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ABSTRACT: The nonlinear filters based on Taylor series approximation are
broadly used for computational simplicity, even though their filtering estimates
are clearly biased. In this paper, first, we analyze what is approximated when we
apply the expanded nonlinear functions to the standard linear recursive Kalman
filter algorithm. Next, since the state variables αt and αt−1 are approximated
as a conditional normal distribution given information up to time t − 1 (i.e.,
It−1) in approximation of the Taylor series expansion, it might be appropriate
to evaluate each expectation by generating normal random numbers of αt and
αt−1 given It−1 and those of the error terms εt and ηt. Thus, we propose the
Monte-Carlo simulation filter using normal random draws. Finally we perform
two Monte-Carlo experiments, where we obtain the result that the Monte-Carlo
simulation filter has a superior performance over the nonlinear filters such as
the extended Kalman filter and the second-order nonlinear filter.

KEY WORDS: Taylor Series Expansion, Extended Kalman Filter, Second-
Order Nonlinear Filter, Monte-Carlo Simulation Filter, Random Draws.

1 INTRODUCTION

The purpose of this paper is to reconsider the traditional nonlinear filters based
on the Taylor series expansion and propose a nonlinear filter generating random
numbers.

In the case where the measurement and transition equations depend on the past
information, the standard linear recursive Kalman filter algorithm can be derived,
when we have the assumptions that both equations in the state-space model are
linear and that the error terms are normally distributed (see Harvey (1989)). Un-
less the distributions of error terms are normal and the measurement and transition
equations are linear, we cannot derive the explicit expression for the filtering al-
gorithm. Therefore, some approximation is necessary for estimation. There are
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two approaches to obtain nonlinear filtering algorithms. One is approximating the
nonlinear measurement and transition equations by the Taylor series expansion and
applying the linearized nonlinear functions directly to the conventional linear recur-
sive Kalman filter algorithm (see, for example, Anderson and Moore (1979), Gelb
(1974), Harvey (1989), Wishner, Tabaczynski and Athans (1969)). Another ap-
proach is approximating the underlying density functions of the state vector, where
a recursive algorithm on the densities is derived from Bayes’ formula (see Alspach
and Sorenson (1972), Anderson and Moore (1979), Harvey (1989), Kitagawa (1987),
Kramer and Sorenson (1988), Sorenson and Alspach (1971) and Tanizaki (1991)).
However, the estimators based on the densities require a great amount of computa-
tional burden, compared with those based on the Taylor series approximation of the
nonlinear functions, although the density approximation approach gives us asymp-
totically unbiased filtering estimates. Therefore, in this paper, we consider only the
nonlinear filters using the Taylor series expansion.

In the first part of the paper, we discuss what we have to approximate when
we apply the Taylor series expansion to the nonlinear functions. There we will see
that we encounter some problems with the approximated error terms (which are
regarded as the residuals): (i) the expectation of the error terms is not necessarily
zero, (ii) the state vector is correlated with the error terms, (iii) the error term
in the measurement equation is correlated with the error term in the transition
equation, and (iv) the error terms are not normal. Thus, the approximated error
terms are not well-behaved. If we approximate the error terms to be well-behaved
and apply the linearized functions to the linear recursive algorithm, we have the
algorithms based on the Taylor series expansion. Clearly, ignoring these problems
of the error terms implies that the filtering estimates of the state vector are biased
because E(g(x)) 6= g(E(x)) for a nonlinear function g(·) and a random variable x.
From the computational point of view, however, the approach based on the Taylor
series approximation is broadly used and attractive.

Next, a new nonlinear filtering estimation is proposed, which is based on the
Monte-Carlo simulation. We call this nonlinear filter the Monte-Carlo simulation
filter. As pointed out in Mariano and Brown (1983, 1989) and Brown and Mariano
(1984, 1989), approximating the expectations of nonlinear functions by the Taylor
series expansion gives us the biased estimates, and accordingly, we might have a bet-
ter approximation of the expectations if random numbers are generated for the error
terms. Thus, generating normal random numbers to evaluate expectations, we pro-
pose the new estimator which is easy and simple in programming and computational
time and gives less biased estimates.

Moreover, we sometimes take a functional form such that either the measurement
equation or the transition equation is linear in either the state variable or the error
term. We show that, under this functional form of the measurement equation or the
transition equation, the error terms (or residuals) are uncorrelated with each other.
Therefore, in this case, we can have a better approximation.

Finally, three Monte-Carlo experiments are performed to examine the extended
Kalman filter, the second-order nonlinear filter and the Monte-Carlo simulation
filter. The experiments give the result that the Monte-Carlo simulation filter is

2



a less biased estimator with respect to the state variable and estimation of unknown
parameter, compared with the other two nonlinear filters.

2 RECONSIDERATION OF TAYLOR SERIES EXPAN-

SION APPROACH

In this section, we consider what is approximated when we apply the Taylor series
expansion to the nonlinear measurement and transition equations. When a nonlinear
function is linearized, we have a new approximated error term, which is different
from an original one and referred to as the residual. The approximated error is not
normally distributed even if the original one follows a normal density. Therefore,
one of our purposes in the section is to resolve properties of the approximated error
terms.

We treat the nonlinear filtering problem, where the model is specified as follows:

(Measurement Equation) yt = ht(αt, εt), (1)

(Transition Equation) αt = gt(αt−1, ηt), (2)

yt : g × 1, αt : k × 1, εt : g × 1, ηt : k × 1,

where the nonlinear functions ht(·, ·) and gt(·, ·) may depend on the other exogenous
variables (here, we omit them for simplicity). Assume that εt and ηt are indepen-
dently distributed as normal random vectors, i.e.,

(
εt

ηt

)
∼ N

( (
0
0

)
,

(
Ht 0
0 Qt

) )
.

