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Abstract. This report deals with nonlinear finite element analy-
sis of concrete structures loaded in the short-term up until
failure. A profound discussion of constitutive modelling on con-
crete is performed; a model, applicable for general stress
states, is described and its predictions are compared with ex-
perimental data. This model is implemented in the AXIPLANE-
program applicable for axisymmetric and plane structures. The
theoretical basis for this program is given. Using the AXIPLANE-
program various concrete structures are analysed up until fail-
ure and compared with experimental evidence. These analyses in-
clude panels pressure vessel, beams failing in shear and fi-
nally a specific pull-out test, the Lok-Test, is considered. In
these analyses, the influence of different failure criteria,
aggregate interlock, dowel action, secondary cracking, magnitude
of compressive strength, magnitude of tensile strength and of
different post-failure behaviours of the concrete are evaluated.
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Mcreover, it is shown that a suitable analysis of the theoreti-
cal data results in a clear insight into the physical behaviour
of the considered structures. Finally, it is demonstrated that
the AXIPLANE-program for widely different structures exhibiting
very delicate structural aspects gives predictions that are in

close agreement with experimental evidence.
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1. INTRODUCTION

The present report is devoted to nonlinear finite element ana-
lysis of axisymmetric and plane concrete structures loaded in
the short-term up until failure. Additional to the prerequisites
for such analysis, namely constitutive modelling and finite ele-
ment techniques, emphasis is placed on the applications, where
real structures are analysed. It turns out that the finite ele-
ment analysis offers unique opportunities to investigz2te and
describe in physical terms the structural behaviour of concrete

structures.

The finite element analysis is performed using the program
AXIPLANE, developed at Ris@. The use of this program is given

by the writer (1980). The scope of the present report is twofold:
(1) to provide an exposition of matters of general interest;
this relates to the coastitutive modelling of concrete, to the
analysis of the considered structures and to some aspects of the
finite element modelling; (2) te give the specific theoretical
documentation of the AXIPLANE-program. Moreover, a selfcontained

exposition is aimed at.

The important section 2 treats constitutive modelling of con-
crete. Both the strength and the stiffness of concrete under
various loadings are discussed and a constitutive model valid for
general triaxial stress states and previously proposed by the

writer is described and compared with experimental data.

Section 3 deals with the constitutive equations of reinforcement
and prestressing. These models are quite trivial and interest

is focussed onlyon a formulation that is computcationally con-
venient in the AXIPLANE-program.

Section 4 describes different finite elements aspects. The AXI-
PLANE-program uses triangular elements for simulation of the

concrete, whereas one- and two-dimensional elements simulate



arbitrarily located reinforcement bars and membranes. Linear
displacement fields are used in all elements resulting in per-
fect pbond between concrete and steel. Based on Galerkin's me-
thod, the fundamental equations in the finite element displace-
ment method are derived in section 4.1. Readers familiar with
the finite element method may dwell only with the important sec-
tion 4.2.2 dealing with different aspects of consideration to
cracking, with the introduction of section 4.3 where reinforce-
ment elements are described, and with the general computational

schemes as given in section 4.6.

The very important section 5 ccitains some examples of analysis
of concrete structures. The following structures were analysed

up until failure and compared with experinental data:

(1) panels with isotropic and orthogonal reinforcement loaded by
tensile forces skewed to the reinforcement. The analysis fo-
cuses on aspects of reinforcement bar modelling and in par-
ticular on simulation of lateral bar stiffness;

(2) a thick-walled closure for a reactor pressure vessel. It
represents a structure, where large triaxial compressive
stresses as well as cracking are present. The influence of
different failure criteria and post-failure behaviours is
investigated;

(3) beams failing in shear. Both beams with and without shear
reinforcement are considered, and of special interest are
aggregate interlock, secondary cracks, influence of the mag-
nitude of tensile strength, and dowel action;

(4) the Lok-Test which is a pull-out test. The influence of the
uniaxial compressive strength, the ratio of tensile strength
to compressive strength, different failure criteria and
post-failure behaviours are investigated and special inter-

est is given to the failure mode.
Moreover, this section shows that a finite element analysis may
of fer unique possibilities for gaining insight into the load-

carrying mechanism of concrete structures.

Finally section 5 demonstrates that the AXIPLANE-~program in



its standard form and using material data obtained by usual uni-
axial testing, only, indeed gives predictions that are in close
agreement with experimental evidence. This is so, even though
the considered structures represent very different and very
delicate aspects of structural behaviour, Compared with other
finite element programs, this makes the AXIPLANE-program quite

unique.

2. CONSTITUTIVE MODELLING OF CONCRETE

The structural behaviour of concrete is complex. Both its
strength and stiffness are strongly depending on all stress com-
ponents and the failure mode may be dominated by cracking, re-
sulting in brittle behaviour, or ductility. Deviations from lin-
earity between stresses and strains become more pronounced when
stresses become more compressive and even hydrostatic compress-
ive loadings result in nonlinear behaviour, cf. for instance
Green and Swanson (1973). In addition, when siresses are com-
pressive, dilatation occurs close to the failure state. It i
the purpose of the present section to outline a constitutive
model that copes with all the previously mentioned character-
istics of loaded concr2te. However, before considering stiffness

changes of concrete it is convenient to investigate its strength.

2.1 Failure strength

Ultimate load calculations of concrete structures obviously re-
quire knowledge of the ultimate strength of concrete. If a pri-
ority list is to be set up for constitutive modelling of con-
crete with respect to realistic predictions of failure loads of
structures an accurate failure criterion would certainly be the
major factor; correct stress-strain relaticns would in general
be of only secondary importance. In the follcwing we will con-

sider some proposed failure criteria evaluated against experi-
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mertal data and we will then concentrate on two criteria imple-
mented in the finite eiement program. Only short-term failure
is treated and no consideration is given to temperature effects
and fatigue.

2.1.1. Geometrical preliminaries

Considering prnpourtional loading and a given locading rate, a
failure criterion for an initially isotropic and homogerneous
material in a homogeneous stress state can be expressed in terms
of the three stress invariants. Alternatively, the criterion

can be given in the form

9(01- 02-' (73) =0 (2.1.1)

where Oys Oy ard 0, are the principal stresses that occur sym-
metrically. Tensile stresses are considered to be positive.
When cyclic loading is excluded, the triaxial test results of
Cchinn and Zimmerman (1965) support the validity of eqg. (1) for
nonp-oportional loading also. From the uniaxial tests of Rusch
(1960) it is known that the influence of loading rate is not
important when the loading time ranges from some minutes to
hours. The influence of stress gradients on the strength has
apparently not been investigated experimentally.

It appears to be convenient to use the following three invari-
ants of the stress tensor 0,

I1 = 01 + 02 + 03 = Gii
= 1 _ 2 _ 2 - 2
J, 3 [(cnv1 02) + (02 03) + (o, 03)1
. (2.1.2)
-1 2 2, _1
2 (sT + s, + s3) =2 555 sij
J
= 3¥3 73
J 2 372
Ja
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where J3 is defirzt by

S

W
W

ij %3k ki
and sij is the stress deviator tensor defined by

S,. = 0,. = 1 §,. @

1) 1] 3 "ij “kk

where the usual tensor notation is employed with indices running
from 1 to 3. The principal values of the stress deviator tensor
are termed Sy’ S, and Sy- Il isthe first invariant of the stress
tensor; J2 and J3 are the second and third invariaats of the
stress deviator tensor. The often applied octahedral normal
stress o and sihear stress 1, are related to the preceding in-
variants by o, = Il/3 and *g =2 J2/3. The invariants of eq. (2)
have a simple geometrical interpretation when eq. (1) is con-
sidered as a surface in a Cartesian coordinate system with axes
and o, - the Haigh-Westergaard coordirate system - and

2 3
the necessary symmetry properties of the failure surface appear

explicitly whenuse is made of these invariants.

For this purpose, any point, P(ol, Oy 03), in the stress space
is described by the coordinates (&, p, 9), in which £ is the
projection on the unit vector @ = (1, 1, 1)/ V3 on the hydro-
static axis, and {p, 6) are polar coordinates in the deviatoric
plane, which is orthogonal to (1, 1, 1), cf. fig. 1. The length

Fig. 2.1.1: (a) Haigh-Westergaard coordinate system;
(b) Deviatoric plane

of ON is
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1

1
r 0,) 7= l] = I /V}
23V31J 1

IONI = £ = 0OP » e = (0., ©

ll
and ON is therefore determined by

ON = (1, 1, 1) 1,/3

The component NP is given by

NP = 65 - aﬁ = (011 021 03) - (11 1: 1) 11/3 = (sll 321 53)

and the length of NP is

INP| = p = (si + 53 + sg)l/2 = /53;
To obtain an interpretation of J, consider the deviatoric plane,
fig. 1 b). The unit vectnr i, located along the projection of the
ol-axis on the deviatoric plane is easily shown to be determined
by i = (2, -1, -1)/V6. The angle 6 is measured from the unit
vector i and we have

p cosf = NP - i

l.e.
o = L y L 2 1
o8t = vz, 51 %2 %3 VB |7 = 2T, sy 7 osar - osy)
Using S + S, + s3 = 0 we obtain
cos0 = 3sl ) 201 - 0, " 04
2V3T, VT,

o
As g, = 0, = 0y is assumed throughout the text, 0 e 260

1 2
holds. Using the identity cos36 = 4 cos36 - 3 cos6, the invari-

ant J in eq. (2) is after some algebra found to ke given Ly
J = cos36 (2.1-3)

The failure criterion eq. (1) can therefore be stated more con-

veniently using only invariants as



f(Il, J cos36) = 0 (2.1-4)

27
from which the 600-symmétry shown in principle in fig. 1 b) ap-
pears exXplicitly. The superiority of this formulation or alterna-
tively f(Il, J2, ¢) = 0 compared to eq. (1) appears also clearly
when expressing mathematically the trace of the failure surface
in the deviatoric plane. Generally, only old criteria such as
the Mohr criterion, the Columb criterion and the maximum tensile

stress criterion use the formulation of eq. (1).

The meridians of the failure surface are the curves on the sur-
face where 6 = constant applies. For experimental reasons, as
the classical pressure cell is most often applied when loading
concrete triaxially, two meridians are of particular importance

namely the compressive meridian where 0, = 0, > 04 i.e. 6 = 60°
‘ o

holds and the tensile meridian where 0y > 0, = 04 i.e. 8 =0
applies. This terminology relates to the fact that the stress

states 6, =0 > ¢, and oy > O correspond to a hydrostatic

2 3 2 3

stress state superposed by a compressive stress in the 03-direc-

tion or superposed by a tensile stress in the ol-direction, re-

= 0

spectivelv.

2.1.2. Evaluation of some failure criteria

Based on the experimental evidence appearing on the following
figures and in accordance with earlier findings of for instance
Newman and Newman (1971) and the writer (1975, 1977), the form

of the failure surface can be summarized as:

1) the meridians are curved, smootb and convex with p increasing

for decreasing £-values;

2) the ratio, pt/pc, in which indices t and ¢ refer to the ten-
sile and comp-essive meridians respectively, (cf. fig. 1)
increases from approx. 0.5 for decreasing ¢{- values, but re-

mains less than unity;

3) the trace of the failure surface in the deviatoric plane is

smooth and convex for compressive stresses;
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4) in accordance with 1), the failure surface opens in the ne-

gative direction of the hydrostatic axis.

The tests of Chinn and Zimmerman (1965) alorg the compressive
meridian with a very large mean pressure equal to 26 times the
uniaxial compressive strength support the validity of 4) over a

very large stress range.

Several important failure criteria have been promosed in the past
and some of these have been evaluated by Newman and Newman
(1971), Ottosen (1975, 1977), Wastiels (1979) and by Robutti et
al. (1979). In addition, Newman and Newman (1971), Hannant
(1974) and Hobbs et al. (1977) contain a collection of different
experimental failure data. In this report we concentrate on some
of the several criteria proposed recently and a classical cri-

terion. The considered criteria are:

- the Reimann-Janda (1965, 1974) criterion originally proposed
by Reimann (1965), but here evaluated by using the coeffi-
cients proposed by Janda (1974). This criterion can be con-
sidered as one of the earliest attempts in modern time to
approximate the failure surface of concrete. Some improve-
ments of this criterion were later proposed by Schimmelpfen-
nig (1971).

- the S5~parameter model of Will am and Warnke (1974) that ap-
pears to be the first criterion with a smooth convex trace
in the deviatoric plane for all values of pt/pc where 1/2 <
pt/pc < 1. Its simplified 3~parameter version with straight
meridians has later been adopted by Kotsovos and Newman (1978)
and by Wastiels (1979) using different methods for calibra-

tion of the parameters,

- the criterion of Chen and Chen (1975) may serve as an example
of an octahedral criterion disregarding the influence of the

third invariant, cos36,

- the criterion of Cedolin et al. (1977) corresponds to a fail-
ure surface with a concave trace in the deviatoric plane.
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- the criterion proposed by the writer (1977). This criterion
corresponds to a smooth and convex surface. It will be con-
sidered in more details later and it is implemented in the

finite element program.

- the classical Coulomb criterion with tension cut-offs. This
criterion is also implemented in the finite element program
and an evaluation will be postponed until the previously
mentioned criteria have been compared mutally and together

with some representative experimental results.

hs mentioned above we wilil in the first place disregard the Cou-
lomb criterion with tension cut-offs. The coefficients involved
in the criteria considered are calibrated by some distinct strength
values, for instance, uniaxial compressive strength oc (oc > 0),

uniaxial tensile strength o, (o_ > o), etc. In some proposals

such a calibration was alre:dy ;artly carriaed out leaving only
a few strength values to be inserted by the user, while others
need mere strength values. Noting that all coordinate systems
considered here are normalized by O the applied strength va-

lues are shown in the following table.

Table 2.1-1: Strength values used to calibrate coefficients in

the failure criteria.

ot/o ocb/cC £/ p /o, | &/ o, /0

(o]

Reimann-Janda (1965, 1¢74)
Willam and Warnke (1974) 0.08 1.15 | -3.20 2.87 | -3.20 1.80

Chen and Chen (1975) 0.08 1.15
Cedolin et al. (1977)
Ottosen (1977) 0.08

Ot uniaxial tensile strength (ot> o), Gt uniaxial compressive
strength (o> o), o0, : biaxial compressive strength (o, > o).
The additional strength values applied in the Willam and Warnke

criterion are chosen to fit the experimental data of fig. 2.
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Fig. 2 shows the comparison of the considered criteria with some
experimental results (the attention should also be drfawn to the
very importeést interrational experimentai investigation, Gerstle
et al. (1978)). The figure shows the compressive and tensile
meridians. Except for the proposal of Chen and Chen (1975), a

good acreement is obtained for all criteria. The Chen and Chen

ploc
T T ‘
e Compressive meridian
X
5 3
u]
Bq:v
PR 2
..-—...... . e N 1
-4 -3 -2 -1 1
Elo.
..... 1
beooooe JRSRYTYY Sda
o
-, o 2
w
Tensile meridian
3
p}oc
—— . — Cedolin, et al.(1977) O Richart et al.(1928)
— .= Willam ond Warnke (1974) @ Balmer (19.9)
------ Reimann - Janda (1965, 197) V' Hobbs (1370, 197%)
Ottosen (1977) #  Kupfer et al. (19691973
............ Chen and Chen (1975) O Ferrara et al (1976)

Fig. 2.1-2: Comparison of some failure criteria with some

experimental results.



model was used in a strain hardening plasticity theory and to
simpliify calculations, it neglects the influence of the angle 0
leading to a large discrepancy for this model when compared with
triaxial experimental results. This will hold for other octahe-
dral criteria as well, for instance that of Drucker and Prager
(1952). While the failure surface proposed by Willam and Warnke
{1974) intersects the hydrostatic axis for large compressive
loading, in the present case when F,/oC ~ =13, the other surfaces

open in the direction of the hydrostatic axis.

The predicted shape in the deviatoric plane for E;/oc = -2 corre-~
sponding to small triaxial compressive loadings, is shown in figqg.

3 for the considered criteria. The proposal of Reimann-Janda

-oylo,

— = Cedolin, Crutzen and Dei Poli {1977}
== Willam and Warnke (1974)

------ Reimann - Janda (1965, 1974)

Ottosen {1977)

"""""" Chen and Chen (1975)

Fig. 2.1-3: Predicted shape in deviatoric plane.
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(1965, 1974) and of Cedolin et al. (1977) both involve singular
points, i.e. cormers. In addition, the trace of the latter pro-
posal is concave along the tensile meridian. As will appear
later this concavity has large consequences. The proposal of
Willam and Warnke (1974) and of the writer (1977) both corre-~

spond to smooth convex curves.

Great importance is attached to plane stress states, and fig. 4
a) shows a comparison for all criteria, except that of Cedolin
et al. (1977) with the experimental results of Kupfer et al.
(1969, 1973). All criteria in fig. 4 a) show good agreement with
the experimental data especially those of Willam and Warnke

(1974) and Ottosen (1977) even when tensile stresses occur. Com-

al
—«— Willam and Warnke (1974)
------ Reimann - Janda (1965, 1974)
~———Ottosen (1977)
------------- Chen and Chen (1975)
® Kupfer et al. (1969, 1973,
0. =58.3 MPa

v-’(TzIO}'

b)
—— . — Cedolin, Crutzen and Dei Poli
(1977)
—-..—Willam and Warnke (197.)
------ Reimann - Janda (1965, 1974)
—— Ottosen (1977)
----------- Chen and Chen (1975)

"obkk

—’ -3-

Fig. 2.1-4: Comparison of some failure criteria for plane
stress states.
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parisons of fig. 2 and 4 a) show that the model of Chen and Chen
(1975) is much more suited for predicting biaxial failures than
triaxzial ones. For biaxial loading, the proposal of Cedolin et
al. (1977) is compared with the other criteria in fig. 4 b). It
appears that the influence of the concavity along the tensile

meridian is ruinous to the obtained curve.

Comparison in general of figs. 2 and 4 reveals that even small
changes in the form of the trace in the deviatoric plane have
considerable effect on the biaxial failure curve. Indeed, the
latter curve is the intersection of the failure surface with a
plane that makes rather small angles to planes which are tangent
to the failure surface in the region of interest. This emphasizes
the need for a very accurate description of the trace in the de-
viatoric plane. In general, it may be concluded that fitness of

a failure criterion can be estimated only when comparisons with
experimental data are performed in at least three planes of dif-

ferent typc.

2.1.3 The two adopted failure criteria

In the previous section it was shown that the failure criterion
proposed by the writexr (1977) is an attractive choice when con-
sidering criteria proposed quite recently. Let us now investi-
gate this criterion together with the classical Coulomb criterion
with tension cut-offs in more details as both criteria are im-

plemented in the finite element program.

The criterion proposed by the writer (1977) uses explicitly the
formulation of eq. (4) and suggests that
J Vﬂz I1
+ A ——+B—=-~-1=0 (2.1-5)
o o
c c

A

ol
Q Y

in which A and B = parameters; and X = a function of cos3¢6,

A = A(cos38) > 0. The value of f(Il’ J2, cos36) < 0 corresponds
to stress states inside the failure surface. For A > 0, B > 0 it
is seen that the meridians are curved (nonaffine), smooth and
convex, ancd the su.-face opens in the negative direetion of the

hydrostatic axis. From eq. (5)
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VI3 T
21 [l 2 _ 1 4]
el O v/x 4A (B . -17| (2.1-6)

and it may be shown that when r = 1/A(cos36) describes a smooth
convex curve in the polar coordinates (r,6), the trace of the
failure surface in the deviatoric plane, as given by eg. (6) is
also smooth and convex. When approaching the vertex of the fail-
ure surface (corresponding to hydrostatic tension) V3; -+ 0, which

according to eq. (5) leads to

AN I o A
T2 % (1 - B —l) i.e. = o+ - for VIS 0 (2.1-7)

g \
c c c t

in which AC = A(-1) and At = A(l) correspond to the compressive
and tensile meridian, respectively. As AC/At is later determined
to be inside the range 0.54-0.58 (see for comparison, table 3),
eqg. {7) indicates a nearly triangular shape of the trace in the
deviatoric plane for small stresses. Furthermore, €q. (6) implies
(pt/pc) -+ 1 for Il -+ -o, i.e. for very high cumpressive stresses,
the trace in the deviatoric plane becomes nearly circular. It

was found that the function, » = A(cos30), could be adequately

represented in the form

A= Ky cos[% Arccos(K2 cosBG)} for cos36 > 0
A=Ky cos[g - % Arccos(-K2c0536)] for cos36 £ 0

in which Kl and K2

is a shape factor (90 2K

= parameters; Kl is a size factor, while K2
2 s 1). This form was originally derived

by a mechanical analogy, as r = 1/)(cos38) given by eq. (8)

corresponds to the smooth convex contour lines of a deflected
membrane loaded by a lateral pressure and supported along the |
edges of an equilateral triangle, cf. appendix A. Thus, r = 1/}
(cos36) represents smooth convex curves with an equilateral tri-

angle and a circle as limiting cases.



The characteristics of the failure surface given by egs. (5) and
(8) are: (1) only four parameters used; (2) use of invariants
makes determination of the principal stresses unnecessary; (3)

the surface is smooth and convex with the exception of the vertex;
(4) the meridians are parabclic and opens in the direction of

the negative nydrostatic axis; (5) the trace in the deviatoric
plane changes frcm nearly triangular to circular shape with in-
creasing hydrostatic pressure; (6) it contains several earlier
proposed criteria as special cases, in par.icular, the criterion

of Drucker and Pragex (1952) for A = 0, % = constant, and the

]

von Mises criterion for A = B = 0 and X constant.

In evaluating the four parameters A, B, Kl and K2 use has been
made of the kiaxial tests of Kupfer et al. (1969, 1973) and the
triaxial results of Balmer (1949) and Richart et al. (1928). The
parameters are determined so as to represent the following three
failure states exactly: (1) uniaxial compressive strength Ot

(2) biaxial compressive strength Yob © 1.16 Oc corresponding to
the tests of Kupfer et al. (1969, 1973) and (3) uniaxial tensile

strength o, given by the of/cc-ratio idependence on this ratio

is illustr:ted in tables 2 and 3). Finally, the method of least
squares has been used to obtain the best fit of the compressive
meridian for E/Oc Z - 5.0 to the test results of Balmer (1949)
and Richart et al. (1928), cf. fig. 5. The compressive meridian
is hereby found to pass through the point (&/Oc, p/oc) = (~5.0,
4.0). The foregoing procedure implies values of the parameters
as given in table 2. The values of Kl and K2 correspond to the

those of At and Ac found in table 3.

Table 2.1-2: Parameter values and their dependence on the ot/oc-

ratio,
F !
‘ot/oc ‘ A B Ky K2
k
- 0.08 = 1.8076 4.0962 14,4863 0.9914
0.10 1.2759 3.1962 11.7365 0.9801

0.12 0.9218 2.5969 9.9110 0.9647
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Table 2.1-3: A-values and their dependence on the ot/cc-ratio.

? X

04 /0 ‘e “e Ao
0.08 14.4725 7.7834  0.5378

1 0.10 11.7109 6.5315  0.5577 .

' 9.12 9.8720 5.6979  0.5772

Although the parameters A, B, Kl and K2 show considerable depen-
dence on the ct/cc—ratio, the failure stresses, when only com-
pPressive stresses occur, are influenced only to a minor extent.
Using ot/oc = 0.10 as reference, the difference amounts to less
than 2.5%.

Comparison of predictions of the failure criterion with some ex-
perimental results has already been given in figs. 2 and 4. Fig.
5 shows a further comparison with some of the earlier applied
experimental results, but now for a larger loading range. Fig. 6
contains additional experimental results of Chinn and Zimmerman
(1965), Mills and Zimmerman (1970) and the mean of the test re-
sults of Launay et al. (1970, 1971, 1972). Comparisons of the
last two figures indicate considerable scatter of the test re-
sults on the compressive meridian for £/oC < = 5.0, the tendencies
being opposite in the two last figures. Along the tensile meri-
dian the failure criterion underestimates the results of Launay
et al. (1970, 1971, 1972) and Chinn and Zimmerman (1965) for

£/0 c> - 6, in accordance with the higher biaxial compressive
strength determined in these tests (1.8 O and 1.9 0,s respec-
tively) compared with that used to determine the parameters of
the failure criterion. Mills and Zimmerman (1970) determined the
biaxial compressive strength to 1.3 O

If the compressive and tensile meridians are accurately repre-
sented, the trace of the failure surface in the deviatoric plane
is confined to within rather narrow limits provided that the
trace is a smooth, convex curve. This is especially pronounced
when the pt/oc ratio is close to the minimum value 0.5. The a-
bility of the considered failure surface to represent the experi-
mental biaxial results of Kupfer et al. (1969, 1973) outside the



plo
)
- . 7
o —+—Moditied Coulomb .
\: o ' ~——0ttosen (1977} 6
SN .i . i . . +5

Compresswe ¢
R mendlon '

I, > ; ———l_Unlo'x|ol~4;3,,A-
Tensule ~ \_. compressive |

~ strength {Sy)
L meridion TRy O n S
- \ foi
\'w / ]

Bnoxnal compresswe strength (S;) -
Uniaxial tensnle strength (S5 -

e L .

-8 -7 -6 -5 -4 -3 -2 -1 1

€ /foc

Fig. 2.1-5: Comparisons of test results by: Balmer (1949) o (Com-
pressive); Richart et al. (1928) e (Compressive), +
(Tensile) ; Kupfer et al. (1969, 1973) o (Tensile)
(Failure stresses Sl’ Sz, S3 and S4 determine para-
meters in writers failure criterion). ct/oc = 0.1

used in the criteria.

plo

LTI
i ! ’

tCompressnvfe merldlon ! 15

I S U
t— Ott,osen {1977)

J T *—“"E/cc

-8 -7 -6 -5 -4 -3 -2 -

Fig. 2.1-6: Mean values of Launay et al. (1970, 1971, 1972) =-=~-
(Compressive) , — — (Tensile); Chinn and Zimmerman
(1965) m (Compressive), o (Tensile); Mills and Zimmer-
man (1970) e (Compressive) o (Tensile). ot/oc = 0.1

used in the criteria.



tensile and compressive meridians was showr .reviously in fig. 4.
However, to facilitate cromparison c¢f ihe tailure criteria con-
sidered there, not all available experimental results were giv °n
when tensile stresses are present. A more cetailieé ccmparisochn
with the failure criterion considered now is therefore illus-

trated in fig. 7.
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Fig. 2.1-7: Biaxial tests of Kuofer et al. (1969, 1973), e =

58.3 MPa. :t = 0.08 dc used in both criteria.

The agreement is considered satisfactory, the largest differ-
ence occurriag incompression when :1/32 2 0.5. In this case Kup-
fer et al. obtained Sy = -1.27 7o as the mean value of tests

with e ranging from 18.7 - 58.3 MPa; on the other hand the fail-
ure criterion with the parameters of table 2 gives - 1.35 e’

- 1.38 o and - 1.41 Gc for ct/dc = 0.08, 0.10, and 0.12, re-
spectively. It is interesting to note that the classical biaxial
tests of Wastlund (1937) with T ranging from 24.5 - 35.0 MPa
give 9y = = 1.37 cc with almost the same biaxial strength

(1.14 uc) as the results of Kupfer et al (1.16 1c).

