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Abstract

Finite element models of microstructure-dependent nonlinear theories for axisymmetric
bending of circular plates, which accounts for through-thickness power-law variation of a
two-constituent material, the von Kármán nonlinearity, and the strain gradient effects are
developed for the classical and first-order theory kinematics. The strain gradient effects are
included through the modified couple stress theory that contains a single material length
scale parameter which can capture the size effect in a functionally graded material plate.
The developed finite element models are used to determine the effect of the geometric
nonlinearity, power-law index, and microstructure-dependent constitutive relations on the
bending response of functionally graded circular plates.

Keywords. Circular plates; finite element analysis; classical plate theory; first-order
plate theory; functionally graded materials; modified couple stress theory; von Kármán
nonlinearity.

1 Background

1.1 Microstructural Effects

In recent years a number of models have been derived to include microstructural length
scales into the continuum description of beams and plates. Such models are useful in
determining the structural response of micro and nano devices made of a variety of new
materials that require the consideration of small material length scales over which the
neighboring secondary constituents interact, especially when the spatial resolution is com-
parable to the size of the secondary constituents. Examples of such materials are provided
by nematic elastomers and carbon nanotube composites [1] and environment resistent
coatings made of CNT reinforced materials [2, 3].

Theories that account for microstructural length scales are the modified couple stress
theory of Mindlin [4], Koiter [5], and Toupin [6] and the strain gradient theory of [7]–[9].
A more complete review of the early developments can be found in the work of Srinivasa
and Reddy [10]. The strain gradient theory is a more general form of the modified couple
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stress theory and the relationship between the modified couple stress theory and the strain
gradient theory can be found in the recent work of Reddy and Srinivasa [11].

A number of investigators exploited the modified couple stress theory to model size-
effects in homogeneous micro and nano beam and plate structures. Park and Gao [12, 13]
investigated analytically the bending problem of a EulerBernoulli beam while Ma et al.
[14]–[16] studied bending of beams using shear deformation theories and the modified cou-
ples stress model of Yang et al. [17]. Abdi et al. [18] examined the pull-in instability of an
electrostatic cantilever nanobeam, Akgöz and Civalek [19] studied analytically the buckling
problem of an axially loaded microbeam, Rahaeifard et al. [20] considered the deflection
and static pull-in voltage of microcantilevers, and Ansari et al. [21] examined analytically
the free vibration response of a Timoshenko graded microbeam. All of the papers cited
previously did not account for the geometric nonlinearity. Xia et al. [22] investigated
analytically the bending, post-buckling and free vibration behaviors of microbeams while
accounting for the von Kármán nonlinear strains.

1.2 Functionally graded materials

The last two decades have witnessed investigators exploring the possibility of using func-
tionally graded materials (FGMs) as a promising alternative to conventional homogenous
coatings (see Koizumi [23] and Erdogan [24]). FGMs comprise of at least two constituents
that are synthesized in such a way that the volume fractions of the constituents vary
continuously along any desired spatial direction, resulting in materials having smooth
variation of mechanical properties. Such property enhancements endow FGMs with ma-
terial properties such as the resilience to fracture. FGMs promise attractive applications
in a wide variety of wear coating and thermal shielding problems such as gears, cams,
cutting tools, high temperature chambers, furnace liners, turbines, micro-electronics and
space structures (see, for example, Reddy and his colleagues [25]–[29] for the analysis of
through-thickness, two-constituent FGM beams and plates).

The vast majority of two-constituent FGM studies employed either a power-law or
exponential distribution of the materials. In the power-law model, which is more commonly
used in bending, vibration, and buckling studies, a typical material property P is assumed
to vary through the thickness according to the formula (see [25]–[29])

P(z, T ) = [P1(T )− P2(T )] f(z) + P2(T ), f(z) =

(

1

2
+
z

h

)n

(1)

where P1 and P2 are the material properties of the top (material 1) and bottom (material
2) faces of the beam or plate, respectively, n is the volume fraction exponent, and T is the
temperature (i.e., the material properties can be possibly function of temperature). The
exponential model, which is often employed in fracture studies, is based on the formula
(see [30, 31])

P(z, T ) = P1(T ) exp

[

−α

(

1

2
−
z

h

)]

, α = log

(

P1(T )

P2(T )

)

(2)

With the progress of technology and fast growth of the use of nanostructures, FGMs
have found potential applications in micro and nano scale in the form of shape memory
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alloy thin films (see Lü et al. [32]), atomic force microscopes (AFMs) (see Kahrobaiyan et
al. [33]), electrically actuated actuators (see Zhang and Fu [34]), and microswitches (see
Shariat et al. [35]), to name a few. Few researchers investigated the response of function-
ally graded micro and nanobeams using modified couple stress or strain gradient theories.
Reddy and his colleagues [36]–[43] studied bending, vibration, and buckling of functionally
graded Euler-Bernoulli and Timoshenko beams. Simsek and Reddy [39, 40] studied an-
alytically the bending and vibration behaviors of graded microbeams using classical and
higher-order beam theories along with the modified couple stress theory to model size-
effects. Arbind and Reddy [38] and Arbind, Reddy, and Srinivasa [43] accounted for the
von Kármán nonlinear strains to develop nonlinear finite element models for functionally
graded Euler-Bernoulli and Timoshenko beams. The von Kármán nonlinearity may have
significant contribution to the response of micro- and nano-scale devices such as biosensors
and atomic force microscopes (see, for example, Li et al. [44], Pei, Tian, and Thundat
[45], and Reddy, El-Borgi, and Romanoff [46] ).

1.3 Present Study

A review of literature shows that there are no studies that report nonlinear axisymmetric
bending of FGM circular plates with microstructural length scale effects. In particular,
no finite element analysis of nonlinear bending of circular plates with modified couple
stress theory have been reported. The present paper fills this void in the literature.
The objective of the current paper is to develop finite element models of the classical
and first-order plate theories for axisymmetric bending of circular plates, accounting for
through-thickness power-law variation of a two-constituent material, modified couple stress
theory, and the von Kármán nonlinear strains (see Reddy and Berry [37] for the theoretical
developments). Since nanoscale devices may involve circular plate elements that may be
functionally graded and undergo moderately large rotations, the newly developed finite
element models can be used to determine the size effects in functionally graded micro
circular plates. Moreover, the bending-extensional coupling is captured through the von
Kármán nonlinear strains.