Let It define the information available at time t, i.e., It = {yt, yt−1, · · · , y1}. Consider
estimating the state vector αt given It or It−1. That is, we estimate at|s = E(αt|Is)
and Σt|s = Cov(αt|Is) for s = t − 1, t.

In the linear case, if the measurement and transition equations depend on the
past information It−1 (i.e., the lagged observed variables), we have to assume nor-
mality for the error terms in order to obtain the standard Kalman filter algorithm
(see, for example, Anderson and Moore (1979), Chow (1983), Gelb (1974) and Har-
vey (1989)).

The approach using the Taylor series expansion is common in the literature. In
order to apply the standard linear recursive Kalman filter algorithm, the nonlinear
functions have to be linearized and the approximated errors have to be assumed as
normal random variables. Therefore, from equations (1) and (2), we consider the
following expressions which represent the exact relationships, not approximations.

(Measurement Equation)

yt = ht(αt, εt) (3)

= ct|t−1 + Zt|t−1(αt − at|t−1) + ut,

(Transition Equation)
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αt = gt(αt−1, ηt) (4)

= dt|t−1 + Tt|t−1(αt−1 − at−1|t−1) + vt,

where the measurement equation (3) is transformed to a linear function of αt, de-
pending on the information It−1. The transition equation (4) is also linear in αt−1.
Here, we can take any functions for ct|t−1, Zt|t−1, dt|t−1 and Tt|t−1, which depend on
the information It−1. The expectations of ut and vt are not necessarily zero. The
somewhat ad hoc but more general linearization is given in equations (3) and (4).
We take such a linearization in order to analyze what has to be approximated in the
case of applying the Taylor series expansion to the nonlinear state-space model.

Note that the linear recursive algorithm can be obtained if ut and vt are normal
with zero means. Clearly, however, both error terms ut and vt are not normally
distributed with zero means, because the error terms are represented as the residuals,
i.e.,

ut = yt − ct|t−1 − Zt|t−1(αt − at|t−1) (5)

= ht(αt, εt) − ct|t−1 − Zt|t−1(αt − at|t−1),

vt = αt − dt|t−1 − Tt|t−1(αt−1 − at−1|t−1) (6)

= gt(αt−1, ηt) − dt|t−1 − Tt|t−1(αt−1 − at−1|t−1).

In the model (3) and (4), there are some problems. The basic assumptions on the
error terms are that the state-vector in the measurement equation is uncorrelated
with the error term, and that the lagged state-vector in the transition equation
is not correlated with the error term (see Harvey (1981, 1989)). This is not the
case, however, because ut is a function of (αt − at|t−1) and also vt is a function of
(αt−1 −at−1|t−1). Thus, ut is correlated with (αt −at|t−1), and in addition, vt is also
correlated with (αt−1−at−1|t−1). Furthermore, ut is correlated with vt. Summarizing
the above facts, we have the following inequalities:

(i) E(ut|It−1) 6= 0 and E(vt|It−1) 6= 0,

(ii) E
(
ut(αt − at|t−1)

′|It−1

)
6= 0 and E

(
vt(αt−1 − at|t−1)

′|It−1

)
6= 0,

(iii) E(utv
′
t|It−1) 6= 0,

Also, we have the problem: (iv) ut and vt are not normal. Thus, all of the as-
sumptions required for the recursive algorithm are violated in the equations (3) and
(4).

Here we consider eliminating the correlation between ut and (αt−at|t−1) and the
correlation between vt and (αt−1−at−1|t−1), transforming the error terms ut and vt.
The following theorem found in a usual textbook is useful for the transformation.

Theorem: Let x and y be vectors of random variables, which are distributed as

E

(
x

y

)
=

(
µx

µy

)
, Cov

(
x

y

)
=

(
Σxx Σxy

Σ′
xy Σyy

)
.

Define x̃ = x−ΣxyΣ
−1
yy (y − µy). Then, (x̃− µx) is uncorrelated with (y − µy),

i.e., E((x̃ − µx)(y − µy)
′) = 0.
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For the measurement equation, to exclude the correlation between ut and αt,
we transform ut using the above theorem. The transformed error term ũt can be
represented as:

ũt = ut − yt|t−1 + ct|t−1 − (Mt|t−1 − Zt|t−1Σt|t−1)Σ
−1
t|t−1(αt − at|t−1)

= yt − yt|t−1 − Mt|t−1Σ
−1
t|t−1(αt − at|t−1),

where

Mt|t−1 = E((yt − yt|t−1)(αt − at|t−1)
′|It−1),

yt|t−1 = E(yt|It−1) = E(ht(αt, εt)|It−1).

Now, by performing the above transformation, clearly it is shown that we have
E(ũt|It−1) = 0 and Cov(ũt, αt|It−1) = 0.

Similarly, for the transition equation, we eliminate the correlation between vt

and αt−1. The transformed error term ṽt is represented as:

ṽt = vt − at|t−1 + dt|t−1 − (Nt|t−1 − Tt|t−1Σt−1|t−1)Σ
−1
t−1|t−1(αt−1 − at−1|t−1)

= αt − at|t−1 − Nt|t−1Σ
−1
t−1|t−1(αt−1 − at−1|t−1),

where

Nt|t−1 = E((αt − at|t−1)(αt−1 − at−1|t−1)
′|It−1).