Surmarizing, the failure criterion given by egqgs. (5) and (8) con-
tains the three stress invariants explicitly and it corresponds
to a smooth convex surface with curved meridians which open in
the negative direction of the hydrostatic axis. The trace in the

deviatoric plane changes from an almost triangular to a more
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circular shape with increasing hydrostatic pressure. The cri-
terion has been demonstrated to be in good agreement with exper-

imental results for different types of concrete and covers a
wide range of stress states including those where tensile stresses
sccur. The formulation in terms of one function for all stress
states facilitates its use in stiuctural calculaticns and it has
been shown that a sufficiently accurate calibration of the para-
meters in the criterion is obtained by knowledge of the uniaxiali
compressive strength S and the uniaxial strength O alone.
As mentioned previously, the other failure criterion implemented
in the finite element program is the classical Coulomb criterion
with tension cut-offs which conzist of a combination of the Cou-
lomb criterion suggested in 1773 and the maximum tensile stress
criterion ofter attributed to Rankine, 1876. This dual critarion
was originally proposed by Cowan (1953) but using the termino-
logy of Paul (1961), it is usually termed the modified Coulomb
criterion, It reads,

moy - 0y = 0,

9 T %

(2.1-9)

where, as previously, 91 2 02 2 03 and tensile stress is con-
sidered positive. The criterion contains three parameters and it
includes a cracking criterion given by the second of the above
two equations. The coefficient m is related to the friction angle
¢ by m= (1 + sing)/(1 - siny). Different m-values have been pro-

posed in the past, but here we adopt the value
m= 4 (2.1-10)

corresponding to a friction angle edual to 37°. This value has
been proposed both by Cowan (1953) and by Johansen (1958, 1959)

and is applied azimost exclusively in the Scandinavian countries.

As shown in fig. 8 the modified Coulcmb criterion corresponds to
an irregular hexagonal pyramid with straight meridians and with
tension cut-offs. The trace in the deviatoric plane is shown in

fig. 8 together with the other criterion implemented in the fin-



ite program. A comparison with this latter criterion and some

experinental results is shown in figs. 5, 6 and 7.

Modified Coulomb
Ottosen (1977)

-05l0,

Fig. 2.1-8: Appearance of the modified Coulomb criterion.

It appears that for most stress states of practical interest the
modified Coulomb criterion underestimates the failure stresses.
This is quite obvious when considering for instance the case of
plane stress, fig. 7. However, it is important to note that the
modified Coulomn criterion provides a fair approximation that is
comparable in accuracy to many recently proposed failure criteria
and with the simplicity of the modified Coulomb criterion in
mind it may be considered as quite unique. Note also that just
like the other criterion implemented in the finite element pro-
gram, calibration of the mcdified Coulomb criterion requires
only knowledge of the uniaxial compressive strength O and the

uniaxial tensile strength o, for the concrete in question.

t

In conclusion, the two failure criteria implemented in the finite
element program each provide realistic failure predictions for
general stress states. While the criterion proposed by the writer
(1977) is superior when considering accuracy the modified Coulomb
criterion possesses an attractive simplicity.

2.1.4. Adopted cracking criteria

As the failure criterion proposed by the writer (1977) applies
to all stress states, in terms of one equation, it must be aug-

mented by a failure mode criterion to determine the possible &Xx-
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istence of tensile cracks. Following the proposal of the writer
(1979) we assume that the cracking occurs, firstly, if the failure
criterion is violated and secondly, if 9y > ot/2 holds. Note that

this crack criterion may be applied to any smooth failure surface.

The other failure criterion implemented in the finite element
program - the modified Coulomb criterion - already includes a

cracking criterion determined by o, 2> 0,.
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Fig. 2.1-9: Failure criteria and failure mode criteria compared
with the biaxial results of Kupfer et al. (1969,1973).
Writers proposal: tensile cracking indicated by ----.
Modified Coulomb criterion: tensile cracking inde-
cated by ---. Test results: e compressive crushing,
o tensile cracking © no particular mode.
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Figure 9 contains the experimental results of Kupfer et al. (1969,
1973) for biaxial tensile-compressive loading of three different
types of concrete. Both failure stresses and failure modes are
indicatea In addition, the figure shows the corresponding fail-
ure curves together with their failure mode criteria using the
two failure criteria implemented in the finite element program.
It appears that the two failure mode criteria and the two fail-
ure criteria are in close agreement with the experimental evi-
dence. In accordance with earlier conclusions the proposals of
the writer are favourable when considering accuracy. The modi-
fied Coulomb criterion , on the other hand, possesses an attract-

ive simplicity.

For both failure mode criteria it is assumed that the orien-
tation of the crack plane is normal to the principal direction
of 0y~ This assumption is also in good agreement with the afore-

mentioned tests.

2.2. Stress-strain relations

Having discussed the strength of concrete in some detail, the
stress-strain behaviour will now be dealt with. Ideally, a con-
stitutive model for concrete should reflect the strain hardening
before failure, the failure itself as well as the strain soften-
ing in the post-failure region. The post-failure behaviour has
received considerable attention in the last years especially,
where it has become evident that the calculated load capacity of
a structure may be strongly influenced by the particular post-
failure behaviour employed for the concrete; for example ideal
plasticity with its infinite ductility might be an over-simpli-
fied model. This is just to say that redistribution oi. stresses
in a structure must be dealt with in a proper way. These aspects
will be considered in some detail in section 5. Moreover, the
constitutive model should ideally be simple and flexible, i.e.
different assumptions can easily be incorporated. The numerical
performance of the model in a computer program should alsc be
considered. Moreover, it should be applicable to all stress
states and both loading and unloading should ideally be dealt



with in a correct way. Eventually, and as a very important fea-
ture, the model should be easy to calibrate to a particular type
of concrete. For instance it is very advantageous if all para-

meters are calibrated by means of uniaxial data alone.

A model reflecting most of the above-mentioned features will be
described in the following, but prior to this attention will be
turned towards the large number of proposals for predicting the
nonlinear behaviour of concrete that have appeared in the past.
Plasticity models have been proposed; however because of their

simplicity the bulk nf the models are nonlinear elastic ones. A

review of some models is given as follows:

Plasticity models based on linear elastic-ideal plastic behav-
iour using the failure surface as yield surface have been pro-
posed by e.g. Zienkiewicz et al. (1969), Mroz (1972), Argyris

et al. (1974) and Willam and Warnke (1974). A somewhat different
approach still accepting linear elastic behaviour up to failure
was put forward by Argyris et al. (1976) using the modified Cou-
lomb criterion as failure criterion. Instead of a flow rule this
model uses different stress transfer strategies when stresses
exceed the failure state. A very essential feature is that dif-
ferent post-failure behaviours can be reflected in the model. To
consider the important nonlinearities before failure, models
using the theory of hardening plasticity have been proposed by
e.g. Green and Swanson (1973), Ueda et al. (1974) and Chen and
Chen (1975), all of whom neglect the important effect of the
third stress invariant, while Hermann (1978) includes the effect.
However, as these plasticity models all make use of Drucker's
stability criterion (1951) they are not able to consider the
strain softening effects occurring after failure. Coon and Evans
(1972) applied a hypoelastic model of grade one, but this model
also operates with two stress invariants only, and strains are

inferred as infinite at maximum stress.

Incremental nonlinear elastic models based on the Hookean aniso-
tropic formulation have been proposed for plane stress by Liu
et al, (1972) and Link et al. (1974, 1975). The model of Darwin
and Pecknold (1977) applicable for plane stresses can even be



used for cyclic loading in the post-failure region. In contrast
to these proposals, similar models that now assume the incremen-
tal isotropic formulation neglect the stress-induced anisotropy,
and softening and dflatation cannot be dealt with. This is be-
cause tangential values of Young's modulus and Poisson's ratio can
never become negative or larger than 0.5, respectively. However,
a tangential formulation facilitates the numerical performance
regarding convergence in a computer code. A model based on this
incremental and isotropic concept and applicable for general
plane stresses was introduced by Romstad et al. (1974) using a
multilinear approach. In the models proposed by Zienkiewicz et
al. (1674) and Phillips et al. (1976) the tangential shear ro-
dulus variates as a function of the octahedral shear stress
alone. In principle, a similar approach applicable for compress-
ive stresses and valid until dilatation occurs was later applied
by Riccioni et al. (1977), but in this model the influence of
all the stress invariants »un both the tangential bulk modulus
and the tangential shear modulus was considered. Recently, Bathe
and Ramaswamy (1979) wnroposed a model considering all stress in-
variants also and applicable for general stress states while the

Poisson ratio was assumed to ke constant.

Several nonlinear elastic models of the Hookean isotropic form
using the secant values of the material parameters have also
been put forward. An early proposal of Saugy (1969) considered

the bulk modulus as a constant and the shear modulus as a func-
tion of the octahedral shear stress alone. For plane compressive

stresses Kupfer (1973) and Kupfer and Gerstle (1973) assumed hoth
these moduli to be functions of the octahedral shear stress. Fa-
lamiswamy and Shah (1974) and Cedolin et al. (1977) proposed mo-
dels applicable to triaxial compressive stress states also. How-
ever only the influence of the first two stress invariants on
the bulk and shear moduli are considered and the validity of the
models is limited to stress states not too close to failure. Also
the recent approach by Kotsovos and Newman (1973) neglects the
influence of the third invariant. Schimmelpfennig (1975, 1976)
made use of a model where the shear modulus changes. All stress
invariants are considered but only compressive stress states can
be dealt with, and dilatation is excluded.
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All the nonlinear elastic models mentioned previously, except

the proposals of Romstad et al. (1974), Darwin and Pecknold
(1977), Bathe and Ramaswamy (1979) and to some extent, that of
Riccioni et al. (1977), have to be arqumented by a failure cri-
terion that is formulated completely independently of the stress-
strain relations presented. This results in a nonsmooth transi-
tion from the prefailure behaviour tothe failure state. In addi-
tion, all these models, except again, the model of Romstad et al.
(1974), Darwin and Pecknold (1977), Bathe and Ramaswamy (1979)
and to some extent, the model of Cedolin et al. (1977), are valid
only for a particular type of concrete. As a result, the models
can only be calibrated to other types of concrete if, in addition
to uniaxial results, biaxial or triaxial test results are also

available for the concrete in guestion.

Recently, BaYant and Bhat (1976) extended to endochronic theory
to include concrete behaviour. Very important characteristics such
as dilatation, softening and realistic failure stresses are simu-
lated and the model can be applied to general stress states even
for cyclic loading. In a later version of the model, Ba¥ant and
Shieh (1978), even the nonlinear response to compressive hydro-
static loading was reflected. However, Sandler (1978) has ques-
tioned the uniqueness and stability of the endochronic equations
and the modelling only through the value of the actual concrete's
uniaxial compressive strength is another important aspect. This
seems to be a rather crude approximation even for uniaxial com-
pressive loading, as different failure strains and initial stiff-
nesses can be obtained for concrete possessing the same uniaxial

compressive strength.

The following model proposed by the writer (1979) for the de-
scription of the nonlinear stress-strain relations of concrete

is based on nonlinear elasticity,where the secant values of
Young's modulus and Poisson's ratio are changed appropriately.
Path-dependent behavi~ur is naturally beyond the possibilities of
the model and the same holds also for a realistic response to
unloading when nonlinear elasicity is used. However, from the way
in which the model is implemented in the program, cf. section
4.6, its unloading characteristics is greatly imﬁroved compared



to that of nonlinear elasticity and the model indeed corresponds
to the be! aviour of a fracturing solid, Dougill (1976). Moreover,
the described model is able to represent in a simple way most

of the characteristics of concrete behaviour, even for general
stress states. These features include: (1) the effect of all three
stress invariants; (2) consideration of dilatation; (3) the ob-
taining of completely smooth stress-strain curves; (4) predic-
tion of realistic failure stresses; (%) simulation of different
post-failure behaviours and (6) the model applies to all stress
states including those where tensile stresses occur. In addition,
the model is simple to use, and calibration to a particular type
of concrete requires only experimental data obtained by standard
uniaxial tests. The construction of the model carn conveniently
be divided into four steps: (1) failure and cracking criteria;
(2) nonlinearity index; (3) change of the secant value of Young's
modulus and (4) change of the secant value of Poisson's ratio.
The failure and cracking criteria utilized in this section are
the ones proposed by the writer and dealt with in sections 2.1.3
and 2.1.4. In the finite element program the modified Coulomb
criterion described previously is also used together with the
following stresscs-strain model and it should be emphasized that
any failure criterion can be employed in connection with the de-
scribed constitutive model, and no change as such is necessary
because the criterion in question is involved only through the

determination of the nonlinearity index, as defined.

2.2.1. Nonlinearity index

Let us now define a convenient m:asure for the given loading in
relation to the failure surface. First of all, we have to deter-
mine to which failure state the actual stress state should re-
late. Although there is an infinite number of possibilities,
four essentially different types can be identified. To achieve

2 simple illustration, we will at present adopt as failure cri-
terion the Mohr criterion shown in fig. 1 a), which also shows
the actual stress state given by o and Oq- Failure can be ob-
tained by increasing the ol-value as shown by circle I, or alter-
natively by fixing the (ol + 03)/2-value as shown by circle II.
However, tensile stresses may then be involved in the failure



state as shown in fig. 1 a) and an evaluation of, e.qg., a uni-

axial compressive stress state, would depend on the tensile
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Fig. 2.2-1: Mohr diagrams. (a) Different ways to obtain failure;

({b) Definition of nonlinearity index B.

strength, which seems invonvenient. A third method indicated by
circle 111, where all stresses are changed proportionally, is
also rejected as, depending on the form of the failure curve,
failure may not be obtained from some compressive stress states
located outside the hydrostatic axis. However, failure can al-
ways be obtained by decreasing the 03—va1ue as shown by circle

IV, and this procedure is adoptec¢ here.

Next, we must determine a measure for the actual loading, and

here we adopt the ratio of the actual stress, G3s to the corre-
sponding value of that stress at failure, Gygr @S shown in figqg.
1 b). In summary, for an arbitrary choice of failure criterion,

we define a measure for the actual loading, the nomnlinearity in-

dex, B, by
o4
3
B = T (2.2-1)
3f
in which oy = the actual most compressive principal stress; and
03¢ = the corresponding failure value, provided that the other

principal stresses, 0y and Oyr are unchanged (c1 2 9, 2 03).
Thus, B < 1, B =1 and B > 1 correspond to stress states located
inside, on, and outside the failure surface, respectively.

The nonlinearity index, B, given by eq. (1), has the advantage
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of being proportional to the stress for uniaxial compressive
loading, i.e., it can be considered as an effective stress. Note
that the nonlinearity index depends on all three stress invari-
ants if the failure criterion does also. The R-values will later
be used as a kind of measure for the actual nonlinearity; fig. 2,
where the failure criterion proposed by the writer (1977) is
applied and where contour lines for constant R-values are shown,
demonstrates its convenience for this purpose. Fig. 2 a) shows
meridian planes containing the compressive and tensile meridian.
Points corresponding to the uniaxial compressive strength, Sl’
and the biaxial compressive strength, 52’ are shown on these me-
ridians, and failure states involve tensile stresses to the right
of these points. Fig. 2 b) shows curves in a deviatoric plane.

Note in fig. 2 a) that in contrast to the failure surface, sur-

plo;

1 .
ca mpreésive tailure failure curve, Elo. =-1.73
o meridian

A % T
> ook ;e '
2 tensile fail. meridion o
3 2 a1
plo
a) b

Fig. 2.2-2: Contour lines of constant B-values. (a) Meridian
planes, Sl = uniaxial compressive strength, 82 = bi-
axial compressive strength, S3 = uniaxial tensile
strength; (b) Deviatoric plane. Failure criterion
proposed by the writer (1977) is applied.

faces on which the nonlinearity index is constant are closed in
the direction of the negative hydrostatic axis. For small g-
values, these surfaces resemble the one that defines the onset
of the stable fracture propagation, i.e. the discontinuity limit
(see, for comparison, Newman and Newman (1973) and Kotsovos and
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Newman (1977)).

When tensile stress occur, a modification of the definition »>f
the nonlinearity index is required as concrete behaviour becomes
less nonlinear, the more the stress state involves tensile stres-
ses. ror this purpose we transform the actual stress state

is a tensile stress, by super-

1
posing the hydrostatic pressure, -0

(ol, 02, 01), where at least o

1’ obtaining the new stress

- o.,
2 1 3
pressive stress state. The index B is then defined as

state (ci, O ué) = (0, © o, - ol), i.e. a biaxial com-

3
93f

In which oéf is the failure value of oé provided that ci and oé
are unchanged, i.e. the stress state (oi, oé, oéf) is to satisfy
the failure critericn. This procedure has the required effect,
as shown in fig. 2 a), of reducing the B-values appropriately
when tensile stresses occur and 8 < 1 will always apply. Point
S3 on fig. 2 a) corresponds to the uniaxial tensile strength,
and B = 0 holds for hydrostatic tension. Contour surfaces for
constant f-values are smooth, except for points where tensile

stresses have just become involved.

2.2.2. Change of the secant value of Youngs's modulus

To obtain expressions for the secant value of Young's modulus
under general triaxial loading, we begin with the case of uni-
axial compressive loading. Here we approximate the stress-strain

curve as proposed by Sargin (1971)

-A -g— + (D-1) (

= = < (2.2-3)

c  1-(A-2) %— +D (&2
C E’:C

€ |2
Efﬁ

Q‘Cl

Tensile stress and elongation are considered positive, and €q

determines the strain at failure, i.e., ¢ = - Ec when 0 = = oc.

The parameter A is defined by A = Ei/En' in which Ec = oc/ec.

Lur

The Young's moduli Ei and Ec are the initial modulus and the se-
cant modulus at failure, respectively; D = a parameter mainly
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affecting the descending curve in the post-failure region. Eq.
(3) is a four-parameter expression determined by the parameters

o] €., E., and D, and it infers that the initial slope is Ei,

'
aﬁd tﬁat ihere is a zero slope at failure, where (o0,e) = (- Cor
-ec) satisfies the equation. The parameter D determines the post-
failure behaviour, and even though there are some indications of
this behaviour, e.g. Karsan and Jirsa (1969), the precise form of
this part of the curve is unknown and is in fact, not obtained

by a standard uniaxial compressive test. Therefore, the actual
value of D is simply chosen so that a convenient post-failure
curve results. However, there are certain limitations to D, if
eqg. (3) is to reflect: (1) an increasing function without in-
flexion points before failure; (2) a decreasing function with at
most one inflexion point after failure; (3) a residual strength
equal to zero after sufficiently large strain. To achieve these
features A > 4/3 must hold, and the parameter D is subject to

the following restrictions
(1-5A)2 < D < 1+A(A-2) when A < 2;
0 <D<1when A <2

The requirement A > 4/3 is in practice not a restriction, and, in
fact, eq. (3) provides a very flexible procedure to simulate the
uniaxial stress-strain curve. For instance, the proposal of Saenz
(1964) follows when D = 1, the Hognestad parabola (1951) follows
when A = 2 and D = 0, and the suggestion of Desayi and Krishnan
(1964) follows when A = 2 and D = 1. In addition, different post-
failure behaviours can be simulated by means of the parameter D
and this affects only the behaviour before failure insignifi-
cantly. This is shown in fig. 3, where A = 2 is assumed and where

the limits of D are given by zero and unity.

Using simple algebra, eq. (3) can be solved to obtain the actual
secant value Es of Young's modulus. The expression for E_ con-
tains the actual stress in terms of the ratio - G/GC. For uni-
axial compressive loading B = - o/oc holds, and the expression
for Es can therefore be generalized to triaxial compressive load-
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Fig. 2.2-3: Control of post-failure behaviour by means of para-
meter D in eq. (3).

ing, if we replace the ratio - o/cc by 8. We then obtain

2,2 Ay -
E = %Ei-B(%Ei'Ef)iv{%Ei'B(%Ei-Ef)] +E¢8[D(1-8)-1] (2.2-4)

in which the positive and negative signs apply to -he ascending
and descending part of the curves, respectively. In eq. (4) the
parameter value Ec’ denoting the secant value of Young's modulus
at uniaxial compressive failure, has been replaced by Ef, the se-
cant value of Young's modulus at general triaxial compressive
failure. By means of the aforementioned procedure, we obtain that
the stress-strain curves for general triaxial compressing loading
have the same features as the stress-strain curve of uniaxial
compressive loading: (1) a correct initial slope; (2) a zero slope
at failure; (3) the correct failure stresses when the failure
strains are given; and (4) a realistic post-failure behaviour.
Note, in particular, that we obtain correct failure stresses in
the general triaxial compressive case by use of the nonlinearity
index B8, provided that a correct failure criterion is applied.
This holds even if the value of the parameter Ef is incorrect. In
fact, this parameter remains to be determined before eq. (4) can
be applied. In general, the Ee value is a function of the type of
loading, the type of concrete, etc. Considering general compres-
sive loadings, it was found that a sufficiently accurate expres-

sion is



E

- C -
By T+ 4(A - 1) x (2.2-5)

in which x represents the dependence on the actual loading and
is given by x = (V3;/:C)f - (VUE/SC)f'C = (ﬁUE/JC\f - 1/.7. The
term (VU;/dc)f denotes the failure value of the invariant iU;/:c.
where the failure stress state is that connected with the deter-
mination of the nonlinearity index, eq. {l). Correspcndingly,
(VJE/oc)f'c = 1/V3 is the value at failure for uniaxial compres-
sive loading. Note that we presently deal only with compressive
stress states, and we have x > 0, where x = 0 holds for uniaxial
loading. The value Ef = Ec holds when x = 0; otherwise Ef < Ec
applies. The dependence of Eg on the actual type of concrete is

represented in eq. (5) by the parameters Ec and A.

Thus, when no tensile stresses occur, tie actual secant value Es
is determined by eq. (4), in which the nonlinearity index is given
by eq. (1), and the Eg value is given by eg- (5). When tensile
stresses occur, the keraviour becomes more linear, and this is
accomplished simply by again obtaining Es from eq. (4). However,
the ronlinearity index is now determined by ey. (2) and eq. (5)
is replaced by the assumption Ef = E..
If cracking occurs, a completely brittle behaviour is assumed,and
if only compressive stresses occur, the post-failure behaviour
for the crushing of the concrete is controlled by cu. (4) through
appropriate choice cf the parameter D. The post-failure behaviour
for intermediate stress states, where small tensile stresses are
present but where there is neither cracking nor compressive
crushing of the concrete, has apparently not been determined ex-
perimentally, but is conveniently obtained by the following hy-
brid procedure: At failure these intermediate stress states re-
sult in a nonlinearity index Bf, as determined by eq. (2), that
is less than unity. As shown in fig. 4, the post-failure curve
AB is then assumed to be obtained by translation of the part MN
of the original descending branch of the curve parallel to the
horizontal axis. The secant value Es, correspending to som< ac-
tuval B8 value is then easily shown to be determined by
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in which EMN' depending on B, is the secant value along the ori-
ginal post-failure curve MN obtained by means of eq. (4), using
the negative sign. Likewise, the constants EA and EM are secant
values at failure also determined by eq. (4) using the positive
and negative sign, respectively, and the nonlinearity index value
at failure, i.e. B = Bf. The preceding moduli are shown in fig.

4. Eq. (6) implies a gradual change of the post-failure behaviour,
both when the stress state is changed towards purely compressive

states, or towards stress states where cracking occurs.

|

Fig. 2.2-4: Post-failure behaviour for intermediate stress states
that do not result in cracking or compressive crush-

ing of concrete.

2.2.3. Change of the secant value of Poisson's ratio

Let us now turn to the determination of the secant v~lue Vg of
Poisson's ratio. Both for uniaxial and triaxial compressive load-
ing we note that the volumetric behaviour is a compaction fol-
lowed by a dilatation. The expression of g for uniaxial compres-
sive loading is therefore generalized to triaxial compressive

loading by use of the nonlinearity index B. Hereby we oktain

C
]

. when <
s Vi B < By

B = B_\2
v = (ug = vy V/l - (T_:_§2> when g >

a

(2.2-7)

C
]

\/
W™

in which v = the initial Poisson ratio; and Vg the secant

value of Poisson's ratio at failure. Eq. (7) is shown in fig. 5,
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Fig. 2.2-5: Variation of secant value of Poisson's ratio.

The second of these equations, which represents one-quarter of
an ellipse, is valid only until failure. Very little is known of
the increase of Vg in the post-failure region, but it is an ex~
perimental fact that dilatation continues here. Now, for a given
change of the secant value Es’ there corresponds a secant value
u;, so that the correspcnding secant bulk modulus is unchanged.
In this report, we decrease the Es value by steps of 5% in the
post-failure region, and to ensure dilatation in this region
also we then simply put Vg = 1.005 U; in each step, although
other values may also be convenient. A similar approach is usea
for the intermediate stress states where tensile stresses are
present but n»n cracking occurs. In the model, Lg < 0.5 must al-
ways hold, but this limit is achieved only far inside the post-
failure rejion. In eq. (7), a fair approximation is obtained
when the following paramreter values are applied for all types of
loading and concrete

B. = C.8; Vg = 0.36 (2.2-8)

As before, the B value to be applied in eq. (7) is determined
by eq. (1) when only compressive stresses occur, and by eq. (2)
when tensile stresses are present.

In summary, the constitutive model is based on nonlinear elas-
ticity, where the secant values of Young's modulus Es, and
Poisson's ratio Vg are changed appropriately. We select a fail-

ure criterion, and on this basis calculate the nonlinearity index



defined by eg. (1), when compressive stresses alone occur, and
by eq. (2) when tensile stresses are present. Here we apply the
failure criterion proposed by the writer (1977), but any cri-
terion can be used, and the choice influences only the 2 value.
The secant value ES is given by eq. (4) coupled with eq. (5)
when compressive stresses occur alone, and coupled with Ef = EC
when tensile stresses are present. The secant value Vg is given
by egs. (7) and (8). The model is calibrated by six parameters:
the two initial elastic parameters, Ei and Ui’ the two strength

parameters, O and ¢ the ductility parameter €cr and finally

'
the post-failure parzmeter D. While the D value is chosen, fol-
lowing earlier remarks, so that a convenient post-failure be-
haviour is obtained the other parameters are found from standard
uniaxial tests. Let us now illustrate the abilities of the model
by comparing its predictions with experimental results arrived

at for different types of concrete under various loadings.

2.2.4. Experimental verification

The biaxial results of Kupfer (1973) including tensile stresses,
are considered first. Fig. 6 shows the comparison between the
predictions of the model and the experimental results. The con-
crete has a rather low strength. The following narameters were ap-
plied in the model: Ei = 2.89 - 104 MPa, Ui = 0.19, oc = 18.7 MPa,
ot/oc = 0.1, Ec = 1.87 o/oo, and D = 0. Fig. 6 a) shows the cases
of uniaxial and biaxial compressive loading, and fig. 6 b) shows

the volumetric behkaviour connected with these loadings. Fig. 6 b)
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results
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between predictions of model and biaxial

of Kupfer (1973). (a) Compressive stress
(b) Compressive stress states = volumetric

sile stresses.

(¢) Tensile-compressive loading;

(d) Ten-
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demcnstrates that the medel is able to simulate the dilatation
that is characteristic for concrete loaded in compression. The
behaviour of concrete becomes less nonlinear, the more the stress
state involves tensile stresses; this fact is shown in fig. 6 c¢)
for a biaxial tensile-compressive loading and in fig. 6 d) for
uniaxial and biaxial tensile loadings. The loadings in fig. 6 ¢)

and 6 d) result in cracking, i.e. a completely brittle failure.

Stress-strain curves for triaxial compressive loading obtained
by means of the classical pressure chamber method and resulting
in failure along the comrpressive meridian (Gl = Ccy > 33) are

shown in both figs. 7 and 8. To indicate their appearance, the
predicted stress—strain curves on these figures are also indi-
cated at the beginning of the post-failure region, even though

no experimental data were given there.
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Fig. 2.2-7: Comparison between predictions of model and tri-
axial results of Hobbs (1974) - Compressive stress
states.

