduced to following the form with the Clayton copula for
f ∈ L2(R),

(�zf )(x) = (1 − θ)

∫ ∞
0

[
f (x + y) − f (x)

]
× (∣∣U1(y)

∣∣−θ + ∣∣U2(z)
∣∣−θ )− 1

θ
−2∣∣U1(y)

∣∣−θ−1∣∣U2(z)
∣∣−θ−1

ν1(dy).

For us, it is important to know the upper index of the symbol φ�z associated to �z.
The symbol φ�z is given by

φ�z(ξ) = (1 + θ)

∫ ∞
0

[
eiξy − 1

]
× (∣∣U1(y)

∣∣−θ + ∣∣U2(z)
∣∣−θ )− 1

θ
−2∣∣U1(y)

∣∣−θ−1∣∣U2(z)
∣∣−θ−1

ν1(dy).

By the Clayton copula, we get

φ�z(ξ) = (1 + θ)
∣∣U2(z)

∣∣−θ−1

×
∫ ∞

0

[
eiξy − 1 − iξy

](∣∣U1(y)
∣∣−θ + ∣∣U2(z)

∣∣−θ )− 1
θ
−2

× ∣∣U1(y)
∣∣−θ−1

ν1(dy) + (1 + θ)
∣∣U2(z)

∣∣−θ−1

×
∫ ∞

0
iξy

(∣∣U1(y)
∣∣−θ + ∣∣U2(z)

∣∣−θ )− 1
θ
−2∣∣U1(y)

∣∣−θ−1
ν1(dy)

= (1 − θ)
∣∣U2(z)

∣∣−θ−1 × 2(iξ)2
∫ ∞

0

∫ y

0

∫ v

0

eiξu dudv
(∣∣U1(y)

∣∣−θ + ∣∣U2(z)
∣∣−θ )− 1

θ
−2∣∣U1(y)

∣∣−θ−1
f1(y) dy

+ (1 + θ)
∣∣U2(z)

∣∣−θ−1

×
∫ ∞

0
iξy

(∣∣U1(y)
∣∣−θ + ∣∣U2(z)

∣∣−θ )− 1
θ
−2∣∣U1(y)

∣∣−θ−1
ν1(dy),
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where ν1(dy) = f1(y) dy. One gets by the Fubini’s theorem

I1(z) = 2(1 + θ)
∣∣U2(z)

∣∣−θ−1
(iξ)2 lim

R→∞

∫ R

0
eiξy

×
[∫ ∞

y

∫ ∞
v

(∣∣U1(u)
∣∣−θ + ∣∣U2(z)

∣∣−θ )− 1
θ
−2∣∣U1(u)

∣∣−θ−1
f1(u) dudv

]
dy.

Applying a version of Corput’s lemma (see Stein (1993), page 334—(6)), we infer
that∣∣I1(z)

∣∣ ≤ 2(1 + θ)
∣∣U2(z)

∣∣−θ−1|ξ | lim
R→∞

∣∣∣∣
∫ R

0
eiξy dy

∣∣∣∣
×

∣∣∣∣
∫ ∞

0

∫ ∞
v

(∣∣U1(u)
∣∣−θ + ∣∣U2(z)

∣∣−θ )− 1
θ
−2∣∣U1(u)

∣∣−θ−1
f1(u) dudv

∣∣∣∣
≤ 2(1 + θ)

∣∣U2(z)
∣∣−θ−1|ξ |

×
∣∣∣∣
∫ ∞

0

∫ ∞
v

(∣∣U1(u)
∣∣−θ + ∣∣U2(z)

∣∣−θ )− 1
θ
−2∣∣U1(u)

∣∣−θ−1
f1(u) dudv

∣∣∣∣.
Substitution with m = U1(u) gives the estimate∣∣I1(z)

∣∣ ≤ 2(1 + θ)
∣∣U2(z)

∣∣−θ−1

× |ξ |
∣∣∣∣
∫ ∞

0

∫ 0

U1(v)

(|m|−θ + ∣∣U2(z)
∣∣−θ )− 1

θ
−2|m|−θ−1 dmdv

∣∣∣∣,
from which we deduce that∣∣I1(z)

∣∣ ≤ 2(1 + θ)
∣∣U2(z)

∣∣−θ−1|ξ |
∣∣∣∣
∫ ∞

0

(∣∣U1(v)
∣∣−θ + ∣∣U2(z)

∣∣−θ )− 1
θ
−1

dv

∣∣∣∣.
Again, substitution with l = U1(v) gives∣∣I1(z)

∣∣ ≤ 2(1 + θ)
∣∣U2(z)

∣∣−θ−1|ξ |
×

∣∣∣∣
∫ ∞

0

(|l|−θ + ∣∣U2(z)
∣∣−θ )− 1

θ
−1 1

f1(U
−1
1 (l))

dl

∣∣∣∣.
Observe, we have

U−1
1 (l) = β

1
β l−1/β.

Since f1(y) = y−1−β we get for any γ > 0

g(l) := 1

f1(U
−1
1 (l))

= Cβl
− 1

β
−1

.

Thus, we can write

∣∣I1(z)
∣∣ ≤ 2(1 + θ)Cβ |ξ |

∫ ∞
0

(( |l|
|U2(z)|

)−θ

+ 1
)− 1

θ
−1

l
− 1

β
−1

dl.
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Substitution gives

∣∣I1(z)
∣∣ ≤ 2(1 + θ)Cβ |ξ |

∫ ∞
0

(
u−θ + 1

)− 1
θ
−1(

uU2(z)
)− 1

β
−1

U2(z) du

≤ 2(1 + θ)Cβ |ξ |∣∣U2(z)
∣∣− 1

β

∫ ∞
0

(
u−θ + 1

)− 1
θ
−1

u
− 1

β
−1

du.