From the transformation shown above, ũt is not correlated with (αt − at|t−1)
and at the same time (αt−1 − at−1|t−1) is uncorrelated with ṽt. Moreover, ũt and
ṽt have zero-mean, i.e., E(ũt|It−1) =E(ṽt|It−1) = 0. The measurement equation and
the transition equation in (3) and (4) can then be modified as:

(Measurement Equation)

yt = yt|t−1 + Mt|t−1Σ
−1
t|t−1(αt − at|t−1) + ũt, (7)

(Transition Equation)

αt = at|t−1 + Nt|t−1Σ
−1
t−1|t−1(αt−1 − at−1|t−1) + ṽt. (8)

In equations (7) and (8), the new error terms ũt and ṽt have less problems:
(iii) Cov(ũt, ṽt|It−1) 6= 0, and (iv) ũt and ṽt are nonnormal. That is, the prob-
lems (i) and (ii) are avoided, i.e., E(ũt|It−1) = E(ṽt|It−1) = 0 and E(ũtα

′
t|It−1) =

E(ṽtα
′
t−1|It−1) = 0. Hereafter, we call ũt and ṽt the residuals to distinguish them

from the error terms εt and ηt.
In general, however, ũt is still correlated with ṽt in equations (7) and (8). Fur-

thermore, the residuals ũt and ṽt are not normally distributed. Ignoring these non-
normal error terms and their correlation, we apply equations (7) and (8) to the
standard Kalman filter algorithm, and the following algorithm can be obtained.

at|t−1 = E(gt(αt−1, ηt)|It−1), (9)

Σt|t−1 = E((αt − at|t−1)(αt − at|t−1)
′|It−1), (10)
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yt|t−1 = E(ht(αt, εt)|It−1), (11)

Ft|t−1 = E((yt − yt|t−1)(yt − yt|t−1)
′|It−1), (12)

Mt|t−1 = E((yt − yt|t−1)(αt − at|t−1)
′|It−1), (13)

kt = M ′
t|t−1Ft|t−1, (14)

Σt|t = Σt|t−1 − ktFt|t−1k
′
t, (15)

at|t = at|t−1 + kt(yt − yt|t−1), (16)

for t = 1, · · · , T .
Note that we have the standard Kalman filter algorithm if the nonlinear functions

gt(·, ·) and ht(·, ·) are linear in the state variables and the errors. Approximating ũt

and ṽt to be normal is equivalent to approximating αt given It or It−1 to be normal.
The above algorithm is not operational, because the expectations of the nonlin-

ear functions are included in the algorithm. Therefore, next we need to approximate
the nonlinear measurement and transition functions in order to evaluate the expec-
tations.

Here, before evaluating the expectations in the above equations (9) – (16), con-
sider the estimation method in the case where unknown parameters (say, θ and τ)
are included in ht(·, ·) and gt(·, ·), i.e., ht = ht(αt, εt; θ) and gt = gt(αt−1, ηt; τ). In
equations (7) and (8), since the residuals ũt and ṽt are distributed as approximately
normal random variables, yt is also approximately normal with mean yt|t−1 and
variance Ft|t−1, which are given in equations (11) and (12). We have the following
approximated innovation form of the likelihood function:

P (yT , yT−1, · · · , y1)

= P (yT |IT−1)P (yT−1|IT−2) · · ·P (y2|y1)P (y1)

=
T∏

t=1

P (yt|It−1)

=
T∏

t=1

(2π)−g/2|Ft|t−1|
−1/2 exp

(
−

1

2
(yt − yt|t−1)

′F−1
t|t−1(yt − yt|t−1)

)
.

(17)

The unknown parameter vectors θ and τ are included in yt|t−1 and Ft|t−1. Thus,
the likelihood function (17) is maximized with respect to the unknown parameter
vectors θ and τ .

Now, in the above algorithm (9) – (16) and the likelihood function (17), we need
to evaluate the expectations. We have made some approximations on ũt and ṽt. One
is assuming that the residuals ũt and ṽt are approximately normally distributed, and
another approximation is no correlation between them. Moreover, we will perform
one additional approximation of the above expectations included in equations (9) –
(13). The following nonlinear filters are derived by approximating the expectations.

Extended Kalman Filter and Higher-Order Nonlinear Filters: In the
case where we approximate nonlinear functions ht(αt, εt) and gt(αt−1, ηt) around
(αt, εt) = (at|t−1, 0) and (αt−1, ηt) = (at−1|t−1, 0) by the first-order Taylor series
expansion, the extended Kalman filter can be obtained by applying the linearized
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nonlinear functions to the algorithm (9) – (16) in order to evaluate the expecta-
tions. See Anderson and Moore (1979), Gelb (1974), Harvey (1989), and Wishner,
Tabaczynski and Athans (1969) for the extended Kalman filter.

It is known that the estimate of αt given It is biased because the nonlinearity
gives E(g(x)) 6= g(E(x)) for a random variable x and a function g(x). To reduce this
problem and obtain the more precise filtered estimates, the second-order approxi-
mation can be applied to the nonlinear functions.

When we evaluate each expectation in equations (9) – (16) by using the nonlinear
measurement and transition equations approximated by the second-order Taylor
series expansion, the second-order nonlinear filtering algorithm can be obtained (see
Gelb (1974), Harvey (1989), and Wishner, Tabaczynski and Athans (1969)). In the
derivation procedure, the third- and the fourth-moments of (αt−1 − at−1|t−1) and
(αt − at|t−1) are required. Note that the third-moment of a normal distribution is
zero and the fourth-moment is three times the second-moment.

The second-order nonlinear filter might be a less biased estimator than the ex-
tended Kalman filter because the bias correction terms (i.e., the second-order terms)
are included in the approximation of the nonlinear measurement and transition equa-
tions.

