
MATHEMATICS OF COMPUTATION
VOLUME 52, NUMBER 186
APRIL 1989, PAGES 509-537

Nonlinear Filters for Efficient Shock Computation

By Björn Engquist,* Per Lötstedt,** and Björn Sjögreen***

Dedicated to Professor Eugene Isaacson on the occasion of his 70th birthday

Abstract. A new type of methods for the numerical approximation of hyperbolic con-
servation laws with discontinuous solution is introduced. The methods are based on
standard finite difference schemes. The difference solution is processed with a nonlinear
conservation form filter at every time level to eliminate spurious oscillations near shocks.
It is proved that the filter can control the total variation of the solution and also produce
sharp discrete shocks. The method is simpler and faster than many other high resolution
schemes for shock calculations. Numerical examples in one and two space dimensions
are presented.

1. Introduction. A major difficulty in the numerical approximation of nonlin-
ear hyperbolic conservation laws is the presence of discontinuities in the solution.
Traditional schemes generate spurious oscillations in the numerical solution near
these discontinuities. Standard methods based on centered differencing together
with artificial viscosity have often during the last few years been replaced by the
so-called high-resolution schemes.

The high-resolution schemes are based on concepts like upwinding, local Rie-
mann solvers, field by field decomposition and flux limiting, see, e.g., [1], [3], [12],
[13]. These schemes are designed for shock capturing and produce sharp numerical
discontinuities without oscillations. The algorithms are however not so computa-
tionally efficient. For higher-order numerical accuracy they are quite complicated.

It is our purpose to present a class of methods which retain most of the positive
features of traditional schemes, but at the same time treat shocks and contacts sim-
ilarly to the modern high-resolution schemes. The methods are based on standard
schemes, the solutions of which are then processed with a nonlinear conservation
law filter at every time step. The filter contains field by field decomposition and
limiters in order to have good shock capturing properties. It is only activated at a
few grid points, and therefore the overall algorithm has an order of accuracy and
computational efficiency which are close to the traditional methods.

The filter step is essentially independent from the step with the basic difference
scheme. It is therefore easy to implement in existing codes. See the numerical
examples in Section 6.

Received January 18, 1988; revised June 20, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 65M05, 65M10.
•Supported by NSF Grant No. DMS85-03294, NASA Consortium Agreement No. NCA2-

IR360-403.
"Also at Aircraft Division, SAAB-SCANIA, S-581 88 Linköping, Sweden.
"'Supported by a grant from the Thanks to Scandinavia Foundation and by UCLA.

©1989 American Mathematical Society
0025-5718/89 $1.00 + $.25 per page

509

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

510 BJÖRN ENGQUIST, PER LOTSTEDT, AND BJÖRN SJOGREEN

Our problem is a system of nonlinear hyperbolic conservation laws in, e.g., two
space dimensions

(ll) \lt+f(u)X+g(u)y=0,
u(x,y,0) = u0(x,y),

with appropriate boundary conditions. The numerical Examples 3 and 4 in Sec-
tion 6 are of this form.

The method will first be described for the simpler one-dimensional case

(1.2) »t + f(u)* = 0,
u(i,0) = u0(x),

when u and f are either scalars or vectors.
We are interested in numerical approximations of weak solutions to (1.2) and

assume that a consistent basic difference scheme of conservation form is already
given,

u]+1=G(u?_r,u?_r+1,...,u?+r),

(1.3) u°j=u0(x),
n = 0,1,2,..., j = ...,-1,0,1,...,

Xj ■=■ jAx, tn = nAt, Ai = AAx.

We want to couple this scheme (in short form, un+1 = G(un)) with a filter or
projection in the following way:

vn+1=G(un),

un+1 =P(vn+\un).

Let us here discuss some natural conditions for P.
(1) Consistency. If the solution is smooth, the filter should not change the

approximation vn+l too much. In particular, we want the total method (1.4) to be
consistent,

||un+i _i/»+i|| =0(At2) for smooth vn+l.

The norm can, e.g., be the /i-norm, and smoothness may mean bounded higher
divided differences. It is here possible to require that a higher order of accuracy of
the basic scheme is not changed by the filter, see Subsection 2.2.

(2) Conservation form. For convergence to the correct weak solution it is neces-
sary for the total scheme (1.4) to be of conservation form, which means

(1.5) 5>(z,)«+1-^+1)<C
3

for ip in a suitable class of test functions.
(3) TVD. The filter should enforce some criterion that guarantees that there

are no spurious oscillations near discontinuities. The usual criterion for a scalar
conservation law is the following (TVD) inequality:

TV(un+1) <TV(un),

(1-6) TV(«") = 5>?+i-«?|.
j

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 511

For systems of equations, (1.6) is applied in the characteristic fields. See Section 2
for details and a discussion of other criteria.

(4) Minimal change. The filter step should enforce (3), without violating (1) or
(2), with few numerical operations. This means that

\u]+1-v]+1\jiO

for as few j-values as possible and that the filter should be neutral if vn+1 already
satisfies the criterion (3). The filter step should thus be a projection

P(P(vn+1,un),un) = P(vn+1,un).

The methods we will present will not all satisfy (3) or (4) fully because we are
also interested in simplicity of the algorithms. It may be possible to derive even
simpler filters for particular difference schemes. We have here concentrated on the
general case where the filter is not based on special properties of the difference
algorithm.

The fundamental steps in the filter are first to find the extrema of vn+1. If these
extrema increase the variation of vn+1 over that of un, then vn+1 is corrected field
by field in a conservative way such that (1.6) is satisfied. This means that the filter
is only activated at very few mesh points and all corrections are local. For details
see Sections 2 and 4.

The standard artificial viscosity method can be regarded as a filter for the elimi-
nation of high frequencies. It is quite different from the methods which are described
here. All mesh values are affected and it is not based on field by field decomposition
or limiters. In [4], a filter with a switch is introduced in order to reduce numerical
oscillations at shocks. This filter affects all mesh values, but the main changes are
close to steep gradients. Filters are also introduced to postprocess results from
spectral method approximation of shock problems [2].

The filter algorithms are presented in Section 2. In Section 3 we prove some
properties of the algorithms in Section 2. Section 4 deals with the field by field
decomposition for solving systems of equations and in Section 5 we give a result on
the existence of sharp shock profiles. The numerical results in Section 6 contain,
among other things, the computed solution of the Euler equations for flow in a
channel towards a forward facing step, and the steady flow around an airfoil.

2. Filter Algorithms for Scalar Equations. In the first part of this sec-
tion filter algorithms of increasing capability and complexity are presented and
discussed. In the second part, suggestions are given for generalizations of these
types of methods. It is outside the scope of this paper to further investigate these
suggestions.

