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This paper focuses on the characterization of the response of a very flexible aircraft in
flight. The 6-DOF equations of motion of a reference point on the aircraft are coupled with
the aeroelastic equations that govern the geometrically nonlinear structural response of
the vehicle. A low-order strain-based nonlinear structural analysis coupled with unsteady
finite-state potential flow aerodynamics form the basis for the aeroelastic model. The
nonlinear beam structural model assumes constant strain over an element in extension,
twist, and in/out of plane bending. The geometrically nonlinear structural formulation, the
finite state aerodynamic model, and the nonlinear rigid body equations together provide a
low-order complete nonlinear aircraft analysis tool. The equations of motion are integrated
using an implicit modified generalized-alpha method. The method incorporates both first
and second order nonlinear equations without the necessity of transforming the equations
to first order and incorporates a Newton-Raphson sub-iteration scheme at each time step.
Using the developed tool, analyses and simulations can be conducted which encompass
nonlinear rigid body, nonlinear rigid body coupled with linearized structural solutions, and
full nonlinear rigid body and structural solutions. Simulations are presented which highlight
the importance of nonlinear structural modeling as compared to rigid body and linearized
structural analyses in a representative High Altitude Long Endurance (HALE) vehicle.
Results show significant differences in the three reference point axes (pitch, roll, and yaw)
not previously captured by linearized or rigid body approaches. The simulations using
both full and empty fuel states include level gliding descent, low-pass filtered square aileron
input rolling/gliding descent, and low-pass square elevator input gliding descent. Results
are compared for rigid body, linearized structural, and nonlinear structural response.

I. Introduction

Recent advances in airborne sensors and communication packages have brought the need for high-altitude
long-endurance (HALE) aircraft. These platforms can be categorized under three broad missions, support-
ing either the military or civilian communities. The missions include airborne Intelligence, Surveillance, and
Reconnaissance (ISR), for the military,1 network communication nodes for the military and civilian usage,2

and general atmospheric research.2 Due to the mission requirements, the desired vehicles are characterized
by high-aspect-ratio wings, slender fuselages, and slender control surfaces, resulting in highly flexible vehi-
cles. Examples of mission optimization studies for this class of vehicle can be found in Ref. 1, where the
authors show HALE aircraft are required to have a fuel fraction greater than 66%. This results in a very
small structural weight fraction. The combination of high aerodynamic efficiency and low structural weight
fraction yields inherently flexible wings. The HALE vehicle will then be susceptible to large dynamic wing
deformations at low frequencies, presenting a direct impact into the flight dynamic characteristics of the
vehicle.

Aircraft elastic flight dynamics have been studied and analyzed for more than three quarters of a century.
However research and applications of flexible aircraft dynamics have been based primarily on linear models
or, at best, nonlinear rigid body vehicle dynamics coupled with linear structural dynamics. For the majority
of conventional aircraft, linear analysis has been very successful in providing sound aircraft designs. But
when analyzing aircraft with high-aspect-ratio wings and large fuel fractions, linear aeroelastic analysis is
shown to be ineffective in capturing the relevant aircraft dynamics.3
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A. Previous Work

In the past decade, several researchers have investigated different aspects of flexible aircraft structural dy-
namics. Researchers have typically focused on various forms of the rigid body dynamics augmented with
linear structural modeling. Newman and Buttrill4 utilized a linear aircraft model with linear structural
modes and showed the difficulty in supressing aeroelastic dynamic effects from the rigid body response of a
flexible supersonic transport. References 5, 6, and 7 have overcome the limitations of conventional control
architecture design used in Ref. 4 by incorporating a dynamic inversion technique for large high speed flexible
aircraft. While the dynamic inversion method is ideally suited for nonlinear models, Gregory augmented the
aircraft equations of motion (EOM) with linear elastic models. Recently, Meirovitch and Tuzcu8 developed
an integrated approach for analyzing the nonlinear rigid body dynamics coupled with a linear representation
of the structure. Their approach addressed analytical dynamics, linear structural dynamics, aerodynam-
ics, and controls. Additionally, several other researchers have used linearized structural dynamics in the
modeling of flexible aircraft, e.g., Li and Agarwal,9 Nam et. al.,10 Schmidt and Raney,11 and Chavez and
Schmidt.12 While these approaches are applicable to a wide class of high performance flight vehicles, they
are not sufficient to deal with the changing mass properties and low stiffness characteristics of very flexible
aircraft.