The experimental results cf fig. 7 are those of Hobbs (1974). The
loading ranges from low to moderate triaxial compressive loading,
and the concrete has a high strength. The following model para-
meters were applied in fig. 7: Ei = 3.90 - 104 MPa, v, = 0.2,

Ce = 43.4 MPa, ot/oc = (.08, te T 2.27 o/oo, and D = 0.16. The
experimental results shown in fig. 8 are those of Ferrara et al.
(1976) . The loading ranges from moderate to very high triaxial
compressive loading, and the concrete has a very high strength.

The following model parameters wer:= applied in fig. 8: E, =
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Fig. 2.2-8: Comparison between predictions of model and tri-
axial results of Ferrara et al. (1976) - Compressive
stress states.

4.40 - 104 MPa, vy = 0.16, I, = 56.9 MPa, Jt/cc = 0.08, €c = 2.16

o/oo, and D = C.2. Some disagreement exists in fig. 8, kut it

aprears that this disagreement is more connected tc minor dis-

crepancies bctween the predicted failure stresses and the ac-

tual ones than to the constitutive model as such.

Note that the model predictions in figs. 6, 7 and 8 are based

purely on calibrations using uniaxial data alone.

in conclusion, the constitutive model proposed by the writer
(1973) and investigated above provides realistic predictions for
general stress states. Through use of the nonlinearity index re-
lating the actual stress state to the failure surface, the model
can be applied in connection with any failure criterion without
change. Moreover, the model is simple to apply and implement in
a computer program and calibration to a particular concrete is
based purely on uniaxial data.

It may be of interest to note that a similar constitutive model
has been ccnstructed for rock salt, cf. Ottosen (1978) and Otto-
sen and Krenk (1979), and that close agreement with experimental

results again was obtained.



2.3 Creep

Even though the finite element program and therefore also the
present report concentrate on short-term loading of structures
until failure occurs, nonlinearities due to time effects, i.e.,
creep strains, will be touched upon as the program znables one to
deal with creep effects caused by simple load histories. This is
done using the simple "effective E-modulus" concept described

below.

For concrete structures subjected to normal locads it is usually
assumed that concrete behaves like a linear viscoelastic ma-
terial. For instance, the resulting proportionality between
creep strains and stresses is generally considered as valid for
uniaxial compressive loading provided the sustained stress is
below half the short-term strength, cf. for instance Browne and
Blundell (1972). Therefore for a constant uniaxial stress o we

have

£ = € o} (2.3-1)

where € is the creep strain and eSP is termed in the specific
creep function, i.e., the creep strain for unit stress. The spe-
cific creep function depends in general on time t and tempera-
ture T i.e. esP = csP(t,T). If concrete is considered to be a
homogeneous and isotropic material then two material parameters
define the material also when creep strains are involved, cf.
for instance Nielsen et al. (1977). These two parameters may be
considered as the creep Young's modulus and the creep Poisson's
ratio that now depend on time and temperature. Experiments show,
cf. for instance Browne and Blundell (1972) and Hannant (1969)
that Poisson's ratio during creep can be assumed to be equal to
Poisson's ratio during short-term loading. This leaves Young's
modulus during creep to be determined. For this purpose we con-
sider a constant uniaxial stress state. The total strain ¢ con-

sists of the elastic strain % and the creep strain e€ i.e.
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Using Hooke's law and eq. (1) we obtain
+ ssp o (2-3-2)

where E is Young's modulus during short-term loading. From eq.
(2) we derive

£ = Eeff €
where
E
E 22— (2.3-3)
eff 1 +EE€P

Hannant (1969) has shown that creep even under sustained tri-
axial loading can be estimated with close accuracy from uniaxial
creep data using the above concept.

The modulus Eeff is termed the "effective E-modulus” as it ap-
pears that a creep calculation using the finite element program
can be performed as a usual elastic calculation where the mo-

dulus E is simply replaced by E according to eq. (3). It

should be noted that this ”effegigve E-modulus” concept assumes
in principle that stresses are constant throughcut the loading
time, but even for constant loading, stress redistributions due
to creep will in general occur in the structure thereby viol-
ating in principle the basis of the approach. Nevertheless,
these latter stress changes are often quite small but it empha-
sizes that the "effective" E-modulus” concept must be utilized
with caution. However the appeal of the method is its extreme

simplicity.

Presently, the specific creep function available in the program
is that proposed by Cederberg and David (1969) i.e.

eSP = 107% (0.4 + 0.086 + T) 1n(1 + t) [MPa]™l  (2.3-4)
where T is the temperature in ©c and t the lcading time in days.

Moreover, the short-term modulus E in eq. (3) is assumed to de-
pend on the temperature according to



E(T) = Eo (1.04 - 0.002 - T) (2.3-5)

where E is the modulus at 20°C. Eq. (5) was also proposed by
Cederberg and bavid (1969).

With these few remarks no mcre attention will be drawn toward

time-dependent behaviour ¢f concrete as the primary concern of

the present study is that of concrete structures loaded in the
short-term until failure.

2.4. Summary

The present section 2 has primarily dealt with failure and non-
linear behaviour of concrete when loaded in the short-term by
general stress states. Different failure criteria and their a-
yreement with experimental result have been discussed and it has
been shown that the two failure criteria dealt with in section
2.1.3 and the failure mode criteria dealt with in section 2.1.4
provide a realistic approach to actual behaviour. In particular,
it has been shown that the criterion of the writer (1977) is
superior when considering accuracy, whereas the modified Cculomb
criterion possesses an attractive simplicity. In section 2.2 a
model for the stress—-strain behaviour of concrete was outlined.
This model, proposed by the writer (1979) and implemented in
the finite element program, is based on nonlinear elasticity,
where the secant values of Young's modulus and Poisson's ratio
are changed appropriately.

The model simulates the nonlinear behaviour before failure, as the
failure itself and as the post-failure behaviour. Smooth stress-
strain curves are obtained, and different post-failure behaviours
can easily be produced by changing one parameter, D, alone, while
changing only the behkaviour before failure insignificantly. In
addition, the model reflects the dilatation that occurs when

concrete is loaded in compression and the influence of all three
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stress invariant is considered.

Through use of the nonlinearity index, B8, relating the actual
stress state to the failure surface, the model can be applied
without change in connection with any failure criterion, and
choice of an accurate failure criterion by itself assures pre-
dictions of realistic stress-strain curves. The constitutive
model applies to all stress states, including those where ten-
sile stresses are present. The model is determined by only six
parameters that depend on the actual concrete. These are the
initial elastic parameters, Ei and Ui the strength parameters

O and o the ducility parameter, €7 and the post-failure

’
parameteg, D. The calibration of the model is easily performed,
as the D value is chosen to correspond with the anticipated
post-failure benhaviour. The other parameters are obtained by a
standard uniaxial compressive, and a standard uniaxial tensile
test. The flexibility of the model and its unified formulation
makes it suitable for use in computer codes when investigating
the sensivity of structures to certain specific parameters, e.g.,
the influence of different failure criteria, different post-fail-
ure behaviors, etc.; this will in fact be demonstrated in sec-
tion 5. In the present section, however, it has been shown that
the model predictions are in good agreement with experimental
results over a wide range of stress states also including ten-
sile stresses, and obtained by using very different types of

concrete.

3. CONSTITUTIVE EQUATIONS FOR REINFORCEMENT AND PRESTRESSING

Plastic deformations of reinforcement embedded in the concrete

and of unembedded reinforcement, i.e., springs can be dealt with
in the finite element program. In practice, unembedded reinforce-
ment often corresponds to ungrouted prestressed tendons, but pre-
stressing of the springs is not mandatory. The following uniaxial

stress-strain relations are assumed to apply for usual reinforce-
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ment and for unembedded reinforcement:

— € — - €

a) usual reinforcement b) unembedded reinforcement

Fig. 3-1: Uniaxial stress-strain curves for usual reinforcement

and for unembedded reinforcement.

I.e. a trilinear stress-strain curve applies to usual reinforce-
ment while a quadrilinear stress-—-strain curve applies to unem-
bedded reinforcement. The slope of the lines is arbitrary except
that it is non-negative. In the present section emphasis is given
not to the constitutive modelling as such, as it is quite triv-
ial, but rather to a formulation that is computationally con-

venient in the finite element program.

As outlined in section 4.3 usual reinforcement may consist of
bars or of membraries while unembedded reinforcement, i.e., springs,
obviously are treated as uniaxial loading. In accordance with

the formulation of the constitutive equations for concrete in
terms of secant values of Young's modulus and Poisson's ratio,
the constitutive equations for usual reinforcement are based on

a total formulation instead of the generally more accurate in-

cremental formulaticn. For usual bars carrying stresses in one
direction only the two formulations coincide when loading alone

is considered, but for membrane reinforcement differences exist.
The incorrect response to unloading inherent in the total formu-
lation employed is considered to be of minor importance as only
structures subject to increasing external loading are dealt with.
For unembedded reinforcement, i.e., springs, a different approach
is followed that considers both loading aud unloading in a cor-
rect way. This numerical approach is outlined in section 4.4 and

no more attention will be given here to unembedded reinforcement
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as the constitutive behaviour is fully described by fig. 3-1 b).
In the present section we proceed with the total formulation of

the plasticity theory as applied to membrane reinforcement.

The von Mises yield criterion is employed and considering in the
first place the incremental formulation of isotropic hardening

this means that the loading surfaces are given by

\s _ P -
sij Sij/ = ce(s ) (3-1)

_(
=1

N

where sij as usual is the deviatoric stress tensor and 9 is the
equivalent stress. In accordance with the assumption of isotropic
hardening 0o depends on the equivalent plastic strain P, mhe

P

increment of equivalent plastic strain £ is defined by

L
P (2 4P gcP)) _
de (3 dsij dsij/ (3-2)
where e?j denotes the plastic strain tensor. For uniaxial loading,
eq. (l) infers that f = 011 = Oe' Assuming the usual normality
rule following for instance from Drucker's postulates (1951) we
have
aeP, = ar &£
i]

where d)A is a positive function. Use of eq. (1) yields

3 s..
P _ 1] -
deij dx 55 (3-3)

From the latter equation follows plastic incompressibility which

in turn implies that for uniaxial loading eq. (2) results in
aeP = ds?l.

If eg. (3) is multiplied with itself we obtain

(3 aeP. aeP );j

dA 3 ij ij

dep

(o}
>
"
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By use of eg. (3) we have then derived the final incremental
equations

3 s..
D _ p 1] -
deij de 75 (3-4)

where dsp is given by eq. (2) and 9a by eq. (1).

If increasing proportional 1loading is ccnsidered it follows
that

3 s..
P _ p__ 137 -
Eij e” 35 (3-5)

where the ratio sij/oe is constant. From this equations follows
that ’

P
\

win

S AL (3-6)
Egs. (5) and (6) hold exactly for increasing proportional load-
ing. It is now assumed that they alsoc apply to nonproportional
loadings. However, while in the finite element program the rein-
forcement stresses are not directly determined, the total rein-
forcement strains are known as these are assumed to be identical
to the concrete strains. It is therefore advantageous to derive ex-
plicitly the relation between reinforcement stresses and total
strains. Noting that total strains Eij are composed of elastic
strains £5. and plastic strains P ile.
1j 1)

€5y = ejj + eg’j (3-7)
and working only with principal stresses and strains which is
allowable here inasmuch as the corresponding principal direc-

tions always are assumed to coincide, we therefore write

€, = 1 (o, - vl(o, + 0,)) + QE“ (20, = o, = 0,)
1 E 1 2 3 20 1 2 3
€, = 1 (6, = U(6, + 0,)) + =— (20, - G, = O,)
2 E 2 1 3 Tg 2 1 3
£, = 1 (0, = v(o, + 0,)) + g?_ (20, = 0, = 0,)
3 E 3 1 2 20 3 1 2



where Hooke's law and eq. (5) are applied. Solving this equation
system so that stresses are given in terms of strains and put-
ting ¢y = 0 in accordance with the assumption that plane stress
exists in the membrane reinforcement we obtain

- __S } -
53 = R-S (Ll + 52) (3 8)
and
ol L R S El
= - (3-9)
2 2
a R°-S S R €
: | .
where
U P
=1 £ = = £ -
R=F*3 S=E*Y % (3-10)
e e

It is to be noted that while the principal strains €1 and €y in

the membrane plane are assumed to be identical to the correspond-
ing concrete strains, as perfect bond is assumed, the principal

strain €, transverse to the membrane plane is given by eq. (8)

3
and not by the corresponding concrete strain.

From eq. {9) the well known fact appears explicitly that the
present formulation is identical to nonlinear elasticity. The
constitutive equation (9) is equivalent to

l v cl 701

E
= -E __ + (3-11)
€ 1-"2 :
2 i ‘

2 %2

where the initial stresses 001 and 002 are determined so that
egs. (9) and (1l1) result in identical stresses when the total

strains are identical, i.e.,

191 R S 1 v €
\RZ-SZ l-uz /

02
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As the total strains are composed of elastic and plastic strains
it follows from eg. (11) that

=V 001

1
E (3-13)
-V 1 [GOZ

m
(ki
-

N T

Equation (11) and (12) form the basis for the initial stress
method employed in the program for consideration to nonlineari-

ties in membrane reinforcement, cf. section 4.3.2.

However, some furthe. derivations are necessary as the finite
element program directly determines only the total strains and
also because the only quantities that are stored from the pre-
vious loading stage are the initial stresses. Parameters R and
S present in eq. (12) and defined by eq. (10), however, require
knowledge of the equivalent stress ‘e and the equivalent plastic

P

strain £¥ both corresponding to the actual total strains. Using

the plastic incompressibility, eq. (6) can be written

p_. 2 [p2 p? P _P -14
€ 73 Jgi + 32 + ey 52 (3-14)

P and

Through eqgs. (13) and (14) the equivalent plastic strain e

tnereby also the equivalent stress O can be determined, both

corresponding to the previous loading stage. Obviously, an iter-

ation sequence is necessary to determine the present values of

eP and O and different iteration schemes can be employed for

this purpose. Here we make use of the proposal of Mendelson

(1968) which has the advantage of quick convergence and applica-

bility even in the case of ideal plasticity. In essence this pro-

posal given below enables one to compute plastic strains from

total strains without recourse to stresses.

Letting e,. = ¢, i P> and €%, = %, - i §,. ec. denote
ij ij 3 i3 "kk ij ij 3 i3 "kk

the deviatoric total strain and the deviatoric elastic strain,

respectively, and noting that the plastic strain tensor eg. is
purely deviatoric, eq. (7) yields
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ejj = €55 * €ij (

From Hooke's law follows

L - S4i
ij 2 G

where G is the shear modulus. Inserting this equation in eq. (15)

and eliminating sij by means of egqg. (5) gives

(e \ :
e.. = + 1) P, (3-16)
i \35cP ) Tij

Multiplication of eg. (16) with itself yields

g_,_P
P _ _ _eleg”) 3-17
€ Cet 3G ( )

where eq. (6) has been used and where the equivalent total

strain et is defined by

_ (2 \%
Cet = \3 ©ij eij)

which using the definition of deviatoric total strain can be

written

e, =2 Vie, = ep? 4+ (g e ? 4 (ey - e (3-18)

Moreover, as the stress-plastic strain curve obtained from uni-
axial loading and derived from fig. 3-1 a) determines o_ as a
unigque function of sp, equation (17) is the expression §ought,
as it determines the equivalent plastic strain eP as a function
of et determined by the total strains. The iteration sequence

is then as follows:

From the present values of the total strains €1 and €, and from

the values of 0o and <P from the previous loading stage a €47

value is determined through eq. (8). The equivalent total strain

€t is then evaluated by means of eq. (18). Knowing e and g

et
eg. (17) determines a new value of P and thereby also a new

value of O This iteration loop is continued until values for

eP and 9 that are in suffficiently close agreement with the pre-
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sent values of total strains el and 52 are obtained. The initial

stresses in question can then be determined through eq. (12).

For uniaxial reinforcement bars the approach is much simpler.
As perfect bond is assumed, the axial strain € is directly de-
termined in the finite element program. Through the uniaxial
stress-strain curve of fig. 3-1 a) the corresponding stress is

cetermined, i.e.,
o = o(e)
This constitutive equation is equivalent to

= +
o = Ee + 0,

where the initial stress is given by

Og = o(e) - Ee (3-19)

No iteration sequence is invo.ved here.

Summarizing, the constitutive equations for usual embedded rein-
forcement corresponds to nonlinear elasticity. The numerical
considerations of plastic deformation are applied using the i-
nitial stress method outlined in section 4.3.2. For a given
loading stage, the finite element program determines the total
strains in the reinforcement plane. For membrane reinforcement
the corresponding initial stresses are given by eq. (12) while
the initial stress for uniaxial reinforcement bars is given by
eq. (19).

4. FINITE ELEMENT MODELLING

In this section the finite element formulation of the AXIPLANE-
program described by the writer (1980) is given. This pro-



gram is applicable for axisymmetric, plane stress and plane
strain structures. Triangular elements are utilized for simula-
tion of concrete, while one- and two- dimernsional elements simu-
late arbitrarily located reinforcement bars and membranes. Lin-
ear displacement functions are used in all elements resulting in
perfect bond between concrete and steel. Figure 1 shows the
available axisymmetric elements while figs. 2 and 3 show the

plane stress and plane strain elements, respectively. These

Z Z
§ Concrete element ) Tangential bars
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Fig. 4-1: Axisymmetric elements.
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} Concrete element } Bars in XY-plane
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Fig. 4-2: Plane stress elements.

figures also illustrate Low the discrete reinforcement bars are
smeared out to equivalent "shells" possessing identical volumina

and stiffness characteristics as the bars. It is apparent that
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Fig. 4.3: Plane strain elements.

from a finite element point of view, the modelling is very simple.
I+ also follows that the program is most suited for analysis of
massive structures while slender structures acting primarily in
bending represent problems that are unfitted for use of the pro-

gram.

In section 4.1 following, the fundamental equations in the fi-
nite element displacement method will be derived. Then, sections
4.2, 4.3 and 4.4 will treat the axisymmetric elements in detail.
The formulation cf the plane elements ivllow very much the same
lines and they will therefore be treated only schematically in
section 4.5. Finally, the computational schemes employed in the

program will be considered in section 4.6.

4.1. Fundamental equations of the finite element method

This section briefly outlines the fundamental equations of the
finite element displacement method. The Galerkin method is util-



ized in this formulation for the following reasons: (1) it cper-
ates directly with the differential equations in question ard

no corresponding functional or potential function is needed op-
posed to the Rayleigh-Ritz method; and (2) it demonstrates clear-
ly which equations are satisfied exactly and which only appro:ri-
mately. The present section takes some advantage of the work of
Zienkiewicz (1977) pp. 42-92. Cartesian coordinates are assumed
and tensor notation is used for lower indices with Latin letters
ranging from 1 and 3 and Greek letters ranging from 1 to n or

from 1 to ne.

Five basic equations define the response when a structure is
loaded. Three of these are field equations to be satisfied
throughout the whole volume of the structure while the last two
equations define the boundary conditions. Let us first consider

the field equations starting with the equilibrium equations

Oij'j + gi =0 (4.1-1)
where oij is the stress tensor and Bi denotes the specified vol-
ume forces. Only static problems are considered. A tilda indi-
cates that the quantity in question is prescribed. The symmetry
of the stress tensor Gij = Oji foilows from equilibrium of mo-
ments; this symmetry will be tacitly assumed in the following
therefore being exactly satisfied. Assuming small strains these

are defined by
_ 1
=1, L ru (4.1-2)

where eij is the symmetric strain tensor and u, denotes the dis-
placements. The stresses and strains are related through the

constitutive equation

0
ij

0
oij = Dijkl (ekl Ekl) + 0 (4.1-3)

where D..kl is the elasticity tensor that might denend on stres-

1]
ses, strains and time. The symmetry properties “ijkl = Djikl =
Dijlk follow from the symmetry of Oij and Eij' Moreover, to

achieve symmetric stiffness matrices for the finite elements,




the material is assumed to be hyperelastic (Green-elastic) pos-
sessing a sgrain engrgy function s¢ that Dijkl = Dklij holds.

The terms €kl and Oij in the constitutive equation denote initial
strains due to shrinkage, thermal expansions, etc. and initial
stressas, respectively. More realistic constitutive equations
than the above might well be used in the finite element formu-

lation, but for the present purpose, eg. (3) suffices.

Having defined the field equations, the boundary conditions will
be set up. For this purpose we divide the total boundary S of

the structure into two regions, a region St where surface forces,
tractions, are specified and a region Su where displacemants are

prescribed. The static boundary conditions specify that

. .= . on (4.1-4

01] nJ tl St 1-4)

where nj is the outward unit vector normal to the boundary and
ti denotes the given tractions. The kinematic boundary conditions

specify that

uy = ui on Su (4.1-5)

~

where u, is the prescribed displacements. If the structural re-
sponse satisfies the equations (1)-~(5) then the true solution
has been established. Let us now consider a reformulation of some

of these equations.

Satisfaction of the equilibrium equations all through the struc-
ture is equivalent to

. .
Jui (Oij,j + bi) av = 0 (4.1-6)

when uy is any arbitrary function that can be considered as a

displacement. The term dV denotes an infinitesimal volume. From
this equation follows

-~

O.j]dV + Ju. b, dv =0

t *
i,j i i Ui

P -
jlug o54) 5 -0
v

v




Use 0of Gauss's divergence theorem yvields

. -
juigj:ij uy bi av = 0

v

[ * [.*

u. .. n. ds - av +
J7L 713 3

S

PR

where dS denotes an infinitesimal surface. Use of eq. (2) and

the symmetry of jij gives
[ av- (b, av- fu as = ¢ 4.1-7
i3 f13 VT U % Ui Cig My 98 T (4.1-7)
v v s

* *
where the strain tensor Eij corresgponas to the displacements u, -

The last term can be split into integrations over St and Su. In
region St the stetic boundary condition egq.(4) hclds while in
region S the geometric boundary condition eq.(5) applies. These
latter prescribed displacements correspond to some tractions,

which however are unknown. Therefore in region Su we can write
r

n. =t on S (4.1-8)
i u

where the index r suggests ti.at these tractions are the unknown
reaction forces. Integrating the last term in eq. (7) over St
and Su and using eqgs. (4) and (8) we derive

et av- b oav - fut e as - [ ¥ as =0 (4.1-9)
J”ij €13 AV 7 Uy By JUi b4 jUi 5y 95 = .
v v St Su

This equation states the principle of virtual work. Note that u;
are completely arbitrary displacements. Ir the derivation of the
virtual work equation use has been made of the equilibrium re-
lation, eq. (1), the definition of the strain tensor, eq. (2)
and the static boundary condition, eq. (4), so that these equa-
tions may be replaced by the virtual work expression, egqg. (9).
In the virtual work equation, no consideration has been taken to

the constitutive condition.

In a state of equilibrium given by the displacements Ui the

stress tensor Gij depends on ug and satisfies the equilibrium
condition, eq. (1). Suppose now that an approximation u? to u;
is found where upper index a, in general, is related to approxi-

mative quantities. Then a corresponding approximative strain



tensor z?j follows which in turn determines an approximative
stress ternisor 52‘ through the constitutive equation. It is ob-
vious, however, éhat this stress tensor will not in all pcints

of the structure satisfy the equilibrium condition, egq. (1), as
no means have been taken for this purpose. However, the method
of Galerkir ensures an approximative satisfaction of these equi-
librium equations. Let us now consider this procedure in some

detail.
The true displacements u, are approximated by
u. = u., = N. a a=1, 2.....n (4.1-10)

where the tensor Nia depends on position and is assumed to be
known while the coefficients a,6 are to be determined. It is con-
venient to consider these coefficients as displacements of scme
points distributed all over the structure. These points are
termed nodal displacements. Obviously, to obtain an accurate
approximation by the available n degrees of freedom, the nodal
points should be distributeéd closely where large changes in the
displacement field are expected. It is a crucial feature of the
finite element method that the approximative displacement func-
tions given by the tensor Nia and, in a finite element context,
termed shape functions are not the same all through the struc-
ture, but render different expressions for each subdomain or
element, the total of which covers the whole structure. Moreover,
the finite element method assumes that within each element, the
approximative displacements can be expressed solely by the nodal
displacements located within or on the boundary of the element
in question. However, with these remarks in mind we will retain

the formulation given by eq. (10).

The approximative strain tensor follows from egs. (2) and (10)

i.e.
= B,. a =1, 2.....n (4.1-11)

where the tensor B depends on position and follows from know-

ija
ledge of Nia' Through the constitutive condition eq. (3), the



a . . . a
tensor Eij determines the approximative stress tensor o.j. Con-

sider now eq. {(6) when use is being made of the oij tensor i.e.

] a ~
Iui (Oij,j + bi) dv = 0 (4.1-12)
v
As c?j 5 + bi in general differs from zero, this equation cannot
14

be satisfied for any displacemeets UZ' However, 1f we consider

a finite set of functions for uy only, then eq. (12) may be
satisfied. It also follows that certain continuity restrictions
have to be placed on u; and u? enabling the integral to be evalu-

ated, cf. Zienkiewicz (1977) pp. 46-47 and pp.63-65. The term
a :

ij,3 _
weighting functions for the residuals, a method based on the ap-

*
g + bi defines a residual and as u. serves the purpose of
proximative satisfaction of the equilibrium equation envisaged
by eq. (12) is often termed a method of weighted residuals. The
Galerkin method consists of a particular choice for the weight-

ing functions namely

where the tensor Nia is the same as that for used for the approxi-
*

mative displacements, cf. eq. (10). The n coefficients aa are

completely arbitrary, but as only n linear independent choices

*
for a, exist, eq. (13) determines n linear independent functions.

Corresponding to eq. (13) we have

* *

Eij = Bija a, a=1, 2.....n (4.1-14)
Ingserting egs. (13) and (14) into the virtual work equation
given py eq. (9) and utilizing also the approximative stress
tensor, we derive

*adV-JN * b, av - In *L. das
Bija 2a %ij ia 3a Pi Nia %a i
v v St
N YT =1
ia aa r ds = 0 a=1, 2.....n
su
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As this homogeneous equation holds for any of the n linear in-
*
dependent choices of ay it possesses only the trivial solution

given by the n equations

6. o av-In. b, av- [x as - In. ¥ as = o
JTija "ij Jia Ui i i ] ia
\ v S S
t u
a=1, 2..... n

Use of the constitutive condition eq. (3) and eq. (11l) finally
leads to

( V, - 0 d
\UBija Pikl Bkie 4V)%e 7 JBija Pijk1 fx1 v

v v v

(
av + JBija Oij

i
v S S

aand =1, 2..... n (4.1-15)

S [ I I _ r s =
Nig by GV = N &, dS - N, t]dS =0

These are the equations that determine the unknown displacements
ag- For every a-value (a =1, 2..... n) i.e. for every degree of
freedom there corresponds one equation. All terms are known ex-
cept the last one that represent the reaction forces correspond-
ing to the prescribed displacements. These displacements must be
dictated before eq. (15) can be solved. However, the last term
in eq. (15) contributes only to the equation in question pro-
vided a prescribed displacement is related to the considered
degrec of freedom. Therefore, a convenient way to dictate the
geometrical boundary conditions is simply to ignore the last
term in eq. (15) and then replace the effected equations by ones
that directly state the prescribed displacements. Thereby, re-
arrangements of eqg. (15) are avoided and symmetry of the equation
system is retained. The actual procedure is described in section
4.6. Therefore, in the following, the last term in eq. (15) will
be ignored as due regard to its iniluence will be taken at a

later stage.

Eq. (15) refers to the whole structure. Traditionally, however
a corresponding equation is set up for each element and then ap-
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propriate assembly rules usinjy the superposition principle are
applied to obtain the total equation system. In the following,
this approach will be adopted.