2.1. Description of Some Filters. Let us assume that we are given vn+1 =
(v"+1v2+1 ■■ -Vh+1)t, the result after taking one step with the difference scheme
(1.3). The simplest filter, which is not TVD but still of practical use, works ac-
cording to the following principles:

(1) Scan through the function values vf , j = 1,.. .,N, and correct the u™+1
values that are local maxima or local minima.

(2) Correction is made by decreasing maxima and by increasing minima.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

512 BJÖRN ENGQUIST, PER LOTSTEDT, AND BJÖRN SJÖGREEN

(3) When a correction is added to a point u"+1, the same correction must be
subtracted from a neighboring point, otherwise conservation is lost and one
may obtain the wrong shock speed. The corrected neighbor is chosen as
the one with the greatest distance to v"+1.
No value may be corrected so that it passes its neighbors. This means that
we do not want to overcompensate so that new extrema are created.

(4)

„M-l

JO
LW^

Jo
o

„»+1

P_ o o o o

a) b) c)

Figure 2.1
The Lax- Wendroff scheme is applied to a step function,

and the filter corrects the error made.

The principles are illustrated by an example which exhibits the typical behavior
of the Lax-Wendroff scheme when applied to a moving shock solution of the inviscid
Burgers equation. In Figure 2.1, it" is this solution at time level n, given as a step
function (Figure 2.1a). One time step with the Lax-Wendroff difference scheme is
taken, giving vn+1 in Figure 2.1b. An overshoot is introduced. The filter produces
the result un+1 in Figure 2.1c. It follows the four principles above:

(1) i>"o+1 is discovered as a maximum ((A+u"o+1)(A_i;"n+1) < 0).
(2) v"+1 will be decreased.

Jo

(3) v?^! or v™++\ must be increased by the same amount as «?0+1 is decreased
The filter chooses v™~+1 because the distance to the jo +1 neighbor is larger
than the distance to the j0 - 1 neighbor (|A+v"+1| > |A_t>"+1|).

(4) t>?+1 must not be decreased further than to the level of v"^_\, otherwise
u"o+1 will pass the neighbor «?**, a case which we do not allow.

The symbols A+ and A_ denote the forward and backward difference, respectively,
A±u3 = ±(uj±i —Uj). These principles can be formulated in Algorithm 2.1 below.
The vector u is to be understood as an array in a computer program, that initially
contains the function to be filtered vn+1 and after completion of the algorithm
holds the filtered solution un+1.

Algorithm 2.1
for j := 2 to N - 1 do

if (A+Uj)(A-u3) < 0 then
if |A+Uj| > |A_Uj| then

6+ := |A+itj|
6- := |A_t»y|
jcorr := j + 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 513

else

6+ := \A-Uj\
6- := \A+Uj\
jcorr := j - 1

endif
¿:=min(¿_,<5+/2)
s := sgn(A+Uj)
Uj := Uj + se
tljcorr •— "^jcorr 80

endif
endfor

This filter has proved to work very well in the computations we have made.
Numerical results will be presented in Section 6, and in Section 4 the algorithm
will be generalized to systems of equations.

There are, however, some properties of Algorithm 2.1 that are not entirely sat-
isfactory:

(1) It cannot discover extrema consisting of more than one point (Figure 2.2).

Figure 2.2
Plateau maximum.

(2) It does not give a method which is TVD. The total variation may increase,
TV(u"+1) > TV(u") (Figure 2.3). This means that the method allows
oscillations around the shocks, and indeed in numerical experiments there
are oscillations present in the solution. These, however, have in most cases
been observed to be of very small amplitude, cf. Table 6.1.

(3) It flattens extrema that are not the result of overshooting and thus gives
a low order of accuracy locally around smooth extrema, a property shared
with all TVD-schemes [6].

Algorithm 2.1 can be modified such that these difficulties are overcome.
We continue by modifying Algorithm 2.1 to obtain a TVD-enforcing filter. As

can be seen in Figure 2.3, v"+1 should sometimes decrease further. The question
is how much. A stop condition is required. We have chosen to accept an extremum
at jo if the condition

(Cl) min(uÂ-i>u"o>u"o+i) ^ <+1 if ul+1 is a minimum,

w"0+ * < max(i(Jo _ i, w"0, w"0 +1) if u"0+! is a maximum,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

514 BJÖRN ENGQUIST, PER LOTSTEDT, AND BJÖRN SJÖGREEN

„•»+1 ,n+l

LW^ P_

Figure 2.3
Algorithm 2.1 fails to be TVD.

holds for all extrema «?0+1 of un+1. This condition is not sufficient to guarantee
TVD. An additional constraint excluding the possibility that an extremum at Xj is
followed by one at Xj+i is necessary in the following theorem.

THEOREM 2.1. Ifun+1 have no consecutive extrema, and if (Cl) holds at all
extrema of un+l, then

TV(u"+1)<TV(w").

Proof. We have TV(u"+1) = £J \u£¡ - un+1| = £„ \u]+\ - u£+1|, where
{u™^1},, is an enumeration of the extrema in un+1. By (Cl) there holds

y k+\ - «n ^ e n+1 - «$i. &e & -1.*.*+o-
If the distance between two extrema contains at least one point, it follows that
Jl+i > jv+i — 1 > ju + 1 > j'v Thus the sequence {j/,} is nondecreasing and

y\\x, -uni,\ = y\ur\, -u", +u5 _!-<. _2
i-i1 Ji/+1 J"'1 Z—< ' Jy+1 J^+l Jv+\ l -¡¡,+ 1 ^

1/ V

+u»+1_2—«a+l+'fc+l-««!

<£Kn-«?i + I>r+i-«?i+...
«=í¿ '=J'i

= Eiur+i-«n=TV(U"). n
i

Remark 2.1. The condition of no consecutive extrema in the theorem is necessary.
Consider the mesh function

unj=0, j¿0,l,

ul = -1, «J = 1,
,"+! -= 0, j 7*0,1,2,

un+1 = u n+l _ 1, „n+l _= -1.
The condition (Cl) is valid but TV(un) = 4, TV(itn+1) = 6.

We can modify Algorithm 2.1 as follows:
(a) Continue the decrease of maxima and increase of minima until (Cl) holds.
(b) If an extremum is accepted at jo, check whether there is one at jo — 1.