Early work, which included the nonlinear effects of low stiffness aircraft, was conducted by van Schoor
and von Flotow.13 Their work demonstrated the critical importance of including aircraft structural dynamics
when analyzing aircraft flight dynamics of very flexible aircraft. They showed, using linearized analysis about
nonlinear equilibrium points, a significant change in the classic “rigid” body modes when flexible structural
modeling was included.

More recently, Patil et. al.3 showed a significant change in flight dynamic characteristics due to wing
flexibility. Their work showed a significant difference between the short period and phugoid modes of a
very flexible aircraft when comparing rigid body, linear aeroelastic, and nonlinear aeroelastic dynamics. The
nonlinear dynamics were obtained by linearizing about a nonlinear equilibrium. In a parallel effort, Drela14

developed an integrated analysis tool for conceptual aerodynamic, structural, and control-law design of an
aircraft. The method provides rapid analysis during the early phases of aircraft design.

Furthering the development of nonlinear structural analysis tools, Cesnik and Brown15,16 introduced the
strain-based approach for the modeling of highly-flexible aircraft. In Ref. 16, HALE aircraft were modeled
using a rigid fuselage and a highly flexible high-aspect-ratio wing. The nonlinear structural dynamic analysis
is a strain-based approach solved in the time domain. Details of the formulation can be found in Refs. 15
and 16.

All these studies have contributed in different ways toward the understanding of the nonlinear response
and stability of highly flexible aircraft. However, due to its complex coupled nature, the problem is still
far from being understood. For that one needs to fully couple the 6-DOF dynamics of the vehicle with
its geometrically nonlinear aeroelasticity properties. In fact, the mishap of NASA’s Helios aircraft17 has
highlighted the importance of nonlinear analysis of very flexible aircraft. One of the key recommendations
of the report was to “develop multidisciplinary (structures, aerodynamic, controls, etc) models, which can
describe the nonlinear dynamic behavior of aircraft modifications or perform incremental flight-testing.”
Nonlinear analyses tools are highly desirable and are certainly the first step in the development of future
highly flexible vehicles.

B. Objective of the paper

The objective of this paper is to present a coupled 6-DOF vehicle dynamics with a modified version of the
nonlinear strain-based structural formulation16 for high-aspect-ratio lifting surfaces. The proposed formula-
tion is used to analyze the differences between rigid body, linearized aeroelastic, and nonlinear aeroelastic
aircraft dynamic responses in gliding, roll commanded, and pitch commanded flight. This formulation will
be used in future as the basis for control design of highly flexible vehicles.

II. Development of the Equations of Motion

The primary goal in any analysis of aircraft flight dynamics is to understand the trajectory and orientation
of a fixed body reference frame, B, at point O, which in general is not the aircraft’s center of mass, Figure 1.
The means for propagating the reference frame, B, forward in time is done by deriving and integrating a
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Figure 1. Basic Body Reference Frame and Vehicle Coordinates

series of first order differential equations of the form

ẋ = f(x, u) (1)

where x represents the states of the reference frame, B, and u represents control surface and external
inputs. Depending on the fidelity of the analysis required, these first order differential equations vary in
their complexity from simple linear time invariant to non-linear time varying differential equations. For the
classic “rigid” body analysis,18 the first order differential equations take the form

v̇B = f(vB , ωB , ζ, pB , g
′

0,m, F )

ω̇B = f(ωB , I, ζ, pB ,M) (2)

ζ̇ = f(ζ)

ṗB = f(ζ, vB)

where the B reference frame linear and angular velocity variables are represented by vB and ωB ; F and M
are in general state dependent external forces and moments; m is the aircraft mass, and I is the aircraft’s
inertia matrix. Where appropriate, these quantities are resolved in the B coordinate frame. Additionally ζ
is the vector of quaternion elements used to determine the orientation of the B reference frame and pB is the
inertial position of the B reference frame. In this paper, three different representations of the B reference
frame are used: the nine components of the three unit vectors defining a triad in B (used in the derivation
of the flexible equations of motion), a minimal set of three rotation angles for transforming the flexible EOM
to minimal set of states, and a set of four quaternion states for the time integration of the final set of EOM.