2 Constitutive Models

2.1 Material Variation through the Thickness

Consider a two-constituent functionally graded circular plate of outside radius a, inside
radius b, and total thickness h. The r-coordinate is taken radially outward from the center
the plate, z-coordinate along the thickness (or height) of the plate, and the θ-coordinate
is taken along a circumference of the plate. In a general case where applied loads and
geometric boundary conditions are not axisymmetric, the displacements (ur, uθ, uz) along
the coordinates (r, θ, z) are functions of r, θ, and z coordinates and time t. We assume that
the material of the plate is isotropic but varies from one kind of material at the bottom,
z = −h/2, to another material on the top, z = h/2, so that the modulus E(z) and mass
density ρ(z) of the material of the plate vary through the plate thickness according to the
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Fig. 1: Geometry and coordinate system for an axisymmetric bending of an FGM circular
plate.

power-law (see Fig. 1):

E(z) = (E1 − E2) f(z) + E2, ρ(z) = (ρ1 − ρ2) f(z) + ρ2
(3)

f(z) =

(

1

2
+
z

h

)n

where the subscripts 1 and 2 on E and ρ refer the the material number and n denotes the
volume fraction exponent, called power-law index. Poisson’s ratio ν will be assumed to be
constant throughout. When n = 0, we obtain the single-material plate (with the property
of material 1).

2.2 Modified Couple Stress Theory

According to the modified couple stress theory, the strain energy potential of an elastic
beam can be expressed as

U =
1

2

∫ a

b

[

∫ h
2

−

h
2

(σ : ε+m : χ) dz

]

rdr (4)

where a is the outer radius and b is the inner radius of the plate, σ is the Cauchy stress
tensor, ε is the simplified Green–Lagrange strain tensor (as will be discussed in the coming
sections), m is the deviatoric part of the symmetric couple stress tensor, ε is the von
Kármán strain tensor, and χ is the symmetric curvature tensor

χ =
1

2

[

∇ω + (∇ω)T
]

(5)
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Here ω denotes the rotation vector

ω =
1

2
∇× u (6)

where u is the displacement vector.
The components of the von Kármán strain tensor in cylindrical coordinate system for

the axisymmetric case (i.e., independent of θ) are given by (see Reddy[47]–[50])

εrr =
∂ur
∂r

+
1

2

(

∂uz
∂r

)2

εrz =
1

2

(

∂ur
∂z

+
∂uz
∂r

+
∂uz
∂r

∂uz
∂z

)

(7)

εθθ =
ur
r
, εzz =

∂uz
∂z

where (ur, uz) denote the total displacements along the (r, z) coordinates (uθ = 0). The
only nonzero component of the rotation vector is

ωθ =
1

2

(

∂ur
∂z

−
∂uz
∂r

)

(8)

Hence, the nonzero components of the curvature tensor are

χrθ =
1

2

(

∂ωθ

∂r
−
ωθ

r

)

, χzθ =
1

2

∂ωθ

∂z
(9)

3 Classical Plate Theory

3.1 Displacements and Strains

The total displacements (ur, uθ, uz) along the three coordinate directions (r, θ, z), as im-
plied by the Love–Kirchhoff hypothesis for plates, which is the same as the Euler–Bernoulli
hypothesis for beams, are assumed in the form

u = ur êr + uz êz; ur(r, z) = u(r)− z
dw

dr
, uθ = 0, uz(r, z) = w(r) (10)

where u is the radial displacement and w is the transverse deflection of the point (r, 0) on
the midplane of the plate. The displacement field in Eq. (10) is based on the Kirchhoff
hypothesis that straight lines normal to the midplane before deformation remain (1) inex-
tensible, (2) straight, and (3) normal to the midsurface after deformation. The Kirchhoff
hypothesis amount to neglecting both transverse shear and transverse normal effects, that
is, deformation is due entirely to bending and inplane stretching.

The von Kármán strains in (7) for the classical plate theory take the form

εrr = ε(0)rr + zε(1)rr , εθθ = ε
(0)
θθ + zε

(1)
θθ (11)
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where

ε(0)rr =
du

dr
+

1

2

(

dw

dr

)2

, ε(1)rr = −
d2w

dr2
(12)

ε
(0)
θθ =

u

r
, ε

(1)
θθ = −

1

r

dw

dr

The rotation and curvature components are

ωθ =
1

2

(

dur
dz

−
duz
dr

)

= −
dw

dr
(13)

χrθ =
1

2

(

dωθ

dr
−
ωθ

r

)

=
1

2

(

−
d2w

dr2
+

1

r

dw

dr

)

3.2 Equations of Equilibrium

The principle of virtual displacements is used to develop the weak forms and derive the
equations of equilibrium. We have,

0 =

∫ a

b

∫ h
2

−

h
2

(σrr δεrr + σθθ δεθθ + 2mrθδχrθ) r dz dr −

∫ a

b

q δuz(r,
h

2
) r dr

0 =

∫ a

b

[

Nrr

(

dδu

dr
+
dw

dr

dδw

dr

)

+Nθθ

(

δu

r

)

−Mrr
d2δw

dr2

−
1

r
Mθθ

dδw

dr
+ Prθ

(

−
d2δw

dr2
+

1

r

dδw

dr

)

− qδw

]

r dr dt (14)

where q = q(r) is the distributed transverse load, and (Nrr, Nθθ), (Mrr,Mθθ), and Prθ are
the stress resultants defined by

Nrr(r) =

∫ h
2

−

h
2

σrr dz, Nθθ(r) =

∫ h
2

−

h
2

σθθ dz

Mrr(r) =

∫ h
2

−

h
2

σrrz dz, Mθθ(r) =

∫ h
2

−

h
2

σrrz dz (15)

Prθ(r) =

∫ h
2

−

h
2

mrθ dz

The equations of equilibrium of the classical plate theory are

1

r

[

d

dr
(rNrr)−Nθθ

]