If that is the case, take a special step to remove this, by Theorem 2.1,
forbidden situation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 515

We arrive at Algorithm 2.2. The output of this algorithm will satisfy the conditions
needed in Theorem 2.1, provided there are no plateaus as extremas. The notation is
the same as in Algorithm 2.1. The vector u is an array which initially contains the
unfiltered function vn+1 and returns the filtered function un+1 as output. Notice
that this algorithm requires that we have saved the solution un from the previous
time level.
Algorithm 2.2

j:=2
while j < N do

if (A+Uj)(A-Uj) < 0 and not admissible (j,u,un) then
correct Uj in the same way as in Algorithm 2.1

elseif (A+Uj) (A-Uj) < 0 and (A+Uj_i)(A_uJ_1) < 0 then
comment: this removes a zig-zag situation
Ô := min(|A_u,_i|, |A+Uj_i|/2, |A+Uj|)
s := sgn(A+Uj)
Uj-i := Uj-i — s6
u3 := Uj + s6

j ■= 3 - 1
else

comment: if Uj does not need any correction go on to j + 1
j ~j + l

endif
endwhile

The algorithm uses a function admisssible which checks the condition (Cl).
admissible(j,un+1,un) returns true if

miniu^,«",«^) < u]+l < maxfu^!,«?,^!),

otherwise the value false is returned.
In the filter used for the numerical experiments in Section 6 we introduced one

further improvement in this algorithm. From the proof of Theorem 2.1, we infer
that the case when there is a minimum at j — 1 and a maximum at j can be allowed
if the following hold:

min(u",u"+1) < un+1 < max(u",i¿"+1) and

min(un_2,u^_1,u7) < un¿{ < max(uJn_2,tin_1,tíJn)

(C2) or
min^^u",«"^) < u"+1 < max(u"_1,ii",ii"+1) and

min(wn_2,u"_1) < «2+1 < max(«Íl_2,«n_1).

We can add a function admissible2(j, j — l,un,un^1) checking this condition.
admissible2 returns true if the condition (C2) holds. Otherwise the result
is false. Introduce this function together with the test (A+u3)(A-u3) < 0 and
(A+iij_i)(A_Uj_i) < 0 into the elseif text in Algorithm 2.2. The new condition
becomes

(A+Uj)(A-Uj) < 0 and (A+Uj_i)(A_Uj_i) < 0 and
not admissible2(j,j — l,un,u).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

516 BJÖRN ENGQUIST, PER LÖTSTEDT, AND BJÖRN SJÖGREEN

This modification improves the quality of the filtered function in the sense that the
accuracy is improved. We conclude this from numerical experiments.

We now modify Algorithm 2.2 to take into account the fact that some maxima or
minima can contain more than one value. The modifications needed consist entirely
of bookkeeping to keep track of various plateaus with pointers in the computer
program, and introduce no new ideas. We define a plateau of length r to be a set
of indices, {i,i + 1,... ,i + r} such that

Ui-l 7* Ui = Ui+i = ■■■ = Ui+r t¿ Ui+r+l,

see Figure 2.4. A plateau is treated as a unit by the filter. When searching for
extrema, the condition

(A+Uj)(A-Uj) <0
is replaced by

(A+u,.)(A_u,) <0,
where j and / satisfy

Ul-i t¿ Ul = Ul-i = ■ ■ ■ = Uk = ■ ■ ■ = Uj t¿ Uj+i

in Algorithm 2.2. The condition (Cl) is replaced by

mm{vf_i,i$,...,uf+1) <w"+1 <max(un_1,...,un+1).

Finally, all the points in the extremum, ui,...,Uj, are decreased by the same
amount. An example is given in Figure 2.4.

vn+i un+x

jo jo + 1
o o jo jo + 1

o o o o

P-
o o o

Z X

Figure 2.4
An inadmissible maximum is treated as a unit.

With these modifications the correction part in Algorithms 2.1 and 2.2 becomes:
Algorithm 2.3 (first part)

newind(u,2,l,j)
while j < N do

if (A+Uj)(A-Ui) < 0 and not admissible(l, j,u,un) then
if |A+Uj| > |A_U(| then

6+ := \A+Uj\
6- := |A_u/|
jcorr := j + 1
Icorr := j + 1

else
6+ := |A_u(|
<5_ := |A+Uj|

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 517

comment: a backward correction must not destroy
the corrected solution to the left of /, therefore we
make the backward step in the sense of plateaus.
newind(u, I — 1, Icorr, jcorr)

endif
wi := y - / + 1
<^2 '■= jcorr — Icorr + 1
6 :=min(6-,(jj2Ô+/(uJi +W2))
s := sgn(A+iij)
for i := I to j do

Ui := Ui + s6
endfor
for t := Icorr to jcorr do

Ui := Ui — s6uii/ui2
endfor
newind(u,j,l,j)

elseif (A+Uj)(A-u3) < 0 and (A+Uj_i)(A_Uj_i) < 0 then

The rest of Algorithm 2.2 can be rewritten to handle plateaus in the same manner
as indicated above to obtain the first part of Algorithm 2.3. Note that we need to
weigh the corrections depending on the number of points in the plateaus corrected.
Here the weights u>i and oj2 are chosen such that the sum £v=i u 's no^ changed,
i.e., u is conserved, and the plateaus are not passing each other. The algorithm
uses some subroutines, described below.

newind(u,ind,l,j)—The vector u and the index ind are given as input. The
indices l,j such that

«1-1 ¥" "J = «Í + 1 = • • • = Ulnd = •■• =Uj ¿ Uj+i

are returned as output.
admissible(l,j, u, un)—checks whether

miniuJLn«?,...,u"+i) < Uj <max(^_1,...,wj+1).

All plateaus are kept track of by using / as the leftmost point in the plateau and j
as the rightmost.

Thus, a plateau is treated as one point with the weight adjusted for conservation.
It is sometimes necessary, however, to release a point and regard it as separate from
the neighboring plateau. Filtering of piecewise constants would otherwise not be
local, and the local conservation property (1.5) would be violated. Since another
point is added to another plateau in the same filter step, the total number of points
belonging to plateaus is constant.

We now have a filter that forces TVD upon the solution u regardless of the differ-
ence scheme. We now discuss some possibilities to increase the accuracy at smooth
extrema. Instead of decreasing «?0+1 to the same level as a neighboring point, the
value u"o+1 is lowered only so that it fulfills (Cl). This means a replacement of the
statement

¿:=min(<5+/2,<5_)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

518 BJÖRN ENGQUIST, PER LÖTSTEDT, AND BJÖRN SJÖGREEN

in Algorithms 2.1-2.3 by

6 :=m.m(6+/2,6-,max(di,d2)),

where di = Uj0 - max(u?_1,... ,u"+1) and d2 = min(uf_1,... ,u"+l) -Uj0, if j0
belongs to a plateau between un and u". If there is a one-point extremum, then
I = j = j0. The result is another filter algorithm. We do not give a detailed
description, since most of it is similar to the previous ones.

Algorithm 2.4
3~2
while j < N do

di := Uj - max^!,... ,u"+1)
d2 := mm(ttf_v...,uf+1) - Uj
if (A+Uj)(A-Ui) < 0 and (dx > 0 or d2 > 0) then

correct Uj in the same way as in Algorithm 2.1, taking
into account plateaus as described above, but with
6 :=min(6+/2,ö-,max(di,d2))

elseif (A+Uj)(A-Ui) < 0 and (A+wi_i)(A_up) < 0 then
remove the zig-zagging as in Algorithm 2.2 with plateaus taken
into account (p is the left index of the plateau that has
/ — 1 as right index)

else
comment: if Uj does not need any correction go on to j + 1
newind(u, j + 1,1, j)

endif
endwhile

The step that handles a consecutive maximum-minimum is not changed. This
algorithm is optimal in the sense that it makes the smallest possible correction,
still being TVD.