The rigid body formulation has three key assumptions which render invalid when dealing with very flexible
vehicles: 1) inertia properties are constant or at best slowly time varying, 2) the inertial force associated
with the vehicle’s angular velocity cross with the relative velocity of flexible members is negligible, and 3)
external forces and moments, F and M , which are generated from aerodynamic loading, are based upon a
fixed aircraft geometry. In the rigid body case, Eq. 2 presents only inertial and external forces and moments.
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For the flexible aircraft a set of elastic EOM is also introduced, resulting in

Mq̈ + Cq̇ + Kq = R(q, q̇, λ) (3)

q =











ǫ

pB

ΘB











q̇ =











ǫ̇

vB

ωB











q̈ =











ǫ̈

v̇B

ω̇B











(4)

where M represents generalized mass properties, q is a set of generalized coordinates containing both strain,
ǫ, associated with the flexible vehicle and the inertial position, pB , and orientation, ΘB , of the B reference
frame. C contains both structural damping and nonlinear terms associated with relative position and
velocity terms crossed with the absolute angular velocity, K is the stiffness matrix, and R(q, q̇, λ) represents
generalized forces (including aerodynamic forces) which are a function of the finite state inflow, λ. Coupling
of the rigid body and flexible dynamics occurs through the dependency of M , C, and R. The present work
uses a constant strain-based formulation16 which allows for airframe nonlinear geometric deformation and
accounts for geometry-time-dependent inertia properties of the aircraft.

To develop the nonlinear elastic EOM for slender structures, a systematic approach is used based upon
the principle of virtual work. The method accounts for the virtual work associated with rigid bodies and
flexible slender (beam) structures. The virtual work of a beam is initially written in terms of dependent
displacement vectors. Then the kinematic relationship between beam dependent position vectors and the
associated strains is developed. The components of virtual work are summed and the resulting set of
equations are transformed from a set of dependent position vectors and a nonminimum set of B reference
frame components to an independent set of strain variables, body linear and angular velocity and acceleration.
Finally to account for the B reference frame orientation and displacement a set of quaternions and inertial
position differential equations are appended.

A. Rigid Body Contribution to the Virtual Work

To determine the rigid body contribution to the virtual work, the complete rigid body EOM are developed
using a Lagrangian approach. The kinetic energy of a rigid body of mass, m, is

T =
1

2

∫

m

(vB
p )T vB

p dm (5)

where the inertial velocity, vB
p , of an arbitrary point, p, expressed in the B coordinate system is defined as

vB
p = vB + ω̃BrB

cm + ω̃BrB
p (6)

where the position from the origin of the B reference frame, O, to the center of mass (cm) is rB
cm, and rB

p is
a vector of position coordinates from cm to p. It is important to note that the cm described here is only for
the rigid body portion of the flexible aircraft (which at the limit may be reduced to an arbitrary point in
the vehicle). If the entire aircraft is modeled as a rigid body, than cm becomes the aircraft’s center of mass.

Throughout this paper the (̃·) is the skew symmetric matrix such that, if a ≡
[

a1 a2 a3

]T

then

ã ≡







0 −a3 a2

a3 0 −a1

−a2 a1 0






(7)

and
˜̃
(·) is the negative of (̃·) such that

˜̃a ≡







0 a3 −a2

−a3 0 a1

a2 −a1 0






(8)

Expanding and integrating over the rigid body, the kinetic energy is

T =
1

2
m(vB)T vB +

1

2
(ωB)T [I − Ircm

](ωB) + (vB)T Imr(ωB) (9)
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where I uses the standard definition of inertia matrices

Ixx =

∫

m

(r2
py

+ r2
pz

) dm, Ixy = −

∫

m

rpx
rpy

dm, · · ·

I =







Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz






(10)

and Ircm
and Imr are

Ircm
= −m

















r2
cmy

+ r2
cmz

−rcmx
rcmy

−rcmx
rcmz

−rcmx
rcmy

r2
cmx

+ r2
cmz

−rcmy
rcmz

−rcmx
rcmz

−rcmy
rcmz

r2
cmx

+ r2
cmy

















(11)

Imr = m







0 rcmz
−rcmy

−rcmz
0 rcmx

rcmy
−rcmx

0






(12)