Within each element eqg. (10) degenerates to
u, = N, _ a a=1, 2..0.. n (4.1-16)

where the upper index e expresses that an element is considered.
The element possesses an n®-degree of freedom represented by the
nodal displacements ai of the element. As adjacent elements most
often share nodal points some of the nodal displacement appear

in different ai— vectors.

Corresponding to egs. (2) and (16) we have

ae _ _e e _ e
eij Bija aa o =1, 2¢0e0.en

(4.1-17)
Ignoring tre last term in eq. (15) and carrying out the integra-
tions element by element assuming appropriate smoothness of the

involved functions we then derive

11
S [Le e e Ve _ [ne e 0
e;l[\JBija Disk1 Bxig 9V)28 7 JBija Pijk1 fx1 ¢V *
e e
v v
[ B¢ 40 av -[N? b, dv - ]N? t dS] =0
] Tija Tij JTia i ia i
e ve Se
v t
aand B =1, 2.+... n® (4.1-18)

where m is the number of elements. This equation in itself also
contains the assembly rules for connection of all the elements.
For each element the equation yields

€.e g.e
e 48 - pPe , pPe L pte [ 07 .70
g o a Qa [

aand 8 =1, 2.....n (4.1-19)
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where

[e e e S [s { _
JBija Dijkl Byig 4V = Kyg (4.1-20)
e
v

is the symmetric stiffness tensor of the element

}Nia b, av = F° (4.1-21)

e
v

is the body force vector. Discrete puint forces Pi can be treated
by this formulation, but are conveniently treated separately by

use of eq. (22) which follows from eqg. (21).

e = pP® -
XNia P, = F, (4.1-22)
is the discrete point force vector. The tensor N?a is evaluated
at the location of the point force in question and the summation

is extended over all point forces located within the element.

JN? t.ds = rt® (4.1-23)
1Q 1 [0 ]

e
St

is the traction force vector.

(e e 0 _ 50®
JBija Pijk1l k1 4V = Fy (4.1-24)
V&
is the force vector due to initial strains.
g.e
_ e 0 _ . 0 -
Jsija 075 AV = F, (4.1-25)
e

v

is the force vector due to initial stresses.

By means of the fu.,damental equation given by eq. (19) the orig-
inal problem has been transformed into a form relating nodal dis-
placements linearly to forces that can be vizualized as located
at the nodal points. As previously mentioned, an equation com-
pletely analogous to this equation and valid for the whole struc-
ture can be set up; introduction of the geometrical boundary

conditions will then establish the final linear equation system
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for the structure, where the nodal displacements are tne unknown
variables. Solution of this egquation syste= determines these no-
dal displacements which, for each element, determine the dis-

placements through

The nodal displacements also determine the strains in an elerent
through

e e

€ = = e -
€53 Bija a, e 1, 2..... n (4.1-27)

and the stresses in an element are determined by

qij = ngkl (5:1 - cgil + o?? (4.1-28)
This means that all quantities of interest have been determined.
Referring now to the statement of the original problem given by
egs. (1)-(5), it appears that the field equations given Dy eqs.
(2) and (3) are exactly satisfied, viz. eqs. (27) and (28). More-
over, the geometrical boundary conditiors given by eq. (5) have
also been satisfied exactly, as these were directly imposed on
the equation system (it is assumed that the employed shape func-
tions are able to satisfy these geometrical boundary conditions
between the nodal points as well). However, the static boundary
conditions given by eq. (4) and the equilibrium equations within
the structure and given by eq. (1) are satisfied only in a global
sense through the use of Galerkin's method while local violations
of these equations in general are present.

4.2. Concrete element

Section 4.2.1. presents a standard formulation of the axisym-
metric triangular element with linear shape functions, cf. for
instance Zienkiewicz (1977) pp. 119-134, while the important sec-
tion 4.2.2. deals with the necessary modifications when cracking
occurs in this element that represents the concrete. Ample refer-
ence will be made to the preceeding section, but matrix notation
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will now be employed and upper indices will be dropped for con-
venience. A double bar indicates a matrix while a single bar de-

notes a vector.

4.2.1. Basic derivations

The considered element is shown in fig. 1, where the Z-axis cor-
responds to the axis of rotation. Each of the three nodal points

i, jJ and m located at the corners of the triangle possesses

Fig. 4.3-1: Triangular axisymmetric concrete element.

two degrees of freedom: translations u and v in the radial and
vertical direction, respectively. The displacement vector u is

defined as

u

el
I

(4.2-1)
v

The nodal displacements are given by the vector

fu,]

(4.2-2)

Wi
[}
e -

As displacements within the element are assumed to be uniquely

defined by the nodal displacements we have

[«
1t

20
w1

(4.2-3)
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where the (2 x 6) matrix N contains the shape functions. As lin-
ear shape functions are assumed we have

ai+bir+ciz 0 aj+bjr+cjz 0 am+bmr+cmz 0 ]

1

N = 5

[

(4.2-4)
0 ai+bir+ciz aj+bjr+cjz 0 am+bmr+cmz

where the coefficients are given by

a. =r.z -r.2z2
i I m m-Jj
b, = 2. - 2z
i Jj m
cC,. =Tr_ -7r
i m J

and aj, bj’ cj and a bm' ¢, are obtained using cyclic permu-

tations of i, j and m. The term 2A denotes twice the area of the
triangle and we have

2A = a. + a. + a

i j m

The strains are given by the vector

R (4.2-5)

ol
!

Yrz

containing the vertical, radial, circumferential and the engin-
eering shearing strain, respectively. Differentiating eq. (3) and
using eqg. (4) yield

™l
[

oe ]}
[ |

(4.2-6)

where the (4 x 6) matrix B is given by
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7
S S B
L by 0. bj 0 b 0
E = 2h a; c;z a. c.z a cZ (4.2-7)
24b. +—— 0 —i+b . +—4— 0 D4p +
r 1 r r Jj r r m r
Ci bl C. b. cm bm
L J J )

It appears that all strains except the tangential strain are con-
stant within an element. However, in the present report this
variation of the tangential strain is ignored and instead, as an
approximation, the value at the centroid of the element is ap-

plied. The stresses are given by the vector.

Ql

(4.2-8)

with obvious notation. The usual elastic constitutive equation

is assumed to hoid, i.e.

al
wl]]

(e - EO) (4.2-9)

b

material matrix and Eo

where is a (4x4) symmetric matrix termed the constitutive or

is a vector containing initial strains

due to temperature. As the strains within an element are con-

stant the same follows for the stresses. It is here assumed that

the D-matrix may depend on the stress state and time. For an
isotropic material we have
l-v Y Y 0 ]
5 E Y 1-v v 0
TTFW T=2v) | v v 1-v 0 (4.2-10)
1l - 2v
L 0 0 0 2 .

where E and v are Young's modulus and Poisson's ratio, respect-

ively, that might depend on the stress state and time. The change
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of E and v depending on stress state is given in sections 2.2.2
and 2.2.3, respectively, and a simple approach that considers
time effects, i.e. creep, is dealt with in section 2.3. The

initial strain vector caused by themal expansion of an isotropic
material is

€, = 0AT 1 (4.2-11)
|
°]

where o is the coefficient of themal expansion and 4T is the

mean temperature rise in the eiement. The AXIPLANE-program in-
cludes as a subroutine a completely independent finite element
program that determines stationary and transient temperature
fields using the same trianqular elements dealt with in this
section. Thus, corresponding stationary and transient tempera-
ture stresses may be considered directly. This temperature pro-
gram is developed by Andersen (1968a, 1968b) and will not be
considered here.

Evaluation of the different terms in eq. (4.1-19) involves inte-
gration over the element volume. However, as the element is very
simple, many elements and therefore also small elements are
necessary for an accurate calculation. Consequently, as a fair
approximation, kernels are evaluation at the centroid of the
element and multiplied by the approximate element volume. Corre-
sponding to eq. (4.1-19), we have for the element in question

+F +F, +F

as= Fb P t £

=N

(o]

where the element stiffness matrix is given by eq. (4.1-20)
using egs. (7) and (19) i.e.

=i
]
M=y
ool
]
(]
o]l
Q
<
1
Loe]]]
-
ol
oo]]]

D B 2n r o (4.2-12)
el.vol
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Here r is the mean radius of the element and, as previocusly

mentioned, the matrix B is evaluated at the centroid of the tri-
angle. The index T denotes the transpose of a matrix. Body forces
b due to gravity in the direction of the Z-axis may be dealt with

in the program, i.e.,

Using eq. (4.1-21) and eq. (4) we obtain

anmAbZ
3

av = NT

Ll
]

=
o]

L 2m r A =
m

= O = O = O

- -

where the matrix N is evaluated at the centroid of the triangle.
Nodal forces due to prescribed discrete point forces P located

within the element are given by eqg. (4.1-22) and eq. (4), i.e.,

F = RY P (4.2-13)

where the summation extends over the number of discrete point
forces P and where the matrix N is evaluated at the location of
the point force in question. Nodal forces due to prescribed

traction forces t are given by eq. (4.1-23) and eq. (4), i.e.

o= |

St- area of

T % as

2

the element

and nodal forces due to temperature expansion are given by eq.
(4.1-24), i.e.

ol
™
o,
<
R’
wl

D eo 2nrmA



where the B-matrix is given bv ea. (7) and evaluated at the cen-
troid of the triangle while D and €, ace given by egs. (10) and
(11).

4.2.2. Cracking in the concrete element

Suppose now that tensile cracks according to the ciracking cri-
teria of section 2.1.4. initiate within the element. The present
section deals with the corresponding modifications in the finite

element approach of the concrete triangular axisymmetric element.

Due to rotational symmetry only two types of cracks can exist,
namely radial cracks where the crack plane follows a radial
plane and circumferential cracks where the crack plane forms a

rotational symmetric surface. These two types of cracks are il-

Id

Radial cracks Circumferential cracks

Fig. 4.2-2: Type of cracks in an axisymmetric structure.

lustrated in fig. 2. In addition, combinations of these cracks
are possible namely: a radial crack together with a circumfer-
ential crack, two circumferential cracks with different direc-
tions of the crack planes and finally these last named two cir-

cumferential cracks together with a radial crack.

When a crack forms then in principle a discontinuous displace-
ment field results. However, this can be represented only in the
finite element approach either by forcing the cracks to follow
the boundary of the elements and then introducing new nodal
points along these boundaries so that separation can occur, or

by allowing the cracks to propagate through the elements and then
define new elements and nodal points so that representation of



the discontinuity cf the displacement field can be rodelled.
These apprecaches to cracking are often termed discrete crack
modelling. The first method was proposed by Nilson (1968) as an
extension of the model of Ngo and Scordelis (1967) who considered
only predefined cracks. Obviously this first method places severe
restrictions on the possible crack directions and it is almost
abandoned today. The second method is physically attractive, but
like the first method it implies considerable comoutational
effort as a complete redefinition of the structur= is necessary.
However, very recent prcgress in the latter approach to cracking

has been given by Grootenboer (1979).

Apart from the discontinuity in the displacement field another
crucial feature of cracking is that the material loses its abili-
ty to carry tensile load normal to the crack plane. This very
important aspect may easily be incorporated in the finite element
formulation as it can be accomplished simply by appropriately
changing the constitutive matrix T when determining stresses from
strains and when evaluating the element stiffness matrix compare
eqs. (9) and (12). This procedure was proposed by Zienkiewics and
Cheung (1967) and Rashid (1968) and constitutes the most often

applied consideration to cracking.

In the present report we also adopt this cracking model that is
often termed the smeared or continuous cracking approach as the

discontinuity in the displacement field is ignored while the
inability of concrete to carry tensile load normal to a crack

plane is considered by changing the D-matrix from an expression
corresponding to isotropic material behaviour to ar. appropriate
anisotropic formulation. Moreover, it is assumed tnat when a

crack forms in an element it intersects the complete element.

Following Mohraz and Schnnbrich {(1970) we consider the strain
state at an arbitrary point. The strain vector ¢ referred to
the original RZ-coordinate system is related to the strain vec-

tor €' referred to the rotated R'Z'-coordinate system, cf. fig.
3, through

el )

V=T (4.2-14)
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<,

Fig. 4.2-3: Cracking in an element

where
cosza sinza 0 -5 sin2a
_ sinza cosza 0 Y sin2a
T = (4.2-15)
0 0 1l 0
sin2a -sin2u 0 cos2a
-

The elastic energy in an infinitesimal volume element 4V is
given by % ET o dV irrespective of the applied coordinate system;

i.e.

o' (4.2-16)

applies, where the prime indicates that reference is made to the
rotated R'Z'-coordinate system. Ignoring for convenience initial
stresses and strains we have in accordance with eq. (9)

(4.2-17)

By use of this equation, ¢' can be eliminated from eqg. (16) and
use of eg. (14) then yields

™)
Ql
W
™
=3
-3
o
3
™



3 =Dc¢ (4.2-18)
we derive the transformation formula

_-_T='._

b=T"D'T (4.2-19)

Suitable expressions for the D'-matrix will now be investigated
for different types of cracks. Before cracking iscotropic behav-
iour exists determined by the two parameters E and v. After
cracking a stratified material results where it is reasocnable to
assume that a plane of isotropy parallel to the crack planz is
present. Following Lekhnitskii (1963) such a material is termed
transverse-isotropic and it is characterized by five parameters.
It is obviously not trivial how to determine these parameters
knowing in advance the isotropic parameters E and v alone, and

various procedures may be found in the literature.

Consider first a circumferentia' crack where the crack plane
forms a rotational symmetric surface, compare fig. 2. Just before
cracking we have an isotropic material, i.e., the D'-matrix in
eg. (17) relating the stress vector o' and the strain vector ¢’
is given by eq. (10). Moreover, the principal stresses in the
RZ-plane are assumed to fcllow the directions of the R'-and Z'-

axis. The o_,~stress is then a principal stress and it is

'
assumed thas it is the largest principal stress. As the crack
plane is assumed to be normal to this stress it follows the
direction of the Z2'-axis as shown in fig. 3. After cracking, the
inability of the material to carry tensile load in the R'-direc-
tion is obtained by replacing all coefficients in the correspond-
ing row of the B'-matrix with zeros. As the constitutive matrix
is symmetric the —orresponding column consists also of zeros. In
the plane of iscotropy now created, it is assumed that plane
stress conditions exists. Before cracking the shear stiffness in
the RZ-plane along the direction of the crack plane is given by
the shear modulus G = E/2(1+v). After cracking, it is assumed
that oﬁly the shear stiffness nG, where 0 < n < ' applies, ic
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retained alcig the crack plane. With these assumptions the D'-
matrix, as given by eq. (10) and applicable before cracking, is

modified to

=I — — -_
DC = (4.2-20)

where index C denotes that this constitutive matrix refers to
the formaticn of a circumferential crack. This expression corre-
sponds to that proposed by Suidan and Schnobrich (1973). The
factor n termed the shear retention factor after Hand et al.
(1973) 1is subject to much controversy, but for convenience a
detailed discussion will be postponed to the end of this section.
If n = 0 the crack plane is assumed to be completely smooth
while n = 1 implies that formation of a crack does not influence
the shear stiffness of the material. In the program the value

n = 0.01 will be applied universally, except for certain sensi-

tivity studies.

Transformation of eq. (20) from the R'Z'-coordinate system to
the RZ-coordinate system is given by eq. (19) with ample use of

eq. (15). The result is

[ _ )
cos4a+Ksin22a sinzucosza-xsinZZa vcosza -HsinZacosza+Ksin2ac052a
., 4 . 2 , 2 . . 2 .
E sin a+Ksin 2a vsin“a -k&sin2asin“a-Ksin2acos2a
D = > (4.2-21)
1-v symmetric 1 -ksin2a
%sin22u+xc05220
h -
where
K = niZ¥ (4.2-22)
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Considering formation of a radial crack where the crack plane

follows a radial plane, use of the assumptions just outlined re-

sults in

1 \Y
v 1
vZio 0
0 0

(4.2-23)

o

[
N
<

where index R indicates that this constitutive matrix refers to

a radial crack. Obviously no transformation of coordinates is in-

volved.

If both a radial and a circumferential crack exist, we derive

L

0 0 0
0 0 0
(4.2~24)
0 0 0
—n____
0 0 2(1+\))J

Use of the transformation formula eq. (19) and'of eq. (15) infers

-
ﬁm =E .
symmetric
L
where
M =

n
2(1+v)

4 . 2 , 2 , . 2 .
Cos a+Msin 2a 51n2acos a—M51n22a 0 -ksin2acos a+Msin2acos2a

. . 2
51n4a+M51n 2a

0 —HsinZGSinza-MsinZGCOSZQ
(4.2-23)
0

in22a+Mcosz2a

.b(}'b-‘ o

(4.2-26)

Consideration is also taken to secondary cracks where for in-
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stance one circumferential crack already exists and according to
the crack criterion a new circumferential crack is formed that
has a different direction than the first crack. In that situation
it is assumed that all load carrying capacity in the RZ-plare is

lost, i.e.,

. 3
0 0 0
_ _ 0 0 0 .
- =, _
Dec ® D = E 0 1 0 (4.2-27)
0 0 0 0
| )

Obviously no transformation is involved. Similarly, if both two
circumferential cracks and a radial crack develop in an element,
the material loses its carrying capacity in all directions and

the constitutive matrix degenerates to the null matrix, i.e.,

6 o o o

_ _ o o0 0 0

Deccr = Décr=lo o o o (4.2-28)
o 0 0 0
L J

The above approach infers that the resistance of the material to
carry tensile load normal to the crack plane is exactly zero.
However, this may give rise to an ill-conditioned finite element
equation system and in the program 0.5% of the stiffness normal
to a crack plane and existing just before cracking is therefore

retained.

In the program it is also assumed that once a crack is developed
it will remain open with a fixed direction. This seems to be a
reasoneble assumption as we are dealing only with structuces sub-
ject to ircreasing loadings. However, assuming closing of a crack
when the strain normal to the crack plane becomes compressive the
problem of crack heaiing has been dealt with by e.g. Phillips and
Zienkiewics (1976) and Marchertas et al. (1978). In case of cy-
clic loading, a more refined model has been proposed by Arnesen
et al. (1979).
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Let us now consider the question of shear transfer across a crack
surface in more detail. The ability of shear trinsfer is here
considered through the shear retention factor rn, compare eq. (20).
Obviously, this factor which models the aggregate interlock is

a nonlinear function of crack width, relative displacement tan-
gential to the crack plane and the nature of the crack surface.
Also, the n-value is expected to decrease with increasing crack
widths so that for small widths the n-value is close to 1its

upper limit, n = 1, and for large crack widths thc n-value is
close to its lower limit, n = 0. An expression reflecting this
dependency of the crack width ané¢ neglecting the influence of
other variables was proposed, e.g., by Cedolin and Dei FPoii
(1977). For simplicity, however, we will make use of the often
adopted extreme simplification here and consider the stear re-
tention factor as a fixed value. Much discussion has been and is
devoted to a suitable choice of this value to ensure its applic-
ability in structural analysis. Some physical arguments justify-
ing to some extent the value employed in the present study will

now be put forward.

As the relations between stresses and strains .or stress condi-
tions where cracking is impending are almost linear and as the l
crack plane is assumed to be normal to the largest principal
stress, small shear strains along the crack direction car be ex-
pected both before and immrdiately after creation of the crack.
Therefore, even though the n-value can be expected to be close

to unity for small crack widths, the actual transferred shear
stresses just after cracking are probably so small that for the
structural response it does not seem to imply drastically simpli-
ficutions wihen a small n-value is used. On the other hand, for
loadings close to structural collapse, large crack widths can be
expected and a small n-value may then be assumed. These argqu-
ments suggest a small n-value to be applied universally. An n-
value equal to zero would correspond to an extreme physical situ-
ation and it might also imply an ill-conditioned finite element
equation system. We will therefore make use of the value n =
0.01. The influence of other n-values will be investigated in
section 5.3. Hand et al. (1973) analyzing a rectangular slab
subject to bending and torsion until failure is reached found



very little sensitivity to r-values ranging from 0.2 to 1.0 but
noticed in accordance with previous remarks tnat a value ecual

to zero was unacceptable fcr numerical reasons. They then arbi-
trarily selected an ~-value equal to 0.4. Yuzugullua and Schnc-
brich (1973) investigated the deflections and cracxing of a shear
wall frame system for »~ = 0, =~ = 0.125, n = 0.25 and =~ = 1.00.
Very little influence of the r-value on the deflections and a
minor influence on the cracking were observed and even - = 0 was
accepted as a value. The applicability of n = 0 may be caused by
a uniform reinforcement mesh preventing the equation syster to

be ill-conditioned. The conclusions of Yuzugullu and Schnobrich
are in favour of n between 0.125 and 0.25 but apparently no con-
sideration to failure loads was taken. Lin and Scordelis (1975)
found no influence of the n-value on the ultimate loads of a
circular slab, a square slab and a hyperbolic parabecloid shell.
This finding even applies fcr n ranging from zero to unity. On
the other hand Cedolin and Dei Poli (1977) analyzing a beam fail-
ing in shear observed an extreme sensitivity of the n-value on
the calculated failure loads. For n = 0.25 they determined a
failure load twice as large as that determined when n = 0.025

was utilized.

The above findings are in accordance with the intuitively accept-
able assumption that the calcuicted response of structures loaded
primarily in bending .s insensitive to the value of n while the
theoretical response of structures loaded primarily in shear
shows some dependency of the n-value. However, as shown in sec-
tion 5.3, the present investigation finds this dependency of n

to be much less than that found by Cedolin and Dei Poli (1977).

Apart from the above discussion of choice of a suitable n-factor
an additional assumption inherent in the adopted cracking ap-
proach should be noted. It folilows from the manipulation of the
D-matrix relating stresses and strains in performing consider-
ation to cracks. However, the stress and strain tensors are
symmetric and considering for the moment only shear strains, no
distinction is therefore made as to whether these shear strains
are a result of relative displacements tangential to the crack
plane or they are caused instead by nonuniform relative displace-
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ments normal to the crack plane. Using the cracking approach
followed here, the stiffness related to these two displacement
fields would be identical, but in reality much less stiffness
would be related tc shear parallel to the crack plane than to
shear normal to the crack plane.

Terminating this section, attention should be drawn to a new
cracking concept proposed very recently by Ba¥ant and Gamborova
(1979,a,b) and termed the "rough crack approach”. This procedure
evades ruch of the drawbacks of the method adopted here and en-

compasse< apparently most of the essential features of cracking.

4.3. Reinforcement elements

This section deals with the finite element formulation of the
three types of axisymmetric reinforcement elements shown in

fig. 1, namely, tangential reinforcement where the reinforcement
bars are located circumferentially, RZ-reinforcement where the
bars are located in the RZ-plane and membran reinforcement with
dimensions both in the circumferential directior and in the RZ-

plane. It is tc be emphazised that arbitrarily located reinforce-

z
'

y4
Tangential bars T Bars in RZ- plane

52, W

|
|
|
L

) Membrane

Fig. 4.3-1: Axisymmetric reinforcement elements
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ment is treated here. However, before proceeding further it is
of inteiest to reveiw various concepts that are employed when

considering the effect of reinforcement.

As reinforcement and concrete follow very different constitutive
equations a separate treatment of the two materials is necessary
in the finite element formulation. However, different approaches
to consider the effect of reinfourcement exist. Assuming perfect
bond between concrete and reinforcement the "smeared" approach
assumes that the reinforcement bars are distributed uniformly
all over the region occupied by the involved elements. From
these anisotropic homogeneous elements and taking advantage of
concrete strains being equal to reinforcement strains, constitu-
tive matrices for the reinforced concrete elements can be de-
rived that consider the directional effect of the reinforcement.
This approach has been employed e.g. by Cervenka and Gerstle
(1971) and by Suidan and Schnobrich (1973). For inhomogeneous
reinforcement arrangements problems may arise when determining
the concrete elements involved. Moreover, the specific location
of thre reinforcement is accounted for only within certain limits

that depend on the type and size of the concrete elements.

Another approach which often is termed the discrete idealization
employs different elements for concrete and reinforcement. More-
over, reinforcement elements and concrete -::lements share nodal
points. This approach considers the specific reinforcement lo-
cation, and additional "link" elemrents that connect concrete and
reinforcement may be aprlied. The use of such link element as
proposed by Ngo and Sccrdelis (1967) opens for consideration to
slip and bond failure. Ngo and Scordelis used a linear relation
while nonlinear slip relations have been utilized by e.g. Nilson
(1968) and Cedolii and Dei Poli (1977). When slip effects are
ignored the considered approach is very common in various com-
puter programs, cf., for instance Bathe and Ramaswamy (1979), but
an obvious drawback is the requirement that reinforcement ele-
ments and concrete elements have to share nodal points. This

places severe restrictions on the finite element mesh.

A third approach in considering the effect of reinforcement is
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the "embedded" concept where reinforcement can ke located arbi-
trarily within the concrete elements. Assuming consistent dis-
placements for reinforcement elements and concrete elements the
displacements and thereby the response of the reinforcement can
be described by the nodal displacements of the ccncrete element.
The advantage is that reinfercement can be located at will but
assumption of perfect bond is inher=nt in the approach. In the
present report this latter consideration for reinforcement is
employed. A quite similar formulation was given by Zienkiewicz
et al. (1972), but the present concept "'n its original form and
the corresponding procedures in the finite element program were
given by Tingleff (1969, 1973).

Figure 1 illustrates how the discrete reinforcement bars are
smeared out to equivalent "shells" possessing volumina and stiff-
ness characteristics identical to those of the bars. This means
that all three elements can be treated in the same way except

for their different stiffness characteristics. In general all
three types of reinforcement will therefore be referred to as

bars.

In addition to the in-plane forces of the bar, transverse forces,
i.e., dowel forces, may develop as a result of cracking. Relative
displacements parallel to a crack plane result mainly in local
bending of the bar as well as local crushing of the concrete in
the vicinity of the bar. Such crushing of the concrete might be
simulated by suitable link elements which, however, is beyond

the possibilities of the present approach. Local bending of a bar
could in principle be considered, but this would require know-
ledge of the displacement fields of two subsequent triangular
elements. As a result nodal points are coupled that generally do
not interact. This coupling would in general almost dcuble the
band width of the equation svstem thereby increasing the computer
time inadmissibly, at least for the eguation solver used here.
The only possibility to deal with dowel action, therefore, is to
consicder the shear stiffness of the bar. The corresponding shear
forces that might be present in RZ- and membrane reinforcement
are shown in fig. 1. This approach to consider dowel action is
evaluated in sections 5.1 and 5.3 and it is shown there that
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ev.:n though some features of dowel action are indeed reflected,

the approach is in general not preferable.

As concrete and reinforcement is assumed .2 follow each other,
the full shear capacity of the bars is to be considered. While
this assumption is fair for uncracked regions, it is obvious that
as a result of cracking relative deformations parallel to the
crack plane will be localized to the vicinity of the crack where
local bLending of the reinforcement is initiated and where local
crushing of the concrete may be present. As a result, the stiff-
ness of the bar parallel to the crack plane is considerably
lower than that given by the original shear stiffness. This ef-
fect can be accounted for in the program by using the ternmn «G
where 0 < x < 1 instead of the original shear modulus G of the
reinforcement material. Due to simplicity we employ a constant
k-value and as the shear capacity of reinforcemernt bars is in-
significant when no cracking is present a realistic k-value
might be determined by means of calibration calculations on a
structure where cracking and dowel action dominate the response.
Such calculations are performed in section 5.1 and, as previously
mentioned, it is found there that neglect of dowel shear, i.e.,
k = 0, constitutes in fact the most preferable value. This find-
ing is supported by the calculations in section 5.3. Conse-
quently, except for certain sensitivity studies the value «k = 0

is always employed in the program.