= 0 (16)

1

r

[

d

dr
(rVr) +

d2

dr2
(rPrθ) +

dPrθ

dr

]

+ q = 0 (17)
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where Vr is the effective transverse shear force acting on the rz-plane

Vr = Qr +Nrr
dw

dr
=

1

r

[

d

dr
(rMrr)−Mθθ + rNrr

dw

dr

]

(18)

The boundary conditions involve specifying one element of each of the following pairs:

u or rNrr

w or r

[

Vr +
∂

∂r
(rPrθ) + Prθ

]

≡ rV̂r (19)

−
dw

dr
or rMrr + rPrθ ≡ rM̂rr

4 First-Order Theory

4.1 Displacements and Strains

The first order shear deformation plate theory (FSDT) (see Reddy [?]–[?]) is the simplest
theory that accounts for nonzero transverse shear strain. It is based on the displacement
field

u = ur êr + uz êz, ur(r, z) = u(r) + zφ(r), uz(r, z) = w(r) (20)

where φ denotes rotation of a transverse normal in the plane θ =constant. The first-order
theory includes a constant state of transverse shear strain with respect to the thickness
coordinate, and hence, requires the use of a shear correction factor, which depend not
only on the material and geometric parameters but also on the loading and boundary
conditions.

The nonzero von Kármán strains of the theory are

εrr = ε(0)rr + zε(1)rr , εθθ = ε
(0)
θθ + zε

(1)
θθ , εrz = ε(0)rz (21)

where

ε(0)rr =
du

dr
+

1

2

(

dw

dr

)2

, ε(1)rr =
dφ

dr
(22)

ε
(0)
θθ =

u

r
, ε

(1)
θθ =

φ

r
, 2ε(0)rz = φ+

dw

dr

The rotation and curvature components are

ωθ =
1

2

(

dur
dz

−
duz
dr

)

=
1

2

(

φ−
dw

dr

)

(23)

χrθ =
1

2

(

dωθ

dr
−
ωθ

r

)

=
1

4

[

dφ

dr
−

1

r
φ−

(

d2w

dr2
−

1

r

dw

dr

)]
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4.2 Equations of Equilibrium

The principle of virtual displacements for the first-order theory takes the form

0 =

∫ a

b

∫ h
2

−

h
2

(σrr δεrr + σθθ δεθθ + 2Ksσrz δεrz + 2mrθδχrθ) r dz dr

=

∫ a

b

{

Nrr

(

dδu

dr
+
dw

dr

dδw

dr

)

+Nθθ

(

δu

r

)

+Mrr
dδφ

dr
+

1

r
Mθθδφ− qδw

+Qr

(

δφ+
dδw

dr

)

+
1

2
Prθ

[

dδφ

dr
−

1

r
δφ−

(

d2δw

dr2
−

1

r

dδw

dr

)]}

r dr (24)

where the shear force Qr is defined by

Qr = Ks

∫ h
2

−

h
2

σrz dz (25)

and Ks denotes the shear correction factor.
The governing equations of motion of the first-order theory are

1

r

[

d

dr
(rNrr)−Nθθ

]

= 0 (26)

1

r

d

dr
(rVr) +

1

2r

d

dr

[

d

dr
(rPrθ) + Prθ

]

+ q = 0 (27)

1

r

[

d

dr
(rMrr)−Mθθ +

1

2

d

dr
(rPrθ) +

1

2
Prθ

]

−Qr = 0 (28)

where

Vr = Qr +Nrr
∂w

∂r
(29)

The boundary conditions involve specifying one element of each of the following pairs:

u or rNrr

w or rVr +
1

2

[

d

dr
(rPrθ) + Prθ

]

≡ rV̄r

(30)

−
dw

dr
or − 1

2rPrθ ≡ rM

φ or rMrr +
1
2rPrθ ≡ rM̄rr

5 Plate Constitutive Relations

5.1 Stress–strain relations

For a two-constituent functionally graded linear elastic material, the stress-strain relations
are







σrr
σθθ
σrz







=
E(z)

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2











εrr
εθθ
2εrz







(31)
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where E varies with z according to Eq. (3) and ν is a constant. The modified couple
stress constitutive relations is [4]

mrθ = 2Gℓ2 χrθ (32)

where ℓ is the length scale parameter and G is the shear modulus [G = 0.5E/(1 + ν)].
The stress resultants in the two theories can be expressed in terms of the displacements,
as given in the next two subsections.

5.2 Classical plate theory

The stress resultants of the classical plate theory are related to the displacements (u,w)
according to the relations

Nrr =

∫ h
2

−

h
2

σrr dz = A

[

du

dr
+

1

2

(

dw

dr

)2

+ ν
u

r

]

−B

(

d2w

dr2
+
ν

r

dw

dr

)

Nθθ =

∫ h
2

−

h
2

σθθ dz = A

[

u

r
+ ν

du

dr
+
ν

2

(

dw

dr

)2
]

−B

(

ν
d2w

dr2
+

1

r

dw

dr

)

Mrr =

∫ h
2

−

h
2

σrrz dz = B

[

du

dr
+

1

2

(

dw

dr

)2

+ ν
u

r

]

−D

(

d2w

dr2
+
ν

r

dw

dr

)

(33)

Mθθ =

∫ h
2

−

h
2

σθθz dz = B

[

u

r
+ ν

du

dr
+
ν

2

(

dw

dr

)2
]

−D

(

ν
d2w

dr2
+

1

r

dw

dr

)

Prθ =

∫ h
2

−

h
2

mrθ dz = Srθ

(

−
d2w

dr2
+

1

r

dw

dr

)

where A, B, D, and Srθ are the extensional, extensional-bending, bending, and shear
stiffness coefficients

A =
1

(1− ν2)

∫ h
2

−

h
2

E(z) dz, B =
1

(1− ν2)

∫ h
2

−

h
2

E(z)z dz

(34)

D =
1

(1− ν2)

∫ h
2

−

h
2

E(z)z2 dz, Srθ =
ℓ2

2(1 + ν)

∫ h
2

−

h
2

E(z) dz

Using the power-law in Eq. (3), we obtain

A =
E2h

1− ν2
M + n

1 + n
, Srθ =

E2hℓ
2

2(1 + ν)