2.2. Generalizations. The filters that were presented in Subsection 2.1 were
either designed to produce TVD-solutions or they were simplifications of the TVD-
filters.

TVD-methods have a significant drawback. Enforcing a strict total variation
bound

EKii1-«r1i<EK+1-u"i
j j

makes it impossible for the method to be of higher-order accuracy at smooth ex-
trema [6].

We will suggest three possible ways of avoiding this deficiency for filter type
methods:

(1) It is possible not to trigger the filter at smooth extrema. The condition "if
(A+Uj)(A-Uj) < 0" in the filter algorithm can, e.g., be augmented by testing if
there is an inflection point. A natural test is to see if A+A_itj changes sign close
to the extremum. The second difference does not change sign near a typical smooth
extremum. The generic spurious oscillation however contains inflection points.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 519

(2) Another possibility is to correct, e.g., a new maximum only if it is higher than
the extrapolated solution from the left and the right. Furthermore, the correction
should not modify the solution to a value lower than the extrapolated one. Algo-
rithm 2.1 is in fact such a method based on constant extrapolation. Higher-order
standard one-sided or ENO extrapolations [7] are possible.

(3) We can use other criteria than TVD for the filter design. The method can
be constructed to produce nonoscillatory solutions, cf. the ENO scheme [7]. The
search for new extrema will still be the first step in such an algorithm. The field
by field decomposition will also be the same. The goal of the correction will then
be to ensure that no new extrema occur.

The suggestions above are all for less restrictive filters or similarly for projections
onto larger classes of solutions. In one respect it would be desirable with a more
strict filter.

There is no guarantee that the filtered solution satisfies an entropy condition.
As it is with the filters in Subsection 2.1, the entropy has to be taken care of by
the basic difference scheme. It would be possible to check for an entropy inequality
in the same way as we now check for extrema. If the entropy inequality is not
satisfied, the solution can be modified until the inequality is valid.

Since the solution is divided into eigenvectors at extrema, it is possible to include
artificial compression in the filter for the field containing contacts [3].

Finally, if the filter will be used inside an implicit algorithm, the correction
should depend continuously on the previous step.

3. Analysis of Properties. The first question to ask is whether we can keep
on changing the function like we do in the filters, without affecting the convergence
to the right solution. One result that indicates how much we are allowed to change
vn+1 is the following theorem.

THEOREM 3.1. Assume that

«,»+» = un _ X(F(u»+k+1,U?+k, ..., U]_m) - F(U]+k, U?+k_lt. . . , ^_m_!))

is a finite difference scheme consistent with (1.2), that F is a Lipschitz continuous
function of its arguments and that the correction c" added by a filter is of the form

k= — s k= — s
un+l=vn + l+cn,

with r,s bounded independently of Ax. If un —> u in L\oc with u in L1 x L1 as
Ax —► 0, Ai = XAx, then u is a weak solution to (1.2).

Proof. The proof is an extension of the convergence proof in [5] to include filter
corrections. Let <p(x,t) be a test function in Cq°(R x R+). Multiply the relation
u"+1 = u" - X(A+F]n_1/2) + o" by tpf = <p(xj, tn) and sum over n and j,

y Í>?K+1 -u«)+Vj>\(A+F»_1/2)) = y y <p«c».
n=0j= — J n=0 j= — J

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

520 BJÖRN ENGQUIST, PER LÓTSTEDT, AND BJÖRN SJÖGREEN

Here, NAt = max{í: <p(x,t) ^ 0} and JAx = max{|x|: <p(x,t) ^ 0}. These
numbers are finite, since <p has compact support, but N and J —► oo as Ax, Ai —► 0.
Multiply by Ax and sum by parts. The left-hand side becomes a Riemann sum
which converges to the integral

(3.1) // iptu + (pxf(u)dxdt,
J JrxR+

and the right-hand side becomes

(3.2) Axyy^c^.
n=0j=-J

It remains to prove that this quantity goes to zero as Ax, Ai —♦ 0. Let positive
constants be denoted by C in the sequel. We can prove this in the following way:

A*E E Ea>"A+«
n=0j=-J

N L
= Ax

n=0 j= — Jk=—s

E E E "?-k,k<p?-k*+v?+1
n=0l=-Lk=-s

N L r

= Ax2
k=—s

y y A+.r+i e Ku,,
n=0i=-L k-

<Ax2cy y \A+vrl

d¡p(xi + ^k,t„)
dx

n=0l=-L
N L

<• AtV V V* l„"+1_„n I 4- U/n _ „nl -L I,," _ „n+1|s ¡±x o 2_^ 2^1 \vi+i ui+il + lui+i ui\ + \ui vi l
n=Oi=-L

Since F is Lipschitz continuous, we have

E k+1-«pi = E A|F(«p+fc+1)«?+t,...,«p_m)
l = -L l=-L

-P(«?+*,«?-Hfc-l,---,«r-m-l)l

<^,t y iur+,-«?+i-ii
l= — L i=—m

L+k

¡=-L-m-l
<xci(k+m+2) y i«r+i-«ri-

Thus,

^ E E ^"c"
n=0j=-J

N L + k

<Ax2c2y y i«p+1-«n
n=0(= -L-m-l

< C2\\u(x + Ax,t) - w(x,i)||LixLi.

By a well-known theorem for u in L1 x L1 the upper bound vanishes as Ax ->0. D
This theorem states that if we do not allow any correction to spread out over an

increasing number of mesh points as Ax —► 0, then we still have convergence to the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 521

correct weak solution, if we have convergence. It is evident that the filter described
in Algorithm 2.1 fulfills the conditions in Theorem 3.1.

Another question which arises is the following: Is the TVD-filter a finite algo-
rithm? Will it terminate in a finite number of steps on each time level? To answer
this question, one can argue like in the next theorem.

Let us first introduce some notation. If v is a function on a mesh for a one-
dimensional problem, we let M be the number of values in v if we count oc-
currences of more than one consecutive equal value as one. For the function
{vj} = {1.1 2.3 3.4 3.4 3.4 2.5 1.1},M is 5. We let the pair (j,M) represent the
state of the filter algorithm at a given moment. The index j is the location where
the filter is working and M is as defined above. The operators Tp, p = 1,2,3,4,
describe the action of the filter on v when one step of a filter algorithm is executed.

THEOREM 3.2. Assume that a filter is applied to a point j and that one of the
following modifications of v is made:

1. the solution at two neighboring points is given equal value and M := M — 1,

Ti(j,M) = (j,M-l),

or
2. the end point of one plateau is released and a new point is included in another

plateau,
T2(j,M) = (j,M),

or
3. one step backward is taken, j := j — 1, and a new point is included in a

plateau, M := M — 1,
T3(j,M) = (j-l,M-l),

or
4. no solution values are changed and a step forward is taken, j := j + 1,

T4(j,M) = (j + l,M).