The objective of the following considerations is to determine

the stiffness contributions of reinforcement elemen*s to the in-
volved triangular elements. In section 4.3.1 only linear material
response is considered. Section 4.3.2 then treats the necessary
modifications when plastic strains develop. Moreover, when tem-
perature stresses are present the contribution from the rein-
forcement to the nodal forces of the involved triangular elements
are also determined in section 4.3.1.

4.3.1. Elastic deformation of reinforcement

Every reinforcement bar is located along an arbitrary straight

line. From the start and end point of each bar a special search
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routine developed kv Tingleff (1969) detarmines the intersection
points with all involved triangular elements. Two such inter-
section points for a particular triangular element are shown as

point A and B in fig. 2. The distance between A and B is termed

- == o —— e R

Fig. 4.3-2: Reinforcement bar intersecting a triangular element

d. The figure also indicates a local coordinate system R'2’
located at point A and with the R'-axis in the bar direction.
The displacements of point A and B determine the in-plane forces
in the reinforcement element. To determine the shear strain and
thereby ti.e shear stress an additional point is necessary. Point
C located on the Z'-axis at a distance d from point A is used
for this purpose. First, the reinforcement element is treated in
the local R'Z'-coordina:e system. Then a transformation to the
global RZ-coordinate system is performed and finally the response
of the reinforcement element is described by the nodal displace-
ments of the involved triangular element. Let us first treat the
reinforcement element in the local R'Z’'-plane.

The displacements in the R'-direction and in the 2'-direction are

given by

where the prime(') in general indicates that reference is made

to the local R'Z'-coordinate system. Similarly, the displacements
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at point A, B and C are given by

= (4.3-1)

w-

where index b in general indicates that a reinforcement bar is
considered. The points A, B and C are the nodal points of the
reinforcement element and the vector 56 contains therefore the
nodal displacements. In accordance with the triangular element

concept, we work with a linear displacement field i.e.

14 1 ]
al + a2r + a3 z

V' = a4 + agr’ + ag 2’

To determine ‘ne constants QA eeeen ae the displacement values

at point A(r' = 2' < 0), B(r' =d, z' = 0) and C(r' =0, 2z' = 4),

i.e., the nodal points, are applied. I:- follows that

A + 5(ué - uA)r' + %(ué - uA)z'

u' u

(4.3-2)

v' VA + 5(vé ~ vA)r' + %(vé - VA)z'

The corresponding reinforcement strains of interest are

[ ] T ’a ] ]
€ u
R ar'
tv=ler | =fe. =9 = Lurcosa - v'sina) (4.3-3)
b ) ) r r :
' du' av'
YRZJ b82' + or'’ )
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where the angle a denotes the inclination of the local R'Z'~
coordinate system with the global RZ-coordinate system, cf. figqg.
2. The term r denotes the radial distance of the particular
point of interest in the global RZ-coordinate system. Moreover,
as reinforcement is assumed to have small dimensions in the
direction of the Z2'-axis, the variation of cé = £g due to dif-
ferent z'-values can be ignored. Use of egs. (1), (2) and (3)
then results in

' — [ St -
€p Bb a; (4.3-4)
where
i l
-% 0 é 0 0 0
1-t' 1-X' :
—_— [ ]
EL = d cosa - sina %acosa - —asina 0 0!
r r
1 _l 1 1 é
a d 0 d d 0 :
g A

As expected, all strains except the tangential strain are con-
stant within the reinforcement bar. Similarly to the treatment
of the triangqular element in section 4.2 the variation along the
bar of the tangential strain is ignored and as an approximation
the value at the center of the bar element is used. At this

center r' = d/2 applies ana ‘enoting the global radial distance
of the center by r* the above expression for the matrix ﬁé sim-
plifies to
- y
1 1
3 0 3 0 0 0
v _ cosa _ Sina cosa _ sina -
b | 2r* 2r*  2r* 2r* 0 0 (4-3-3)
1 1 1 1
3 a 0 a a 0
L J

Corresponding to the reinforcement strains of interest the
stresses in a bar are given by
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al

The stress-strain relations are as usual given by
v _ ¥ v _ T
E Dg (eb eéb) (4.3-6)

where the material matrix 5£ and the initial strain vector
E;b due to temperature take different forms depending on the

reinforcement type.

For tangential reinforcement that carries forces only in the
tangential direction, cf. fig. 1 a), we have

-~

0 0 0 0
ﬁb'tan- =E 0 L 0 Eo'b,tan' = alT l (403-7)
6 0 O 0

where, as usual, E is Young's modulus, a the coefficient of
thermal expansion and AT the mean temperature rise of the bar

element in question.

RZ-reinforcement, cf. fig. 1 b), carries load in the RZ-plane.
In addition to the load in the bar direction, shear stresses due
to dowel action might be considered, i.e.

10 o | 1
=' - -l = -
By pg=E (0 0 0 Elp,pz = 9T |0 (4.3-8)
K
0 0 7| 0

where v is Poisson's ratio for the reinforcement material and
k is factor, 0 < x < 1, which implies that the full shear ca-
pacity of the reinforcement cannot be utilized due to, for in-
stance, local crushing of the concrete. As explained previously
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the value x = 0 is always assumed except for certain sensitivity
studies cf. also sections 5.1 and 5.3.

Membrane reinforcement, c-. fig. 1 c), carries load both in the
tangential direction and in the RZ-plane. Like the RZ-reinforce-
ment, shear stresses in the RZ-plane due to dowel action might

be coasidered, 1i.e.,

r 8 .
1 v 0 1
B, mem. = lE v 1 0 €b mem.> AT[1] (4.3-9)
-~V . . !
0 0 -i\(%_\l) ‘0
\ 4 v

wiiere in general the value x = 0 again is assumed.

From the standard finite element formulation given by egs.
(4.1-19) to (4.1-25) and noting the constitutive equation (6)

the reinforcement element is describea by

(4.3-10)

where the reinforcement element stiffness matrix is given by K,
the nodal displacements EL are given by eq. (1) and the vector
?; b describes the nocdal forces due to temperature loading. The

stiffness matrix is given by

- J 8T 5 27rtdt (4.3-11)

bar vol.

where §é is given by eq. (5) and Bg is given by egs. (7)-(9).
The term t denotes the thickness of the "shell” possessing the
salme volume and stiffness as the bars. The nodal forces due to
temperature loadingy are given by

Eéb 27r*dt (4.3~12)
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the reinforcement elcment, i.e. point A, B and C in fig. 2. Let
us now describe the reinforcement element when reference is made

to the nodal points of the involved triangular element.

As perfect bond is assumed the following relations exist, cf.
eq. (4.2-3)

2\

U, =

A A a; u =K a; u.=N_,a (4.3-17)

where GA is the displacements at point A, the matrix N,

by eq. (4.2-4) where the coordinates of point A are applied and

is given

a contains the nodal displacements of the involved triangular
element. Similar expressions hLold for point B and C. Equation
(17) leads to

-]

8y = ﬁB (4.3-18)

Similarly, from eq. (4.2-13) follows

= _[sT T 27] = _
peor = [NA Ry NC] Fe b (4.3-19)

where ?e r 3re the equivalent nodal forces due to reinforcement
at the n8dal points of the involved triangular element. The in-

dex r indicates that reinforcement is considered. Premultipli-~

cation of eq. (15) with the matrix [ﬁ: ﬁg ﬁg] and use of 2gs. (18)
and (19) yields ’
r_ -
nA
=T =T =T] =T 2, =T |g | = _ = -
[NA Ng No Ky NB a-= Feor (4.3-20)
f
[ €

This equation states the contribution of the reinforcement ele-

ment to the involved triangular element with respect to stiff-
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ness and nodal forces if temperature stresses are present. The

R
|
l

stiffness contribution ir is

ll

R - [Fh o R I° R E

Eﬁcj

and the contribution to nodal forces if temperature stresses are
present is

= _IsT =T 37 #T =, _
Fcor = [NA Ny Nc] j# Fcob (4.3-22)

To reduce computer time it is convenient to give closed form ex-

pressions for the terms fT iﬂ L and fT Fé b present in egs. (21)
= o

anrd (22), respectively. The matrix L is given by eq. (14), fé is
given by eq. (il) while ?é L, 1S given by eq. (12). After tedious

matrix multiplications the following results are obtained:

Tangential reinforcement:

;
[1 0 1 o0 o0 o
| 0 0 o 0 o
=P =, = ndt E 1 0 o0 ¢
L K' L + |
b 2t l o 0 o0
symmetric 0 0
0i
L J
=T = _ !
F} , = 7dt E abT
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RZ-reinforcement:

r ]
c2+g(1-2$c) sc+g(c2-sz) -c2+g(sc—52) -sc+g(sc—c2) g(sc—cz) g(sz-sc)

sz+g(1+25c) —sc+q(sc+sz) -sz-g(sc+c2) -g(sc*cz) —g(sz+sc)

c2+qs2 sc-gsc -gsc —gs2

symmetric sz+gc2 gc2 gsc

! gc2 gsc
i ;
! g
} 2 !
gs |

-
-

L S
T 2(1+v)

and in accordance with previous remarks the value x = 0 is al-

ways employed, except for certain sensitivity studies.

-cosa
-sina
cosa

= 2nr*t E aAT
le) sina




Membrane reinforcement:
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= = =
L'r Kt; = 27r tczl E
1-v
S B g Eos S, 1 €Y=
- —rs - -3
JE g2 a2 32 2 2r%d
el e e e
4r* a . | d
z 2
s _Ssc_.yvs_ -5
E J
d2 d2 2r*d d2
+£2-(1+Zsc) +!-\-i-(sc+sz) -%(sc«bcz)
d d d
f,h 2 se h__
d2 d2 dz d2
1 ve Vs
+— ——
3
JEPS o 2r*d
symmetric
s2,n 2
dZ 62
where
s = sina; C = Ccosa; h = K—(J‘i.—\’l

h—-(sc-cz) h—(sz-sc)
2 P !
a c
-h—z-(sc+c2) --h—z-(s2+sc)
4 a
-tl—sc -h—sz
d2 d2
h? Ry
d2 d2
h 2 h c
dzc d2
h 2
d2
-

and in accordance with previous remarks the value x= 0 is al-

ways employed, except for certain sensitivity studies.

It ap-

pears that the stiffness contributions due to dowel shear are
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identical to those for RZ-reinforcement.
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These expressions together with egs. (21) and (22) constitute
the final finite element formulation when elastic behaviour of
reinforcement is assumed. The next section deals with the finite
element formulation when the reinforcement is loaded into the

plastic region.

4.3.2, Plastic deformation of reinforcement

As already mentioned in section 3, the initial stress method is
employed in the finite element program when considering plastic
deformation of the reinforcement. In essence this method re-

formulates the original constitutive equation

(e) € (4.3-23)
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where D(g) is the nonlinear material matrix that depends on the

strain state, into the equivalent equation
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ol
+
Ql

(4.3-24)

Here D is the usual constant material matrix while 50 are the
initial stresses determined so that egs. (23) and (24) result in
identical stresses when the strains are identical. The initial

stresses are therefore determined by
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Finite element formulation using eq. (23) results in a stiffness
mecrix that depends on the unknown displacements and as solution
of the resulting equation system therefore necessarily involves
iterations, the inverse of the coefficient matrix of the equa-
tion system has in principle to be determined in each iteration.
This is very time-consuming so instead the finite element formu-
lation can use eq. (24) resulting in a constant coefficient ma-
trix while only the nodal forces due to the initial stresses are
changed in the iteration process. The contribution to the nodal
forces due to the initial stresses is, cf. eqs. (4.1-19) and
(4.1-25)

F = - JETG dv (4.3-25)

This initial stress method was proposed by Zienkiewicz et al.
(1969) and as shown by Zienkiewicz (1977) p. 459 it corresponds
to the modified Newton-Raphson method.

I.et us now determine the nodal force contribution due to plastic
deformation of the reinforcement using this initial stress
method. It should be noted that the corresponding implementation
in the finite element program was performed mainly by Herrmann
(1975) . Moreover, as the primary reinforcement forces are those
located in the reinforcement plane, and to facilitate the cal-
culations the influence of shear tresses due to dowel action

on the plastic deformation of the reinforcement is ignoreg.

Firstly, the forces at the nodes of the reinforcement element
are detarmined in the local R'Z'-coordinate system, cf. fig. 2.
Secondly, these forces are transformed to the global RZ-coordi-
nate system and then they are transferred to the nodes of the
involved triangular element. The forces at the nodes of the re-~
inforcement element are determined by means of eqg. (25), i.e.,

b3 )

13

2rr*dt (4.3-26)
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where the same notation as in the previous section is applied
(i.e. the prime (') indicates that reference is made to the

local R'2'-coordinate system, and index b indicates that rein-
forcement bars are considered). Moreover, r* is the global radial
distance of the centre of the reinforcement element, t is the
thickness and 4 is the length, cf. fig. 2. In eq. (26) the ma-
trix ﬁé is given by eq. (5) while the initial stress vector 36b

takes different forms depending on the reinforcement type.

For tangential reinforcement, cf. fig. 1 a), we have

o'. = log (4.3-27)

where 9% is given by eq. (3-19). For RZ-reinforcement, cf. fig.
1l b), we have

o' = 0 (4.3-28)

where 9 again is given by eq. (3-19). For membrane reinforce-
ment, cf. fig. 1 c), we have

»

0ol

= - |e (4.3-29)
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.

where 901 and 0,p are given by eq. (3-12), i.e. the stress ¢
is directed in the R'-direction while 952 is the tangential
stress,

ol

Transformation of the force vector Fé b from the local coordi-

nate system to the global coordinate gystem and subsequent trans~
formation of these forces located at the nodal points A, B and C
of fig. 2 to the nodes of the involved triangular element follow
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exactly the same lines as the transformations of the fcrce vec-
tor fé b caused by temperature stresses and dealt with in the
previous section. Therefore an expression similar to eq. (22)
holds, i.e.,

|
Il
—

T =T
Fo r A B NC]

wl

(]
Qe

b (4.3-30)

where ?0 r is the equivalent nodal force vector due to reinforce-
ment at ghe nodes of the involved trianqular elemeni. The index

r indicates that reinforcement is considered. As given pre-
viously the matrix ﬁA is described by eq. (4.2-4) where the co-
ordinates of point A are applied. The matrices ﬁB and ﬁc are
given similarly. The matrix L is given by eq. (14) and F& b

by eq. (26). °

To reduce computer time it is convenient to give a closed form

=T =

expression for the term L F& b present in eq. (30). After

.. . A © .
trivial matrir multiplications we obtain:

Tangential reinforcement:
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where 9, is expressed by eq. (3-19).

RZ-reinforcement:
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~here % again is given by eq. (3-19).

Membrane reinforcement:
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These expressions together with eq. (30) constitute the nodal
force contributions within the initial stress method when plastic

deformation of reinforcement is present.

4.4. Prestressing

In principle two types of prestressing exist namely grouted and
ungrouted prestressing. For grouted prestressing perfect bond
between concrete and tendon is assumed to exist. This type of
prestressing can therefore be dealt with by a combination of
prescribed fixed line forces and usual reinforcement elements

as described in the previous sections. Naturally, only a certain
part of the nonlinear stress-strain curve for the tendon ma-

terial is utilized when specifying the nonlinear stress-strain
curve for these reinforcement elements, as consideration has to
be taken to the initial prestressing force; but apart from tnat
treatment of grouted prestressing is straightforward. It should
also be noted that as a result of the assumed rotational sym-
metry even ungrouted circumferential prestressing is treated as
grouted prestressing. However, consideration to ungrouted straight
tendons located in the RZ-plane requires special features not



dealt with until now. In principle. such considerations could ke
performed using spring elements that could be formulateé simi-
larly to usual reinforcement elements. However, as concrete and
tendon deform independently except at the anchor regions such a
formulation would couple nodal points that in general are far
from each other. As a result a very large bandwidth of the equa-
ticn system would exist making such a formulation prohibitive.
Instead, after specificaticn of the initial prestressing forces,
attention is focussed directly to the additional tendon forces
caused by deformations. In the program the dependence between
tiicse forces and the relative deformations of the ends of the
tendons is specified as the quatrolinear dependence shown in
fig. 3-1 b) where as before consideration has to be taken to the
initial prestressing force. The corresponding nodal forces then
depend on the unknown displacements and this infers that an iter-
ative process is necessary even when material behaviour is lin-
ear. As we are dealing here mainly with short-term loadings this
is considered to be only a minor disadvantage as changes in ten-
don forces caused by deformations are usually of interest only
for loadings where material nonlinearities are involved and
where iterations therefcre necessarily must be performed. It is

to be noted that unloading is treated correctly.

4.5. Plane stress and strain versus axisymmetric formulation

Until now only the axisymmetric finite elements have been dealt
with. However, the formulation both of plane stress and plane
strain elements follows very much the same lines and they will

therefore be treated only schematically in this section. Natu-
rally the objective for the derivation of plane elements is to

achieve formulations that are, as far as possible, analogous to
the axisymmetric case so that, except for certain modifications,
identical subroutines can be utilized in the computer program.

Let us first consider the plane strain concrete element and le:
the tangential stress and strain correspond to quantities in the
longitudinal direction of the structure, i.e., according to the

plane strain assumption we have €4y = 0. Now, the displacements



within the element are still given by eqs. (4.2-3) and (4.2-4).
Therefore, the condition ¢_ = 0 can be obtained simply by re-
placing all elements in the third row of the B-matrix given by
eg. {4.2-7) with zeros. Then correct strain values follow and

as the constitutive matrix D given by eq. (4.2-10' also applies
for plane strain the correct stiffness matrix is obtained di-
rectly. Correct expressions for strains, stresses and nodal
forces hold even when temperature loading is present. Therefore,
the plane strain concrete element is formulated completely iden-
tical to the axisymmetric element just by modifying the B-matrix

as stated above.

Turning to the plane stress concrete element located with its
plane in the RZ-plane we have Cq = 0 according to the plane
stress assumption. As before, the displacements within the ele-
ment are given by eqgs. (4.2-3) and (4.2-4). Using the standard
transformation formula, cf. for instance Timoshenko and Goodier
(1951) p. 34, and replacing E with E(l+2v)/(1+v)2 and v with

v/ (1+v) then the D-matrix for plane strain transforms to the b-
matrix for plane stress except for the third row and column that
correspond to ¢, and e€_, respectively. If the B-matrix is modi-

9 6

fied as for plane strain then €y = 0 follows, kut it is easily

shown that the true plane stress stiffness matrix is obtained
and if the third row of the initial strain vector Eo given by eq.
(4.2-11) is set to zero then correct nodal forces due to temper-
and €, the true stres-

6 0
ses and strains are obtained as well and finally o

ature loading also result. Except for ¢
6 is therefore

simply set to zerc while ¢, is made directly equal to - v(eR+ez)

/(1-v) + (1+v)a AT/ (1-v). ghen cracking is involved, and ob-
viously no radial cracks can be present, no temnerature lcading
is considered and €g is then made equal to - v Ep where ep is
the strain parallel to the crack direction. This is just to say
that €g is independent of the strain normal to the crack plane
and that isotropic properties exist along the crack plane. A
similar expression was suggested by Phillips and Zienkiewicz
(1976) . Summarizing, the plane stress concrete element is ob-
tained from the axisymmetric element by modifying the B-matrix
as for plane strain. Moreover, the above-mentioned transforma-

tions for E and v are applied and the initial strain vector due
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to temperature loading is modified as stated above. Then calcu-
lations completely identical to the axisymmetric element resuit
in the correct stiffness matrix and nodal forces due to temper-
ature loading. Also the stresses and strains follow except that

correct values for P and €q are prescribed directly.

Considering reirnforcement elements and treating firs: the plane
strain case then, referring to fig. 4-3, RZ-reinforcement and
membrane reinforcement can be applied. Obviously, no changes at
all are necessary for the RZ-reinforcement. For membrane rein-
forcement the stiffness due to dowel shear is identical to that
of RZ-reinforcement as when axisymmetry exists. From the con-

dition €, = 0 we infer that the rest of the stiffness of membrane

reinforcgment corresponds to the stiffness of RZ-reinfcrcement -
excluding contributions from dowel shear - multiplied by the
factor l/(l-vz). The contribution from membrane reinforcement to
nodal forces when temperature loading is present follows also
from the condition €g = 0 and is easily shown to be identical to
that of RZ-reinforcement multiplied by the factor 1/(l-v). When
plastic deformation of membrane reinforcement occurs initial
stresses are obtained if 0527 the tangential initial stress, is
set to zero, cf. eq. (4.3-29). This result is also a simple im-

plication of the condition g = 0.

The only plane stress reinforcement considered is RZ-reinforce-
ment, cf. fig. 4-2. Okviously no modifications compared to the

axisymmetric case are involved.

With the above modifications all subroutines and statements of
the axisymmetric formulation in the computer program apply for
the plane elements also thereby ensuring a unified treatment
that has obvious advantages not only from a programming point of
view, but also when testing the validity of the computer program.

4.6. Computational schemes

Having described the constitutive models and the finite element
theory employed in the AXIPLANE-computer program, attention will
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now be directed towards nimerical aspects related to the imple-
mentation of these matters.

The AXIPLANF-program is written in Algol and runs at Ris¢'s
Burrough B-6700 computer using single precision that considers
11 significant digits. Now, essentially the finite element mod-
elling described in the previous sections results in an equation
system with 2n degrees of freedom where n is the number of nodal
points, i.e.

Ka=F (4.6-1)

Here K denotes the total symmetric stiffness matrix, the vector
a contains all the nodal displacements, while the vector F con-
tains the nodal forces. This equation refers to the RZ-coordi-
nate system. However, in accordance with the discussion in sec-
tion 4.1 the geometric boundary conditions still remain to be

considerecd.

Suppose that the nodal displacement aj in either the R- or 2-
direction is prescribed as aj = Y. In accordance with the method
described by Zienkiewicz and Cheung (19567) p. 233 the correspond-
ing j-th equation in the equation system (l) is then modified by
multiplying the diagonal stiffness term ij with the factor 1010
and by replacing the right hand side with the quantity then
obtained multiplied by y. This means that equation J in the
equation system (1) is replaced by

10

Kjlal+Kj2a2+...+ij-10 aj+"°+Kj,2n-la2n-l

K prag. = K010y (4.6-2)

where no summation convention is utilized. As all other terms
than that containing aj contripbute insignificantly, this equa-
tion yields as a very close approximation the attempted expres-
sion aj = y. The advantages of the method are that symmetry of
the coefficient matrix continues and no rearrangements of the
equations are involved.
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If displacements are prescribed in other directions than the R-
or Z-axis, i.e., if skewed kinematic constraints are present
then eq. (1) has to be transformed to the R'Z'-coordinate shown
in fig. 1. After that a modification corresponding to eq. (2)

is performed and a retransformation back to the original RZ-

Fig. 4.6-1: Skewed geometrical constraint

coordinate system is then carried out. The result of these tri-

vial matrix multiplications may be found in appendix B.

Having then introduced the prescribed displacements for a fixed
stiffness matrix K and a fixed force vector F standard routines
are available for solution of the equation system (l). In the
present case, the equation solver is termed BANDSYMEQ and is
available at Risg¢'s computer, S¢rensen (1968). As the name in-
dicates, this solver takes advantage of the symmetry and banded
structure of the stiffness matrix. A direct solution is applied
that uses the square-~root method, i.e., a Cholesky decomposition
of the stiffness matrix into triangular matrices. Special care
is taken to minimize rounding-off errors.

Different strategies exist for determining the structural re-
sponse when material behaviour becomes nonlinear. In the present
case as a nonlinear elastic model is utilized €or the concrete
and as a secantial formulation has been employed so that dila-
tation and softening of concrete can be considered, the equation
system (1) is set up and solved when the force vector F includes
the total loadings applied to the structure. This means that a
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total formulation as opposed to ar incremental formulation is
employed. However, for each loading level iterations are carried
out until the constitutive equations for concrete, reinforcement
and prestressing are in accorcdance with the total loading 1in

question. This procedure is sketchted in fig. 2.

loading
)
level 3

ievel 2

level 1

displacement

Fig. 4.6-2: Numerical solution of the nonlinear equation system

All nonlinearities can in principle be treated by the initial
stress method where, as described in section 4.3.2, the stiff-
ness matrix K is maintained constant while the force vector F is
modified appropriately. This approaclt enables a quick solution
of the nonlinear equation system (1), but wnen nonlinear ma-
terial behaviour becomes dominant it is known that convergence
proceeds rather slowly. This is illustrated in fig. 3 where
identical plastic strains exist at points A and B and where the
predictions C and D are shown after 4 iterations. Therefore, to
improve convergence an occasional updating of the total stiff-
ness matcsix is appropriate, cf. for instance Phillips and Zien-
kiewics (1976). A general acceptable criterion for determining
when updating should occur is apparently not available. However,
as cracking of concrete as opposed to the gradual development
of plastic strains is an irreversible distinct riuenomenon, it
seems convenient to update the stiffness matrix every time
cracking occurs. Moreover, plastic strains in concrete as well
as cracking in concrete in general develop simultaneously in
most structures when the loading is increased. Therefore, the
extreme choice to treat all concrete nonlinearities by directly
changing the total stiffness matrix K and to treat all nonline-

arities present in reinforcement and prestressing Ly appropriate
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Fig. 4.6-3: Performance of the initial stress method for
%) Slightly curved stress-—-strain curve

b) Stress—strain cuive with an almost flat part.
modifications of the force vector F has been employed here.

Tracing the nonlinear behaviour of a structure starts with a
linear elastic solution. At the load level in question, concrete
stresses determine whether cracking occurs and they also deter-
mine those secant values of Young's modulus, Es' and Poisson’s
ration, Vg that are in accordance with the constitutive equa-
tions. If the utilized value of Young's modulus E is 5% larger
than the Es-value then a new Yourig's modulus egqual to 0.95 E is
employed. Likewise, if the utilized Poisson’s ratio v is S%
smaller than the vs-vaiue then a new Poisson's ratio equal to
1.05v is employed. The same alternation of the two material para-
meters occurs if the stress state violates the failure criterion
provided that no cracking occurs. In the post-failure region
when softening occurs if the utilized Young's modulus E is
smaller than the Es-value a new modulus equal to 0.95 E is util-
ized and at the same time Poisson's ratio v is increased to
1.05v. However, to avoid ill-conditioning of the equation sys-
tem the maximum allowable vaiue of Poisson's ratio is set at
0.45 in accordance with the findings of Huang (1969). Por crush-
ing of the concrete it is also possible in the program to dis-
regard softening in the post-failure region. This extreme as-
sumption of no-softening corresponds to infinite ductility at
failure and, as above, the actual values of E and v are de-
creased and increased 5%, respectively, if the stress state in



- 107 -

question violates the failure criterion.

As a nonlinear eitastic model for concrete is employed here,
loading and unloading follow in principle identical stress-
strain curves. However, as a recult of the above-mentioned nu-
merical procedure, unloading follows the straight line from the
stress point in question towards the origin. This is illustrated

in fig. 4 and even though this unloading behaviour is still a

Fig. 4.6~4: Loading and unloading behaviour of

concrete model (fracturing solid)

very crude approximation to reality it is certainly preferable
to the ideal nonlinear elastic behaviour. Indeed, the behaviour
shown in fiqg. 4« is classified as a fracturing solid according
to Dougill (1976).

It should be noted that as the secantial values of Young's mod-
ulus and Poisson's ratio as determined by the constitutive
equation steadily decreases and steadily increases, respectively,
as the stress state approaches failure, the procedure outlined

above is always numerically stable and convergent.

Considering embedded reinforcement the program determines the
total concrete strairs which in turn determine the corresponding
initial stresses in the reinforcement as described previously.
If these initial stresses have changed more than 1% the new ini-
tial stress values are then employed and a corresponding modi-
fication of the force vector F is carried out.
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Unembedded reinforcement, i.e., springs which most often repre-
sent prestressed tendons, are considered directly through the
corresponding forces. These forces depend on the relative dis-
placements of the ends of the springs and if the force altera-
tion is larger than 2% then the new spring forces are employed

and the force vector F is updated appropriately.