Now consider,∣∣I2(z)
∣∣ ≤ 2(1 + θ)

∣∣U2(z)
∣∣−θ−1

×
∣∣∣∣
∫ ∞

0
iξy

(∣∣U1(y)
∣∣−θ + ∣∣U2(z)

∣∣−θ )− 1
θ
−2∣∣U1(y)

∣∣−θ−1
f1(y) dy

∣∣∣∣.
Substitution with v = U1(y) gives the estimate

∣∣I2(z)
∣∣ ≤ 2(1 + θ)β

1
β

∣∣U2(z)
∣∣−θ−1|ξ |

×
∣∣∣∣
∫ ∞

0

(|v|−θ + ∣∣U2(z)
∣∣−θ )− 1

θ
−2|v|−θ− 1

β
−1

dv

∣∣∣∣
= 2(1 + θ)β

1
β

∣∣U2(z)
∣∣θ |ξ |

×
∣∣∣∣
∫ ∞

0

(( |v|
|U2(z)|

)−θ

+ 1
)− 1

θ
−2

|v|−θ− 1
β
−1

dv

∣∣∣∣.
Now take u = |v|

|U2(z)| as a substitution to obtain,

∣∣I2(z)
∣∣ ≤ 2(1 + θ)β

1
β

∣∣U2(z)
∣∣− 1

β |ξ |
×

∫ ∞
0

(
u−θ + 1

)− 1
θ
−2

u
−θ− 1

β
−1

du.

Since U2(z) = β|z|−β we have∣∣I1(z) + I2(z)
∣∣ ≤ 2Ĉ|ξ ||z|,

where

Ĉ = 2(1 + θ)

(
Cβ

∫ ∞
0

(
u−θ + 1

)− 1
θ
−1

u
− 1

β
−1

du

+ β
1
β

∫ ∞
0

(
u−θ + 1

)− 1
θ
−2

u
−θ− 1

β
−1

du

)
.

Since β ≤ 1, we have∫
|z|≤1

k2(z)
pν2(dz) =

∫ 1

−1
|z|p|z|−β−1 dz < ∞,
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for any p > 1. This shows that the upper index of �z is 1. Since α > 1, there exists
a number p > 1 such that

β+

α− <
1

p
.

By the assumptions, the law of X0 has a density function F which is integrable
and ρ0(f ) = ∫

R ρ0(x)f (x) dx. Therefore, we have ρ0 ∈ L2(R). Hence, by Theo-
rem 3.1 one can conclude the proof of Corollary 3.1. �

Appendix A: The Zakai equation as a stochastic evolution equation

In this appendix, we treat the Zakai equation as a stochastic evolution equation
on a Hilbert space and establish the existence and uniqueness of its mild solution.
For doing so, let X be a Hilbert space, A be a possibly unbounded operator gen-
erating an analytic C0 semigroup (TA(t))t≥0 on X. Let η be a time homogenous
Poisson random measure with Lévy measure ν on a measurable space (Z,Z) over
a probability space (�,G, (Gt )t≥0,Q) and B = {B(t) : t ≥ 0} be a 1-dimensional
Brownian motion defined over the same filtered probability space. Let f :X →X,
� :X →X be two mappings and G : [0, T ]×X×R →X be a progressively mea-
surable mapping. Consider the following equation with random initial data u0:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
du(t) = (

Au(t) + f
(
u(t)

))
dt + �

(
u(t)

)
dB(t)

+
∫
R

G
(
t, u

(
t−

)
, z

)
η̃(dz, dt),

u(0) = u0 ∈ X, P-a.s.,

(A.1)

where η̃(dz, dt) = η(dz, dt) − ν(dz) dt is the compensated Poisson random mea-
sure. Now we define the concept of solution we have in mind.

Definition A.1. We call a stochastic process u = {u(t) : t ≥ 0} a mild solution to
(A.1), if u is càdlàg in X and satisfies P-a.s.

u(t) = u0 +
∫ t

0
TA(t−r)f

(
u(r)

)
dr

+
∫ t

0
TA(t − r)�

(
u(r)

)
dB(r) +

∫ t

0

∫
R

TA(t − r)G
(
r, u

(
r−)

, z
)
η̃(dz, dr).

We state and prove the following result.

Theorem A.1. Fix � ∈ R. Let us assume that

• there exists some �0 > −1 such that u0 ∈ H
�0
2 (R), P a.s.;

• the operator A has symbol ψ with lower Blumenthal–Getoor index α−
0 ;
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• there exists a δf < α−
0 and a constant Cf > 0 with∣∣f (x) − f (y)

∣∣
H

�−δf
2

≤ Cf |x − y|H�
2
, x, y ∈ H

�
2 (R);

• there exists a δ� <
α−

0
2 and a constant C� > 0 such that∣∣�(x) − �(y)

∣∣
H

�−δ�
2

≤ C�|x − y|H�
2
, x, y ∈ H

�
2 (R);

• there exists β+ ≥ 0 and some q ∈ [1,2] such that the operator G satisfies the
following inequality∫

|z|≤1

∣∣G(r, x, z) − G(r, y, z)
∣∣q
H

�−β+
2 (R)

ν(dz) ≤ CG|x − y|q
H

�
2
, (A.2)

y, x ∈ H
�
2 (R) and for |z| ≥ 1, r ∈ [0, T ],∣∣G(r, x, z) − G(r, x, z)

∣∣
H

�−β+
2 (R)

≤ CG|x − y|Hρ
2
, y, x ∈ H

�
2 (R), r ∈ [0, T ].

(A.3)

In addition, if

� − �0 <
1

q
and

β+

α−
0

<
1

q
,

then, there exists a mild solution u belonging P-a.s. to D((0, T ],H�
2 (R)) ∩

D([0, T ];H�0
2 (R)) of the stochastic evolution equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
du(t) = (

Au(t) + f
(
u(t)

))
dt + �

(
u(t)

)
dB(t)

+
∫
R

G
(
t, u

(
t−

)
, z

)
η̃(dz, dt),

u(0) = u0, P-a.s.

(A.4)

with random initial data u0 ∈ H
ρ0
2 (R).