M + n

1 + n

B =
E2h

2

2(1− ν2)

n(M − 1)

(1 + n)(2 + n)
, M =

E1

E2
(35)

D =
E2h

3

12(1− ν2)

[

(6 + 3n+ 3n2)M + (8n+ 3n2 + n3)

6 + 11n+ 6n2 + n3

]
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5.3 First-order plate theory

The stress resultants in the first-order plate theory can be expressed in terms of the
generalized displacements (u,w, φ) as

Nrr =

∫ h
2

−

h
2

σrr dz = A

[

du

dr
+

1

2

(

dw

dr

)2

+ ν
u

r

]

+B

(

dφ

dr
+
ν

r
φ

)

Nθθ =

∫ h
2

−

h
2

σθθ dz = A

[

u

r
+ ν

du

dr
+
ν

2

(

dw

dr

)2
]

+B

(

ν
dφ

dr
+

1

r
φ

)

Mrr =

∫ h
2

−

h
2

σrrz dz = B

[

du

dr
+

1

2

(

dw

dr

)2

+ ν
u

r

]

+D

(

dφ

dr
+
ν

r
φ

)

(36)

Mθθ =

∫ h
2

−

h
2

σθθz dz = B

[

u

r
+ ν

du

dr
+
ν

2

(

dw

dr

)2
]

+D

(

ν
dφ

dr
+

1

r
φ

)

Qr =

∫ h
2

−

h
2

σrz dz = KsSrz

(

φ+
dw

dr

)

Prθ =

∫ h
2

−

h
2

mrθ dz =
1

2
Srθ

[

dφ

dr
−
d2w

dr2
−

1

r

(

φ−
dw

dr

)]

(37)

where A, B, D, and Srz = Srθ are the stiffness coefficients defined in Eqs. (34) and (35).

6 Finite Element Models

6.1 Classical plate theory

The statement in Eq. (14) is equivalent to the following two statements over a typical
finite element Ωe = (ra, rb):

0 =

∫ rb

ra

[

Nrr
dδu

dr
+Nθθ

(

δu

r

)]

r dr −Q1δu(ra)−Q4δu(rb) (38)

0 =

∫ rb

ra

[

Nrr
dw

dr

dδw

dr
−Mrr

d2δw

dr2

−
1

r
Mθθ

dδw

dr
+ Prθ

(

−
d2δw

dr2
+

1

r

dδw

dr

)

− qδw

]

r dr

− [Q2δw(ra) +Q5δw(rb) +Q3δθ(ra) +Q6δθ(rb)] (39)

where Nrr, Nθθ, Mrr, Mθθ, and Prθ are known in terms of u and w through Eqs. (33),
θ denotes the slope θ = −(dw/dr), and Qi are the generalized forces at the nodes of the

10



Figure 2
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Fig. 2: Secondary variables of a typical finite element for (a) classical plate theory and (b)
first-order shear deformation plate theory.

element for a circular plate [see Fig. 2(a)]:

Q1 ≡ − [rNrr]ra , Q4 ≡ [rNrr]rb

Q2 ≡ −
[

rV̂r

]

ra
, Q5 ≡

[

rV̂r

]

rb
(40)

Q3 ≡ −
[

rM̂rr

]

ra
, Q6 ≡

[

rM̂rr

]

rb

An examination of the boundary conditions in Eq. (19) show that the Lagrange inter-
polation of u and Hermite interpolation of w is necessary. Let

u(r) =

2
∑

j=1

∆1
jψj(r), w(r) =

4
∑

J=1

∆2
JϕJ(r) (41)

where ψj(r) are the linear polynomials, ϕJ(r) are the Hermite cubic polynomials, (∆1
1,

∆1
2) are the nodal values of u at ra and rb, respectively, and ∆2

J (J = 1, 2, 3, 4) are the
nodal values associated with w:

∆2
1 = w(ra), ∆2

3 = w(rb), ∆2
2 = −

dw

dr

∣

∣

∣

∣

ra

, ∆2
4 = −

dw

dr

∣

∣

∣

∣

rb

(42)

Substitution of the approximations in Eq.(41) into Eqs. (38) and (39), we obtain the
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following finite element model:

[

K11 K12

K21 K22

]{

∆1

∆2

}

=

{

F1

F2

}

(43)

The stiffness coefficients Kαβ
ij and force coefficients Fα

i (α, β = 1, 2) are defined as follows:

K11
ij =

∫ rb

ra

A

[

dψi

dr

(

dψj

dr
+
ν

r
ψj

)

+
1

r
ψi

(

1

r
ψj + ν

dψj

dr

)]

rdr

K12
iJ =

∫ rb

ra

{

dψi

dr

[

A
1

2

dw

dr

dϕJ

dr
−B

(

d2ϕJ

dr2
+
ν

r

dϕJ

dr

)]

+
1

r
ψi

[

1

2
Aν

dw

dr

dϕJ

dr
−B

(

ν
d2ϕJ

dr2
+

1

r

dϕJ

dr

)]}

rdr

K21
Ij =

∫ rb

ra

[(

A
dw

dr

dϕI

dr
−B

d2ϕI

dr2

)(

dψj

dr
+
ν

r
ψj

)

−B
1

r

dϕI

dr

(

1

r
ψj + ν

dψj

dr

)]

rdr

K22
IJ =

∫ rb

ra

{

dw

dr

dϕI

dr

[

1

2
A
dw

dr

dϕJ

dr
−B

(

d2ϕJ

dr2
+
ν

r

dϕJ

dr

)]

−
d2ϕI

dr2

[

1

2
B
dw

dr

dϕJ

dr
−D

(

d2ϕJ

dr2
+
ν

r

dϕJ

dr

)]

−
1

r

dϕI

dr

[

1

2
Bν

dw

dr

dϕJ

dr
−D

(

ν
d2ϕJ

dr2
+

1

r

dϕJ

dr

)]

+ Srθ

(

−
d2ϕI

dr2
+

1

r

dϕI

dr

)(

−
d2ϕJ

dr2
+

1

r

dϕJ

dr

)}

rdr

F 1
i = Q1ψi(ra) +Q4ψi(rb)