The potential energy term, V , due to the gravity field, gB , resolved in the body fixed coordinate frame is

V =

∫

m

(

rB
o + rB

cm + rB
p

)T
gBdm +

∫

m

{

(rB
cm + I θ̃BrB

p )
}T

gBdm

= m(rB
o )T gB + m(rB

cm)T gB +

{
∫

m

I θ̃BrB
cmdm

}T

gB (13)

Using Lagrange’s equations yields

MBβ̈ + MB

[

ω̃B 0

0 0

]

β̇ + NBgB = RB (14)

and the virtual work

δWB = δb

(

−MBβ̇ − MB

[

ω̃B 0

0 0

]

β − NBgB + RB

)

(15)

where

RB =



















F

M



















MB =





















m 0 0

0 m 0

0 0 m

Imr

−Imr I − Ircm





















NB =





















m 0 0

0 m 0

0 0 m

Imr





















(16)

b =



















pB

ΘB



















β =



















vB

ωB



















β̇ =



















v̇B

ω̇B



















(17)

B. Flexible Slender Structure Contribution to the Virtual Work

To develop the EOM, first define an arbitrary point in the body as

pa = pB + p + xwx + ywy + zwz (18)
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where pB is the inertial position of the body fixed reference frame B, p is the vector from the B reference
frame to a local reference frame w, and the constant scalars x, y, and z are values along the corresponding
w frame orthogonal vectors wx, wy, and wz. All the vectors are written in terms of the B reference frame.
The first and second time derivatives of pa can be written as

ṗa = ṗ + xẇx + yẇy + zẇz + ṗB + ω̃B (p + xwx + ywy + zwz) (19)

and

p̈a = p̈B + ˙̃ωB (p + xwx + ywy + zwz) + (p̈ + xẅx + yẅy + zẅz) +

+2ω̃B (ṗ + xẇx + yẇy + zẇz) + ω̃B (ṗB + ω̃B (p + xwx + ywy + zwz)) (20)

Using the commutative property of the (̃·) operator, Eq. 20 can be rewritten as

p̈a = p̈B +
(

˜̃p + x ˜̃wx + y ˜̃wy + z ˜̃wz

)

ω̇B + (p̈ + xẅx + yẅy + zẅz) +

+2
(

˙̃̃p + x ˙̃̃wx + y ˙̃̃wy + z ˙̃̃wz

)

ωB + ω̃B

(

ṗB +
(

˜̃p + x ˜̃wx + y ˜̃wy + z ˜̃wz

)

ωB

)

(21)

Using d’Almbert’s principle, the inertial force per unit volume is

dF = −ρp̈adAds (22)

where ρ is the density, dA is the elemental area, and ds is the elemental length. Then the virtual work per
unit volume, δW3, and its associated virtual displacement are

δW3 = −ρ δpT
a p̈a δpa = δp + xδwx + yδwy + zδwz (23)

where ρ is considered to be prescribed over the elemental area and length. Using Eq. 21 in Eq. 23 yields

δW3 = −ρ
{

δpT (1)p̈B + δwT
x (x)p̈B + δwT

y (y)p̈B + δwT
z (z)p̈B+

+
[

δpT (1)˜̃p + δwT
x (x)˜̃p + δwT

y (y)˜̃p + δwT
z (z)˜̃p +

+δpT (x) ˜̃wx + δwT
x (x2) ˜̃wx + δwT

y (xy) ˜̃wx + δwT
z (xz) ˜̃wx +

+δpT (y) ˜̃wy + δwT
x (xy) ˜̃wy + δwT

y (y2) ˜̃wy + δwT
z (yz) ˜̃wy +

+ δpT (z) ˜̃wz + δwT
x (xz) ˜̃wz + δwT

y (yz) ˜̃wz + δwT
z (z2) ˜̃wz

]

ω̇B +

+
[

δpT (1)p̈ + δwT
x (x)p̈ + δwT

y (y)p̈ + δwT
z (z)p̈ +

+δpT (x)ẅx + δwT
x (x2)ẅx + δwT

y (xy)ẅx + δwT
z (xz)ẅx +

+δpT (y)ẅy + δwT
x (xy)ẅy + δwT

y (y2)ẅy + δwT
z (yz)ẅy +

+ δpT (z)ẅz + δwT
x (xz)ẅz + δwT

y (yz)ẅz + δwT
z (z2)ẅz

]