As discussed above, we can derive the extended Kalman filter and the second-
order nonlinear filter, approximating the nonlinear measurement and transition
equations by the first- and the second-order Taylor series expansions with respect to
the state vectors and the error terms. It is possible to consider higher-order nonlin-
ear filters, i.e., the third-order nonlinear filter, the fourth-order nonlinear filter, and
so on (see Gelb (1974)). In the exactly same fashion, higher-order nonlinear filters
can be derived.

Even if the higher-order nonlinear filters give us less biased filtering estimates
than the extended Kalman filter, the filtering estimates by higher-order nonlinear
filters are still biased because the nonlinear functions are approximated.

Note the following important point: when we approximate the expectations in-
cluded in the algorithm (9) – (16) by the Taylor series expansions (for example, the
first-order approximation, the second-order expansion and so on), the residuals ũt

and ṽt in equations (7) and (8) turn out to have non-zero means and be correlated
with each other (see Appendix). Therefore, the problems of the nonlinear filters
such as the extended Kalman filter and the second-order nonlinear filters are:

E(ũt|It−1) 6= 0 and E(ṽt|It−1) 6= 0, (18)

E
(
ũt(αt − at|t−1)

′|It−1

)
6= 0 and E

(
ṽt(αt−1 − at|t−1)

′|It−1

)
6= 0, (19)

E(ũtṽ
′
t|It−1) 6= 0, (20)

ũt and ṽt are not normal. (21)

Accordingly, in the case of the extended Kalman filter and the other higher-order
nonlinear filters, ũt and ṽt have to be assumed as well-behaved error terms in order
to apply the usual linear recursive algorithm, even if they are not well-behaved.
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Monte-Carlo Simulation Filter: Loosening the approximation of expanding
the functions ht(αt, εt) and gt(αt−1, ηt) with respect to (αt, εt) and (αt−1, ηt), here
we propose a new algorithm based on the Monte-Carlo stochastic simulation, where
the random numbers are generated for the state variables αt and αt−1 and the error
terms εt and ηt to evaluate the expectations (9) – (13) more correctly. Since we have
assumed εt and ηt to be normal and approximated ũt and ṽt to be normal, it might
be possible to generate the random numbers of αt given It and It−1, εt and ηt.

First, to obtain the algorithm of the nonlinear filter based on equations (9) – (16),
consider approximating the nonlinear functions ht(αt, εt) and gt(αt, ηt) by random
numbers. Equations (9) – (13) are approximated by:

at|t−1 =
1

n

n∑

i=1

αi,t|t−1, (22)

Σt|t−1 =
1

n

n∑

i=1

(αi,t|t−1 − at|t−1)(αi,t|t−1 − at|t−1)
′

=
1

n

n∑

i=1

αi,t|t−1α
′
i,t|t−1 − at|t−1a

′
t|t−1,

(23)

yt|t−1 =
1

n

n∑

i=1

yi,t|t−1, (24)

Ft|t−1 =
1

n

n∑

i=1

(yi,t|t−1 − yt|t−1)(yi,t|t−1 − yt|t−1)
′

=
1

n

n∑

i=1

yi,t|t−1y
′
i,t|t−1 − yt|t−1y

′
t|t−1,

(25)

Mt|t−1 =
1

n

n∑

i=1

(yi,t|t−1 − yt|t−1)(αi,t|t−1 − at|t−1)
′

=
1

n

n∑

i=1

yi,t|t−1α
′
i,t|t−1 − yt|t−1a

′
t|t−1,

(26)

where

αi,t|t−1 = gt(αi,t−1|t−1, ηi,t),

yi,t|t−1 = ht(αi,t|t−1, εi,t).

The random numbers αi,t−1|t−1, ηi,t, αi,t|t−1 and εi,t for i = 1, · · · , n are approxi-
mately generated from the following normal distributions:

(
αi,t−1|t−1

ηi,t

)
∼ N

( (
at−1|t−1

0

)
,

(
Σt−1|t−1 0

0 Qt

)
,

)
,

(
αi,t|t−1

εi,t

)
∼ N

( (
at|t−1

0

)
,

(
Σt|t−1 0

0 Ht

)
,

)
.

Approximating ũt and ṽt to be normal is equivalent to approximating αt and αt−1

given It−1 to be normal. Therefore, in the algorithm above, we generate the normal
random numbers for αt and αt−1 in order to evaluate the expectations.
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According to this estimator, asymptotically, the problems (18) and (19) on the
errors ũt and ṽt are improved. However, we still have the problems (20) and (21).

The approximations for all of the algorithms introduced in this section are that
we have assumed the distributions of ũt and ṽt in equations (7) and (8) to be ap-
proximately normally distributed, and that we have ignored the correlation between
ũt and ṽt. In order to apply the model (7) and (8) directly to the Kalman filter
algorithm, the residuals ũt and ṽt must be conditionally normally distributed given
It−1. They are not normally distributed, however, because of the nonlinearity of
the functions ht(·, ·) and gt(·, ·). Moreover, ũt is correlated with ṽt. Approxima-
tion of the expectations in equations (9) – (13) might be more appropriate for the
Monte-Carlo simulation filter than the extended Kalman filter and the second-order
nonlinear filter.

In the following section, we will examine the condition under which we can relax
one of the approximations for the algorithm (9) – (16). Recall that the problems
in the algorithm (9) – (16) are that ũt is correlated with ṽt and that ũt and ṽt are
nonnormal. Under a certain functional form of either gt(·, ·) or ht(·, ·), it will be
shown that ũt is uncorrelated with ṽt.