F 2
I =

∫ rb

ra

qϕI rdr +Q2ϕI(ra) +Q5ϕI(rb) +Q3

[

−
dϕI

dx

]

ra

+Q6

[

−
dϕI

dx

]

rb

(44)
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6.2 Firs-order plate theory

The virtual work statement in Eq. (24) is equivalent to the following three statements
over a typical finite element Ωe = (ra, rb):

0 =

∫ rb

ra

(

Nrr
dδu

dr
+Nθθ

δu

r

)

r dr −Q1δu(ra)−Q4δu(rb) (45)

0 =

∫ rb

ra

[

Nrr
dw

dr

dδw

dr
+Qr

dδw

dr
+

1

2
Prθ

(

−
d2δw

dr2
+

1

r

dδw

dr

)

− qδw

]

r dr

−Q2δw(ra)−Q5δw(rb) (46)

0 =

∫ rb

ra

[

Mrr
dδφ

dr
+

1

r
Mθθδφ+Qrδφ+

1

2
Prθ

(

dδφ

dr
+

1

r
δφ

)]

r dr

−Q3δφ(ra)−Q6δφ(rb) (47)

where Nrr, Nθθ, Mrr, Mθθ, and Prθ are known in terms of u and w through Eq. (33),
and Qi are the generalized forces at the nodes of the element for a circular plate [see Fig.
2(b)]:

Q1 ≡ − [rNrr]ra , Q5 ≡ [rNrr]rb
Q2 ≡ −

[

rV̄r
]

ra
, Q6 ≡

[

rV̄r
]

rb
(48)

Q3 ≡ − [rM]ra , Q7 ≡ [rM]rb
Q4 ≡ −

[

rM̄rr

]

ra
, Q8 ≡

[

rM̄rr

]

rb

An examination of the boundary conditions in Eq. (30) show that the Lagrange inter-
polation of (u, φ) and Hermite interpolation of w are required. Let

u(r) =

m
∑

j=1

Ujψ
(1)
j (r), w(r, t) =

4
∑

j=1

∆jψ
(2)
j (r), φ(r, t) =

n
∑

j=1

Φjψ
(3)
j (r), (49)

where ψ
(1)
j and ψ

(3)
j are the Lagrange polynomials of different degree used for u and φ,

respectively, and ψ
(2)
j are the Hermite cubic polynomials. Substitution of the approxima-

tions in Eq.(49) into Eqs. (45)–(47), we obtain the following finite element model:





K11 K12 K13

K21 K22 K23

K31 K32 K33











U

∆

Φ







=







F1

F2

F3







(50)

The nonzero mass and stiffness coefficients, Mαβ
ij and Kαβ

ij , and force coefficients Fα
i
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(α, β = 1, 2, 3) are defined as follows:

K11
ij =

∫ rb

ra

A

[

dψ
(1)
i

dr

(

dψ
(1)
j

dr
+
ν

r
ψ
(1)
j

)

+
1

r
ψ
(1)
i

(

1

r
ψ
(1)
j + ν

dψ
(1)
j

dr

)]

rdr

K12
ij =

1

2

∫ rb

ra

A
dw

dr

(

dψ
(1)
i

dr
+
ν

r
ψ
(1)
i

)

dψ
(2)
j

dr
rdr

K21
ij =

∫ rb

ra

A
dw

dr

dψ
(2)
i

dr

(

dψ
(1)
j

dr
+
ν

r
ψ
(1)
j

)

rdr

K13
ij =

∫ rb

ra

B

[

dψ
(1)
i

dr

(

dψ
(3)
j

dr
+
ν

r
ψ
(3)
j

)

+
1

r
ψ
(1)
i

(

ν
dψ

(3)
j

dr
+

1

r
ψ
(3)
j

)]

rdr

K22
ij =

∫ rb

ra

[

1

2
A

(

dw

dr

)2 dψ
(2)
i

dr

dψ
(2)
j

dr
+KsSrz

dψ
(2)
i

dr

dψ
(2)
j

dr

+
1

2
Srθ

(

−
d2ψ

(2)
i

dr2
+

1

r

dψ
(2)
i

dr

)(

−
d2ψ

(2)
j

dr2
+

1

r

dψ
(2)
j

dr

)]

rdr

K23
ij =

∫ rb

ra

[

B
dw

dr

dψ
(2)
i

dr

(

dψ
(1)
j

dr
+
ν

r
ψ
(1)
j

)

+KsSrz
dψ

(2)
i

dr
ψ
(3)
j

+
1

4
Srθ

(

−
d2ψ

(2)
i

dr2
+

1

r

dψ
(2)
i

dr

)(

dψ
(3)
j

dr
−

1

r
ψ
(3)
j

)]

rdr

K31
ij =

∫ rb

ra

B

[

dψ
(3)
i

dr

(

dψ
(1)
j

dr
+
ν

r
ψ
(1)
j

)

+
1

r
ψ
(3)
i

(

ν
dψ

(1)
j

dr
+

1

r
ψ
(1)
j

)]

rdr

K32
ij =

∫ rb

ra

[

1

2
B
dw

dr

(

dψ
(3)
i

dr
+
ν

r
ψ
(3)
i

)

dψ
(2)
j

dr
+KsSrzψ

(3)
i

dψ
(2)
j

dr

+
1

4
Srθ

(

dψ
(3)
i

dr
−

1

r
ψ
(3)
i

)(

−
d2ψ

(2)
j

dr2
+

1

r

dψ
(2)
j

dr

)]

rdr

K33
ij =

∫ rb

ra

{

D

[

dψ
(3)
i

dr

(

dψ
(3)
j

dr
+
ν

r
ψ
(3)
j

)

+
1

r
ψ
(3)
i

(

ν
dψ

(3)
j

dr
+

1

r
ψ
(3)
j

)]

+KsSrzψ
(3)
i ψ

(3)
j +

1

4
Srθ

(

dψ
(3)
i

dr
−

1

r
ψ
(3)
i

)(

dψ
(3)
j

dr
−

1

r
ψ
(3)
j

)}

rdr

F 1
i = Q1ψ

(1)
i (ra) +Q4ψ

(1)
i (rb), F 3

i = Q3ψ
(3)
i (ra) +Q6ψ

(3)
i (rb)