Proof. First, we tackle the case where the q-moments are bounded, that is, we
suppose ∫ ∣∣G(r, x, z) − G(r, y, z)

∣∣q
H

�−β+
2 (R)

ν(dz) ≤ CG|x − y|q
H

�
2
, (A.5)

for y, x ∈ H
�
2 (R), r ∈ [0, T ]. Let � < �0 + 1

q
and

M
q
λ,�

([0, T ] × �;R) :=
{
u : [0, T ] × � → R, u is progressively measurable

and E

∫ T

0
e−λt

∣∣u(t)
∣∣q
H

�
2 (R)

dt < ∞
}
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equipped with the norm

|u|Mq
λ,�

:=
(
E

∫ T

0
e−λt

∣∣u(t)
∣∣q
H

�
2 (R)

dt

) 1
q

, u ∈ M
q
λ,�

([0, T ] × �;R)
.

Now, the existence of the mild solution will be established by making use of Ba-
nach fixed point theorem (see, e.g., Hausenblas (2005)). For any λ > 0 let us define
the operator

I :Mq
λ,�

([0, T ] × �;R) →M
q
λ,�

([0, T ] × �;R)
by

I(u)(t) = TA(t)u0 +
∫ t

0
TA(t−r)f

(
u(r)

)
dr +

∫ t

0
TA(t − r)�

(
u(r)

)
dB(r)

+
∫ t

0

∫
|z|≤1

TA(t − r)G
(
r, u

(
r−)

, z
)
η̃(dz, dr), t ≥ 0,

and u ∈ M
q
λ,�([0, T ] × �;R). First, we have to show that I maps Mq

λ,�([0, T ] ×
�;R) into itself. Since the symbol of ψ0 has a Blumenthal–Getoor lower index α−

0 ,
Theorem 2.1 in Fernando Pani, Hausenblas and Razafimandimby (2017) implies
that for γ ≥ 0 and δ ∈ R

∣∣TA(t)u0
∣∣
H

δ−γ
2 (R)

≤ Ct
− γ

α
−
0 |u0|Hδ

2 (R), u0 ∈ Hδ
2 (R). (A.6)

Hence,

E

∫ T

0
e−λr

∣∣TA(r)u0
∣∣q
H

�
2

dr

≤ CE

∫ T

0
e−λrr

− q(ρ−ρ0)

α
−
0 |u0|q

H
ρ0
2

dr ≤ C

λ
1− q(ρ−ρ0)

α
−
0

E|u0|�
H

�0
2

.

The Minkowski’s integral inequality and the assumption regarding on f give for
the second term

E

∫ T

0
e−λt

∣∣∣∣
∫ t

0
TA(t−r)f

(
u(r)

)
dr

∣∣∣∣q
H

�
2

dt

≤
∫ T

0
e−λtE

(∫ t

0

∣∣TA(t−r)f
(
u(r)

)∣∣
H

�
2

dr

)q

dt

≤ Cq
∫ T

0
E

(∫ t

0
e
− λ(t−r)

q (t − r)
− δf

α
−
0 e

− λr
q

∣∣f (
u(r)

)∣∣
H

�−δf
2

dr

)q

dt

≤ (CCf )q
∫ T

0
E

(∫ t

0
e
− λ(t−r)

q (t − r)
− δf

α
−
0 e

− λr
q

(
1 + ∣∣u(r)

∣∣
H

�
2

)
dr

)q

dt.
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Applying Young’s inequality for the convolution term gives

E

∫ T

0
e−λt

∣∣∣∣
∫ t

0
TA(t−r)f

(
u(r)

)
dr

∣∣∣∣q
H

�
2

dt

≤ (CCf )q
∫ T

0
e
− λr

q r
− δf

α
−
0 dr ·

∫ T

0
e−λrE

(
1 + ∣∣u(r)

∣∣
H

�
2

)q
dr

≤ C1

λ
1− δf

α
−
0

·
∫ T

0
e−λrE

(
1 + ∣∣u(r)

∣∣
H

�
2

)q
dr < ∞,

where C1 = (CCf )qq
1− δf

α
−
0

∫ λT
q

0 e−θ θ
− δf

α
−
0 dθ . For the third term, we get

E

∫ T

0

[∫ t

0

∣∣e− λ(t−r)
q TA(t − r)e

− λr
q �

(
u(r)

)∣∣2
H

�
2

dr

] q
2
dt

≤ CqE

∫ T

0

[∫ t

0
(t − r)

− 2δ�

α
−
0 e

− 2λ(t−r)
q e

− 2λr
q

∣∣�(
u(r)

)∣∣2
H

�− δ�

α
−
0

2

dr

] q
2
dt.

By the assumption on �, we can infer that

· · · ≤ (CC�)qE

∫ T

0

[∫ t

0
(t − r)

− 2δ�

α
−
0 e

− 2λ(t−r)
q e

− 2λr
q

(
1 + ∣∣u(r)

∣∣
H

�
2

)2
dr

] q
2
dt.

Then applying Young’s inequality for the convolution

· · · ≤ (CC�)q
∫ T

0
r
− 2δ�

α
−
0 e

− 2λr
q dr ·

∫ T

0
e−λrE

(
1 + ∣∣u(r)

∣∣
H

�
2

)q
dr.

Hence, we have

E

∫ T

0
e−λt

∣∣∣∣
∫ t

0
TA(t − r)�

(
u(r)

)
dW(r)

∣∣∣∣q
H

�
2

dt

≤ C2

λ
1− 2δ�

α
−
0

∫ T

0
e−λtE

(
1 + ∣∣u(t)

∣∣)q
H

�
2

dt < ∞,

where C2 = (CC�)q(q/2)
1− 2δ�

α
−
0

∫ 2λT
q

0 e−θ θ
− δ�

α
−
0 dθ . It remains to calculate the

fourth term. By the assumptions on G and A, we get∫
R

∣∣TA(t)G(r, x, z)
∣∣q
H

ρ
2 (Rd )

ν(dz)

≤ Cqt
−q

β+
α
−
0

(
1 + |x|H�

2

)q
, x ∈ H

�
2 (R).

(A.7)
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In particular, if

2
β+

α−
0

< 1

one can deal with the fourth term as follows. Consider first,

E

∫ T

0

[∫ t

0

∫
R

∣∣e− λ(t−r)
q TA(t − r)e

− λr
q G

(
r, u(r), z

)∣∣2
H

�
2
ν(dz) dr

] q
2
dt

≤ (CCG)qE

∫ T

0

[∫ t

0
(t − r)

− 2β+
α
−
0 e

− 2λ(t−r)
q e

− 2λr
q

(
1 + ∣∣u(r)

∣∣
H

�
2

)2
dr

] q
2
dt.