From the obtained nodal displacements the strains and stresces
within a triangular element are determined. As the result of the
enployed simple element these stress and strain values are con-
stant within each element. It is well known, cf. for instance
Zienkiewicz (1977) pp. 103-105 and pp. 127-130, that much better
accuracy is related to stresses and strains at the nodal points
determined simply as the mean values from the surrounding ele-

ments. This approach is also employed in the program.

From this we conclude that as the stress state determines crack
initiation, cracking is related to a nodal point. It is assumed
that cracking at a nodal point affects all surrounding elements
which have not previously been cracked in the same way. In the
afore-mentioned averaging process only those elements are used
that are in the same cracking condition as the considered nodal
point. It should be recalled that to avoid ill-conditioning of
the equation system, 0.5% of the stiffness normal to a crack
plane and present just before cracking is retained. When plastic
deformation of the concrete occurs at a nodal point, the ma-
terial parameters are changed accordingly in all surrounding

elements aot previously affected in the present iteration.

For analysis of a structure and to achieve a response that de-
pends on the loading history, the load increments have in prin-
ciple to be as small as possible so that the initiated cracks
are as few as possible. The effect of these cracks and develop-
ment of plastic strains may then in turn for the same loading
cause additional cracking due to stress redistribution. If the
load increments are too large cracking may be initiated in large
regions at once and the effect of stress redistribution caused
by previous cracking and plastic strains is distorted and the
dependence of loading history is lost. This may result in a
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prernature failure load. Horwever, if no or insignificant cracking
occurs very large load increments can be utilized. In the exam-
ples considered in the following section load increments around

2-4% of the ultimate load were employed.

The failure load is determined as the load in which a large num-
ber of iterations is insufficient to satisfy both the constitu-
tive equations and the static equilibriuin. This means that large
displacements occur corresponding to the maximum point on the
forec-displacement curve having a hcorizontal tangent. In the

present case 25 iterations are chosen as the limiting value.

It should be recalled that in the standard version of the pro-
grar, the shear retention factor n in cracked elements is n =
0.01. Moreover, no dowel action of the reinforcement is con-

sidered, i.e., the value of « is k = 0.

5. EXAMPLES OF ANALYSIS OF CONCRETE STRUCTURES

While the previous sections have described in detail the theor-
etical basis of the AXIPLANE-program, the present section will
treat examples of application of the program. In these examples,
all of which represent realistic structures difficult to investi-
gate by other theoretical means, a comparison with experimenial
evidence will be carried out, so that the applicability of the
program can be evaluated. Moreover, apart from this obvious as-
pect much effort will Le placed on investigating the structural
behaviour of the analyzed concrete structures. In fact, the
AXIPLANE-program offers quite unique possibilities for gaining
insight in the load carrying mechanism of concrete structures
since not only is detailed information available throughout the
loading history, but different assumptions can easily be incor-

porated enabling sensitivity studies to be carried out.

These two objectives: (1) evaluation of the applicability of the
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program and (2) attainment of insight into the structural be-
haviour are maintained in the analysis of the considered struc-
tures. It should also be emphasized that these structures all
represent very difficult cases to investigate by other theoreti-
cal means and this benchmark-aspect should be borne in mind +hen
evaluating predictions versus experimental evidence. The struc-
tures considered here are all loaded to their ultimate capacity,

the quantity of primary concern here.

The next section treats quadratic panels with isotropic and
orthogonal reinforcement loaded by tensile forces skewed to the
reinforcement. The analysis focuses on aspects of reinforcement
bar modelling and in particular or simulation of lateral bar
stiffness.

In section 5.2, a thick-walled closure for a reactor pressure
vessel is considered. It represents a structure wiiere large tri-
axial compressive stresses as well as cracking are present. The
influence of different failure criteria and post-failure be-
haviours is investigated.

Section 5.3 deals with the important cases of beams failing in
shear. Beams both with and without shear reinforcement are con-
sidered, and of special interest are aggregate interlock, secon-
dary cracks, influence of the magnitude of tensile strength and
dowel action.

Finally, section 5.4 contains an analysis of a specific pull-out

test, the so-called LoK-test. The influence of the uniaxial com-
pressive strength, the ratio of tensile strength to compressive

strength, different failure criteria and post-failure behaviours
are investigated and special attention is given to the failure
mode.

5.:. Panel

This first example of analysis of a concrete structure is an
introductory one dealing primarily with different aspects of re-
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inforcement bar modelling. The influence of the shear stiffness
that might be attributed to reinforcement bars will receive par-
ticular attention. As discussed previously in section 4.3, rel=-
tive displacements parallel to a creck plane result mainly in
local bending of the bar as well as in lccal crushing of the
concrete in the vicinity of the bar. However, these phenomene
are not simulated in the program. Instead it is poss.ble to con-
sider some bar shear stiffness and the present section evaluates
the use of such a shear stiffness. Obviously, use of the origi-
nal shear modulus G of the bar material is expected to over-
estimate the bar stiffness parallel to the crack plane and
therefore the modulus «xG is apjy:lied where 0 < k < 1. T 2 in-

fluence of different k-values is investigated in the following.

For this purpose we consider a quadratic panel with uniform
thickness as shown in fig. 1. It appears that reinforceinent bars
are located in two directions perpendicular to each other. This
isotropic reinforcement consists of deformed ¢ 8 bars (nominal

area = 53.3 mm2) with a distance of 100 mm. This corresponds to

a reinforcement ratio 0.666%. A uniform tensile loading corre-

sponding to the force F is applied and the reinforcement forms
the angle a to the loading direction. For a = 0, 100, 200, 30°
and 40° this arrangement was tested by Peter (1964), and of
special interest are the vertical displacement dv and the hori-
zontal displacement 6u shown in fig. 1. To eliminate a possible
influence from the boundaries of the panel, these displacements
are referred to the measuring region shown. The horizontal dis-
placement corresponds to a shear deformation that develops

except when o = 0°.

The considered panels were termed S 2r 0, S 2r 10, S 2r 20, S 2r
30 and S 2r 40 with o = 0, 10°, 209, 30° and 40°, respectively.
However, as no horizontal displacement values were available for
S 2r 10 and S 2r 20, the experimental results for the panels S
2r 1, W and S 2r 20, W were employed instead. The only differ-
ence between these sets of panels is that the latter ones in-
clude some additional reinforcement along the boundary of the
panel in the force direction. However, to facilitate comparison
the analysis is based on the § 2r 10 and S§ 2r 20 panels. The
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Fig. 5.1-1: Configuration of panel tested by Peter (1964)

finite element modelling uses two triangular plane stress ele-
ments only. The reinforcement is simulated by means of two bars
in each direction. The thickness of these bars is determined so

that the employed bar volume corresponds to the given one.

The same concrete mix and storing was applied for all panels.
Even so, testing of concrete specimens indicated some scatter
from panel to panel; however, to facilitate comparison the mean
parameter velues are applied in the analysis. Of the measured
parameters or.ly the uniaxial tensile strength o, = 1.74 MPa

t
assumed to be equal to the measured Brazilian splitting strength

and the initial Young's modulus Ei = 2.45-104 MPa are of inter-
est. Poisson's ratio was assumed to be vy = 0.2. The experi-
mentally determined stress-strain curve for the reinforcement
bars was simulated by a trilinear curve as shown in fig. 2. The
full strength of the bars occurs when the strain is around

80 0/00; due to inhomogenities, etc., in the panels this stress
value is not expected to be reached for all bars in one direc-
tion even at failure load. The approximation employed can be

considered as a reasonable approach to reality.

For a fixed force F = 350 kN let us first consider the horizon-
tal displacement Gu and vertical displacement 6v as functions
of the angle a. This is shown in figs. 3 and 4 both for the ex~-
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Fig. 5.1-2: Experimental and approximated stress-

strain curve for bar material.

perimental values and for the predicted values using different
k-values. It should be recalled that for o = 10°and 20°the ex-
perimental panels include vertical reinfcrcement not considered
in the analysis. It is also important to note that the loading
causes cracks so large that aggregate interlock can hardly be
present, i.e., all forces along the crack planes must be attri-
buted to the reinforcement bars. As an illustration, the largest
horizontal displacement occurs experimentally for o = 30°. Ex-
perimentally the mean crack width was determined to be 0.44 mm
and assuming that all horizontal displacements occurred along
the crack planes the maximum mean horizontal displacement along
a crack plane was determined to be 0.11 mm which is quite small

compared to the crack width.

From the horizontal displacements shown in fig. 3 it appears
that an optimal value of « seems to be located in the range
k = 0.10-0.25. However, fig. 4 indicates that the predicted ver-

tical displacements are strongly dependent also on the x-value.
This constitutes in fact a major objection against the method

used here for considering the lateral stiffness of a reinforce-~
ment bar, as in reality the axial and lateral stiffnesses of a
bar are quite independent. Obviously, the axial bar c¢tiffness is

the matter of major importance and even small k-values between
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Fig. 5.2-4: Experimental and predicted vertical dis-
placements GV for fixed force = 350 kN.

0.10 and 0.25 result in vertical displacements that are quite
independent of the angle a. In addition, as plastic deformations
of reinforcement bars are treaced here independently of the shear
stresses, in principle when k > 0 the panels have an infinitely
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large failure cepacity when o # 0. A further disadvantage of
using k-values larger than zero is that the lateral bar stiff-
ness then depends on the shear strain that may be a result not
only of displacements normal to the bar direction, but also of
displacements parallel to this direction. Based on the above and
on findings in section 5.3, the value ¥k = 0, i.e., no lateral
bar stiffness, will therefore be employed universally in the pro-
gram except for certain sensitivity studies related to beams
failing in shear, c¢f. section 5.3. It can therefore be concluded
that consideration to lateral bar stiffness should be treated
throughk its bending stiffness. However, within the practical
limitations of the present program discussed in section 4.3 such

an approach is not applicable hare.

On the other Land, the value k = 0 results in a considerable
overestimate of the horizontal displacements as shown in figq.
3. However, this is presumed to be of minor importance as the
panels are very special structures where only the bars contri-
bute to the very small lateral stiffness. In most other struc-
tures such a situation will not arise as cracks usually do not
cross a whole section and sufficient restraint along the crack

plane is therefore easily established by the uncracked concrete.

As previously discussed in section 4.2.2 the shear retention
f-ctor n is assumed to be 1%. However, in fig. 3 the consequence
of using the smaller value n = 0.5% is also indicated and it
appears that very large overestimations then result for small
a=-values. In fact, as demonstrated earlier by Cervenka and
Gerstle (1971), the value n = 0 gives rise to a discontinuity

for o« = 0, as an infinitely small a~-value results in infinitely
large horizontal displacements. Apart from the previous argu-

ments given in section 4.2.2 the aforementioned support the em~
ployed n-value equal to 1%.

For «k = 0 the predictions for vertical displacements are com-
pared with experimental values in fig. 5 as a function of load-
ing. As mentioned previously the panels with a = 10° and 20°
include wvertical reinforcement not included in the analysis.

Even so, the experimental values are remarkably smaller than the
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predicted ones just after cracking. This is a consequence of the
so-called "tension stiffening effect” reflecting that in reality
discrete cracks develop and that the concrete between these
cracks is still bonded to the bar thereby contributing to the
stiffness. In general, however, the experimental data support
the prediction.

As discussed in section 4.6 the predicted failure loads are
determined as the loads where the force~vertical displacement
curve becomes horizontal. In the present case failure is deter-
mined solely by the bars where infinite ductility was assumed.
However, as discussed in section 4.6 the analysis also includes
a slight stiffness contribution from the concrete as 0.5% of the
stiffness normal to the crack plane and present just before
cracking is always retained for numerical reasons. This is to
avoid a possible ill-conditioned equation system, but is in
principle not necessary here as the cracks are crossed by bars.
However, as the panels only posses a reinforcement percent equal
to 0.67% this small retained concrete stiffness results in
force-vertical displacement curves possessing a small slope even
when all reinforcement is at full yield. It is important to note



- 117 -

that in all other structures where concrete in compression also
contributes to the failure load a horizontal force-displacement
curve at failure will be predicted as a result of the considered
softening behaviour of the concrete in the post-failure region.
The calculated failure loads of the panels are determined with
the above-~mentioned in mind and a comparison with experimental

failure loads is given in the following table.

Table 5.1~1: Calculated and experimental failure loads.

a 0 10° 20° 30° 40°
Fexp. [kN] 392 433 425 381 400
Ftheo. [kN] 394 386 384 384 384
Ftheo./Fexp. 1.01 0.89 0.90 1.01 0.96

Mean value of Ftheo./Fexp. = 0.95

It appears that the predicted failure loads are in very close
agreement with the experimental ones in particular when re-
calling that panels with a = 10° and 20° include vertical rein-
forcement not considered in the analysis. On the average, the

analysis underestimates the failure loads by 5%.

The present section has in particular dealt with different as-
pects when modelling reinforcement bars that are crossed by
cracks. Modelling of the lateral bar stiffness has received

special attention and it has been demonstrated that simulation
of this stiffness through a suitable shear modulus of the bar

material seems not to be a very advantageous method. This con-
clusion is further supported in section 5.3 where beams failing
in shear are treated and it can therefore be concluded that
lateral bar stiffness should be treated through its bending
stiffness. Except for the purpose of sensitivity studies the
value k = 0 corresponding to no lateral bar stiffness will
therefore be utilized in the program. Using this value, the
analysis of different panels has demonstrated that the predic-
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ted horizontal displacements grossly overestimate the experi-
mental values. However, the agreement for vertical displacements
is fair even though the tension stiffening effect is not con-
sidered and the predicted failure loads are in very close agree-

ment with the experimental results.

5.2. Thick-walled closure

This section deals with the analysis of a model of a thick-
walled closure for a reactor pressure vessel. The testing of
this closure mndel termed LM-3 (Lid Model-3) is described in
detail by the writer and Andersen in (1977a) and some selected
results have been presented by them in (1975) and in (1977b,

The considered closure is a structure where large triaxial com-
pressive stresses as well as cracking are present. It represents
therefore a unique opportunity to evaluate the applicability of
the program. The influence on the predicted structural behaviour
of different failure criteria and post-failure behaviour is in-
vestigated.

The geometry, loading and boundary conditions of the LM-3 clo-
sure are shown in fig. 1, where all quantities are in mm. It
appears that the closure is loaded by a uniform pressure and
that the forces through a heavy steel flange are supported by
struts. These 40 struts are loaded uniformly in compression andi
the inclination to vertical is as an extremely good approxima-

tion fixed during loading. A steel liner assures tightness, and
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Fig. 5.2-1: Configuration and loading of the LM-3 closure.
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40 mild steel ribs with a thickness of 6 mm and uniformly dis-
tributed along the periphery stiffen the flange. The ratio of
height to diameter is 0.35 indicatinc a massive structure and
even though the model scale is 1 : 11, it is apparent that the
model has quite large dimensions (outermost diameter = 72C mm).
During testing, the model was pressurized hydraulically by
water in a steel pressure vessel. The test duration was around

two hours.

The concrete had a w/c - weight ratio equal to 0.68 and the maxi-
mum gravel size was 8 mm. Seven standard cylinders (300/150 mm)
were cast and cured together with the closure. These cylinders
were tested uniaxially in compression simultaneously withi the
closure model testing that occurred 2 months after concreting.
The mean of the experimentally determined stress-strain curve

is shown in fig. 2a) together with the approximation employed
according to eq. 2.2-3. This approximation utilizes the para-
meters: O, = 45.0 MPa, €. = 3.06 » 10-3, Ei = 2.84 -104 MPa and
D= 0.2.

The concrete parameters necessary for the constitutive model
were completely determined by assuming that ot/oc = 0.28 and
vy = 0.15. The particular assumption of no-softening in the
post-failure region is also shown in fig. 2 a).

The assumed stress-strain curve for the mild steel liner is
given in fig. 2b). The ribs and flange were assumed to hehave
elastically. The values E = 2.05  10° MPa and v = 0.3 were

employed for all steel parts.

Fig. 3 shows the axisymmetric finite element mesh consisting of
298 triangula- elements. The liner is simulated as membrane re-
inforcement. The triangular solid elements that represent the
flange appear from the figure. The strut forces are also in-
dicated. The ribs are simulated by RZ-reinforcement bars in the
horizontal and vertical direction. In each direction the volume
of the bars corresponds to that of the ribs.

The experimentally determined behaviour of the closure is charac-
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Tig. 5.2-2: Stress—ztrain curves for the concrete and the liner.

Fig. 5.2-3: Axisymmetric finite element mesh of LM-3.

terized by extensive radial cracking initiating at the centre at
a pressure = 3 MPa and extending to the flange when the pressure
is around 8.5 MPa. With increasing pressure these radial cracks
open considerably and circumferential cracks locaced approxi-
mately half-way between the centre and the flange also are in-
itiated. The maximum pressure obtained was 37.0 MPa where se-
vere cracking was present. This is illustrated in fig. 4 showing
the upper surface of the LM-1 closure at maximum pressure. This
closure is almost similar to the IM-3 closure. The test termin-
ated dramatically by ejection of the central part of the closure
A section through the remaining part of the LM-3 closure is
shown in fig. S
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Fig. 5.2-4: Uppe. surface of the LM-1 closure at maximum

pressure.

Fig. 5.2~-5: Section through the remaining part of the LM-3

closure after ejection of the central part.

Let us now consider the predicted behaviour using the failure

criterion of the writer (1977) and assuming softening of the
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concrete in the post-failure region according to fig. 2a).

The predicted crack development is shown in fig. 6 for increa-
sing pressure. Also given on the figure is the ratio of a given
loading to the predicted failure load as well as regions where
plastic strains exist in the liner. Obviously, when visualizing
calculated circumferential cracking as discrete cracks some

arbitrariness is necessarily involved. However, in the present
report this arbitrariness is minimized by ensuring that for each

cracked nodal point one discrete crack will in general be shown.

In accordance with experimental evidence, cracking initiates at
the centre when the pressure p = 2.7 MPa and radial cracks de-

velop quickly towards the flange, fig. 6a). At this small pres-

— R e o e
al p=39 MPa (9%) bi p=98 MPg (24%) ¢) p=137 MPa (33%)

d) p=181 MPa (44%) e p=21.1 MPa (51%) f p=407 MPa (98%)

Fig. 5.2-6: Calculated crack development. Regions where plas~
tic strains exist in the liner are also shown.

sure plastic strains in the concrete have already developed at
the liner in the central part and at the liner below the flange.
Circumferential cracks near the flange initiate at p = 6.9 MPa,
cf. fig., 6b) and the radial cracks are already fully developed.
Fig. 6b) also shows that the liner becomes plastically deformed
in the central region at p = 9.8 MPa and at p = 12.6 MPa the 1li-
ner yields below the flange, cf. fig. 6c¢). This latter figure
indicates that circumferential cracks half-way between the cen-
tre and the flange develcr at p = 13.7 MPa. At p = 18.1 MPa in-
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clined cracks initiate in the closure, fig. ~d), and at p = 21.1
MPa these cracks join the circumferential cracks near the flange,
cf. fig. 6e). The circumferential cracks develop gradually with
increasing pressure and the crack pattern just before predicted
failure is shown in fig. 6f). Observe that no secondary cracking

is present.

To further investigate the structural mechanism of the closure
the distribution of the three principal stresses is considered
for the loading p = 25.5 MPa (61%) i.e. the cracking is slightly
more developed than is indicated in fig. 6e). This stress dis-
tribution is shown in fig. 7, where isostress curves are indi-
cated and where the directions of the principal stresses in the
RZ-plane are shown in each nodal point. It is apparent that the
closure behaves like a dome. Moreover, in accordance with pre-
vious remarks it appears that large triaxial compressive con-
crete stresses exist at the centre near the liner and near the
liner below the flange. As an illustration, at failure the lar-
gest compressive concrete stress existing at the centre near the

liner is 3.2 times the uniaxial compressive strength.

(
|

0
-1
-3
-45
b-GO
—se N

circumferential stress max. principal stress in RZ -plane min, principal stress in RZ - plane

-45

Fig. 5.2-7: Isostress curves of the three principal stresses
for p = 25.5 MPa (61%). Quantities are in MPa.

To illustrate the severity of the loading the stress state can
be evaluated uSing the nonlinearity index, cf. section 2.2.1.
For this index we have that 0 < 8 <1, B = 1, and B>1 correspond
to stress states located inside, on, and outside the failure
surface, respectively. Fig. 8 shows the develorment of contour
lines for the nonlinearity index in per cent with increasing

pressure. It appears that the severest loaded region is located
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Fig. 5.2-8: Development of contour lines for the

nonlinearity index in per cent.

below the ribs where inclined circumferential cracks are present,
cf. fig. 6. As supported also by fig. 7 the stress state in this
region is close to biaxial compression. The compressive crushing
of this region and the far below failure stresses in the central
part explain the observed failure mechanism with ejection of the
central part of the closure, cf. also fig. 5. Strain softening
of the concrete in this severest loaded region initiates when
the pressure = 38.7 MPa corresponding to 93% of the predicted
failure load.

Let us now consider the experimental and calculated centre de-
flection of the upper surface as a function of pressure, cf. fig.
9. It appears that with the failure criterion of the writer
(1977) the calculations underestimate to some extent the deflec-
tions at high pressures. This might be explained as a result of
the neglect of plastic strains in the flange. However, the
agreement is fair and the predicted failure load is 41.7 MPa
which is 13% above the experimental value. The cornsequence of
using the modified Coulomb criterion appears also from the fig-
ure and the resulting failure load is 29.4 MPa which is 20%
below the experimental value. This underestimate is in cccord-
ance with the general conclusions from section 2.1.3. The dif-
ference between the two predictions that amounts to about 30%
corresponds to initiation of failure in a region where almost
biaxial compression exists, cf. fig. 2.1-7.

The extreme assumption of no-softening in the post-failure re-
gion has a remarkable effect, cf. fig. 9, where the writer's
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criterion (1977) is used again. In fact, the calculations were
stopped at p = 49.1 MPa without impending failure and it empha-
sizes the importance of inclusion of a realistic post-failure
behaviour in a constitutive model. This requirement is obvi-
ously more pertinent the more inhomogeneously the structure is
loaded as stress redistribution then becomes essential. This
effect is illustrated in fig. 10, where the contour lines for
the nonlinearity index in per cent at p = 49.1 MPa are shown for
the case of no-softening. A comparison with fig. 8c) demon-

strates clearly the structural mechanism related to the assump-
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Fig. 5.2-10: Contour lines for the nonlinearity index
in per cent. Pressure = 49,1 MPa. No-
softening in the post-failure region is
assumed.
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tion of no-softening, where larger and larger regions contribute
significantly to the load-carrying mechanism due to stress re-
distribution. The importance of realistic post-failure behaviours
have been demonstrated earlier by Argyris et al. (1976) analyzing
among other structures also the LM-3 closure considered here.

In fact, the LM-3 closure has been analyzed extensively by Ar-
gyris et al. (1974) as well as by Schimmelpfennig (1675, 1976).
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Fig. 5.2~-12: Experimental and calculated circum-
ferential strains below the ribs.



Returning =o the calculation where the writer's criterion and
softening are assumed, figs. 11 and 12 show a further comparison

with experimental data. Fair agreement is obtained.

The present section has demonstrated the analysis of a compli-
cated structure where both large triaxial compressive strasses
and cracking as well as plastic deformations of the steel parts
are involved. It has been shown that suitable analysis of the
theoretical data may provide a clear insight in the physical
behaviour of a structure. Moreover, the influence of using two
different failure criteria has keen investigated and the im-
portance of a realistic post-failure behaviour in a constitutive
model for concrete has been highlighted. As expected, the use
of the writer's failure criterion (1977) and giving consider-
ation to softening effects in the post-failure region result in
the closest agreement with experimental data. Deformations and
strains are predicted with fair accuracy and the failure load

is overestimated by 13%.

5.3. Beams failing in shear

Beams failing in shear represent very delicate problems subject
in the past to considerable experimental as well as computational
efforts. Despite this, the structural behaviour of shear beams

is only partly known and computations are generally of semi-
empirical nature. In this section, the calculations will be com-
pared with the classical test results of Bresler and Scordelis
(1963); a beam without shear reinforcement as well as an identi-
cal beam, but now including shear reinforcement will be con-
sidered. The structural behaviour of the beams is illustrated

and of special interest is aggregate interlock, secondary cracks,

influence of the magnitude of tensile strength and dowel action.

Fig. 1, where all dimensions are in mm, shows the geometry and

loading of the beams as well as their reinforcement arrangements.
In the tests of Bresler and Scordelis (1963) the beams were la-

belled OA-2 and A-2 corresponding to no shear reinforcement and
shear reinforcement, respectively. The longitudinal tensile re-
inforcement consists of five #9 bars (nominal area = 645 mm2)
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Fig. 5.3-1: Geometry, loading and reinforcement arrangements for
the beam without shear reinforcement (OA-2) and the

beam with shear reinforcement (A-2).

corresponding to a reinforcement percent = 2.27%, while the com-
pressive steel consists of two #4 bars (nominal area = 126 mm2)
corresponding to a reinforcement percent = 0.18%. Also the
stirrup reinforcement consisting of #2 bars (nominal area = 32
mmz) corresponds to arrangements often found in practice and the
same holds for the shear span ratio = 4.94. The trilinear approx-
imations to the stress-strain curves of the bars are shown in

fig. 2

Experimentally, it was observed that diagonal cracks developed

and splitting occurred at failure in the compressive zone near
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Fig. 5.3-2: Reinforcement stress~strain curves. Tensile, com-
pressive and shear reinforcement consist of #9,
#4, and #2 bars, respectively.
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the load point for both beams. For the beam without shear rein-
forcement, horizontal splitting along the tension reinforcement
was observed. The failure was characterized as diagonal tension
failure for the OA-2 beam and shear-compression failure for the
A-2 beam.

The uniaxial compressive strength Ou and the modulus of rupture

0} were experimentally determined from concrete specimens

cﬁgga in the same manner as the beams. The splitting strengths
are estimated from these rupture values using the findings of
Narrow and Ullberg (1963). The ot/cc—values given in table 1 are
then obtained by approximating splitting strength and uniaxial

tensile strength o The assumptions for the remaining parameters

£
necessary for the constitutive model appear also from this table.

Table 5.3-1: Measured and assumed concrete parameters

Measured Assumed
9% “mod. Ei €c
[wpa]l  [MPal | o /o,  [10%mPa] v, (2] D
OA-2 23.7 4.3 0.10 3.1 0.2 2 0.1
A=2 24.3 3.7 0.08 3.1 0.2 2 0.1

The finite element mesh consists of 1008 triangular plane stress
elements and is shown in fig. 3. Even though no systematic in-

vestigations were performed, this detailed element mesh is moti~

"

Fig. 5.3-3: Finite element mesh,



- 130 -

vated by two reasons. Firstly, it is well known that the con-
stant strain element utilized requires a detailed mesh to de-
scribe bending. Secondly, the stress state in shear beams are
two-dimensional with tensile and compressive stresses prevailing
in the critical regions of the beams, and accurate description
of these small tensile stresses is mandatory for an accurate
analysis of the beam. The element mesh is especially detailed
near the load point and also at the supports where large gradi-
ents exist. Except for the plane stress assumption, the actual
locations of the bars are simulated in the finite element model-
ling.

In the following calculations, the failure criterion of the
writer (1977) will be used and softening in the post-failure
region as well as the influence of gravity will be considered.
In the first place, the program will be used in its standard
form, where the shear retention factor is n = 1% and no lateral
stiffness of tne bars is considered, i.e., x = 0. Moreover, the

OA~2 beam will be considered first.