F 2
i =

∫ rb

ra

qψ
(2)
i rdr +Q2ψ

(2)
i (ra) +Q5ψ

(2)
i (rb)

(51)
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6.3 Solution of Nonlinear Equations

6.3.1 Newton’s Iteration Procedure

The solution of the nonlinear equations in Eqs. (43) and (50) is discussed here using
Newton’s iterative procedure. The linearized element equations at the beginning of the
rth iteration are of the form

Te(∆(r−1))δ∆(r) = −Re(∆(r−1)) = (Fe −Ke∆e)(r−1) (52)

where the tangent stiffness matrix Te is calculated using the definition

Te ≡
∂Re

∂∆e
or T e

ij ≡
∂Re

i

∂∆e
j

(53)

The global incremental displacement vector δU at the rth iteration is obtained by solving
the assembled equations (after the imposition of the boundary conditions)

δU = −[T(U(r−1))]−1R(r−1) (54)

and the total solution is computed from

U(r) = U(r−1) + δU (55)

At the beginning of the iteration process, that is, when r = 1, solution U(0) that is
consistent with the problem boundary conditions must be assumed. For problems with
homogeneous boundary conditions, one may take U(0) = 0 so that the first iteration
solution is the linear solution. Using the solution from the (r − 1)st iteration, we can
compute the coefficient matrix K(r−1) ≡ K(U(r−1)) and vector F(r−1) ≡ F(U(r−1)). The
solution at the rth iteration is determined by solving Eq. (54). Once the solution U(r) is
obtained, we check to see if the residual vector

R(r) ≡ K(r)U(r) − F(r) (56)

is zero. The magnitude of this residual vector will be small enough if the solution has
converged. In other words, we terminate the iteration if the magnitude of the residual
vector, measured in a suitable norm, is less than some preselected tolerance ǫ. If the
problem data are such that KU as well as F are very small, the norm of the residual
vector may also be very small even when the solution U has not converged. Therefore, it
is necessary to normalize the residual vector with respect to F. Using the Euclidean norm,
we can express the error criterion as

√

R(r) ·R(r)

F(r) · F(r)
≤ ǫ (57)

Alternatively, one may check to see if the normalized difference between solution vec-
tors from two consecutive iterations, measured with the Euclidean norm, is less than a
preselected tolerance ǫ:

√

∆U ·∆U

U(r) ·U(r)
=

√

√

√

√

∑N
I=1 |U

(r)
I − U

(r−1)
I |2

∑N
I=1 |U

(r)
I |2

≤ ǫ (58)
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where ∆U = U(r) − U(r−1). Thus, the iteration process is continued until the error
criterion inEq. (58) is satisfied. The is is the error criterion used in the present study.

Acceleration of convergence for some types of nonlinearities may be achieved by using
a weighted-average of solutions from the last two iterations rather than the solution from
the last iteration to evaluate the coefficient matrix:

U(r) = [K(Ū)]−1F(Ū), Ū ≡ βU(r−2) + (1− β)U(r−1), 0 ≤ β ≤ 1 (59)

where β is known as the acceleration parameter. The value of β depends on the nature of
nonlinearity and the type of problem. Often, one has to play with the value of β to obtain
convergence.

For the form of the finite element equations at hand, the tangent stiffness matrix T

is assumed to be of the same form as the direct stiffness matrix K for each theory. Then
the coefficients of the submatrices Tαβ can be computed using the definition

Tαβ
ij ≡

∂Rα
i

∂∆β
j

= Kαβ
ij +

nγ
∑

k=1

∂Kαγ
ik

∂∆β
j

∆γ
k −

∂Fα
i

∂∆β
j

(60)

6.3.2 Tangent stiffness coefficients for the classical plate theory

The tangent stiffness coefficients for this case are given by

T 11
ij = K11

ij , T 12
iJ = K12

iJ +

∫ rb

ra

1

2
A
dw̄

dr

(

dψi

dr

dϕJ

dr
+
ν

r
ψi
dϕJ

dr

)

rdr = T 21
Ji , T 21

Ij = K21
Ij ,

T 22
IJ = K22

IJ +

∫ rb

ra

[

A

{

dϕI

dr

dϕJ

dr

[(

dw̄

dr

)2

+
dū

dr
+ ν

ū

r

]}

−B
dϕI

dr

dϕJ

dr

(

d2w̄

dr2
+
ν

r

dw̄

dr

)

−
1

2
B
dw̄

dr

(

d2ϕI

dr2
dϕJ

dr
+
ν

r

dϕI

dr

dϕJ

dr

)]

rdr

=

∫ rb

ra

[

A

{

dϕI

dr

dϕJ

dr

[

1.5

(

dw̄

dr

)2

+
dū

dr
+ ν

ū

r

]}

−B

[

dϕI

dr

dϕJ

dr

(

d2w̄

dr2
+

3ν

r

dw̄

dr

)

+

(

d2ϕI

dr2
dϕJ

dr
+
dϕI

dr

d2ϕJ

dr2

)

dw̄

dr

]

+D

[

d2ϕI

dr2

(

d2ϕJ

dr2
+
ν

r

dϕJ

dr

)

+
1

r

dϕI

dr

(

ν
d2ϕJ

dr2
+

1

r

dϕJ

dr

)]

+ Srθ

(

−
d2ϕI

dr2
+

1

r

dϕI

dr

)(

−
d2ϕJ

dr2
+

1

r

dϕJ

dr

)}

rdr

(61)

where the bar over w and u indicates that they are evaluated using the nodal values from
the previous iteration [see Eq. (59)]. The tangent stiffness matrix is symmetric (i.e.,

Tαβ
ij = T βα

ji ).
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6.3.3 Tangent stiffness coefficients for the first-order plate theory