By following similar argument as in Brownian term, we have

E

∫ T

0
e−λt

∣∣∣∣
∫ t

0

∫
R

TA(t − r)G
(
r, u

(
r−)

, z
)
η̃(dz, dr)

∣∣∣∣q
H

�
2

dt

≤ C3

λ
1− 2β+

α
−
0

∫ T

0
e−λtE

(
1 + ∣∣u(t)

∣∣)q
H

�
2

dt < ∞,

where C3 = (CCG)q(q/2)
1− 2β+

α
−
0

∫ 2λT
q

0 e−θ θ
− β+

α
−
0 dθ . Then collecting all estimates

yields that I maps Mq
λ,�([0, T ] × �;R) into itself.

Next, we will show that there exists a λ > 0 such that the operator I :
M

q
λ,�([0, T ] × �;R) → M

q
λ,�([0, T ] × �;R) is a strict contraction. To show the

claim, let u, v ∈ M
q
λ,�([0, T ] × �;R). Then∣∣I(u) − I(v)

∣∣q
M

q
λ,�

≤
∫ T

0
e−tλE

∣∣∣∣
∫ t

0
TA(t − r)

(
�

(
u(r)

) − �
(
v(r)

))
dB(r)

∣∣∣∣q
H

�
2

dt

+
∫ T

0
e−tλE

∣∣∣∣
∫ t

0

∫
R

TA(t − r)
(
G

(
r, u

(
r−)

, z
)

− G
(
r, v

(
r−)

, z
))

η(dz, dr)

∣∣∣∣q
H

�
2

dt

+
∫ T

0
e−tλE

∣∣∣∣
∫ t

0
TA(t − r)

(
f

(
u(r)

) − f
(
v(r)

))
dr

∣∣∣∣q
H

�
2

dt.

Then by following similar arguments as in previous calculation, we can easily
show that,

∣∣I(u) − I(v)
∣∣q
M

q
λ,�

≤ Ĉ

λε
|u − v|q

M
q
λ,�

,
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where Ĉ = max{C1,C2,C3} and ε = min{1 − δf

α−
0
,1 − 2δ�

α−
0

,1 − 2β+
α−

0
}. Hence I is

a strict contraction for λ sufficiently large.
To conclude the proof of the theorem we show that u ∈ D((0, T ],H�

2 (R)) ∩
D([0, T ];H�0

2 (R)). For this purpose, we consider the stochastic convolution term
with respect to the Brownian term, that is,∫ t

0
TA(t − r)�

(
u(r)

)
dB(r).

The continuity of this term follows by DaPrato and Zabczyk (1992), Theorem 5.9,
page 127. It remains to investigate the càdlàg property of∫ t

0

∫
R

TA(t − r)G
(
r, u

(
r−)

, z
)
η̃(dz, dr).

But Proposition 1.3 in Hausenblas and Seidler (2008) leads to

E

∣∣∣∣
∫ t

0

∫
R

TA(t − r)G
(
r, u

(
r−)

, z
)
η̃(dz, dr)

∣∣∣∣q
H

�−β+
2

≤ E

∫ t

0

∫
R

∣∣G(
r, u(r), z

)∣∣q
H

�−β+
2

ν(dz) dr.

Since for any z ∈ R0+, G(·, ·, z) : H
�
2 (R) → H

�−β+
2 (R) is bounded, the càdlàg

property follows.
In previous analysis, we assumed that q-moments are bounded of the jump term

(see (A.5)) to construct the solution to (A.4) using fixed point method. In general,
we should only consider small jumps with the assumption (A.5) and prove the
existence of the solution by using fixed point method, since if we allow large jumps
to occur, then the corresponding jump integral may blow up and the fixed point
method will collapse. Notice that the random jump times with jump size larger than
one are independent of the σ -algebra generated by small jumps (size less than one)
and Brownian motion. In particular, the Poisson random measure is independently
scattered, or in other words, for any U ∈ B(R) the processes η(U ∩(−1,1)×[0, t])
and η(U ∩ R \ (−1,1) × [0, t]) are independent. Therefore, now we assume that
(A.5) holds with only small jumps (size less than one). Let {Ti : i = 1, . . . , n}
be the random jump times (stopping times) with the size of the jumps are larger
than one. Previous analysis guarantees that there exists a û ∈D((0, T1),H

�
2 (R)) ∩

D([0, T1);H�0
2 (R)), which solves⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dû(t) = (
Aû(t) + f

(
û(t)

))
dt + �

(
û(t)

)
dB(t)

+
∫
|z|<1

G
(
t, û

(
t−

)
, z

)
η̃(dz, dt)

−
∫
|z|≥1

G
(
t, û(t), z

)
ν(dz) dt,

û(0) = û0 ∈X, P-a.s.

(A.8)
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We follow interlacing criteria (see Theorem 2.5.1 in Applebaum (2009)) to con-
struct the solution over whole interval [0, T ].

Now we recursively construct the solution u = un of (A.4) over whole interval
[0, T ] as follows. Define on [0, T1]

u1(t) =
{
û(t) for t < T1,

û
(
T −

1

) + G
(
T −

1 , û
(
T −

1

)
,�P (T1)

)
for t = T1,

(A.9)

where P(t) = ∫
|z|≥1 zη(dz, dt) is the compound Poisson process. Now suppose

that P{ω ∈ � : T1 < ∞} = 1. Define ū(0) = u1(T1), B̄(t) = B(T1 + t), η̄(·, t) =
η(·, T1 + t) and F̄t = FT1+t . Let P̄ (t) = ∫

|z|≥1 zη̄(dz, dt) be the compound Pois-
son process which starts from time T1.

Since we don’t have jumps with size larger than one during the time in-
terval (T1, T2), from previous analysis there exists a solution ū(t − T1) ∈
D((T1, T2),H

�
2 (R)) ∩D([T1, T2);H�0

2 (R)). Then,

u2(t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1(t) for t ≤ T1,

ū(t − T1) for T1 ≤ t ≤ T2,

ū
(
(T2 − T1)

−)
+ G

(
(T2 − T1)

−, ū
(
(T2 − T1)

−)
,�P̄ (T2)

)
for t = T2.