To illustrate the stress distribution in the beam, the isostress
curves for the principal stresses as well as their directions in
the nodal points are shown in fig. 4. The loading is 51% of the

predicted failure load. However, no essential difference in the

stress distribution exists for other loadings. The arch-action

of the beam is quite obvious from the figure and apart from the
regions at the support and at the load point where biaxial com-

pressive stresses exist, biaxial tensile-compressive stress
states prevail.

The severity of the loading is illustrated in fig. 5 where the
development of the contour lines for the nonlinearity index in
per cent with increasing loading is shown. The loadings are
again expressed in relation to the predicted failure load. It
should be recalled that when tensile stresses are present the
nonlinearity index is less than unity even when the stress state
is located on the failure surface, cf. section 2.2.1. However,
it is obvious from fig., 5 that the region adjacent to the load
point is severely loaded and strain softening initiates in fact
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here at 82% loading. At the failure load, the region adjacent to
the load point is stressed far into the post-failure region and
this is considered to be the primary cause of the beam collapse.
This underlines the imporiance of realistic constitutive model-
ling in the pre- as well as post-failure region for stress states
where tensile stresses are present but no cracking occurs. More-
over, the arch-action of the beam is apparent from fig. 5. No

plastic deformation of the reinforcement occurs even at failure.

The predicted crack development of the OA-2 beam with increasing
loading is shown in fig. 6. Cracking initiates in the middle of
the beam as flexural cracks already at 9% loading. Fig. 6a)

shows these type of cracks. At increased loading the cracks de-
velop towards the support and a slight inclination of the cracks
becomes present, cf. fig. 6b). Secondary cracks where cracks
with different inclinations exist at the same location are in-
itiated at 62% loading. The crack pattern just before failure is
shown in fig. 6c). The inclination of the cracks as well as the
secondary cracks appear from this figure. Fig. 6d) shows the
cracking at the failure load at the last iteration before the
calculations were terminated. It is of interest to notice the
clearly developed diagonal cracks running towards the load point.
This is in accordance with the experimentally observed diagonal
tension failure. HoweVer, it is important to recall that the con-
crete near the load point is stressed far into the post-failure
region and that the primary failure takes place here. This causes
a strain localization which in turn results in diagonal cracking.
Therefore, the increase of the diagonal cracks is considered

more as a consequence of this failure than as its cause.

Fig..7 shows the experimentally observed cracking after failure

of the OA-2 beam. Apart from the horizontal splitting along the
reinforcement the predicted cracking is in good agreement with

the observed cracking, cf. fig. 6d). However, it is important
to note that this horizontal splitting occurs when the beam col-
lapses. Obviously, at failure the concrete has lost its shear
capacity and a considerable increase of the dowel forces can
therefore be expected resulting in splitting along the rein-
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Fig. 5.3-7: Observed cracking after failure of the OA-2 beam.

forcement bars. Thus, splitting is a result of beam collapse and

not its cause.
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Let us now consider the 2-2 beas wheére shear reinforcesment is
presert and let us illustrate the behaviour of the beam with
figures similar to figs. 4-7.

Fig. 8 shcws the stress distribution at 63% loading. As pre—
viously noted, loadings are expressed in relation to the pre-
dicted failure load. Comparison with fig. 4 reveals that ro
principal difference seems to exist for beams with and wi:thout
shear reinforcement.

max. prncoal
stress

loading - 63 %

B
‘. P

mn_ principal
stress

loading = 63%

.
.
.
.
.
-
.
-
.
»

Fig. 5.3-8: Isostress curves and directions of the principal
stresses in the A-2 beam. Loading = 63% of predicted
failure load. Quantities are in MPa.

Fig. 9 shows the development of the contour lines for the non-
linearity index in per cent with increasing loadirng. A compari-

son with fig. 5 again reveals no principal difference in the
behaviour of the two beams. For the A-2 beam also the region

adjacent to the load point is severely loaded; strain softening
initi- _.es here a little earlier than for the OA-2 beam namely
at 63% loading, i.e. for the stress distribution shown in fig. 8
and on fig. 9. At the failure load, this region is loaded far
into the post-failure region and just like the OA-2 beam this

situation is considered to be the primary reason for the beam
collapse.
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Fig. 5.3-9: Development in the A-2 beam of contour lines for
the nonlinearity index in per cent. Loadings ex-

pressed as per cent of predicted failure load.

Let us now consider the predicted crack development of the A-2
beam. This is shown in fig. 10. The reinforcement is also shown
or this figure by the dotted lines whereas regions where yield-
ing occurs in the bars are indicated by full lines. Note that
identical loadings in per cent for the OA-2 and the A-2 beams
correspond to a 12% larger absolute load for the A-2 beam. With
this in mind figs. 10a) and 10b) correspond quite closely to
figs. 6a) and 6b), respectively. However, some changes in the
behaviour exist. Secondary cracks initiate now at 51% louading
compared to 63% loading for the OA-2 beam. Strain softening
adjacent to the load point develops now at 63% loading compared
to 82% loading for the OA-2 beam. Yielding of the stirrups fol-
lows the location of the inclined cracks. A quite pronounced de-
velopment of inclined cracks occurs at 81% loading. The crack
pattern just before failure, fig. 10c), indicates a somewhat
further development of inclined cracks compared to fig. 6c¢).
Yielding at the load point of the compressive steel initiates
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Fig. 5.3-10: Calculated crack development of the A-2 beam.

at 93% loading and appears from fig. 10c). Fig. 10d) shows the
situation at the failure load at the last iteration before the
calculations were terminated. No yielding occurs of the tensile

reinforcement. Note the small, almost horizontal crack adjacent
to the load point. However, apart from that, a comparison with

fig. 6d) shows that formation of diagonal cracks is postponed.
This is in accordance with the calculated failure mechanism that
for both beams is caused by strain softening in the region adja-
cent to the load point where compressive and small tensile stres-
ses exist. A strain localization then follows. For the OA-2
beam without stirrups this primary failure results in a develop-
ment of diagonal cracks running towards the load point which in
turn gives rise to the failure mechanism experimentally charac-



terized as diagonal tension failure. For the A-2 beam the exist-
ence of stirrups postpones the development of diagonal cracks in
accordance with the experimental failure characterization as a
shear-compression failure. Obviously, the stirrups also result
in a more ductile failure mode. However, the calculations show
that for both beams the primary failures are identical and that
failure is caused by strain softening in the region adjacent to
the load point.

Fig. 11 shows the experimentally observed cracking after failure
of the A-2 beam. A comparison with fig. 104) shows a close cor-
respondence with the predicted crack pattern. Note in particular
the small, almost horizontal crack adjacent to the point load in
fig. 104).

=
ﬁrTT—r—r—T—r—T—r
|

|

Fig. 5.3-11: Observed cracking after failure of the A-2 beam.

This crack and the neighbouring regions with secondary cracks

are in accordance with the experimentally observed cracks running
all through the beam. Note also that fig. 11 in contrast to fig.
7 reveals no horizontal splitting along the tensile reinforce-
ment. This is a result of the stirrups preventing a consider-

able increase of the dowel forces at the failure moment.

Let us now consider deflections as well as failure loads of the
two beams. Fig. 12 shows a comparison of the predicted midspan
deflections with the observed ones. Experimentally, both the

OA-2 beam and the A-2 beam were first loaded to about 30% of the
fajilure load and then the load was removed. After that the load

was reapplied until failure occurred and the deflections were
recorded only in this final load cycle. In fig. 12 the predicted

and observed deflections were therefore made to coincide at
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Fig. 5.3-12: Experimental and calculated midspan deflections
of the OA-2 and the A-2 beam.

around 30% of the failure load. With this in mind the agreement
is quite close except that the finite element models seem to be
a little too soft. This may be a consequence of the neglected
tension-stiffening effect as discussed in section 5.1. The pre-
dicted failure load for the OA-2 beam is only 2% below the ac-
tual one whereas the predicted failure load for the aA-2 beam
underestimates the actual one by 20%. Thus the behaviour of the
beam without stirrups was predicted very closely. However,
existence of stirrups resulted experimentally in a 3€% increase
of the failure load whereas the calculations estimate a 12% in-

crease, only. We will return to this aspect later on.

A sequence of calculations was performed to investigate the in-
fluence of different parameters on the structural behaviour of
the beams. The influence of aggregate interlock as expressed by

the shear retention factor n, cf. section 4.2.2, dowel action

as modelled by the factor kx, cf. section 4.3, the ratio of uni-
axial tensile to compressive strength, ot/oc, as well as the in-
fluence of consideration to secondary cracks were investigated.
The results are given in table 2. In this table the term F

theo./

Fexp. gives the ratio of the theoretical failure load to the ex-

perimental one. The ratio ot/oc is in accordance with table 1
except for case no. 4. Recall that the standard version of the
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program utilizes the values n = 0.01 and x = 0 corresponding to

case no. 1 and 6 considered until now.

Table 5.3-2: Sensitivity studies on the behaviour of the OA-2

and A-2 beams.

I
I |
Case Shear Dowel otloc Consideration Fth o/E‘ ! Remarks i
No. |[retention| action to secondary €o. exp. |
: factor n X cracks )
: ! . standard ver-
; 1 0.C1 0 0.10 yes ; 0.98 sion of program
o2 0.01 0.25 | 0.10 yes : 1.04
é: 3 0.10 0.25 | 0.10 yes 1.25
5; 4 0.01 0.25 | 0.08 yes 1.01
|
& S 0.01 .25 0.10 no 1.16 failure impend-
ing but not
i ' occurred
o \ v -
) 0.01 0 0.08 | yes 0.80 standaxrd ver
a i sion of program
g 0.01 0.25 | 0.08 j yes 0.83
a i i |

From table 2 appears that modelling of dowel action by use of a
certain shear modulus of the bar material, xG, has only a minor
effect on the predicted failure loads. Referring to section
5.1 the value k = 0.25 constitutes an upper value, cf. for in-
stance figs. 5.1-3 and 5.1-4. Even so comparison of case no. 2
with no. 1 and case no. 7 with no. 6 reveals that the dowel
action dealt with here increases the failure loads only around
5%. Together with the findings in section 5.1 this supports the
use of the standard value x = 0 in the program. We will return
to this subject later on.

The influence of aggregate interlock modelled through the shear

retention factor n is investigated by case no. 2 and 3 where
the only difference is an increase of n from 0.01 to 0.10. This

results in a 20% increase of the failure load. The discussion in
section 4.2.2 suggests that the influence of different n-values
is largest in structures such as in those considered where shear
is dominant. On this background the observed influence is viewed
as moderate and supports the acceptance of the use of a fixed

n-value., However, the observed influence of the n~factor is in
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evident contrast to the finding of Cedolir and Dei Poli (1977)
who also investigated beams failing in sheer. As here they ana-
lysed beams tested by Bresler and Scordelis (1963), but their
beams had a shear span ratio = 4 whereas the beams considered
here have a shear span ratio = 5. In their important investi-
gation, Cedolin and Dei Poli (1977) found an extreme influence
of the n-value as n = 0.25 resulted in a failure load twice as
large as that determined when n = 0.025 was utilized. However,
the failure loads as determined by Cedolin and Dei Poli (1977)
were not clearly related to physical phenomena and large dif-
ferences between their approach and the present one exist. In
particular, the strain softening in the post-failure region was
not considered; dilatation and secondary cracking of the con-
crete was ignored. As here Cedolin and Dei Poli (1977) used con-
stant strain elements, bﬁt no diagonal cracking was determined
at failure. Cedolin and Dei Poli (1977) suggest this to be a
consequence of the smeared crack representation. If true this
finding has important consequences, but the present study gives
no support to it as diagonal cracking indeed is determined. As
previously discussed, diagonal cracking follows as a result of
a strain localization in the region adjacent to the load point
and this strain localization is a consequence of strain soften-
ing. Therefore, modelling of strain softening is considered as
decisive.

The behaviour of beams failing in shear is obviously very de-
pendent on the existence of small tensile stresses. However, as
demonstrated by case no. 2 and 4 the choice of different real-
istic tensile strength values has only a minor influence for a
20% decrease of the ot-value results in a decrease in failure
load of only i3%.

To investigate the importance of modelling of secondary cracks,
case no. 5 is compared with case no. 2. In case no. 5 the cal-
culations were terminated before failure was reached. It appears
that modelling of secondary cracks is in fact essential. This
conclusion is in accordance with the findings of Arnesen et al.
(1979) who also analysed beams failing in shear. Considering
plane stress states Arnesen et al, (1979) also demonstrated that
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nc stiffness of the concrete in question should be retained when
secondary cracking has occured. This assumption is also utilized

here, cf. section 4.2.2.

The sensitivity study of the parameters has focussed on their
influence on the failure load. However, some other aspects of
beam behaviour are also affected. For instance, use of the calue
Kk = 0.25 instead of «x = 0 results in increased secondary cracking
along the main reinforcement and it decreases the midspan de-
flection around 8%, Use of the value n = 0.10 instead of n =

0.01 also decreases the midspan deflection around 8%,

The previous analysis using the program in its standard form has
demonstrated a close agreement with experimental data. However,
one significant disagreement exists. This is shown in fig. 13,
where the relative vertical displacements across the beams are
depicted. The experimental values indicate that in contrast

to the OA-2 beam a considerable thickening occurs for the A-2
beam with stirrups. Tris phenomenon is not reflected in the cal-
culated values which grossly overestimate the thickening of the
beams. This picture is influenced only insignificantly when
using the different assumptions given in table 2. One exception
is case no. 3 where the shear retention factor is increased,
decreasing the thickening values by a factor of approximately

2. Even so, a considerable overestimation results. It is of
importance to note that even giving consideration to dowel action
through the shear deformation of the reinforcement, cf. case

no. 1 with no. 2 and case no. 6 with no. 7, has no significant
influence on the results., However, as the reason for the much
smaller experimental values in fact is believed to be dowel
action of the reinforcement, this is to say that consideration
to dowel action must be treated through the bending of the bars
and not through their shear deformation. This important con-
clusion supports the use of the value « = 0 in the standard
version of the program. However, another important consequence
may also be derived from fig. 13, The figure shows that the
predicted strains in the stirrups are far too large. Therefore,
the predicted influence of stirrups is underestimated and this

explains why the existence of stirrups resulted experimentally



- 142 -

SOO ! T T i T

. " i —
linear elastic i
analysis
i o |
400 o -4
@) !
0A-2 /./
—_ PTTTT =
§ /I * Fig . 5 - 3"1 3 .
/
— 300 Y A —~ . .
w /7 A-Z Thickening across
O ly
S 40’ ! the beams
w ’ T i
_1 / |
g 200 ,/./ 4. B
L /I/ L 2286 __ 1
/ 0a-2]|a-2 ?
100Y J e
|
v 0A-2, experimental |
Y O A-2. experimental |

ol i 4 i B S G i
00 01 02 03 04 0S5 0o 07 08
(mm]

in a 38% increase of the failure load whereas the calculations
estimate a 12% increase, only. This same trend is also observed
in the calculations of Cedolin and Dei Poli (1977) who also

did not consider dowel action caused by bending of the rein-

forcement.

The present section has been devoted to different aspects of
the behaviour of beams failing in shear. With the standard ver-
sion of the program using the writer's failure criterion (1977)
and considering strain softening in the post-failure region a
close agreement with experimental data has been demonstrated.
The predicted failure loads for the OA-2 beam without stirrups
and the A~2 beam with stirrups were underestimated by 2% and
20%, respectively. Also the predicted crack patterns including
diagonal cracking of the OA-2 beam are in accordance with ex-
perimental evidence. Morecver, the analysis has resulted in a
clear insight in the structural behaviour of the beams. It has
been shown that for both beams the primary cause of failure is
strain softening in the region adjacent to the load point. This

strain softening causes a strain localization which in turn re-
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sults in a tendency to diagonal cracking. For the OA-2 beam
without stirrups nothing prevents this tendency and diagonal
results in a tendency to diagonal cracking. For the OA-2 beam
without stirrups nothing prevents this tendency and diagonal
tension failure follows. For the A-2 beam, on the other hand,
the stirrups resist the tendency to diagonal cracking and a
shear-compression failure results. Obviously, the failure itself
is therefore more ductile, but apart from this there is no
principal difference in the behaviour of the OA-2 and the A-2
beam. It follows that modelling of strain softening in the

post-failure region is decisiv2 in the analysis.

The influence of the shear retention factor has been evaluated
and opposed to the finding of Cedolin and Dei Poli (1977), the
i~fluence was found to be relatively moderate. Variation of the
uniaxial tensile strength within realistic limits influences

the results insignificantly. However, in accordance with Arnesen
et al. (1979), modelling of secondary cracking was found to be
essential. It has also been shown that consideration to dowel
action must be treated through the bending of the bars and not
through their shear deformation. This conclusion may explain the
only observed disagreement with experimental evidence, namely,
the overestimation of the thickening of the beam. It also
explains why the analysis underestimates the effect of the

stirrups.

5.4. Pull-out test (Lok-Test)

A considerable interest is directed towards determination of the
in-situ concrete properties and various destructive as well as
non-destructive methods are currently applied. Knowledge of the
in-situ concrete compressive strength is of particular importance
and pull-out tests have been proposed for this purpose. For the
pull-out test considered here, the so-called Lok-Test proposed

by Kierkegaard-Hansen (1975), a circular steel disc is extracted
from the structure using a cylindrical counter-pressure. Experi-
mental data have shown a linear relation between the force re-

quired to extract the emkedded steel disc and the uniaxial com-



pressive strength.

The present section is devoted to analysis of such Lok-Tests.

The influence of the uniaxial compressive strength, the ratio

of tensile-to-compressive strength, different failure criteria
and post-failure behaviours are investigated. Moreover, as much
dispute has been placed on the type of failure actually occurring
in the concrete, special attention is given to the structural

behaviour and to the failure mode.

As mentioned above, the Lok-Test was proposed by Kierkegaard-
Hansen (1975) and several experimental investigations have been
carried out. A general status has been given recently by Kierke-
gaard-Hansen and Bickley (1978). During application, a test bolt,
consisting of a stem and a circular steel disc, is mounted in-
side the form, fig. 1 a). After curing of the concrete, the form
is stripped and the stem is unscrewed. At the time of testing,

a rod having a slightly smaller diameter than the stem is screwed
into the disc and a cylindrical counter-pressure is mounted, fig.
1l b). The rod is loaded by a pull-out force until a small piece
of concrete is punched out. As shown in figs. 1 b) and 2, this
piece of concrete has the form of a frustrum of a cone. The mer-
idians are almost straight lines that connect the outer peri-
phery of the disc with the inner periphery of the cylindrical
counter~pressure.

b) counter -pressure

D |

failure
surfcce

Fig. 5.4-1: Application and configuration of the Lok-Test.
All dimensions are in mm.
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Fig. 5.4-2: Punched-out piece of concrete. Cracks are

made visible using percil tracting.

Fig. 3 shows the analysed structure as well as the axisymmetric
finite element mesh consisting of 441 triangular elements. The

elements that represent the steel disc appear from this figure.
The pull-out force as well as the boundary conditions at the

location of the cylindrical counter-pressure are also indicated.

In the following, we will use the finite element program in its
standard form. Strain softening in the post-failure region will
be considered and in the first place the failure criterion of

the writer (1977) is utilized. To bedain with, some important
aspects of the structural behaviour of the Lok-Test will be

illustrated. After that, the influence of some concrete material
data and of different failure criteria will be investigated
in detail.

To illustrate the structural behaviour we use concrete material
Jata that can be considered as quite representative and realis-
tic. For this purpose we approximrate the tkehaviour of a speci-
fic concrete tested by Kupfer (1973). The constitutive model of
this relatively strong concrete is calibratea Ly the following
parameters all in accordance vwith experimental data: Ei = 3.24
10% mpa, v, = 0.2, o_ = 31.8 MPa, 0 /0 = 0.10, €_ = 2.17% and

D = 0.2. Using these data the normalized stress-strain curve is
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Fig. 5.4-3: Axisymmetric finite element mesh of the Lok-Test.

shown in fig. 4. The values E = 2.05'105 MPa and v = 0.3 were

employed for the steel disc.
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Fig. 5.4-4: Normalized stress-strain curves for the
concretes considered here. Strengths are
measured in MPa.
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Fig. 5.4-5: Crack development with increasing loading.
The loading is expressed in relation to the
predicted failure load.

the stress distribution of the three principal stresses is con-
sidereda at 70% loading, i.e., the cracking is slightly more
developed than indicated in fig. S c¢). This stress distribution

is shown in fig. 6, where isostress curves are shown and where
the directions of the principal stresses in the RZ-plane are

given in each nodal point. In accordance with the radial crack
development the distribution of the tangential stresses shows
large regions where tension exists. Only at the support and
notably around the disc do compressive tangential stresses exist.
The distribution of the max. principal stress in the RZ-plane
indicates also large regions ioaded in tension. Only in the
vicinity of the disc and notably at the support do small re-
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Fig. 5.4-6: Isostress curves
| and directions of the three

principal stresses at 70%

loading. Quantities are in
MPa.

min. principal stress in RZ-plane

gions loaded in compression exist. The distribution of the min.
principal stress in the RZ-plane is very interesting. Recalling
that the uniaxial compressive strength of the concrete is 31.8
MPa and noting that the loading is 70% of the predicted failure
load, it appears that large stresses are present at the annulus
near the disc, In fact triaxial compression exists here. More-
over, large compressive stresses are found at the outer periphery
of the steel disc and comparison with the preceding figures

shows that biaxial compression occasionally superposed by a small
tensile stress appears in this region. Noting the stress direc-~
tions it is apparent that large forces run from th» disc in a
rather narrow band towards the support, where triar.ial as well

as biaxial compression exist. This carrying mechanism is sup-
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ported by the crack pattern, cf. figs. 5 c¢) and d). It is of

interest tc note that both the circumferential cracks and the
stress directions describe curves that have a slight curvature
even though they are almost straight. This small curvature is

also observed in practice, cf. fig. 2.

In conclusion, fig. 6 shows that the stress distribution is very
inhomogeneous. This suggests strain softening to be of impor-
tance. Eowever, large compressive forces run from the daisc in

a rather narrow band towards the support ana this constitutes
the load-carrying mechanism. The stress states in this band

are primarily biaxial compression occasionally superposed by
small tensile stresses,

As in previous sections, the severity of the stress states is
conveniently illustrated by means of the nonlinearity index.
Fig. 7 shows the development of the contour lines with in-
creasing loading for the nonlinearity index in per cent. The
distribution in fig. 7 b) corresponds to the stress distribution
given in fig. 6. Fig. 7 supports the preceding observations

that the region at the annulus adjacent to the disc is severely
loaded and this holds also for the region along the cuter

periphery of the disc. Moreover, the severely lcaded narrow
band running from the outer periphery of the disc towards the
support is also apparent., It should be recalled that when
tensile stresses are present, the nonlinearity index is less
than unity even at failure. At 64% loading, strain softening
initiates below the steel disc both =djacent to the annulus

and at the outer periphery of the disc. At 79% loading, strain
softening develops from the outer periphery of the disc towards

the support. This development is pronounced at 88% and also at
100% loading; the latter corresponds to the last iteration

before the calculations were terminated. At 100% loading, con-
siderable strain softening occurs also at the disc adjacent to
the annulus, This can be observed as a decrease in the non-
linearity i.uex, cf. fig, 7c) with 7d). More important, however,
is the strain softening occurring in the narrow region adjacent
to the outer periphery cf the disc and running towards the

support. This strain softening appears as a considerable drop of
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Fig. 5.4-7: Development of contour lines for the non-
linearity index in per cent. Loadings
expressed as per cent of predicted
failure load.

the nonlinearity index. This effect is very pronounced when
comparing fiqg. 7c) with 7d), but a comparison of fig. 7b) with
7c) already shows this tendency. It is important to realize that
this gradual decrease of the nonlinearity index due to strain
softening in the post-failure region corresponds to crushing

of the concrete. Thus, even though small tensile stresses may
exist in addition to the primary biaxial compressive stress
states, the failure is caused by crushing of the concrete and
not by cracking. Therefore, the force required to extract the
embedded disc in a Lok-Test is directly dependent on the com-
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pressive strength of the concrete in question. However, the
tensile strength may have some indirect influence as discussed

later on.

Let us now compare the predicted failure load with experimental
data. Based on the results of different test series including

a total of 1100 Lok-Tests, Kierkegaard-Hansen and Bickley (1978)
suggest the following linear relation between pull-out force F
and uniaxial compressive cylinder strength 0¢ F=5+0.8 O
where F and oc are measured in kN and MPa, respectively. This
relation is shown in fig. 8 and is based on concrete mixes,
where 0. ranges from 6-53 MPa. The failure load resulting from
the present calculation, where Op = 31.8 MPa, is also indicated.
The analysis underestimates the experimental failure load by
only 1%.

To investigate the dependence of the oc-value a calculation was
performed with data from another, weaker concrete. To ensure
use of realistic concrete data, test results of Kupfer (1973)
were utilized again. In the constitutive model the following
parameters are applied: Ei = 2.89-104 MPa, vy = 0.19, 0, = 18.7

MPa, ot/oc = 0.10, €c = 1.87% and D = 0.6. The close agreement
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Fig. 5.4.-8: Experimental data compared with theoretical
failure values.



of the resulting predictions with the experimental data of
Kupfer (1973) has previously been demonstrated, cf. fig. 2.2-6.
In this fiqure, the value D = 0 was used instead of D = 0.6,
but this affects the post-failure behaviour, only. In gereral,
the weaker the concrete the more ductile is its post-failure
behaviour, cf. for instance, Hognestad et al. (1955). This
suggests the use of D = 0.6 instead of D = 0 as is apparent
from fig. 4, where the normalized stress-strain curves using
these two D-values are shown. The predicted failure load using
the above concrete parameters underestimates the actual failure
load by only 3%, and is plotted in fig. 8. Therefore, the cal-
culations are in agreement with the experimental evidence show-
ing that within the considered variation of the cc—values, a

linear relation exists between pull-out force and compressive
strength.

It is remarkable that the prolongation of the experimental line
in fig. 8 intersects the ordinate axis at some distance from
the origin. However, two aspects of concrete behaviour are
dependent on compressive strength namely the ductility and the
ratio of tensile strength to compressive strength. As has
already been touched upon, the post-failure behaviour is more
ductile the weaker the concrete. To investigate the influence
of minor variatiors in the post-failure behaviour of the concrete,
a calculation was performed using again the concrete having a
strength of 18.7 MPa, but now having lesser ductility. Therefore
the value D = 0 was used instead of the more realistic one D =
0.6, cf, fig. 4. This in fact decreases the predicted failure
load by 5% as shown in fig. 8., That the failure load depends

on the particular softening behaviour of the concrete is indeed
to be expected considering previous remarks in relation to fig.
7. However, comparison in fig. 4 of the concrete having 0o =
18.7 MPa and D = 0 with the concrete having 0o = 31.8 MPa and

D = 0.2 shows an almost similar normalized behaviour. Moreover,
the ot/oc-ratios are identical for these concretes. Using
dimensional analysis, the failure loads should thcrcfore be
almost proportional to the oc-value and this is in fact also
observed for the two predicted failure loads, cf. fig. 8.
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In general, the weaker the concrete the larger is the ratio of
tensile strength to compressive strength, cf, for instance,
Wastiels (197%a). Let us investigate this effect using the
concrete having 0. = 18.7 MPa and D = 0.6 again, but putting
now ct/oc = 0.12 instead of ot/cc = 0.10. This increases the
predicted failure load by 1l1% as shown in fig. 8. In reality,
Kupfer (1973) determined the ot/oc-ratio to be 0.105 for the
concrete considered and if interpolation is performed between
the two calculations having the ot/cc—ratio equal to 0.10 and
0.12, respectively, the resulting failure load is 0.7% below
the actual value. Even though the tensile strength of the
concrete certainly has an influence on the failure load of a
Lok-Test, it is of importance to realize that this inflvence
is an indirect one. Only very little of the pull-out force is
carried directly by tension in the concrete, but the regions
where failure take place are primarily in biaxial compression
occasionally superposed by a small tensile stress. The failure
is caused by crushing, and even a small tensile stress con-
siderably decreases the failure strength, cf. for instance,
figs. 2.1-7 and 2.1-9.