3 Theorems

Under a certain functional form of either ht(·, ·) or gt(·, ·), the correlation between
the residuals ũt and ṽt in equations (7) and (8) disappears. This implies that we do
not need to take into account one of the approximations made clear in the previous
section in the case where we choose the functional form. In this section, we propose
two theorems. These are useful for the Monte-Carlo simulation filter proposed in
this paper, because the Monte-Carlo simulation filter has the fewer problems, i.e.,
zero-mean errors uncorrelated with the state vectors.

To show no correlation between ũt and ṽt under a certain functional form, first,
consider the following measurement and transition equations:

(Measurement equation) yt = h1t(αt)h2t(εt), (27)

(Transition equation) αt = g1t(αt−1)g2t(ηt). (28)

Transforming the error terms in the same way, ũt and ṽt are represented by:

ũt = h1t(h2t − h2t) + h2t(h1t − h1t)

− h2tE((h1t − h1t)(αt − at|t−1)
′|It−1)Σ

−1
t|t−1(αt − at|t−1), (29)

ṽt = g1t(g2t − g2t) + g2t(g1t − g1t)

− g2tE((g1t − g1t)(αt−1 − at−1|t−1)
′|It−1)Σ

−1
t−1|t−1(αt−1 − at−1|t−1), . (30)

where we define as follows: h1t ≡ h1t(αt), h2t ≡ h2t(εt), g1t ≡ g1t(αt−1) and g2t ≡
g2t(ηt). h2t and g2t denote the expectations with respect to the error terms εt

and ηt. h1t and g1t represent the conditional expectations with respect to αt and
αt−1, given information up to time t − 1, i.e., It−1. With this transformation, we
have no correlation between ũt and (αt − at|t−1) and no correlation between ṽt and
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(αt−1 − at−1|t−1). ũt is, however, correlated with ṽt, because the third term in
equation (30) is correlated with both the second and the third terms in equation
(29). From the structure of the residuals ũt and ṽt, the following theorem can be
proposed.

Theorem 1: In the case of the state-space model given by equations (27) and
(28), if one of the functions h1t(αt), h2t(εt), g1t(αt−1) and g2t(ηt) is linear in
its argument, i.e., if h1t(αt) = Ztαt, h2t(εt) = Stεt, g1t(αt−1) = Ttαt−1 and
g2t(ηt) = Rtηt, then ũt is not correlated with ṽt. Note that Zt, St, Tt and Rt

may depend on It−1.

Proof: First, consider the case where either h1t(αt) or h2t(εt) is linear. Equation
(29) reduces to:

ũt = h1t(h2t − h2t). (31)

Since (h2t − h2t) is a function of εt, it is uncorrelated with ηt, αt and αt−1.
Therefore, we have E(ũtṽ

′
t) = 0.

Next, consider the case where either g1t(αt−1) or g2t(ηt) is linear. Similarly,
equation (30) reduces to:

ṽt = g1t(g2t − g2t), (32)

which is not correlated with εt, αt and αt−1. In this case, we also have
E(ũtṽ

′
t) = 0.

Thus, in the case where one of the functions h1t(αt), h2t(εt), g1t(αt−1) and g2t(ηt)
is linear, we do not have to take into account the correlation between the error terms
(the residuals). In this case, we might expect a better approximation. This theorem
is useful for the Monte-Carlo simulation filter, because the expectations are more
correctly evaluated than the other filters.

Next, consider the following nonlinear state-space model:

(Measurement equation) yt = h1t(αt) + h2t(εt), (33)

(Transition equation) αt = g1t(αt−1) + g2t(ηt). (34)

In this case, Mt|t−1 is computed as:

Mt|t−1 = E((yt − yt|t−1)(αt − at|t−1)
′|It−1)

= E((h1t − h1t)(αt − at|t−1)
′|It−1),

because (yt − yt|t−1) is represented as:

yt − yt|t−1 = (h1t − h1t) + (h2t − h2t),

and (h2t − h2t) is not correlated with (αt − at|t−1).

10



Thus, ũt is written as follows:

ũt = (h1t − h1t) + (h2t − h2t)

− E((h1t − h1t)(αt − at|t−1)
′|It−1)Σ

−1
t|t−1(αt − at|t−1).

Similarly, ṽt is given by:

ṽt = (g1t − g1t) + (g2t − g2t)

− E((g1t − g1t)(αt−1 − at−1|t−1)
′|It−1)Σ

−1
t−1|t−1(αt−1 − at−1|t−1).

Here, the following theorem can be proposed.

Theorem 2: In the case of the state-space model given by equations (33) and (34),
if either h1t(αt) or g1t(αt−1) is linear in its argument, i.e., if either h1t(αt) =
Ztαt or g1t = Ttαt−1, then ũt is not correlated with ṽt. Note that Zt and Tt

may depend on It−1.

Proof: When we take h1t(αt) = Ztαt, ũt is rewritten as follows:

ũt = h2t − h2t,

because

h1t − h1t = Zt(αt − at|t−1),

E((h1t − h1t)(αt − at|t−1)
′|It−1)Σ

−1
t|t−1(αt − at|t−1) = Zt(αt − at|t−1).

Clearly, ũt = h2t − h2t is independent of ṽt, because ũt depends on the error
term εt only.

Similarly, if g1t(αt−1) = Ttαt−1, ṽt is given by:

ṽt = g2t − g2t,

which is independent of ũt, because ṽt is a function of the error term ηt only.

Thus, as shown in this section, under a certain functional form of either ht(αt, εt)
or gt(αt−1, ηt), the correlation between the residuals ũt and ṽt in equations (7) and
(8) disappears.