The tangent stiffness coefficients for the FSDT are given by

T 11
ij = K11

ij , T 12
ij = 2K12

ij , T 21
ij = K21

ij , T 13
ij = K13

ij

T 31
ij = K31

ij = T 13
ji , T 23

ij = K23
ij , T 33

ij = K33
ij

T 22
ij = K22

ij +

∫ rb

ra

{

A

[(

dw̄

dx

)2

+
dū

dr
+ ν

ū

r

]

+B

(

dū

dr
+ ν

ū

r

)}

dψ
(2)
i

dr

dψ
(2)
j

dr
rdr

=

∫ rb

ra

[{

A

[

1.5

(

dw̄

dx

)2

+
dū

dr
+ ν

ū

r

]

+B

(

dū

dr
+ ν

ū

r

)}

dψ
(2)
i

dr

dψ
(2)
j

dr
rdr

+KsSrz
dψ

(2)
i

dr

dψ
(2)
j

dr
+

1

2
Srθ

(

−
d2ψ

(2)
i

dr2
+

1

r

dψ
(2)
i

dr

)(

−
d2ψ

(2)
j

dr2
+

1

r

dψ
(2)
j

dr

)]

rdr

T 32
ij = K32

ij +
1

2

∫ rb

ra

B
dw̄

dr

(

dψ
(3)
i

dr
+
ν

r
ψ
(3)
i

)

dψ
(2)
j

dr
rdr

=

∫ rb

ra

[

B
dw̄

dr

(

dψ
(3)
i

dr
+
ν

r
ψ
(3)
i

)

dψ
(2)
j

dr
+KsSrzψ

(3)
i

dψ
(2)
j

dr

+
1

4
Srθ

(

dψ
(3)
i

dr
−

1

r
ψ
(3)
i

)(

−
d2ψ

(2)
j

dr2
+

1

r

dψ
(2)
j

dr

)

]

rdr = T 23
ji (62)

The tangent stiffness matrix of the TBT element is also symmetric.

7 Numerical Results

Here we consider several examples of solid and annular circular plates with clamped and
simply supported boundary conditions to determine the parametric effects of the power-law
index n and the length scale parameters ℓ [see Eq. (32)] on the nonlinear load-deflection
behavior.

The following parameters are used in obtaining the numerical results (no specific units
are used) in theexamples:

h = 0.1, L = 10h, ν = 0.25, E1 = 106, E2 = 105, Ks = 5/6. (63)

Convergence studies were carried out to verify the linear and nonlinear solution of the
clamped homogeneous solid circular plates under uniformly distributed transverse load
by comparing with the analytical and finite element solutions from Reddy [49, 52]. In all
cases, unless stated otherwise, 16 CPT or FSDT elements are used. We note that the CPT
element has three (u,w,−dw/dx) while the FSDT element has four (u,w,−dw/dx, φ)
degrees of freedom per node. The difference between the results predicted by the two
theories is not significant even for a/h = 10 (i.e., the shear deformation effect cannot be
distinctly seen in the graphs). Numerical results are presented for various values of the
power-law index n. The ratio of the length scale to the thickness of the plate ℓ/h is varied.
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These values selected only to determine the parametric effects and they do not necessarily
correspond to any specific physical system.

The first example deals with a clamped solid circular plate under uniformly distributed
transverse load of intensity q0. The boundary conditions used in the two theories are as
follows:

CPT: u =
dw

dx
= 0 at r = 0; u = w =

dw

dx
= 0 at r = a

(64)

FSDT: u =
dw

dx
= φ = 0 at r = 0; u = w =

dw

dx
= φ = 0 at r = a

The load steps were of the magnitude ∆q0 = 100. The linear solutions predicted at
q0 = 100 for the homogeneous plates by the 16-element meshes of the CPT and FSDT
elements are w(0) = 1.7578 × 10−2 and w(0) = 1.8292 × 10−2, respectively. These agree
with the analytical solutions (see Reddy [49])

wCPT(0) =
q0a

4

64D
= 1.7578×10−2 , wFSDT(0) =

q0a
4

64D

(

1 +
8

3(1− ν)Ks

h2

a2

)

= 1.8328×10−2

(65)
where D = Eh3/12(1 − ν2). Many FSDT element are required to achieve the analytical
solution. The corresponding nonlinear solutions are w(0) = 1.7279 × 10−2 and w(0) =
1.7978 × 10−2 (after three Newton iterations for a specified tolerance of ǫ = 10−3 for
convergence).

The load parameter P = (q0a
4/E1h

4) versus the dimensionless deflections w(0)/h are
presented in Fig. 3 for various values of the power-law index n and the ratio of the length
scale to the plate thickness ℓ/h. In all cases, the effect of the material length scale entering
through the couples stress term is to stiffen the clamped plate.

The next example deals with annular plates clamped at the outer edge and subjected
to uniformly distributed transverse load of intensity q0; the hole diameter is taken as b =
0.25a. The edge at r = b is assumed to be free (i.e., no displacement boundary conditions
are specified). The linear solutions predicted at q0 = 100 for the homogeneous annular
plates by the CPT and FSDT are w(0.25) = 1.6296× 10−2 and w(0.25) = 1.6850× 10−2,
respectively; and for solid plates they are w(0.25) = 1.5450×10−2 and w(0.25) = 1.6109×
10−2.

Plots of the load parameter P = (q0a
4/E1h

4) versus dimensionless center deflection
w(0.25)/h are shown in Fig. 4 for n = 0, 1, 5 and ℓ/h = 0, 0.4. For comparison, the results
of solid circular (SC) plates are also included in the figure. The load-deflection curves
for ℓ/h = 0.4 run parallel to those with ℓ/h = 0 (for any n). Solid plates carry more
load than annular plates, but solid plates have more material (hence stiffer) than annular
plates. Once again, we see the stiffening effect due to the inclusion of the length scale.