Then the total number of filter corrections in the filter algorithm is bounded from
above.

Proof. We shall prove that if
L

T = Y[Tkt(l,N) = (a,b) with a < N, b > 1, fc¿ = l,2,3or 4,
i=l

then L must be a finite number. This means that the filter cannot take an infinite
number of steps, since the state where M = 1 or j = N will be reached in a finite
number of steps.

Let ni,ri2,n3 and m be the number of times Ti,T2,T3 and T4 occurs in T,
respectively. It follows from the assumption that

a = Ui - nz, b < N - n3.

Since a < N,b> 1, we have

n3 < N - 1, n4 < 2N - 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

522 BJÖRN ENGQUIST, PER LÖTSTEDT, AND BJÖRN SJÖGREEN

We need upper bounds on n[and n2, the number of operators Ti or T2 in T between
two operators T3 or T4. It follows from the definition of Ti that

n\ < M - 1 < N - 1.

The number of points in a plateau from which T2 releases points gives the upper
bound

n'2 < N - 1.

Therefore,
m < n\(n3 + n4) < (N - 1)(3N - 2),
n2 < n'2(n3 + n4) < (N - 1)(3N - 2),

and
L = ni + n2 + n3 + n4 < 6iV2. O

Remark 1. In practice, the number of filter iterations is always much smaller
than the upper bound derived in the proof.

Remark 2. It follows trivially from the description of Algorithm 2.1 that it is
finite, but the final result may not be a TVD solution.

The conditions in the theorem are satisfied by the filter Algorithm 2.3. The
statement inside the while loop in Algorithm 2.3 consists of three different branches
corresponding to the three different alternatives in the if-statement. In the first
branch the filter operator is T\, in the second branch T3 and in the third branch
T4. If a modification of the values at the edges of a plateau is included as indicated
after the description of the algorithm, then this operation is represented by T2.
Observe that all four alternatives need not be incorporated in a filter in order for
the theorem to be applicable.

During the practical implementation of Algorithm 2.3 it happened to us sev-
eral times that programming errors caused the algorithm to become infinite. The
question of finiteness is thus extremely important, since very small changes in the
algorithm can make it infinite.

Algorithm 2.1 on Conservation Form. The simple filter Algorithm 2.1 can be
written as a correction to the numerical flux of the underlying difference scheme. Let
v^ be the resulting solution vector, when k—2 loops in the for-loop of Algorithm 2.1
have been performed. With notations as in (1.4), we have

(3.3) v™=vn+1, v^=un+l, vf]=v]+1, j>k.

Define
A+^J)

fj ' A.vf
and

r<-2,
-2 < r < -1,

r = -l,
r > -1.

f(r)

1,
-r/2,
1/4,

I 0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 523

Then one step with Algorithm 2.1 can be written:

VU+D = VU) _ ç(ry)A_if + ç(l/rj)A+v\3\
(3.4) v^^v^-^l/r^A+vf,

v^=v^1+ç(r3)A^\

Here we have treated the case A_tr- = —A+tr- differently from how it is done
in Algorithm 2.1. With the original algorithm it would not have been possible to
make c a single-valued function. After completion of the filter iterations we get

un+i = vn+l _ c{rj)A_vU) + ç(l/rj)A+vf

- c(l/r3+i)A+v{j+\l) + f(ri-_1)A_«},:-11)
— .,n+l_A.I^U. -ÏA ,,y-i) ,^(% l-.W ...U)= v. A+(ç(r3_i)A-v^ + c(l/r3)A+v)»)

= u? - XA+(F(u]+q,...,u?_p) + ^(rJ_1)A_^_-1J + xç(l/r3)A+v^),

where F is the numerical flux function of the basic difference scheme (1.3). The
numerical flux, F¡, of the filter scheme becomes

Ff = F+ ±ç(r,_1)A_4ri1) + xc(l/r3)A+v{¡\

where rj_i,üj^ , and v ■ are well-defined functions of un. The flux simplifies to

Ff = F + frirj^A-Vpî + xç(l/r3)A+v?+1
if the filter is not triggered in the neighborhood of j, i.e., A+u¿A_u¿ > 0, for
i = j-2,j-l,j + l.

4. Systems of Equations. Let us consider the system

(4.1) Ut+f(u).=0, u(x,i)eRm, f:Rm-Rm.

The generalization to systems is done by a field by field decomposition in the same
manner as in [3]. Let m be the number of equations. Expand A+Uj in a basis of
vectors e£+1/2,

m

(4-2) A+Uj- = y a*+1/2e*+i/2.
k=l

The vectors ek+1,2 are eigenvectors of a matrix A(w.j,x\3+i) representing some kind
of average between the matrices A(uj) and A(uj+i), where ^4(u) = fu. A(uj,Uj+i)
is here taken to be the Roe matrix [10]. We then apply the filter, componentwise,
to the coefficients c*k+i/2- The condition for extrema (A+Uj)(A-Uj) < 0 in the
scalar filter algorithms is replaced by

(A+(uk)j)(A-(uk)3) <0 for any k = l,...,m.

It is important to observe that we only have to compute the eigenvectors when a
correction is needed. This is not the case for upwind schemes, where the expensive
computation of eigenvectors is required at every mesh point.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

524 BJÖRN ENGQUIST, PER LÖTSTEDT, AND BJÖRN SJOGREEN

The algorithms in Section 2 are generalized to systems by replacing every oc-
currence of A±Uj by ak±1,2. The statement Uj := u3 + s6 has to be reformulated
as

A+Uj := A+Uj — sS, A-Uj := A-u3 + s6,

in the scalar algorithms. It is then easy to see how to do the generalization to
systems.

When the new values of A+Uj have been computed, we update the original solu-
tion. Here we want to stress one important point. For conservation it is necessary
to add the same correction to A+Uj as is subtracted from A_Uj. We must realize
that a correction in a characteristic field is a vector, for example if the first field is
corrected by the amount 6, then

A+Uj = (aj+i/2 + è)e)+i/2 + y ak+1/2ek+1/2
k=2

m
Ek k c 1

aj + l/2ej + l/2 + ôej + l/2>
k=l

and the correction is in reality <5e*+1,2. If we try to subtract 6 from the first
characteristic field in A_Uj, the correction will be — ¿ej_t ,2 and conservation will
be violated. Each correction must thus be added and subtracted in the same
coordinate system for all values involved in this correction.