4 Monte-Carlo Experiments

In this section, based on the criteria of BIAS (bias) and RMSE (root mean squared
error), we examine the extended Kalman filter, the second-order nonlinear filter and
the Monte-Carlo simulation filter. Three experiments are performed in this section.

For one experiment, the filtering estimates are compared using a logistic type of
nonlinear functions for the three nonlinear filters. 1000 simulations are performed,
and BIAS and RMSE between the estimated state variables and the simulated ones
are computed for each time t.

11



For another experiment, we take an ARCH(1) model as an example. An attempt
is made to obtain the filtering estimates in the case where an unknown parameter
is included in the system, and the parameter estimates are compared for the three
filters.

For the third experiment, the functional forms investigated in Kitagawa (1987)
and Carlin, Polson and Stoffer (1992) are taken.

Experiment I: Consider the following logistic measurement and transition equa-
tions:

(Measurement equation) yt =
exp(αt)

exp(αt) + exp(εt)
, (35)

(Transition equation) αt =
exp(αt−1)

exp(αt−1) + exp(ηt)
, (36)

where εt and ηt are assumed to be normally distributed with:

E

(
εt

ηt

)
=

(
0
0

)
,

and

Cov

(
εt

ηt

)
=

(
1 0
0 1

)
.

Note that both yt and αt lie on the interval between zero and one.
The experiment procedure is as follows:

(i) Generate normal random numbers for εt and ηt with mean

(
0
0

)
and variance

(
1 0
0 1

)
given α0 = 0.5, and we obtain the artificial data for yt and αt, t =

1, · · · , T , from equations (35) and (36), where T = 100 is taken.

(ii) Given the variances of εt and ηt, and the data yt obtained in procedure (i), we
can compute the filtering estimates (i.e., at|t) using the algorithms introduced
in Section 3. Here, the artificially generated state variable at time t = 1, α1,
is taken as the initial value. The initial variance is given by Σ1|1 = 0.

(iii) Repeat the procedures (i) – (ii) m times (i.e., we perform m simulations). Let

α
(i)
t , t = 1, · · · , T and i = 1, · · · , n, be the i-th set of artificial data (the i-th

true state variable), and a
(i)
t|t be the i-th simulation run (the i-th estimated

state variable) in a series of m simulation runs, where m = 1000 is set.

(iv) For each nonlinear filter, compute the bias (BIAS) as:

BIAS =
1

T − 1

T∑

t=2

BIASt,

12



Table 1: A Comparison of the Three Filters (Experiment I)

n BIAS RMSE

E −.0228 .1971
S .0100 .1960
M 5 .0043 .2731
M 20 .0005 .2146
M 50 .0003 .2058
M 100 .0000 .2026
M 500 .0001 .2019

where BIASt is defined as:

BIASt =
1

m

m∑

i=1

(α
(i)
t − a

(i)
t|t ),

and the root mean squared error (RMSE) as,

RMSE =
1

T − 1

T∑

t=2

RMSEt,

where RMSEt is defined as:

RMSEt =

(
1

m

m∑

i=1

(α
(i)
t − a

(i)
t|t )

2

)1/2

.

All of the values in Table 1 are represented by average of 1000 simulations. E,
S and M denotes the extended Kalman filter, the second-order nonlinear filters and
the Monte-Carlo simulation filter. Recall that n denotes the number of the random
draws used in the Monte-Carlo simulation filter. In Figures 1 and 2, the case n = 500
is displayed for the Monte-Carlo simulation filter.

Table 1 and Figures 1 and 2 show the results of BIAS and RMSE, defined above.
The filtering estimates are overestimated for the extended Kalman filter and under-
estimated for the second-order nonlinear filter. Both estimates are clearly biased
(see Figure 1). The Monte-Carlo simulation filter gives us the most unbiased es-
timates even if n (the number of random draws) is small (see Table 1 and Figure
1). Under the RMSE criterion, the second-order nonlinear filter show the smallest
values, i.e., 0.1960 (see Table 1 and Figure 2). The Monte-Carlo simulation filter
takes the largest RMSE, although the RMSE decreases as n increases (see Table 1).

Summarizing the results, we have the following: (i) the filtering estimates ob-
tained from the extended Kalman filter and the second-order nonlinear filter are
biased but small RMSE, (ii) the Monte-Carlo simulation filter gives asymptotically
unbiased filtering estimates but large RMSE, and (iii) for the Monte-Carlo simulation
filter, precision of the estimates is improved in the sense of RMSE as n increases.
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Figure 1: A Comparison of the Three Filters (Experiment I)
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Figure 2: A Comparison of the Three Filters (Experiment I)
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Table 2: A Comparison of the Three Filters (Experiment II)

n b

0.0 0.3 0.6 0.9 0.95

E −.0024 −.0023 −.0023 −.0012 −.0008
S −.0024 −.0023 −.0023 −.0012 −.0006

BIAS M 50 .0021 .0024 .0024 .0019 .0013
M 100 −.0025 −.0023 −.0020 −.0010 −.0009
M 500 .0020 .0023 .0022 .0019 .0013

E .7091 .7051 .6810 .5404 .4525
S .7091 .7050 .6797 .5381 .4503

RMSE M 50 .7159 .7126 .6897 .5638 .4916
M 100 .7096 .7051 .6803 .5501 .4765
M 500 .7136 .7093 .6844 .5487 .4694

Experiment II: In the second example, estimation of an unknown parameter
is considered using an ARCH(1) model, which is written as αt = σtηt, where σt =
(a + bσ2

t−1η
2
t−1)