(A.10)

Since we have a finite number of large jumps with size bigger than one over [0, T ]
almost surely, by repeating the above process n times, we can obtain u = un ∈
D((0, T ],H�

2 (R)) ∩D([0, T ];H�0
2 (R)) which solves (A.4). �

Appendix B: Lévy copulas

Lévy copulas is a general concept to capture jump dependency in multivariate
Lévy processes and is widely used in finance. In this section, we only recall short
facts about copulas, pair copulas, Lévy processes, and the Lévy copula concept.
Detailed treatment of copulas and Lévy copulas can be found in Cherubini, Lu-
ciano and Vecchiato (2004), Nelsen (2006), Malevergne and Sornette (2006) and
Cont and Tankov (2004, 2006), Kallsen and Tankov (2006).

Let L1 and L2 be two Lévy processes with Lévy measures ν1 and ν2. Before in-
troducing the Lévy copulas, let us introduce the extended tail integrals U1 and U2.

First, we need following function associated with any z ∈ R \ {0}:

I(z) =
{
(z,∞), z > 0,

(−∞, z), z < 0.
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In the same way as the distribution of a random vector can be represented by its
distribution function, the Lévy measure of a Lévy process will be represented by
its tail integral.

Now, the tail integral of a 2-dimensional process can be defined for i = 1,2 by

Ui(z) =
{

sgn(z)νi

(
I(z)

)
if z ∈ R \ {0},

0 if z = ∞,
(B.1)

and their generalized inverse, given by

U←
i (z) := sup

{
x ≥ 0 | Ui(x) = z

}
, z ≥ 0, i = 1,2.

Dependence of jumps of a multivariate Lévy process can be described by a
Lévy copula which couples the marginal tail integrals. In particular, let L be a
two dimensional Lévy process, ν is its intensity measure and U is the tail integral
defined by

U(z) =
2∏

i=1

sgn(zi)ν

( 2∏
i=1

I(zi)

)
, z = (z1, z2) ∈ (

R \ {0} ∪ {∞})2
. (B.2)

Now, L can be seen as two Lévy processes linked together by the mapping H :
R2 →R, defined as

U(z1, z2) = H
(
U1(z1),U2(z2)

)
, z1, z2 ∈ R \ {0} ∪ {∞}.

For example, if L1 and L2 are independent positive Lévy processes, the copula H

is given by (see Kallsen and Tankov (2006), Theorem 4.6)

H⊥(z1, z2) = z11z2=∞ + z21z1=∞, z1, z2 ∈ R+ ∪ {∞}.
If L1 and L2 are completely dependent, the copula H is given by

H‖(z1, z2) = min
(|z1|, |z2|)1K(z1, z2) sgn(z1) sgn(z2), z1, z2 ∈ R,

where K = {(z1, z2) ∈ R2 : sgn(z1) = sgn(z2)}.
A Sklar type Theorem (see Cont and Tankov (2004)) ensures the existence and

uniqueness of a Lévy copula given a Lévy process, and vice versa. To be more pre-
cise, it says that for each 2-dimensional Lévy process with intensity ν and marginal
Lévy measures νi , i = 1,2, one can associate a Lévy copula H such that

U(z1, z2) = sgn(z1) sgn(z2)

× H
(
U1(z1),U2(z2)

)
, z1, z2 ∈ R \ {0} ∪ {∞}. (B.3)

Here U and Ui , i = 1,2, denotes the tail integrals defined by (2.2) and (2.1) re-
spectively.

Conversely, if H is a Lévy copula and U1, U2 are marginal tail integrals of two
Lévy processes, Equation B.3 defines the tail integral of a 2-dimensional Lévy
process, where U1, U2 are the tail integrals of its components.

As an example, let us consider Clayton Lévy copula.
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Example B.1. For a 2-dimensional Lévy processes the Clayton copula is given on
R2 by (see e.g. Cont and Tankov (2006), Kallsen and Tankov (2006))

H(z1, z2) =
(

1

2
|z1|−θ + 1

2
|z2|−θ

)− 1
θ

× (
β1z1·z2>0 + (1 − β)1z1·z2<0

)
, z1, z2 ∈ R.

(B.4)

The parameter θ > 0 determines the dependence of the jump sizes, where larger
values of θ indicate a stronger dependence, smaller values of θ indicate indepen-
dence. The parameter β determines the dependence of the sign of jumps: when
β = 1, the two components always jump in the same direction, and when β = 0,
positive jumps in one component are accompanied by negative jumps in the other
and vice versa. For intermediate values of β , positive jumps in one component can
correspond to both positive and negative jumps in the other component. The pa-
rameter θ is responsible for the dependence of absolute values of jumps in different
components.

To give the connection between copulas and Lévy copulas let us define the
survival copula. Let F : R2 → [0,1] be a distribution function and F̄ (x, y) =
1 − F(x, y). Let F1 and F2 be the marginal distributions, F̄1 = 1 − F1 and
F̄2 = 1 − F2 be the marginal tail functions respectively. Now, one can define the
survival copula associated to F by

C̄(u, v) := F̄
(
F̄−1

1 (u), F̄−1
1 (v)

)
, (u, v) ∈ [0,1]2.

Since C(u,1) = u and C(1, v) = v, we get C̄(0, u) = u and C̄(v,0) = v.

B.1 Finite Lévy measure and copula

For simplicity, let L = (L1,L2) be a two dimensional Lévy process with only
positive jumps and with marginal Lévy measures ν1, ν2 and copula H . Here,
we assume that ν1 and ν2 are two Lévy measures with ν1((0,∞)) = λ1,
ν2((0,∞)) = λ2. We also assume that H is twice differentiable and ν1, ν2 have
densities with respect to Lebesgue measure on R \ {0}. We will consider only
copula, such that L1 and L2 have only common jumps.