+ (24)

+2
[

δpT (1) ˙̃̃p + δwT
x (x) ˙̃̃p + δwT

y (y) ˙̃̃p + δwT
z (z) ˙̃̃p +

+δpT (x) ˙̃̃wx + δwT
x (x2) ˙̃̃wx + δwT

y (xy) ˙̃̃wx + δwT
z (xz) ˙̃̃wx +

+δpT (y) ˙̃̃wy + δwT
x (xy) ˙̃̃wy + δwT

y (y2) ˙̃̃wy + δwT
z (yz) ˙̃̃wy +

+ δpT (z) ˙̃̃wz + δwT
x (xz) ˙̃̃wz + δwT

y (yz) ˙̃̃wz + δwT
z (z2) ˙̃̃wz

]

ωB +

+δpT (1) [ω̃B ] ṗB + δwT
x (x) [ω̃B ] ṗB + δwT

y (y) [ω̃B ] ṗB + δwT
z (z) [ω̃B ] ṗB +

+
[

δpT (1) [ω̃B ] ˜̃p + δwT
x (x) [ω̃B ] ˜̃p + δwT

y (y) [ω̃B ] ˜̃p + δwT
z (z) [ω̃B ] ˜̃p +

+δpT (x) [ω̃B ] ˜̃wx + δwT
x (x2) [ω̃B ] ˜̃wx + δwT

y (xy) [ω̃B ] ˜̃wx + δwT
z (xz) [ω̃B ] ˜̃wx +

+δpT (y) [ω̃B ] ˜̃wy + δwT
x (xy) [ω̃B ] ˜̃wy + δwT

y (y2) [ω̃B ] ˜̃wy + δwT
z (yz) [ω̃B ] ˜̃wy +

+ δpT (z) [ω̃B ] ˜̃wz + δwT
x (xz) [ω̃B ] ˜̃wz + δwT

y (yz) [ω̃B ] ˜̃wz + δwT
z (z2) [ω̃B ] ˜̃wz

]

ωB

}
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Now since δpT , ω̃B , and
˜̃
(·) are not functions of dA or ds the following cross sectional mass matrix is defined

as

Mcs =

∫

A

ρ











1 x y z

x x2 xy xz

y xy y2 yz

z xz yz z2











dA (25)

so that the virtual work per unit length, δW1, is written as

δW1 = −



















δpT
a Mcs











I ˜̃p

0 ˜̃wx

0 ˜̃wy

0 ˜̃wz











β̇ + δpT
a Mcs











p̈

ẅx

ẅy

ẅz











+ 2δpT
a Mcs













0 ˙̃̃p

0 ˙̃̃wx

0 ˙̃̃wy

0 ˙̃̃wz













β +

δpT
a Mcs











ω̃B 0 0 0

0 ω̃B 0 0

0 0 ω̃B 0

0 0 0 ω̃B





















I ˜̃p

0 ˜̃wx

0 ˜̃wy

0 ˜̃wz











β



















(26)

Defining the vector h as the position and orientation at a point in the flexible body,

h =
{

pT wT
x wT

y wT
z

}T

(27)

which is a vector function of only ǫ and b (as shown below), then the total derivative and variation of h with
respect to the independent coordinates ǫ and b are

δh = Jhǫδǫ + Jhbδb dh = Jhǫdǫ + Jhbdb (28)

where

Jhǫ ≡
[

∂
∂ǫ

h
]

Jhb ≡
[

∂
∂b

h
]

(29)

and ḣ is
ḣ = Jhǫǫ̇ + Jhbḃ = Jhǫǫ̇ + Jhbβ (30)

The relative velocity of h with respect to the B reference frame is Jhǫǫ̇ and the velocity of h due to the
movement of the B reference frame is Jhbβ. The Jacobian, Jhb, is

Jhb =











I ˜̃p

0 ˜̃wx

0 ˜̃wy

0 ˜̃wz











(31)

and Jhǫ is provided in the Appendix. Now the relative acceleration due to ǫ can be written as

p̈ + ẅx + ẅy + ẅz = ˙Jhǫǫ̇ + Jhǫǫ̈ (32)

and

˙Jhǫ =

[

∂

∂ǫ
Jhǫ

]