1/2, a > 0 and 0 ≤ b < 1. ηt is mutually independently, identically
and normally distributed and normalized to the normal random variable with mean
zero and variance one. Eliminating σt from the above two equations, it is rewritten
as αt = (a+bα2

t−1)
1/2ηt, which corresponds to the transition equation in Experiment

II. Also, normalizing the unconditional variance of αt to one, a = 1 − b is taken.
For the measurement equation, we assume that the observed variable yt consists of
the ARCH(1) process αt and a random shock εt. Therefore, we have the following
state-space form:

(Measurement equation) yt = αt + εt, (37)

(Transition equation) αt = (1 − b + bα2
t−1)

1/2ηt, (38)

where αt is the state variable and we assume εt and ηt as mutually independent stan-
dard normal random variables. In this model, the expectations given by equations
(9) and (11) – (13) are explicitly computed without any approximation. Approx-
imation of equation (10) is performed by the first- and the second-order Taylor
series expansions or the Monte-Carlo stochastic simulations. In this experiment, we
consider estimating αt and b simultaneously.

The experiment procedure is as follows. Given the parameter b, generate normal
random draws of εt and ηt, and compute yt and αt for t = 1, · · · , T (T = 100). For the
initial value α0, we take the normal distribution with mean zero and variance one.
Then, based on yt, t = 1, · · · , T , we estimate αt given It, and the unknown parameter
b using the likelihood function (8). Here, m sets of data {y}T

t=1 are generated and
m estimates of b are obtained where m = 1000. We choose the true parameter as
b =0.0, 0.3, 0.6, 0.9, 0.95. For the Monte-Carlo Simulation filter, n = 50, 100, 500 is
taken.

The maximization of the likelihood function is performed by a simple grid search,
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Table 3: True Parameters and Estimates (Experiment II)

b n AVE VAR MSE 10% 25% 50% 75% 90%

E .14697 .03622 .05753 .0 .0 .04 .26 .45
.0 S .14719 .03797 .05963 .0 .0 .04 .25 .46

M 50 .13113 .05202 .06921 .0 .0 .0 .19 .45
M 100 .14712 .06014 .08179 .0 .0 .0 .21 .53
M 500 .16628 .06957 .09722 .0 .0 .0 .24 .62

E .22383 .04161 .04741 .0 .0 .19 .38 .52
.3 S .23528 .04585 .05004 .0 .0 .20 .40 .54

M 50 .24262 .07609 .07938 .0 .0 .16 .40 .67
M 100 .27581 .09004 .09062 .0 .0 .18 .47 .78
M 500 .31049 .09541 .09552 .0 .0 .25 .52 .81

E .36752 .04769 .10174 .0 .22 .39 .53 .64
.6 S .39117 .05340 .09701 .0 .22 .41 .57 .67

M 50 .41584 .10628 .14019 .0 .08 .42 .68 .89
M 100 .45506 .12150 .14251 .0 .09 .46 .78 .95
M 500 .52120 .11188 .11809 .0 .24 .57 .81 .95

E .67703 .03761 .08733 .43 .56 .69 .83 .92
.9 S .70462 .03742 .07560 .46 .60 .73 .85 .93

M 50 .77452 .08422 .09997 .29 .68 .90 .99 .99
M 100 .83002 .06936 .07425 .44 .80 .95 .99 .99
M 500 .88362 .03401 .03428 .71 .86 .96 .99 .99

E .78423 .02905 .05653 .55 .68 .81 .92 .99
.95 S .80724 .02643 .04681 .60 .73 .84 .93 .99

M 50 .84681 .06929 .07994 .53 .85 .97 .99 .99
M 100 .89626 .04477 .04766 .74 .91 .99 .99 .99
M 500 .93710 .01631 .01648 .84 .94 .99 .99 .99
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Table 4: A Comparison of the Three Filters (Experiment III)

n BIAS RMSE

E .6416 23.7023
S .1124 82.1384
M 5 −.0073 16.0883
M 20 −.1381 10.2972
M 50 −.0867 9.5633
M 100 −.0920 9.3411
M 500 −.0885 9.1979

in which the function is maximized by changing the parameter value of b by 0.01 in
the interval between 0 and 0.99.

Table 2 represents BIAS and RMSE between the artificially simulated state

variable (i.e., α
(i)
t ) and the estimated state variable (i.e., a

(i)
t|t ). Table 3 shows true

parameter values (b =0.0, 0.3, 0.6, 0.9, 0.95) and the corresponding estimates for
each estimator (i.e., E, S and M). E, S and M denote the extended Kalman filter,
the second-order nonlinear filter and the Monte-Carlo simulation filter. AVE, VAR
and MSE represent the average, variance and mean squared error of the estimates
obtained in 1000 simulations. Also, 10%, 25%, 50%, 75% and 90% indicate each
percent value from the 1000 estimates.

As precision of approximation of the expectations is improved, the average of
the estimates is closer to the true parameter value (see AVE in Table 3). In this
sense, the Monte-Carlo simulation filter is the best estimator but gives the largest
variance and relatively large MSE.

Experiment III: The following functions are taken in Kitagawa (1987) and
Carlin, Polson and Stoffer (1992).

(Measurement equation) yt =
α2

t

20
+ εt, (39)

(Transition equation) αt =
1

2
αt−1 +

25αt−1

1 + α2
t−1

+8 cos(1.2(t − 1)) + ηt., (40)

The error terms are mutually independently distributed, i.e.,
(

εt

ηt

)
∼ N

( (
0
0

)
,

(
1 0
0 10

) )
.

The distribution of the initial value is assumed to be normal, i.e.,

α0 ∼ N(0, 10).