Let (F1
t )t≥0 be the filtration generated by L1 and (F2

t )t≥0 the filtration gener-
ated by L2. We are interested in the jumps of L1 given the jumps of L2. Since

ν
(
(z1,∞), (z2,∞)

) = H
(
U1(z1),U2(z2)

)
it follows that

ν(dz1, dz2) = ∂2

∂u1 ∂u2
H(u1, u2)

∣∣∣∣ u1=U1(z1)

u2=U2(z2)

ν1(dz1)ν2(dz2).
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Substitution gives

ν(R×R) =
∫ ∞

0

∫ ∞
0

ν(dz1, dz2) =
∫ λ1

0

∫ λ2

0

∂2H(u1, u2)

∂u1 ∂u2
du1 du2

= H(0,0) − H(λ1,0) − H(0, λ2) + H(λ1, λ2)

= H(λ1, λ2) := λH .

Since ν1 and ν2 are finite, it follows that L(t) can be represented by the following
sum

L(t) =
N(t)∑
n=1

Yn,

where N = {N(t) : t ≥ 0} is a Poisson process with intensity λH and {Yn =
(Yn,1, Yn,2) : n ∈ N} is a family of R2-valued independent random variables with
distribution function ν/λH . Calculating the Fourier transform one can easily see

EeixL(t) =
∞∑

k=1

E
[
e

∑k
n=1 ixYn | N(t) = k

]
P

(
N(t) = k

)

= exp(−λH t)

∞∑
k=1

(λH t)k

k! E
[
eixY1

]k

= exp(−λH t) exp
(
t

∫
R2

eixyν(dx × dy)

)

= exp
(
t

∫
R2

(
eixy − 1

)
ν(dx × dy)

)
.

We are interested in the conditional distribution of the jumps in the first variable,
given the jumps in the second variable, that is, Yn,1, given the projection onto the
second axis, that is, Yn,2.

If C̄ is the survival copula of Yn, that is,

C̄(u1, u2) = F̄
(
F̄−1

1 (u1), F̄
−1
2 (u2)

)
, u1, u2 ∈ [0,1],

with F̄i(xi) = Ui(xi)/λi , then

C̄(u1, u2) = F̄
(
U−1

1 (λ1u1),U
−1
2 (λ2u2)

) = 1

λH

U
(
U−1

1 (λ1u1),U
−1
2 (λ2u2)

)
and, by the definition of the Lévy copula H ,

C̄(u1, u2) = 1

λH

H(λ1u1, λ2u2), u1, u2 ∈ [0,1].
Fix ε > 0 and let us assume that we have a Lévy measure with infinite activity

and that we cut of all jumps whose projection onto one of the two axis is smaller
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than ε. Then we have

ν
(
(ε,∞) × (ε,∞)

) = H
(
U−1

1 (ε),U−1
2 (ε)

)|
u1=U

−1
1 (ε)

u2=U
−1
2 (ε)

= C̄(ε, ε).

This gives us the scaling property

1

λ
H(λu1, λu2) = H(u1, u2), u1, u2 ∈ R \ {0},

for λ = H(ε, ε).

Proposition B.1. Let us assume that λ1 = λ2 = λ = H(ε, ε) and let us assume
that the Copula H satisfies the following scaling property:

1

λ
H(λu1, λu2) = H(u1, u2), u1, u2 ∈ R \ {0}.

Let us define

h(u1, u2) := ∂2

∂u1 ∂u2
H(u1, u2).

Then, the conditional probability of �tL1 given �tL2 is represented by

P(�tL1 = z1 | �tL2 = z2) = h(u1, u2)| u1=U1(z1)

u2=U2(z2)

ν(dz1).

Proof. The formula can be shown by direct calculations. In particular,

P(�tL1 = z1 | �tL2 = z2) = P({�tL1 = z1} ∩ {�tL2 = z2})
P({�tL2 = z2})

=
∂2

∂z1 ∂z2
F̄ (z1, z2)

∂
∂z2

F̄ (0, z2)
=

∂2

∂z1 ∂z2
F̄ (z1, z2)

∂
∂z2

F̄2(z2)

=
∂2

∂z1 ∂z2
C̄(F1(z1),F2(z2))

∂
∂z2

F̄ (0, z2)

= 1

λ

∂2

∂z1 ∂z2
H(λ1F1(z1), λ2F2(z2))

∂
∂z2

F̄2(z2)
.

Substituting F̄i(xi) = Ui(xi)/λi , we get

· · · = λ2

λ

h(u1, u2)| u1=U1(z1)

u2=U2(z2)

∂
∂z1

U1(z1)
∂

∂z2
U2(z2)

∂
∂z2

U2(u2)

= λ2

λ
h(u1, u2)| u1=U1(z1)

u2=U2(z2)

ν1(dz1). �
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B.2 Copula and σ -finite Lévy measures

Let us assume that the ν1 and ν2 are two Lévy measures with infinite measure.
Let ν be a σ -finite Lévy measure and L the corresponding Lévy process. Here

we consider L with only positive jumps. Cutting off the jumps smaller than ε, the
corresponding Lévy process Lε can be written as follows.

Lε :=
Nε(t)∑
i=1

Yi,ε,

where Nε is a Poisson point process with parameter ν(R2+ \ (0, ε) × (0, ε)) and
{Yi,ε : i ∈ N} are independent identical distributed random variables with survival
function

F̄ε(x, y) = U(x, y)

U(ε, ε)
, x, y ≥ ε. (B.5)

Now, the aim is to express the survival copula of the two dimensional random
variable Yi,ε by the Lévy copula H and vice versa. The survival copula C̄ε of Yi,ε

is given by

C̄ε(u, v) = F̄ε

(
F̄−1

1,ε (u), F̄−1
2,ε (u)

)
, u, v ∈ [0,1].

Since

F̄i,ε(x) = Ui,ε(x)

Ui(ε)
, i = 1,2,

where Ui,ε(x) = νi([x,∞)) for x ≥ ε. It follows that

F̄−1
i,ε (u) = U−1

i,ε

(
Ui(ε)u

)
, u ∈ [0,1], i = 1,2.

Therefore,

C̄ε(u, v) = F̄ε

(
U−1

1,ε

(
U1(ε)u

)
,U−1

2,ε

(
U2(ε)v

))
.