ǫ̇ (33)

Note that
[

∂
∂ǫ

Jhǫ

]

is a three-dimensional matrix. Finally the virtual work per unit length is

δW1 =
[

δǫT δbT

]

([

JT
hǫMcsJhǫ JT

hǫMcsJhb

JT
hbMcsJhǫ JT

hbMcsJhb

]{

ǫ̈

β̇

}

+

[

JT
hǫMcs

˙Jhǫ JT
hǫMcsHhb

JT
hbMcs

˙Jhǫ JT
hbMcsHhb

]{

ǫ̇

β

}

+

2

[

0 JT
hǫMcsHhǫ̇β̇

0 JT
hbMcsHhǫ̇β̇

] {

ǫ̇

β

}

+

[

Ccs 0

0 0

]{

ǫ̇

β

}

+

[

Kcs 0

0 0

]{

ǫ

b

}

− R

)

(34)
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where the generalized structural damping and stiffness matrices are Ccs and Kcsrespectively. New definitions
are introduced

Hhǫ̇β̇ =













0 ˙̃̃p

0 ˙̃̃wx

0 ˙̃̃wy

0 ˙̃̃wz













; Hhb = Ω̃Jhb; Ω̃ =











ω̃B 0 0 0

0 ω̃B 0 0

0 0 ω̃B 0

0 0 0 ω̃B











(35)

Note the entries for Hhǫ̇β̇ come from the relative velocity of h

Jhǫǫ̇ =
{

ṗx ṗy ṗz ẇxx · · · ẇzz

}T

=
{

ṗT ẇT
x ẇT

y ẇT
z

}T

(36)

Before the virtual work per unit length is integrated to yield the total virtual work the kinematic rela-
tionship and subsequent discretization of h with respect to ǫ, pB , and the B reference frame is presented.

C. Kinematic Relationship: Constant Strain Formulation

The constant strain formulation developed by Cesnik and Brown15,16 is adopted and summarized below.
To facilitate the solution of the EOM, a spacial finite element discretization of the flexible equations is
introduced here. The basic assumption is that the strain vector within a discrete beam element

ǫ(t) =
{

ǫx(t) κx(t) κy(t) κz(t)
}T

(37)

is spatially constant and time dependent. The strain vector is comprised of beam extension (ǫx(t)), twist
(κx(t)), and the two bending components (κy(t) and κz(t)). The gradient of the position vector h along the
one dimensional beam coordinate, s, is given by

∂

∂s
h(s) = Kǫ(s)h(s) (38)

where

Kǫ(s) =











0 Ex 0 0

0 0 κz −κy

0 −κz 0 κx

0 κy −κx 0











(39)

and individual elements of Kǫ are 3×3 diagonal matrices such that

Ex =







1 + ǫx(s) 0 0

0 1 + ǫx(s) 0

0 0 1 + ǫx(s)






κz =







κz(s) 0 0

0 κz(s) 0

0 0 κz(s)







κy =







κy(s) 0 0

0 κy(s) 0

0 0 κy(s)






κx =







κx(s) 0 0

0 κx(s) 0

0 0 κx(s)






(40)

Since the strain vector is constant over an element, Eq. 38 is simply a spatially varying linear ordinary
differential equation with constant coefficients with respect to s. Then, the relation between h and ǫ can be
stated as

h(s) = e(s−s0)∗Kǫhbc (41)

where hbc is the boundary condition and s0 is the starting location along an element. The individual
components of an element position vector h are the three position components of pw and the 9 components
of the element reference frame w, all expressed in the B reference system, Figure 2.

h(s, t) = ⌊px py pz wxx wxy wxz wyx wyy wyz wzx wzy wzz⌋
T (42)
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Figure 2. Geometry of Flexible Lifting Surface and Its Coordinate Systems

1. Discrete Nodal Positions and the Position Vector h

In the present formulation, each element, i, is comprised of three equally spaced nodes, with corresponding
position vectors hi,1, hi,2, hi,3. Defining the unstrained geometric length of an element as ∆s = s − s0, and

G =
∆s

2
Kǫ, (43)

the kinematic relationship of the first three position vectors is

h1,1 = hbc h1,2 = eGhbc h1,3 = e2Ghbc (44)