Algorithm 2.1 generalized to systems in the way described above becomes

Algorithm 4.1
for j := 2 to N - 1 do

if extremum(j, u) then
determine the eigenvectors of the Roe matrix and the de-
composition (4.2)
for k :— 1 to m do

if <xk_1/2ak+1/2 < 0 then
if Kfc+i/2l < K-1/2Ithen

6+ := \ak
*fc I
*¿+l/2l

jcorr := j — 1
<5_ := |o*+1/2|

else
S+ ■■= \<*3+i/2\
6- ■= Kfc7i/2I
jcorr := j + 1

endif
<5:=min(¿_,¿+/2)
s:=sgn(o*_1/2)
A+Uj := A+u3 + s6ek+1/2
A-Uj := A-Uj - s6ek+1,2

L^ + Ujcorr '•— ^+U3corr ^®^j+l/2

¿\ — Ujcorr := ¿\ — Ujcorr + S06j+ii2

endif

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 525

endfor
for i := min(j, jcorr) to max(j, jcorr) + 1 do

Ui := Ui-i + A+Ui-i
endfor

endif
endfor

In the algorithm, u is an array with mx N entries and the assignment statement
(e.g., Ui := Ui-i + A+Ui-i) means component by component assignment of the
value of the right-hand side to the variable on the left-hand side. The algorithm
uses the function extremum(j, u) which returns the value true if any component of
u has an extremum at j and false otherwise. This check is made in the physical
variables. The numerical results with this filter are reported in Section 6.

The TVD property is not true for the original variables in the case of systems.
The limiting in Algorithm 4.1 is therefore done in the locally characteristic variables.
The advantage of the strict TVD algorithm over the simpler Algorithm 2.1 is not
at all clear when applied to systems. The great advantage of using a filter is the
comparatively low cost and the simplicity of the implementation. Most of these
properties are lost in the generalization of the TVD filter to systems.

For equations in more than one space dimension the filter is applied to each
dimension separately. The basic difference step is decoupled from the filter step
and therefore the difference method does not need to be based on dimensional
splitting. See Section 6 for numerical examples of two-dimensional problems.

5. Sharp Shock Profiles. In this section we will investigate the behavior of
the filter at an isolated shock when a scalar conservation law is approximated by
a basic 3-point difference scheme. We will show that the method generates very
sharp discrete shocks without oscillations. As an example, the condition on the
difference algorithm is interpreted for a Lax-Wendroff scheme.

The basic 3-point scheme is assumed to be consistent and of conservation form,

(5 1} <+1 = «? - A(P(«"+1,u?) - F(«n,«2U)),
F(u,u) = f(u).

We will consider an approximation of a piecewise constant scalar shock solution to
(1.2):

{«L, X<St + X,

uR, x>st + x,

f(UL) > f(uR), UL > UR,

s = (f(uL) - f(uR))l(uL - uR).

The case /(ul) < f(uR) is equivalent.
Definition. A difference approximation to the above problem has a p-point dis-

crete shock solution if there exists a solution of the form

U" = UL, j<jn,

UR < uu+r < ul, r = 0,l,...,p-l,

^ = UR, j>jn+P,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

526 BJÖRN ENGQUIST, PER LÖTSTEDT, AND BJÖRN SJÖGREEN

for all n. Let us introduce the notation
Uj = V$, Vj=v"+1,

Fíj = F(uí,Uj),

Fi = F(ui,Ui) = f(ui),
where i and j may include L, R.

THEOREM 5.1. The difference scheme (5.1) with the TVD-filter (Algorithm
2.3) has a solution with at most one point in the shock if

,co, FL>F(u,uL), uG(uR,uL),
(5.3) FR> F(uR,u), uG(uR,uL),

and if the stepsizes satisfy a CFL-condition

(5.4) A max |/'(u)| < 1.
Ur<U<Ul

Proof. Assume that at the time level n the solution satisfies

Uj = ul, j < 0,

uR<u0< uL,

Uj = uR, j > 0.

Consider first the case uq — u¿. The effect of (5.1) and (5.3) is then

v3 = uL, j < 0,

vo = uL - X(FRL - FL) > uL,

vi=uR- X(FR - FRL) < uR,

Vj = uR, j > 1.

Correcting the local maximum at vo implies

vo = uL,
ii = vi - X(FRL - FL).

The notation v3 is used for intermediate steps in the filter algorithm. Substituting
for vi and using (5.2) gives

ùi=uR- X(FR - FL) > uR.

Since X satisfies the CFL-condition (5.4), we have

uR < ui < uL.

The filter step is executed and Uq+1 = vo, u™+1 = ii satisfy the original assump-
tion.

The case uo = uR is identical after an index shift. We thus need to analyze the
final situation

uR <u0 < uL.

From (5.1) and (5.3) we have
Vj = UL, j < -1,

W_l > UL,

Vl < UR,

Vj = uR, j > 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 527

Consider first vo > ul — (v~i —ui). The value at j = — 1 will then be corrected as
a plateau with vq until

V-i =v0 = uL

if after conservative correction ñi < ul- The latter is true from total conservation
and (5.4),

S_i +v0 + vi = i>_i + v0 + vi = uL + u0 + uR - X(FR - FL) < 3uL.

For vo < ul - (v-i -ul),v-i will be corrected directly, resulting in

v-i =uL,

¿o = "o + (v-i - uL) < ul,

v0 = uo- X(FR0 - Fol) - A(P0l - FL) = u0- X(FR0 - FL).

From (5.2) and (5.3) we get vq > uq > uR.
The final extremum is vi, which will be corrected to uR, changing vo to

«"+1 = «o - X(FRo - FL) - X(FR - FRo) = u0- X(Fr - FL).

Thus,
un+1 > tt0 > uR. G

The condition (5.3) guarantees an oscillatory behavior at the left and right edges
of the shock and a smoothing of the solution by the filter. In order to illustrate the
result of this section, we choose the same formulation of the Lax-Wendroff scheme
as in [3] and /¿ = /(tt¿). Then the numerical flux function is

f5 5) Fi+Ui = \\fi + fi+i - {v2+i/2(ui+i - m)},
Vi+l/2 — ̂ at+l/2 = A5t)1+i = X(fi+i - fi)/(ui+i - Ui).

The sufficient condition in Theorem 5.1 at the left edge for the scheme defined by
(5.5) is

FL - F(ui,uL) = \\2fL -fl-fi + A(/, - fL)2/(ut - uL)}
= \{Jl - A)[l - A(/i - h)/(ut - uL)} > 0.

It follows from (5.6) that if /(wl) > f(ui) and (5.4) are satisfied for u¿ G (ur,ul),
then the conditions for the state to the left of the shock is valid. The condition at
the right edge for the scheme (5.5) is derived analogously.