The above analysis has demonstrated that the reason that the
relation between pull-out force and compressive strength is
linear and not proportional is a result of the increasing duc-
tility and the increasing ratio of tensile strength to compres-
sive strength the weaker the concrete.

Let us now investigate the influence of different failure
criteria. For this purpose we return to the concrete having

O, = 31.8 MPa, but now the modified Coulomb criterion is applied.
Compared to the previous analysis, this reduces the predicted
failure load by 23% as shown in fig. 8. However, at failure the
critical regions are loaded primarily in biaxial compression
and the modified Coulomb criterion i.: known to underestimate
the failure stresses for such stress states by 25%-30%, cf.
fig. 2.1-7. It is of interest to observe that the decrease of
failure load, when using the modified Coulomb criterion, is in
accordance with the finding that the Lok-Test depends directly

on the compressive strength of the concrete and not on its
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tensile strength. As demonstrated by figs. 2.1-5 to 2.1-7, the
modified Coulomb criterion underestimates the failure stresses,
when concrete is loaded in compression, except when extremely
large triaxial compressive stress states exist. Moreover, figs.
2.1-7 and 2.1-9 show that this criterion overestimates the fai-
lure stresses when tensile stresses are present. Therefore, if
the failure in a Lok-Test was caused by tensile cracking then
use of the modified Coulomb criterion would result in an in-
creased failure load. However, in accordance with the preceding
discussion use of the modified Coulomb criterion decreases the

failure load.

Jensen and Brastrup (1976) have previously determined the fai-~
lure load for a Lok-Test using rigid-ideal plasticity theory.
They also used the modified Coulomb criterion and their result

is shown in fig. 8. It appears that close agreement is obtained
even though proportionality and not Jjust linearity between the

pull-out force and the compressive strength was obtained.
However, the failure load determined by Jensen and Brastrup
(1976), when 0o = 31.8 MPa, is considerably larger than the one
determined here when using the modified Coulomb criterion also.
This is particularly conspicuous, as Jensen and Brastrup (1976)
in their analysis are forced to use a friction angle equal to
the angle as shown in fig. 1b). This results in a friction angle
equal to 31° corresponding to the value m = 3.1 in the Coulomb
criterion, cf. eq. (2.1-9). Here we use the value m = 4 which,
as discussed above, results in some underestimate of the actual
failure stresses. Use of the value m = 3,1 would indeed imply

a considerably underestimate of actual failure stresses. However,
in their analysis, Jensen and Brastrup (1976) in reality compen-
sate for this, as their analysis is based on rigid-ideal pla-
sticity with no softening effects at all, Consequently, they
assume failure all along the plane running from the outer
periphery of the disc towards the inner periphery of the support.
Previous discussion, cf. for instance, fig. 7, has refuted such
an assumption., However, in accordance with findings in the
preceding sections, this underlines the importance of including
a suitable strain softening behaviour in constitutive modelling

of concrete.



In conclusion, the structural behaviour of the Lok-Test has
been investigated in detail. Severe cracking occurs arnd the
stress distribution is very inhomogeneous. It has been shown
that large compressive forces run from the disc in a rather
narrow band towards the support and this constitutes the load-
carrying mechanism. Moreover, the failure in a Lok-Test is
caused by crushing of the concrete and not by cracking. There-
fore, the force required to extract the embedded steel disc

in a Lok-Test is directly dependent on the compressive strength
of the concrete in question. However, as the stress states,
where failure takes place, are primarily biaxial compressive
occasionally superpcsed by small tensile stresses, the tensile
strength of the concrete has some indirect influence. The effect
of strain softening in the post-failure region is important.

In general, weak concrete compared to strong concrete has a
relatively larger tensile strength and a higher ductility. This
explains why the relation between the failure pull-out force
and the compressive strength is linear and not proportional.

The influence of different failure criteria has also Leen
evaluated and it has been shown that use of the writer's failure
criterion (1977) coupled with realistic post-failure behaviours
gives the closest agreement with experimental data. For the ’
concretes having O, = 31.8 MPa, ot/oc = 0.10, D = 0.2 and o, =
18.7 MPa, ot/oc = 0.10, D = 0.6, the predicted failure loads

are 99% and 97%, respectively, of the experimental values.

6. SUMMARY AND CONCLUSIONS

The present study has produced general conclusions within the
fields of constitutive modelling of concrete, aspects of finite
element modelling and structural behaviour of specific concrete
structures. Moreover, a profound documentation of the AXIPLANE~-
program, applicable for axisymmetric and plane structures, has
been given.



Section 2 dealt with failure and nonlinearity of concrete when
loaded in :the short-term by genzral stress states. Different
failure criteria and their agreement with experimental data
were discussed. It was shown that the criterion of the writer
(1977) is attractive when considering accuracy, whereas the
modified Coulomb criterion possesses an appealing simplicity.
Except for very large triaxial compressive stresses, the modi-
fied Coulomb criterion in general underestimates the failure
stresses for compressive loading. The two criteria mentioned
are implemented in the program. A simple failure mode criterion
was aiso compared with experimental data. A constitutive model,
proposed by the writer (1979) and implemented in the AXIPLANE-
program, was outlined. It is based on nonlinear elasticity,

where the secant values of Young's modulus and Poisson's ratic
are changed appropriately. This model considers the strain har-

dening before failure, the failure itself and the strain softe-
ning in the post-failure region. Dilatation of concrete as

well as the influence of all three stress invariants is consi-
dered. Comparison with experimental data shows a close agreement
for a wide range of stress states also including tensile
stresses. The model is very flexible as different post-failure
behaviours and different failure criteria are easily dealt with.
Moreover, the calibration of the model to a specific concrete

is easily performed as all six parameters in the model are

determined by means of standard uniaxial data.

Section 3 has treated the constitutive models for reinforcement
and prestressing. These models are quite trivial and interest
is focussed only on a formulation that is computational conve-

rient in the AXIPLANE-program,

Section 4 was devoted to the finite element modelling. Some of
this section is of interest only for the specific documentation
of the AXIPLANF-program. However, using Galerkin's method a
general exposition of the fundamental equations in the finite
element displacement method was derived. A profound discussion
of various aspects of finite element modelling of concrete
cracking was also given. The smeared cracking approach was
favoured in the present report, as it reflects important aspects



of cracking and as it is easy to incorporate in a finite element
program. However, the smeared cracking approach ignores the
actual discontinuity in the displacement field, and the shear
stiffnesses parallel and normal to the crack plane are, contrary
to reality, identical. Special attention was given to the shear
retention factor that reflects aggregate interlock. Arguments
justifying a fixed value for the shear retention factor were

put forward. The standard version of the program uses the shear
retention factor n = 0.01l. Concepts of reinforcement simulation
were also discussed and the embedded concept was favoured in

the present study. This approach infers a perfect bond between
concrete and steel. The formulation of reinforcement elements
was performed sc that dowel action may be considered through

the shear deformation of the reinforcement. However, findings
in section 5 reveal that such an approach is not preferable and

the standard version of the program ignores dowel action. Sec-
tion 4 closes with general computational aspects.

The main section, section 5, showed applications of the AXIPLANE-
program. Different concrete structures were analysed uptil
failure and compared with experimental data. This resulted in
close insight in the structural behaviour of the considered
structures as well as general findings regarding finite element
modelling.

The analysis of the panels subjected to tensile forces showed
that simulation of lateral bar stiffness through a suitable

shear modulus, kG, of the bar material seems to be not an advan-
tageous method. Therefore, the standard version of the program
ignores lateral bar stiffness, i.e., the value ¥ = 0 is utilized.
Consequently, shear displacements of the panels were grossly
overestimated. Panel elongations were predicted fairly well even
though the tension stiffening effect is ignored; predicted

failure loads were in close agreement with experimental data.

The considered thick-walled closure is a structure where large
triaxial compressive stresses as well as cracking are present.
As a first example in the present study, it was shown that a

suitable analyeis of the theoretical data may provide a clear



insight into the physical behaviour of a structure. This was
demcnstrated using figures of crack developments and stress
distributions. Figures showing contour lines of the nonlinearity
index proved to be very advantageous when evaluating failure
regions and failure modes. Using the standard version of the
program, the effect of using the two different failure criteria
was evaluated and, as expected, use of the writer's criterion
resulted in the closest agreement with experimental data. The
actual post-failure behaviour of concrete may be expected to
have a large influence on those stress redistributions that
take place, when the stresses are inhomogeneously distributed.
This was indeed confirmed by the finite element analysis, and
it was demonstrated that strain softening in the post-failure

region must be included in a realistic constitutive model.

Beams failing in shear represent problems of great theoretical
and practical importance. With the standard version of the pro-
gram using the writer's failure criterion and considering strain
softening in the post-failure region, a close agreement with
experimental data was demonstrated. This holds for the beam
without stirrups as well as for the beam with stirrups. For

both beams it was shown that the primary cause of failure is
strain softening in the region adjacent to the load point. This
strain softening causes a strain localization, which in turn
results in a tendency to diagonal cracking. For the beam without
shear reinforcement nothing prevents this tendency, and diagonal
tension failure follows both experimentally and *theoretically.
For the beam with shear reinforcement, on the other hand, the
stirrups resist the tendency to diagonal cracking and a shear-
compression failure follows. Apart from the akove mentioned,
there is no principle difference in the behaviour of the two
beams.However, it is important to note that modelling of strain
softening seems to be mandatory for the prediction of diagonal
cracking. Considering that shear is very dominant in the beams,
the influence of different shear retention factors was evaluated
to be relatively moderate. Variations, within realistic limits,
of the uniaxial tensile strength of the concrete was found to
influence the structural behaviour insignificantly. However,

the znalysis showed that modelling of secondary cracking, where
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cracks with different directions exist at the same location, is
essential. The only observed disagreement with experimental
evidence was a considerable overestimate of the thickening of
the beams. Consideration to dowel action through the shear
deformation of the bars did not change this finding. In combi-
nation with the conclusions from the panel analyses, it implies
that dowel action must be treated through the bending of the
bars and not by their shear deformation. However, to describe
bending of bars by means of the simple elements used here,
knowledge of the displacement fields in two subsequent elements
is required. The resulting increase of the bandwidth of the
equation system makes such an apprcach prohibitive. This problem
may be overcomed using more complicated elements, where the
displacement fields in itself can describe bar bending.

The Lok-Test was the last structural problem that was analysed
and compared with experimental data. This pull-out test is used
to determine the in-situ compressive strength of the concrete.
In accordance with the experimental evidence, it was shown that
the failure load of the pull-out force is linearly velated to
the compressive strength of the concrete. It was demonstrated
that the reason that this relation is linear and not proportio-
nal is a result of the increasing ductility and the increasing
ratio of tensile strength to compressive strength the weaker
the concrete. The analysis showed that the failure is caused by
crushing of the concrete and not by cracking. Moreover, use of
the modified Coulomb criterion resuited in some underestimate
of the failure load. Finally, consideration to a realistic
strain-softening behaviour in the post-failure region wes again

found to be of extreme importance.

Regarding general aspects of constitutive modelling of concrete,
the present study has shown that inclusion of an accurate
failure criterion is very essential. Moreover, the consideration
of strain softening in the post-failure region turns out to be

of extreme importance.

The ultimate load capacity of structures has been the quantity
of primary concern here. To give an impression of the accuracy



obtained using the AXIPLANE-program, table 1 shows a comparison
between predicted and experimental failure loads. The predicted
values were obtained u#ing the standard version of the program,
where the shear retention factor is » = 0.01 and lateral bar
stiffness is ignored, i.e., « = 0. In all cases, the failure
criterion of the writer was utilized, and realistic strain
softening in the post-failure region was considered. Moreover,
all material parameters in the program were calibrated using

uniaxial data, only. In this table, the term F gives

/F
theo.’ "exp.
the ratio of the theoretical failure load to the experimental
value. As widely different structures with delicate structural
behaviours were considered, this table clearly demonstrates the
benefits of the AXIPLANE-program. Within its axisymmetric and
plane applications, the potential of the AXIPLANE-program seems

to be quite attractive.

Table 6-1: Predicted and experimental failure loads of the

considered structures.

Structure Ftheo./Fexp.
Panels (mean value) 0.95
Thick-walled closure 1,13
Beam without stirrups 0.98
Beam with stirrups 0.80
Lok-Test (oc = 18.7 MPa) 0.97
Lok-~Test (oc = 31.8 MPa) 0.99
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Unless otherwise stated, the following symbols are used in the

present report:

A
A = Ei/EC
B

B..
ija

Wi

jos]]]

parameter in failure criterion, eq. (2.1-5);
parameter in stress-strain equation (2,2-3);
parameter in failure criterion, eq. (2.1-5);

tensor relating strains and nodal displacements,
eq. (4.1-11);

matrix relating strains and nodal displacements,
eqs. (4.2-6) and (4.2-7);

matrix in a local coordinate system relating
reinforcement strains with reinforcement nodal
displacements, egs. (4.3-4) and (4.3-5);

strain softening parameter in stress-strain

equation (2.2-3);
elasticity tensor, eq. (4.1-3);
constitutive or material matrix, eq. (4.2-10);

material matrix when circumferential cracks

exist, eq. (4.2-21);

material matrix when circumferential and radial

cracks exist, eq. (4.2-25);

material matrix when secondary circumferential
cracks exist together with radial cracks, eq.
(4,2-28);

material matrix when radial cracks exist, eq.
(4.2-23);

material matrix in a local coordinate system
for a reinforcement element, eqs. (4.3-6) to
(4.3-9);

Young's modulus;
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Young's modulus, see fig. 2.2-4 and eq. (2.2-6);

secant value of Young's modulus at uniaxial

compressive failure;
effective E-modulus, eq. (2.3-3);

secant value of Young's modulus at triaxial

compressive failure, eq. (2.2-5);

initial Young's modulus;

Young's modulus, see fig. 2.2-4 and eq. (2.2-6);
Young's modulus, see fig. 2.2-4 and eq. (2.2-6);
secant value of Young's modulus, eq. (2.2-4);
force;

body force vector, egs. (4.1-19) and (4.1-21);

discrete point force vector, eqs. (4.1-19) and

traction force vector, eqs. (4.1-19) and

force vector due to initial strain, egs. (4.1-19)
and (4.1-24);

force vector due to initial stress, eqs. (4.1-19)
and (4.1-25);

total force vector, eq. (4.6-8);

body force vector, section 4.2.1;
discrete force vector, section 4.2.1;
traction force vector, section 4.2.1;

force vector due to initial strains, section
4.2.1;

force vector for a Lax elemeat due to initial
strains, eqs. (4.3-16);

force vector due to initial strains in rein-~
forcement., This vector relates to the nodal
points of the triangular element in question,
see eqs. (4.3-19) and (4.2-22):
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force vector due to initial stresses, eq.

force vector due to initial stresses in rein-
forcement. This vector relates to the nodal
points of the triangular element in question,

see eq. (4.3-30);

force vector for a bar element due to initial
strains. Local coordinates are use, see eqgs.
(4.3-10) and (4.3-12);

force vector for a bar element due to initial
stresses. Local coordinates are used, eq.
(4.3-26);

shear modulus;
first invariant of the stress tensor;
invariant of the stress tensor;

second invariant of the stress deviator tensor,
eq. (2.1-2);

= third invariant of the stress deviator tensor;

parameter, eq. (4.2-22);

stiffness tensor of the element, eqs. (4.1-19)
and (4.1-2C);
stiffness matrix of the element, eq. (4.2-12);

total stiffness matrix, eq. (4.6-1);

stiffness matrix in local coordinates of a bar

element, see eqs. (4.3-10) and (4.3-11);

stiffness contribution due to reinforcement.
This contribution relates to the nodal points
of the triangular element in question, see
eq. (4.3-2);

parameter in failure criterion, eq. (2.1-8 ;

parameter in failure criterion, eq. (2.1-8);

transformation matrix relating local and global

coordinates, eqs. (4.3-13) and (4.3-14);
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parameter, eq. (4.2-26);

tensor relating displacements and nodal dis-
placements, eq. (4.1-10);

tensor relating displacements and nodal dis-

placements for a specific element, eq. (4.1-16);

matrix reiating element displacements and nodal

displacements, eq. (4.2-3);

point forces, eqs. (4.1-21) and (4.1-22);

point force vector, eq. (4.2-13);

parameter, eq. (3-10);

parameter, eq. (3-10);

surface;

temperature in °C, see eqs. (2.3-4) and {2.3-5);

transformation matrix relating strains in local
and global coordinates, eqs. (4.2-14) and
(4.2-15); and

volume;

nodal displacements, eq. (4.1-10);

chosen nodal displacements, eq. (4.1-13);

nodal displacements for an element, eq. {(4.1-16);

nodal displacement v.ctor for triangular element,

total nodal displacement vector, eq. (4.6-1);

nodal displacement vector for a bar element,
eq. (4.3-13);

nodal displacement vector for a bar element.
This vector relates to local coordinates, eq.

prescribed body forces, eq. (4.1-1);

body forces, section 4.2-1;
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_ . . . _ 1

eij = deviatoric strain tensor, eij = hij 3 éijekk'
section 3;

e . . . . e e

eij = deviatoric elastic strain tensor, eij = Eij -
1 e .
3 Gijekk’ section 3;

€at = equivalent total strain, eq. (3-18);

d = distance, see fig. 4.3-2;

m = parameter in Coulomb's criterion, eq. (2.1-9);

n, = outword unit vector normal the boundary, eq.
(4.1-1);

p = pressure;

r = radius;

rn = mean radius of the triangular element, section
4,2,.1;

r' = abscisse in local coordinate system, fig. 4.3-2;

r* = mean radius of a reinforcement element;

_ , . _ _1 .
sij = deviatoric stress tensor, sij = GiJ 3 Gijokk’
S1¢8,5,5, = principal stress deviators;

t = time, eq. (2.3-4);

t = thickness of reinforcement element;

t = prescribed tractions, eq. (4.1-4);

ti = tractions corresponding to unknown reaction
forces, eq. (4.1-8);

t = traction force vector, section 4.2.1;

u = displacement in radial direction, eq. (4.2-1);

u' = displacement in the R'-direction, fig. 4.3-2;

u, ,u.,u = radial nodal Fisplacements of a triangular

1]

element, eq. (4.2-2);

uy = displacements, eq. (4.,1~2);

Ei = prescribed displacements, eq. (4.1-5);

u; = chosen displacements, eqs. (4.1-6) and (4.1~-13);

u ~ displacement vector, eq. (4.2-1);
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displacement vector in loacl coordinates,

section 4.3.1;

displacement in vertical direction, eq.

(4.2-1);

displacement in the Z'-direction, fig. 4.3-2;

= stress invariant, see eq. (2.2-5);

ordinate; and
ordinate in local coordinate system,

angle

fig. 4.3-2;

coefficient of thermal expansion, see egs.

(4.2-11) and (4.3-7) to (4.3-9);

nonlinearity index, see egs. (2.2-1)

and (2.2-2);

engineering shearing strain, eq. (4.2-5);

engineering shearing strain in local coordinates,

eq. (4.3-3);

area of a triangular element, section 4.2.1;

temperature rise, egs. (4.2~11) and

Kroneckers delta;
strain, elongation is positive;

principal strains;

(4.3-7) to

strain at uniaxial sompressive failure (ec > o)

eq. (2.2-3);

initial strain;

radial strain, eq. (4.2-5);

vertical strain. eq. (4.2-5);
circumferential strain, eq. (4.2-5);
creep strain, see eq. (2.3-1);
elastic strain, section 2.3;

equivalent plastic strain, see eqgs.
(3-6);

(3-2) and
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strain in the R'-direction, see fig. 4.3-2 and
eq. (4.3-3);

circumferential strain, eq. (4.3-3);
strain tensor, eq. (4.1-2);

specific creep strain, =q. (2.3-1);
elastic strain tensor, eq. (3-7);

strain tensor in an element, eq. (4.1-27);
initial strain tensor, eq. (4.1-3);
plastic strain tensor, eq. (3-7);

initial strain tensor in an element, eq.
(4.1-28);

strain vector, eq. (4.2-5);

strain vector in the local coordinate system,
fig. 4.2-3;

initial strain vector, egs. (4.2-9) and (4.2-11);

strain vector for a bar element. This vector is
related to local coordinates, eq. (4.3-3);

initial strain vector for a bar element. This
vector is related to local coordinates, egs.
(4.3-6) to (4.3-9);

shear retention factor, eg. (4.2-20);

angle in deviatoric plane, see fig, 2.1-1 b)
and eq. (2.1-3); '

factor describing the shear stiffness of the
reinforcement, cf. section 4.3 and eq. (4.3-8);

function in the failure criterion, egs. (2.1-5)
and (2.1-8);

positive function in the flow rule, see eq.
(3-3);

Poisson's ratio;

initial Poisson's ratio, eq. (2.2-7);
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se:cant value of Poisson's ratio at failure,
eqs. (2.2-7) and (2.2-8);

secant value of Poisson's ratio, eq. (2.2-7);

stress invariant, see fig. 2.1-1la);

stress invariant, see fig. 2.1-1;
stress, tensile is positive;
principal stresses, oy 2 02 > O3

uniaxial compressive strength (oc > o)

equivalent stress, eq. (3-1);

radial stress, eq. (4.2-8);

uniaxial tensile strength (ot > 0);
vertical stress, eq. (4.2-8);

initial stress, eq. (3-19);

tangential stress, eq. (4.2-8);

stress in the R'-direction, see fig. 4.3-2;
circumferential stress, section 4.3.1;
biaxial compressive strength (ocb > 0)3;
stressbtensor;

initial principal stress, eq.'(3—11);
initial principal stress, eq. (3-11);
stress tens‘- in an element, eq. (4.1-28);
initial stress tensor, eq. (4.1-3);

initial stress tensor in an element, eq.
(4.1~28);

stress vector, eq. (4.2-8);

initial stress vector, eq. (4.3-24);

stress vector in the local coordinate system,

fig. 4.2-3;

stress vector for a bar element. This v=2ctor is

related to local coordinates, eq. (4.3-6);



Eéb = initial stress vector for a bar element. This
vector is related to local coordinates, egs.
(4.3-27) to (4.3-29);

TRz = shear stress, eqg. (4.2-8); and

T&Z = shear stress in local coordinates, section
4.3.1.

Subscripts

b = bar;

c = compressive;

f = failure value;

i = jnitial value;

o = initial stress or strain;

r = reinforcement;

s = secant value; and

t = tensile.

Supercripts

~ = prescribed;

- = vector;

= = matrix;

' = local coordinate system;

c = creep;

e = elastic or element; and

P = plastic.



APPENDIX A

The A-Function in the Failure Criterion

In section 2.1.3 it was indicated by means of eq. (2.1-6) that
when the function r = 1/X(cos36) in the polar coordinates (r,8)
describes a smooth convex curve varying Lbetween an equilateral
triangle and a circle, the sare holds for the trace of the fail-

ure surface ir the deviatoric plane.

To determine the A-function, a membrane subjected to uniform
tension S per unit length and supported along the edges of an

equivalent triangle, fig. 1, is loaded by a uniform lateral

wi>
-

S ——

h—

Fig. A-1l: Equilateral triangle.

pressure p. Referring for instance to Timoshenko and Goodier
(1951) pp. 268-269 the lateral deflection w of the membrane
satisfies the Poisson equation

2 2

dw 3w __P
S

ax2 9y

N

Following the above reference p. 266, this equation and its
boundary conditions are satisfied by




A transformation to polar coordinates r and ¢, fig. 1, is per-
formed by the substitutions x = rsinf and y = rcosf, and using

the identify cos36 = 4cos36 - 3 cosf we derive

w = E§§ (%7 nd - hr? - r3cos38) (A-1)

The contour lines of the deflected membrane in the polar coordi-
nates r and 6 are determined by this equation treating w as

a constant. It is obvious that these contour lines are smooth
and convex and varying between the equilateral triangle and

a circle. To determine these contour lines we note that the
maximum deflection Yhax - ph2/27s occurs at r = 0 and disregard-
ing in the following the point r = 0, the positive constant D

is defined by

o= JA - )

Introducing this constant in eq. (1) and rearranging this equa-
tion we obtain

1 3 1 3cos36 _

3" 3"~ 2 °°9°

Iy D" r hD
Solving this cubic equation by standard methods it appears that
the roots of interest are only

=1_ 1 L

A= T = Kl cos[3 Arccos(K2 cos3B)J H cos36 > O

A = 1. K, cos|% - 1 Arccos (-K cos36)] ; cos3s < O
r 1 3 3 2 | -

where Kl = 2/D and Kz = 3D/2h. These two equations determine
explicitly the contour lines and the A-function in terms of two
positive constants Ky and K,. It appears that the first coef-
ficient is a size factor, while the second is a shape factor
varying between zero and unity. This terminology for KZ is con-
venient as the contour line approaclies the equilateral triangle
and a circle when K, approaches unity and zero, respectively.



APPENDIX B

Skewed Kinematic Constraints

The finite element modeiling results in the equation system
given by eq. (4.6-1). This equation system refers to the RZ-
coordinate system; when nodal displacements are prescribed in
the R- and Z-direction a modification of the equation s, stem
in accordance with eq. (4.6-2) is performed. However, if nodal
displacements are prescribed 1n other directions than the R-
or Z2-axis, i.e., if skewed kinematic constraints are present,
then eq. (4.6-1) has to be transformed to the R'Z'-coordinate
system shown in fig. 1. After that a modification of the

equation system correspcnding to eq. (4.6-2) is performed and

Fig. B-~1l: Skewed kinematic constraint.

a retransformation back to the original RZ-coordinate system
is then carried out. Using a transformation matrix similar to
eq. (4.3-14) and noting the transformation formula of eq.
(4.3-15), after trivial matrix multiplications the above
procedure results in the following:

If the displacement in the R'-direction at nodal point i is pre-
scribed to be y then the following contributions should be
added to elements in the matrix K in eq. (4.6-1)



10 2 .
K, (1077°-1) cos™x is added to element KZi-l,Zi-l
K (1010-1) cosasin: is added to element K
1 ) 2i-1,21
K (1010-1) sinza is added to element K
1 2i,2i
where s
K, = K cosza + 2K cosasina + K sinza
1 2i-1,2i-1 2i-1,2i 2i,2i

(B-1)

The modified stiffness matrix continues to be symmetric. Corre-
spondingly, the following contributions should be added to el-
ements in the vector F in eq. (4.6-1) ’

P, cosa is added to element F..
1 2i-1

Pl sina is added to element F2i

where

= 10  _ .
P, =K 107" v (Fy;_q COsa + F,. sina)

and K; is given by eq. (1).
Similarly, if the displacement in Z'-direction at nodal point i
is prescribed to be Yy then the followiiny modifications of
matrix K and vector F in eq. (4.6-1) are carried out

10_ .2 .
K, (1077°~1) sin’a is added to element K21_1'21_1
- K (1010-1) sinacosa is added to element K
2 : 21-1121
K (1010-1) cos?a is added to element K
2 ’ 2i,2i



- 106 -

where

K -2

_ 2
2 = Ky;.1,2i- SinQ Kyi-1,2i

Moreover
- P, sina is added to element F,. ,
P2 cosa is added to element FZi
where
10

P2 = K2 10 Y - (- P2i—1 sina + FZi cosa)

énd K, is given by eq. (2).

i + K.. .
sinacosa 2i.2i

14

2
COSs «

(B-2)
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