A collection of elements, defined as a member (denoted by a superscript number), has the boundary condition
defined as the position and orientation of the B reference frame in Figure 1 or the position and orientation of
an arbitrary element’s w reference frame. Here only members that start at point O are discussed. Members
are composed of an arbitrary number of key points and elements. In Figure 3, the key point 1 (KP1) is taken
to have the boundary condition, hbc.

hbc = ⌊pBx
pBy

pBz
Bxx Bxy Bxz Byx Byy Byz Bzx Bzy Bzz⌋

T (45)

The column vector hbc contains the position and orientation components of the B reference frame expressed
in an inertial coordinate system, Figure 1. While Figure 3 shows a single element between each KP, the
formulation allows a user defined number of elements between KPs. In general KPs are used to distinguish
slope discontinuities in the beam reference line. Additionally, the beam reference line is allowed to have a
linear variation in twist between KPs, but otherwise is a straight line when unstrained. Given the arrange-

1

2

3 4

5

KP 1

KP 3

KP 2

KP 10

KP 4

KP 11

1

2

3 4

5

KP 1

KP 3

KP 2

KP 10

KP 4

KP 11

Figure 3. Member Discretization Showing Key Points (KP)

ment in Figure 3, the kinematic relationship between the element position and strain vectors for a member
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is

h1
1,1 = hbc (46)

h1
1,2 = eG1hbc

h1
1,3 = e2G1hbc

h1
2,1 = D21e

2G1hbc

h1
2,2 = eG2D21e

2G1hbc

...
...

...

h1
5,3 = e2G5D54e

2G4D43e
2G3D32e

2G2D21e
2G1hbc

where Dm,n is a connecting matrix between elements m and n and accounts for slope discontinuities. For
example, D2,1 in this case is expressed as:

D2,1 =











I 0 0 0

0 cxx ∗ I cyx ∗ I czx ∗ I

0 cyx ∗ I cyy ∗ I czy ∗ I

0 czx ∗ I cyz ∗ I czz ∗ I











(47)

where cij are the direction cosines between between element 1 and 2.

2. Closed Form Kinematic Relation

Completing the derivation of the dependent position vector h and the independent strain vector ǫ, a closed

form solution of e(s−s0)∗Kǫ is proposed here. Using a transformation matrix, Th, the original h is reordered
as h∗

h∗ = TT
h h =

{

(h∗

x)T (h∗

y)T (h∗

z)
T

}T

(48)

where

h∗

x =



















px(s)

wxx(s)

wyx(s)

wzx(s)



















h∗

y =



















py(s)

wxy(s)

wyy(s)

wzy(s)



















h∗

z =



















pz(s)

wxz(s)

wyz(s)

wzz(s)



















(49)

The three corresponding differential equations are

∂
∂s

h∗

x = Kǫh
∗

x
∂
∂s

h∗

y = Kǫh
∗

y
∂
∂s

h∗

z = Kǫh
∗

z
(50)

with

Kǫ =











0 Ex 0 0

0 0 κz −κy

0 −κz 0 κx

0 κy −κx 0











Ex ≡ 1 + ǫx (51)

Using Th, Kǫ is related to K
∗

ǫ by

K
∗

ǫ = TT
h KǫTh =







Kǫ 0 0

0 Kǫ 0

0 0 Kǫ







and finally

eK
∗

ǫ∗(s−s0) =







eKǫ∗(s−s0) 0 0

0 eKǫ∗(s−s0) 0

0 0 eKǫ∗(s−s0)






(52)
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A closed form solution of the terms eKǫ∗(s−s0) is found using the Cayley-Hamilton theorem,19 which allows
any analytic matrix function to be expressed as a linear combination of the basis matrices

f(Kǫ) = α3(Kǫ)
3 + α2(Kǫ)

2 + α1Kǫ + α0I (53)

To solve for the αi coefficients, the eigenvalues of Kǫ are found and substituted into the analytical expression
for the function f20

λ1 = 0 λ2 = 0 λ3 = i
√

κ2
x + κ2

y + κ2
z λ4 = −i

√

κ2
x + κ2

y + κ2
z (54)

Letting λ =
√

κ2
x + κ2

y + κ2
z and solving for αi

α0 = 1 α1 = s − s0 (55)

α2 = 1−cos(λ(s−s0))
λ2 α3 = (s−s0)