The difference corresponding to (5.3) for Harten's TVD scheme [3] at a discrete
shock is

FL - F(u3,ul) = \{2fL -h- f} + {Ql, (u, - uL)\
= ±(uL - Uj)(XâLj -Qls),

where Q¿. is "the coefficient of numerical viscosity" [3], and j is the point in the
shock. In [3], Ql¡ is chosen such that Ql¡ > lAô^l when \Xa~L,\ < 1. By (5.7) and
the fact that u¿ > u, we have that Fl < FjL- There is no oscillation at the left
edge, which is one purpose of the construction in [3], and no filtering is necessary.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

528 BJÖRN ENGQUIST, PER LOTSTEDT, AND BJÖRN SJÖGREEN

6. Numerical Results. The results of the numerical experiments with the
filter and various difference schemes are presented. The conservation laws in our
examples are the scalar inviscid Burgers' equation, the one-dimensional Euler equa-
tions in a shock tube problem, the two-dimensional Euler equations in a forward
facing step problem and the two-dimensional steady Euler equations in the compu-
tation of flow around an airfoil.

The first test problem is the inviscid Burgers' equation

ut + (u2/2)x = 0,

«M) = {¿; x <0,
x>0.

TABLE 6.1
A propagating shock at t = 1.5; Burgers' equation.

Lax-Wendroff+filter 2.1 2nd-order TVD scheme [3] Lax-Wendroff+filter 2.4

81 1.000000004420621
82 1.000000004420621
83 0.9999993061366822
84 0.9999993061366822
85 1.000037711135951
86 1.015281066912056
87 1.015281066912056
88 0.2576304741863363
89 1.2105949518855330.E - 04
90 2.7131497104461932E - 16
91 0.0OO0000O0000000OE + 00

0.9999999999999990
0.9999999999998279
0.9999999999679732
0.9999999942705017
0.9999989269090302
0.9998095242194506
0.9670489441867344
0.3183558845540151
3.1261926819048629£
1.0501687694116266E
3.1432670419155462E

03
05
08

1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
0.2882263480002554
1.2365199974462795Ê - 04
4.0132206279062878E - 16
0.0000000000000000£ + 00

This problem has been solved up to time = 1.5 with a CFL-number = 0.8. In the
results in Table 6.1 the computed numbers are presented, because the difference
between the results from different methods can be seen only in the second and
higher decimal places.

For comparison, computations made with a 2nd-order TVD scheme (Harten [3])
are displayed. The filters 2.1 and 2.4 have been used together with the Lax-Wendroff
scheme in [8]. This form of the Lax-Wendroff scheme is not the same as (5.5) at
the end of Section 5, and (5.3) is not satisfied, but the schock is still fairly sharp.
The results with and without filtering are illustrated in Figure 6.1.

The solution to Burgers' equation with a sine wave as initial condition,

u(x,0) = 0.25+ 0.5 sin 7TX,

was computed with the Lax-Wendroff scheme and the filter. At i = 0.75 a shock has
developed, see Figure 6.2. In Table 6.2 the computed results in the neighborhood
of the shock are displayed. The number of points in the shock is one also here.
Theorem 5.1 seems to be valid even if the solution is not piecewise constant.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 529

1 . 2

0. 8

0.6 H

0.4 i

0.2 H

0.0

■1.0 -0. 5 0. 0 0. 5 1 .0

Figure 6.1
Shock solution for Burgers ' equation with the Lax- Wendroff scheme.

(a) without filter.
(b) with the filter in Algorithm 2.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

530 BJÖRN ENGQUIST, PER LOTSTEDT, AND BJÖRN SJÖGREEN

The numerical solution is compared with the exact solution at t = 0.75. The
numerical /i errors in the smooth part of the solution, i.e., at least a distance 0.1
away from the shock, are presented for three different spatial discretizations in
Table 6.3. The results indicate that the smooth solution is second-order accurate.

Table 6.2
An initial sine wave has developed into a shock.

Lax-Wendroff+filter 2.1

5 0.7510193076844476
6 0.7473223222626426
7 0.7333636414152179
8 0.7333636414152179
9 0.7333636414152179
10 0.4015613729134132
11 - 0.2195990067488021
12 - 0.2195990067488021
13 - 0.2354176977104853
14 - 0.2438072343976059

Figure 6.2
Shock solution at t = 0.75 for Burgers ' equation with the Lax- Wendroff

scheme and filter and a sine wave as initial condition.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 531

TABLE 6.3
The solutions to the sine wave problem have been processed

with filter 2.1 at each time level.

Ax

0.005
0.01
0.02
0.04
0.005
0.01
0.02
0.04

Scheme h error

LW
LW
LW
LW
Do
Do
Do
Do

1.2 x 10-5
4.4 X 10-5
1.8 x 10-4
9.8 x 10~4
4.1 x 10-4
8.3 x HT4
1.8 x 10-3
4.5 x 10-3

Numerical order

1.9
2.0
2.4

1.0
1.1
1.3

The TVD-filter enforces TVD independently of difference scheme and CFL-
number. It is possible to use large CFL-numbers and unstable schemes like u"+1 =
un - AtDof(Uj) together with this filter, but the quality of the solution is of course
affected negatively by large CFL-numbers. As an example, we have included results
from using the filter together with the pure centered scheme above in Table 6.3.
The obtained order of accuracy agrees with the expected one.

In order to test the ability of Algorithm 4.1 to remove oscillations for systems of
equations, we use the Euler equations and as initial data a function which consists
of two constant states. This is a shock tube problem that has been used by many
others as a test problem (e.g., [3], [11]). The equations are

pu
p + pu2
u(e + p)

where p = (7 - l)(e - \pu2) and 7 = 1.4. The initial data are

«(x,0)={

x <0,

x >0.

The solution consists of a shock followed by a contact discontinuity travelling to the
right and a rarefaction wave going left. The solution at i = 2 is shown in Figure 6.3.
There we used a CFL-number of 0.7.

This problem could be run quite easily, but in problems containing very strong
shocks there is a possibility that the difference scheme produces an overshooting
point which is outside the region where c2 > 0. The square of the local sound speed
c2 is computed as 7p/p. In order to correct such an overshoot, it is necessary to
replace the decomposition into characteristic fields with an approximate one, which
we have done in the two-dimensional computations below.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

532 BJÖRN ENGQUIST, PER LÖTSTEDT, AND BJÖRN SJÖGREEN

(a)

1.60

1.40

1.20 ■

1.00 ■

0.80

0.60

0.40 ■

0.20

0.00

l_

■—i—' ~
50.

■"—i—"

100. 200.

(b)

1.40

1.20 A

1.00 A

0.80 A

0.60 A

0.40 A

50.

l_

• l ■ ■ ■ ' l ■ ■ ' ' i x

100. 150. 200.

Figure 6.3
Solution of a one-dimensional shock tube problem with

the Lax- Wendroff scheme.
(a) the density without filter.
(b) the density with the filter in Algorithm 2.1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 533

(b)

100. 150.

Figure 6.4
Solution of the forward facing step problem with the

Lax- Wendroff scheme and the 2D filter.
(a) the density with 120 x 40 points.
(b) the density with 240 x 80 points.