Next, (B.5) implies that

C̄ε(u, v) = U(U−1
1,ε (U1(ε)u),U−1

2,ε (U2(ε)v))

U(ε, ε)
.

Finally, by the definition of H we get

C̄ε(u, v) = H(U1(ε)u,U2(ε)v)

H(U1(ε),U2(ε))
.

In case ν1 = ν2, we get by the scaling property of the Clayton copula (see Exam-
ple B.1)

C̄ε(u, v) = U1(ε)

U1(ε)H(1,1)
H(u, v) = H(u, v).

This means that the survival copula C̄ε is given by H .
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Proposition B.2. Let us assume the copula satisfies the following scaling property

H(αu1, αu2) = αH(u1, u2), u1, u2 ∈ R. (B.6)

Let us define

h(u1, u2) := ∂2

∂u1 ∂u2
H(u1, u2).

Then the conditional probability of Y1,ε given Y2,ε is

P(Y1,ε = z1 | Y2,ε = z2) = h(u1, u2)| u1=U1(z1)

u2=U2(z2)

ν(dz1),

for the case where ν1 = ν2.

Proof. The formula can be shown by direct calculations. In particular, we can
argue along the following lines

P(Y1,ε = z1 | Y2,ε = z2) = P({Y1,ε = z1} ∩ {Y2,ε = z2})
P({Y2,ε = z2}) =

∂2

∂z1 ∂z2
F̄ε(z1, z2)

∂
∂z2

F̄ε(0, z2)
.

Owing to the following equalities

∂

∂z2
F̄ε(0, z2) = ∂

∂z2
F̄2,ε(z2) =

∂
∂z2

U2(z2)

U2(ε)
= ν2(z2)

U2(ε)
,

and the scaling property (B.6) we get

P(Y1,ε = z1 | Yε,2 = z2)

= ∂2

∂u1 ∂u2
H(u1, u2)

∣∣∣∣ u1=F̄ε,1(z1)

u2=F̄ε,2(z2)

∂
∂z1

F̄1,ε(z1)
∂

∂z2
F̄2,ε(z2)

∂
∂z2

F̄2,ε(z2)

= 21/θ ∂2

∂u1 ∂u2
H(u1, u2)

∣∣∣∣ u1=U1(z1)/U1(ε)

u2=U2(z2)/U2(ε)

∂

∂z1
F̄1,ε(z1)

= 21/θh(u1, u2)| u1=U1(z1)

u2=U2(z2)

ν1(dz1). �

Example B.2. As mentioned in Example B.1, the Clayton copula is given by

H(u1, u2) =
(

1

2
u−θ

1 + 1

2
u−θ

2

)− 1
θ

β1u1u2>0, u1, u2 ≥ 0.

A short calculation shows that for i = 1,2

∂H(u1, u2)

∂ui

= 1

2

(
1

2
u−θ

1 + 1

2
u−θ

2

)− 1
θ
−1

u−θ−1
i
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and

∂2H(u1, u2)

∂u1 ∂u2
= 1

4
(1 + θ)

(
1

2
u−θ

1 + 1

2
u−θ

2

)− 1
θ
−2

u−θ−1
1 u−θ−1

2 .

Therefore

h(u1, u2) = 1

4
(1 + θ)

(
1

2
u−θ

1 + 1

2
u−θ

2

)− 1
θ
−2

u−θ−1
1 u−θ−1

2 ,

which implies that

P
(
�L1(t) = z1 | �L2(t) = z2

)
= 1

4
(1 + θ)

(
1

2
u−θ

1 + 1

2
u−θ

2

)− 1
θ
−2

u−θ−1
1 u−θ−1

2

∣∣∣∣ u1=U1(z1)

u2=U2(z2)

ν1(dz1).

Appendix C: Application of Lévy-upward theorem

Before we start our main theorem of this section, we will illustrate the following
remark which is useful to complete the proof of the main theorem of this section.

Remark C.1. Let (�,A,μ) be a measure space and L ⊂ A. We say that L is
a lattice, if L is closed under countable unions and intersections, and ∅,� ∈ L.
Let Lc := {A ∈ A,� \ A ∈ L}. By the definition of the σ -algebra, we know that
if L is a σ -algebra, then L is also a lattice and Lc = L. Therefore, in case L is a
σ -algebra, Theorem 3.1 in Robertson (1965) reads:

Eγ

[
1

X

∣∣∣ L]
= (

Eμ[X | L])−1
,

with γ (A) = ∫
A X(ω)μ(dω) and X is a square integrable random variable.

Using Theorem 3.1 of Robertson (1965) and the Lévy’s upward theorem we can
show the following theorem.

Theorem C.1. Let V = {V (t) : t ≥ 0} be a solution to equation (2.8) and V ε =
{V ε(t) : t ≥ 0}, ε ∈ (0,1], be the family of a solutions to (2.22). Let {�ε : ε ∈
(0,1)} be a family of uniformly integrable stochastic processes. Fix p = 1 or 2. In
particular, for any t ≥ 0 the family {|�ε(t)|4p : ε ∈ (0,1]} is uniformly integrable
and limε→0 �ε(t) = �(t), Q-a.s. Then, we have Q-a.s. and in L1(�;R)

lim
ε→0

EQ|EQε
[
�ε(t)V

ε(t) | Yε
t

]|p = EQ
[
�(t)V (t) | Yt

]|p, (C.1)

where
dQ

dQε

∣∣∣∣
Ft

= V ε(t)

V (t)
, t ≥ 0.
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Proof. Apply the Kallianpur–Striebel formula (Kallianpur and Striebel (1968)) to
get

EQ
∣∣EQε

[
�ε(t)V

ε(t) | Yε
t

] −EQ[
�(t)V (t) | Yt

]∣∣p
= EQ

∣∣∣∣EQ[�ε(t)V (t) | Yε
t ]

EQ[ V (t)
V ε(t)

| Yε
t ] −EQ[

�(t)V (t) | Yt

]∣∣∣∣p

≤ 2p−1EQ

∣∣∣∣EQ[�ε(t)V (t) | Yε
t ]

EQ[ V (t)
V ε(t)

| Yε
t ] − EQ[�(t)V (t) | Yt ]

EQ[ V (t)
V ε(t)

| Yε
t ]

∣∣∣∣p

+ 2p−1EQ

∣∣∣∣EQ[�(t)V (t) | Yt ]
EQ[ V (t)

V ε(t)
| Yε

t ] −EQ[
�(t)V (t) | Yt

]∣∣∣∣p.