The results are in Table 4. In Experiment I, differences among E, S and M are
small. However, in this experiment, M performs much better than E and S from
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Table 4. The Monte-Carlo simulation filter is extremely better than the extended
Kalman filter and the second-order nonlinear filter in the sense of both BIAS and
RMSE criteria.

5 Summary

In this paper, the three nonlinear filters are derived from the same theoretical frame-
work (i.e., the extended Kalman filter, the second-order nonlinear filter and the
Monte-Carlo simulation filter). There, we have discussed the following: first, we
must impose some approximations on the approximated error terms (or the resid-
uals) ũt and ṽt and also linearize the nonlinear functions in order to evaluate the
expectations in equations (9) – (13). Some of these approximations imply that the
approximated error terms ũt and ṽt are mutually, independently and normally dis-
tributed with zero means. Summarizing the problems of the nonlinear filters such
as the extended Kalman filter and the second-order nonlinear filter, we have the
problems (18) – (21) on the approximated error terms, which are not well-behaved.
In order to use the Taylor series expansion approach, we have to approximate the
error terms ũt and ṽt to be well-behaved.

Second, the nonlinear filter was proposed, where the expectations are approx-
imated by generating the normal random numbers for the state variable αt given
It−1 and the error terms εt and ηt. The approximation based on the normal random
numbers might be appropriate because ũt and ṽt are approximated to be normal in
deriving the algorithm (9) – (16) and accordingly the normality approximation of ũt

and ṽt implies the normality approximation of the state variables αt and αt−1 given
It−1. For the Monte-Carlo simulation filter proposed in this paper, however, we still
have the problems (20) and (21) while (18) and (19) are improved.

Third, in the case where one of the functions h1t(αt), h2t(εt), g1t(αt−1) and g2t(ηt)
is linear, we do not need to consider the correlation between the error terms (the
residuals). We might expect a better approximation if we take such a functional form
for the measurement equation or the transition equation. The theorems proposed
here are useful in the case where ũt and ṽt have zero-means, and accordingly useful
for the Monte-Carlo simulation filter.

The Monte-Carlo experiments indicated that the Monte-Carlo simulation filter
gives asymptotically unbiased filtering estimates and small RMSE, depending on
the functional form of the state-space model, and that, in simultaneous estimation
of the state variables and the unknown parameter, the average of the estimated
parameter is closer to the true parameter value as the precision of approximation of
the expectations is improved.

The approximation by a Taylor series expansion is broadly used in the case of
nonlinear estimation. When approximating nonlinear functions by the Taylor series
expansion, however, we need to recognize that the structure of the original func-
tion is completely different from that of the approximated function. Especially the
approximated error terms consist of two parts; the stochastic part and the determin-
istic part. According to the Taylor series expansion approach, we have to assume
the approximated error terms to be normal, which implies that we must assume
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that both the stochastic part and the deterministic part are normally distributed.
Clearly, it is not appropriate to assume the deterministic part to be normal. There-
fore, we have to justify the approximation when we use the Taylor series expansion
approach. In this paper, this discussion was not given.

Finally, note as follows. We have discussed about the nonlinear filters based on
Taylor series expansions. It has been shown in this paper that in the class of the
Taylor series expansion approaches the Monte-Carlo simulation filter is optimal at
least in the sense of BIAS. Moreover, because of less computational burden, the
Monte-Carlo simulation filter might be recommended. Recently, the density-based
nonlinear filters have been developed, where the underlying density functions, rather
than the nonlinear measurement and transition equations, are approximated. Kita-
gawa (1987) and Kramer and Sorenson (1988) evaluated the integration included
in the density-based filtering algorithm by numerical integration. Carlin, Polson
and Stoffer (1992) derived the algorithm by the Gibbs sampler in a Bayesian frame-
work. Tanizaki (1991), Tanizaki and Mariano (1994) and Mariano and Tanizaki
(1995) applied Monte-Carlo integration with importance sampling to the density
approximation. Moreover, Mariano and Tanizaki (1995) and Tanizaki and Mariano
(1995) proposed the nonlinear filtering algorithm without evaluating any density
function, where the random draws are generated directly from the filtering density
at each time. Thus, recently, numerous papers have been devoted to the density-
based nonlinear filters, rather than the Taylor series expansion approaches, because
it is well known that the density-based nonlinear filters are better than the Taylor
series expansion approaches from both BIAS and RMSE criteria. However, we have
a serious problem on the density-based nonlinear filters, which is the computational
disadvantage although computer progresses day by day. Therefore, in this paper, we
have proposed the Monte-Carlo simulation filter, which has much less computational
burden compared with the density-based approaches.

Appendix

In the case of approximation based on the first-order Taylor series expansion, equa-
tions (7) and (8) reduces to:

(Measurement Equation)

yt = ct|t−1 + Zt|t−1(αt − at|t−1) + ũt, (41)

(Transition Equation)

αt = dt|t−1 + Tt|t−1(αt−1 − at−1|t−1) + ṽt, (42)

where ct|t−1 and dt|t−1 are ht(αt, εt) and gt(αt−1, ηt) evaluated at (αt, εt) = (at|t−1, 0)
and (αt−1, ηt) = (at−1|t−1, 0). Zt|t−1 and Tt|t−1 are the first- derivatives with respect
to αt and αt−1 evaluated at (αt, εt) = (at|t−1, 0) and (αt−1, ηt) = (at−1|t−1, 0). ũt

and ṽt above are clearly nonnormal with nonzero means, correlated with each other,
and correlated with the corresponding state variable.
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For the higher-order nonlinear filters, the measurement and transition equations
are similarly approximated as equations (41) and (42).
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