We measured the CPU-time used to run this problem on a micro VAX, with the
following result: TABLE 6.4

Method CPU-seconds

Roe's method 11
ULT1 15
Lax-Wendroff+Filter 7
Lax-Wendroff 4

Roe's method is a first-order upwind scheme, described in [10], and ULT1 is a
second-order TVD-scheme by Harten [3].

Let us also present some results from 2D-computations with the filter. The
generalization to 2D is made by dimension splitting of the filter. That is, one time
step is composed of the steps:

(a) Use a difference scheme to advance the solution to the next time level, not
necessarily by dimension splitting.

(b) Apply the filter 4.1 in the x-direction.
(c) Apply the filter 4.1 in the «/-direction.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

534 BJÖRN ENGQUIST, PER LÖTSTEDT, AND BJÖRN SJÖGREEN

0.00 0.50 1.00 1.50 2.00 2.50 3.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Figure 6.5
Solution of the forward facing step problem with the 4th-order

centered difference scheme and the 2D filter.
(a) the density with 120 x 40 points.
(b) the density with 240 x 80 points.

We have here used the test problem "Mach-3 wind tunnel with a step" [13]. A
gamma-law gas is fed in from the left into a channel of length 3 and width 1.
The initial speed of the gas is Mach 3. At the lower side 0.6 from the right side
of the channel, there is a step of height 0.2. The compressible Euler equations
are solved for this problem, with 7 = 1.4. The solution is computed at i = 4,
with a CFL-number of ¡=s 0.8. The step and the upper and lower walls of the
channel are reflecting boundaries, with a Mach 3 uniform inflow on the left, and
continuation boundary conditions on the right. In Figure 6.4 we show the solution
computed with the dimension by dimension split Lax-Wendroff as the difference
scheme. In Figure 6.5 we used a 4th-order centered difference scheme in space
and 4th-order Runge-Kutta in time. The latter scheme gave initially an expansion
shock emanating from the corner. In order to avoid this, we added a small amount
of 4th-order dissipation to the scheme. The results presented in Figure 6.5 are
computed with this dissipation added. Both these methods were unstable without
the filter.

Finally, in order to illustrate the point that the filter can easily be implemented
in an existing code, we have inserted it into a program that computes flow around
an airfoil. The program was originally written by A. Rizzi and L.-E. Eriksson

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 535

-0.50

-1.00

-cp

1.00

0.50 A

0.00

-1-'-'-1-■-1-■-1-• x

0.00 0.20 0.40 0.60 0.80 1.00

-cp

1.00 A

0.50

0.00

-0.50

-1.00

—-1--"■-1-'-1-'-1-■-1-• x

0.00 0.20 0.40 0.60 0.80 1.00

Figure 6.6
cp-plot of the Euler solution on the upper side of the airfoil.

(a) with 2nd-order artificial viscosity according to [9].
(b) The 2nd-order artificial viscosity is replaced by the 2D filter.

[9] and uses 2nd-order centered difference approximation of the spatial derivatives
with 2nd- and 4th-order artificial viscosity added. The 2nd-order dissipation term
is introduced in order to damp oscillations at shocks. We removed the 2nd-order
viscosity and inserted the filter. The time stepping is done with a Runge-Kutta
type method. The grid used is of O-type and has 129 x 33 points. The freestream
Mach number is 0.85 and the angle of attack Io. From this computation we present
density contours and cp plots. Figures 6.6a and 6.7a show the density contours and
Cp along the upper surface of the airfoil computed by the original program. The 2nd-
order artificial viscosity term is removed and the filter is introduced together with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

536 BJÖRN ENGQUIST, PER LÖTSTEDT, AND BJÖRN SJÖGREEN

(a) 0.60-

0.40 -

0.20 -

0.00 --

-0.20 -

-0.40 -

-0 . 60 -I—,—,-1—|-,-1-,-,-1-1—,—,-1-1-1-1—,—. x

0.00 0.50 1.00

(b) V
0.60 -

0.40 -

0.20 -

0.00 -■

-0.20 -

-0.40 -

-0.60 -

0.00 0.50 1.00 1.50

Figure 6.7
Density contours for the same problem as in Figure 6.6.

(a) with 2nd-order artificial viscosity according to [9].
(b) the 2nd-order artificial viscosity is replaced by the 2D filter.

the 4th-order viscosity, giving the result in Figures 6.6b and 6.7b. This problem has
weak shocks and the artificial viscosity method also computes a sufficiently good
solution. The point we wanted to make here is the simplicity of introducing the
filter into existing computer codes.

6

Department of Mathematics
University of California at Los Angeles
Los Angeles, California 90024

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NONLINEAR FILTERS FOR EFFICIENT SHOCK COMPUTATION 537

1. P. COLELLA, "Glimm's method for gas dynamics," SIAM J. Sei. Statist. Comput, v. 3, 1982,
pp. 76-110.

2. D. GOTTLIEB, Spectral Methods for Compressible Flow Problems, Lecture Notes in Physics,
No. 218 (Soubbaramayer and J. P. Boujot, eds.), Springer-Verlag, Berlin and New York, 1985, pp.
48-61.

3. A. HARTEN, "High resolution schemes for hyperbolic conservation laws," J. Comput. Phys.,
v. 49, 1983, pp. 357-393.

4. A HARTEN & G. ZwAS, "Switched numerical Shuman filters for shock calculations," J.
Engrg. Math., v. 6, 1972, pp. 207-216.

5. P. LAX & B. WENDROFF, "Systems of conservation laws," Comm. Pure Appl. Math., v. 13,
1960, pp. 217-237.

6. S. OSHER & S. CHAKRAVARTHY, "High resolution schemes and the entropy condition,"
SIAM J. Numer. Anal., v. 21, 1984, pp. 955-984.

7. S. OSHER, A. HARTEN, B. ENGQUIST & S. CHAKRAVARTHY, "Some results on uniformly
high-order accurate essentially nonoscillatory schemes," J. Appl. Numer. Math., v. 2, 1986, pp.
347-377.

8. R. D. RICHTMYER & K. W. MORTON, Difference methods for Initial Value Problems, 2nd
ed., Interscience, New York, 1967.

9. A. RlZZI & L.-E. ERIKSSON, "Computation of flow around wings based on the Euler
equations," J. Fluid Mech., v. 148, 1984, p. 45-71.

10. P. L. ROE, "Approximate Riemann solvers, parameter vectors, and difference schemes," J.
Comput. Phys., v. 43, 1981, pp. 357-372.

11. G. A. SOD, " A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws," J. Comput. Phys., v. 27, 1978, pp. 1-31.

12. B. VAN LEER, "Towards the ultimate conservative difference scheme. V. A second-order
sequel to Godunov's method," J. Comput. Phys., v. 32, 1979, 101-136.

13. P. R. WOODWARD & P. COLELLA, "The numerical simulation of two-dimensional fluid
flow with strong shocks," J. Comput. Phys., v. 54, 1984, pp. 115-173.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