Next we consider annular plates clamped at the inner edge and subjected to uniformly
distributed transverse load of intensity q0; the hole diameter is taken as b = 0.25a. The
edge at r = a is assumed to be free (i.e., no displacement boundary conditions are spec-
ified). The linear solution predicted at q0 = 50 by the CPT is w(a) = 2.3586 × 10−2 for
n = 0 and ℓ/h = 0; w(a) = 1.8790× 10−2 for n = 0 and ℓ/h = 0.4; w(L) = 5.3324× 10−2
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6 5
1 210, 100, 0.3, 10 , 10

8 elements 

h a E En= = = = =

4
0

4
1

q a
P

E L
=

0 25 50 75 100 125

Load parameter, P

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
ra

n
s
v
e
rs

e
 d

e
fl

e
ct

io
n

, 
w
/
h

Clamped solid circular plate  under UDL

n = 5, l/h = 0 

n = 0, l/h = 0 

n = 1, l/h = 0 

n = 5, 

l/h = 0.5

n = 0, l/h = 0.5

   n = 1, 

l/h = 0.5

n = 0, l/h =1

0 5 10 15 20 25 30

Load parameter, P

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
ra

n
sv

e
rs

e
 d

e
fl

e
ct

io
n

, 
w

(0
)/
h

n = 0, l/h = 0.6 (CPT)

n = 0, l/h = 0.2 (CPT)

n = 0, l/h = 0.4 (CPT)

n = 0, l/h = 0 (CPT)
n = 0, l/h = 0 (FSDT)

n = 5, l/h = 0

n = 5, l/h = 0.4
n = 1, l/h = 0
n = 1, l/h = 0.4

}CPT

6 5
1 20.1, 1, 0.25, 10 , 10

16 elements 

h a E En= = = = =

4
0

4
1

q a
P

E L
=

Fig. 3: Load-deflection curves for clamped solid circular plates for various values of n and
l/h. Figure 4

6 5
1 210, 100, 25, 0.3, 10 , 10

8 elements 

h a b E En= = = = = =

4
0

4
1

q a
P

E L
=

P

3.0

3.5

4.0

4.5

5.0

fl
e
ct

io
n

, 
w

(2
5
)/
h

Clamped solid and annular 

plates under UDL

n = 5, l/h = 0

n = 0, l/h = 0

n = 5, l/h = 0.5

0 5 10 15 20 25 30

Load parameter, P

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
ra

n
s
v
e
rs

e
 d

e
fl

e
ct

io
n

, 
w

(0
.2

5
)/
h

n = 0, l/h = 0 

n = 0, l/h = 0.4

n = 0, l/h = 0 (SC; CPT)
n = 0, l/h = 0 (SC; FSDT)

n = 5, l/h = 0.4

n = 5, l/h = 0

n = 1, l/h = 0.4
n = 1, l/h = 0

6
1

5
2

0.1, 1, 0.25, 0.25, 10 ,

10 , 16 elements;  SC = Solid plates 

h a b E

E

n= = = = =

=

}CPT

4
0

4
1

q a
P

E L
=

Fig. 4: Load-deflection curves for clamped annular plates for n = 0, 1, 5 and l/h = 0, 0.4.
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Figure 5
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Fig. 5: Load-deflection curves for clamped annular plates for n = 0, 1, 5 and l/h = 0, 0.4.

for n = 1 and ℓ/h = 0; w(a) = 9.9847× 10−2 for n = 5 and ℓ/h = 0; w(a) = 4.0893× 10−2

for n = 1 and ℓ/h = 0.4; and w(a) = 7.8805 × 10−2 for n = 5 and ℓ/h = 0.4. Figure
5 contains the load-deflection curves for the problem. Even for this cantilevered annular
plate with inner edge clamped, the effect of the material length scale is to stiffen the plate
(but for a smaller extent).

In the fourth example we study simply supported solid circular plates. The geometric
and material parameters used are the same as those in Eq. (63); the boundary conditions
at r = 0 are the same as those listed in Eq. (64) while those at r = a are taken to be
u = w = 0 in both theories. It is found that for the homogeneous case (n = 0), both
CPT and FSDT gave essentially the same results. For the case of n = 0 and ℓ/h = 0.6,
again the stiffening effect, to a lesser extent, is predicted by both theories. However, for
n = 1 and n = 5, with or without the length scale effect, the CPT element mesh predicted
buckling (i.e., a change of load-deflection path), while the FSDT element mesh yielded
smooth load-deflection behavior for n = 1 with the stiffening effect due to the length
scale. The buckling behavior predicted by the CPT for n 6= 0 is due to the unsymmetric
nature of the plate (i.e., plate is not symmetric about its midplane) as well as due to the
restrictive kinematics (i.e., normality condition) that models the CPT plate stiffer than
the FSDT. The effect of the length scale in the cases is to increase the buckling load.
This phenomenon, that is, predicting softening behavior for buckled simply supported
boundary conditions, is not reported for beams under mechanical loads. For n = 0, 1, 5
and ℓ/h = 0, 0.4, 0.6, the sixteen-element mesh of the FSDT yielded convergent solutions
and showed slight stiffening effect, as shown in Fig. 7.
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Fig. 6: Load-deflection curves for simply supported solid circular plates for n = 0, 1, 5 and
l/h = 0, 0.4, 0.6.
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21



Figure 8
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Fig. 8: Load-deflection curves for simply supported annular plates for n = 0, 1, 5 and
l/h = 0, 0.4.

Finally, annular plates with simply supported outer edge are investigated. Figure 8
shows the load-deflection curves. Again, the CPT predicted buckling behavior while the
FSDT did not even converge in most cases.

8 Summary and Conclusions

In this paper the classical (CPT) and first-order (FSDT) plate theories for axisymmetric
bending of circular plates, accounting for through-thickness power-law variation of a two-
constituent material, modified couple stress theory, and the von Kármán nonlinear strains
are developed using Hamilton’s principle. Then displacement finite element models for the
transient analysis of both plate theories. Numerical results are presented for clamped solid
circular and annular plates and also for simply supported solid circular plates, showing
the effect of the power-law index and the ratio of the length scale parameter on the load-
deflection behavior (static analysis). In the case of clamped plates, both theories yielded,
for the geometric and material parameters selected, virtually the same results. The effect of
the length scale is found to be that of stiffening the plates. However, for simply supported
cases, the CPT element predicted buckling for n 6= 0, while the FSDT element exhibited
smooth load-deflection behavior. Interestingly, the effect of the length scale for buckled
circular plates is that of softening. This phenomena has not been reported in the literature
and requires further study and validation by independent researchers.
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