(C.2)

The Hölder inequality gives

· · · ≤ 2p−1
(
EQ

∣∣∣∣ 1

EQ[ V (t)
V ε(t)

| Yε
t ]

∣∣∣∣2p) 1
2

× (
EQ

∣∣EQ[
�ε(t)V (t) | Yε

t

] −EQ[
�(t)V (t) | Yt

]∣∣2p) 1
2

+ 2p−1
(
EQ

∣∣∣∣EQ[�(t)V (t) | Yt ]
EQ[ V (t)

V ε(t)
| Yε

t ]
∣∣∣∣2p) 1

2
(
EQ

∣∣∣∣EQ

[
V (t)

V ε(t)

∣∣∣ Yε
t

]
− 1

∣∣∣∣2p) 1
2
.

Now we will show that for ε → 0, the first term in last inequality converges to
zero. First, we will show that there exists a constant C > 0 such that

EQ

∣∣∣∣ 1

EQ[ V (t)
V ε(t)

| Yε
t ]

∣∣∣∣2p

< C, ε ∈ (0,1].

By Theorem 3.1 in Robertson (1965), Jensen’s inequality and Hölder inequality
we get

EQ

∣∣∣∣ 1

EQ[ V (t)
V ε(t)

| Yε
t ]

∣∣∣∣2p

= EQ

∣∣∣∣EQε

[
V ε(t)

V (t)

∣∣∣ Yε
t

]∣∣∣∣2p

≤ EQ

(
EQε

[∣∣∣∣V ε(t)

V (t)

∣∣∣∣2p ∣∣∣ Yε
t

])

≤ EQε

(
V ε(t)

V (t)
EQε

[∣∣∣∣V ε(t)

V (t)

∣∣∣∣2p ∣∣∣ Yε
t

])
(C.3)

≤
(
EQε

∣∣∣∣V ε(t)

V (t)

∣∣∣∣2
) 1

2
(
EQε

∣∣∣∣V ε(t)

V (t)

∣∣∣∣4p) 1
2

=
(
EQ

∣∣∣∣V ε(t)

V (t)

∣∣∣∣
) 1

2
(
EQ

∣∣∣∣V ε(t)

V (t)

∣∣∣∣4p−1) 1
2
.
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To see that the last terms are bounded, first, note that V −1 = Z where Z solves
(2.6). Due to the fact that g is bounded, Z has bounded moments of order 8p − 2.
In addition, for any t ≥ 0, V (t) and V ε(t) have also uniform bounds of order
8p − 2. Hence, we conclude the RHS above is uniformly for all ε > 0 bounded.

Next, we would like to show that

lim
ε→0

EQ
∣∣EQ

[
�ε(t)V (t) | Yε

t

] −EQ
[
�(t)V (t) | Yt

]∣∣2p = 0. (C.4)

For the notational convenient, take �̃ε
t = �ε(t)V (t) and �̃0

t = �(t)V (t). For
fixed positive R > 0 (the exact value of R we will fix later) we get

EQ
∣∣EQ

[
�ε

t | Yε
t

] −EQ
[
�0

t | Yt

]∣∣2p

≤ 2p−1EQ
∣∣EQ[

�ε
t 1|�ε

t |≤R | Yε
t

] −EQ[
�0

t 1|�0
t |≤R | Yt

]∣∣2p

+ 2p−1EQ
∣∣EQ

[
�ε

t 1|�ε
t |>R | Yε

t

] −EQ
[
�0

t 1|�0
t |>R | Yt

]∣∣2p (C.5)

≤ 2p−1EQ
∣∣EQ[

�ε
t 1|�ε

t |≤R | Yε
t

] −EQ[
�0

t 1|�0
t |≤R | Yt

]∣∣2p

+ 22p−2EQ
∣∣�ε

t 1|�ε
t |>R

∣∣2p + 22p−2EQ
∣∣�0

t 1|�0
t |>R

∣∣2p
.

The last inequality holds due to the Jensen’s inequality. Since for any t ≥ 0, the
family {|�ε

t |2p : ε ∈ (0,1]} is uniformly integrable, for any κ > 0 there exist a
number R > 0 such that for all ε ∈ (0,1],

EQ
∣∣�ε

t 1|�ε
t |>R

∣∣2p
<

κ

4

and

EQ
∣∣�0

t 1|�0
t |>R

∣∣2p
<

κ

4
.

Let R > 0 be fixed. First,

EQ
∣∣EQ[

�ε
t 1|�ε

t |≤R | Yε
t

] −EQ[
�0

t 1|�0
t |≤R | Yt

]∣∣2p

≤ R2p−1EQ
∣∣EQ

[
�ε

t 1|�ε
t |≤R | Yε

t

] −EQ
[
�0

t 1|�0
t |≤R | Yt

]∣∣.
By the Lévy–Upward theorem (see page 196 in Dembo (2012)), there exist a num-
ber ε1 > 0, such that for all ε ∈ (0, ε1],

R2p−1EQ
∣∣EQ[

�ε
t 1|�ε

t |≤R | Yε
t

] −EQ[
�0

t 1|�0
t |≤R | Yt

]∣∣ <
κ

2
.

This implies that for all ε ∈ (0, ε1],
EQ

∣∣EQ[
�ε

t | Yε
t

] −EQ[
�0

t | Yt

]∣∣2p
< κ.
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This gives Claim (C.4). Combining results (C.3) and (C.4), implies that the first
term in last inequality of (C.2) goes to zero as ε → 0. It remains to show∣∣∣∣EQ

[
V (t)

V ε(t)

∣∣∣ Yε
t

]
− 1

∣∣∣∣2p

→ 0 as ε → 0.

By similar arguments, we can prove that the term above also converges to zero as
ε → 0, which gives the assertion. �
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