λ2 − sin(λ(s−s0))
λ3

yields the final closed form solution of eKǫ∗(s−s0)

eKǫ∗(s−s0) =

(

(s − s0)

λ2
−

sin(λ(s − s0))

λ3

)











0 −Ex(κ2
z + κ2

y) Exκyκx Exκzκx

0 0 −κzλ
2 κyλ2

0 κzλ
2 0 −κxλ2

0 −κyλ2 κxλ2 0











+

+
1 − cos(λ(s − s0))

λ2











0 0 Exκz −Exκy

0 −(λ2 − κ2
x) κyκx κzκx

0 κyκx −(λ2 − κ2
y) κzκy

0 κzκx κzκy −(λ2 − κ2
z)











+

+(s − s0)











0 Ex 0 0

0 0 κz −κy

0 −κz 0 κx

0 κy −κx 0











+











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











(56)

which is used in Eqs. 41 and 52.

3. Element Discretization

Using the assumption of a constant strain over an element, only the matrices Mcs, Ccs, and Kcs are functions
of the undeformed element length s. The current formulation uses a three-node element where the properties
of the mass, structural damping, and stiffness are assumed to vary linearly between nodes of an element.
Using this assumption an element mass matrix is written as

Melement =
1

2
l















1
4M1 + 1

12M2
1
12M1 + 1

12M2 0

1
12M1 + 1

12M2
1
12M1 + 1

2M2 + 1
12M3

1
12M2 + 1

12M3

0 1
12M2 + 1

12M3
1
12M2 + 1

4M3















(57)

where l is the length of the element and the subscripts 1, 2, and 3 are related to the lumped mass properties
at each nodal position. In a similar manner, the element damping Celement and stiffness Kelement matrices
are found. For more details see Ref. 21.

D. B Reference Frame Propagation Differential Equations

While the virtual work associated with the flexible EOM, Eq. 34, is derived using δb, the B reference frame
attitude propagation is accomplished using the first order differential quaternion equations described in
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Ref. 18. The B reference frame coordinate transformation matrix, CBG, which transforms a vector from
inertial coordinates to the B frame coordinates, represented in terms of quaternions, ζ, is given by

CBG =
[

Bx By Bz

]

=















ζ2
0 + ζ2

1 − ζ2
2 − ζ2

3 2(ζ1ζ2 + ζ0ζ3) 2(ζ1ζ3 − ζ0ζ2)

2(ζ1ζ2 − ζ0ζ3) ζ2
0 − ζ2

1 + ζ2
2 − ζ2

3 2(ζ2ζ3 + ζ0ζ1)

2(ζ1ζ3 + ζ0ζ2) 2(ζ2ζ3 − ζ0ζ1) ζ2
0 − ζ2

1 − ζ2
2 + ζ2

3















(58)

where Bi is shown in Figure 1. The first order differential equation governing the quaternion representation
is given by18















































ζ̇0

ζ̇1

ζ̇2

ζ̇3















































= −
1

2

























0 ωB1
ωB2

ωB3

−ωB1
0 −ωB3

ωB2

−ωB2
ωB3

0 −ωB1

−ωB3
−ωB2

ωB1
0







































































ζ0

ζ1

ζ2

ζ3















































≡ −
1

2
Ωζζ (59)

where ωBi
is the i-th component of body angular velocity. The inertial velocity of the B reference frame is

given by the differential equation
ṗB = CBGvB (60)

E. Unsteady Aerodynamics

For this study, the unsteady aerodynamic forces and moments are calculated based upon the finite state
aerodynamic theory of Peters and co-workers.22,23 The theory is derived for a two dimensional thin airfoil
operating in inviscid and incompressible flow. The lift, Laero, and the moment, Maero, about the beam
reference line excluding contributions from trailing edge control surfaces are given by

Laero = 2πρb

(

−ẏż + (b − d)ẏα̇ − ẏλ0 −
1

2
bz̈ −

1

2
bdα̈

)

Maero = dLaero + 2πρb2

(

−
1

2
ẏż −

1

2
dẏα̇ −

1

2
ẏλ0 −

1

16
b2α̈

)

(61)

where b is the semi chord length and d is the distance from the mid chord to the beam reference line. The
velocity vector components are ẏ along the chord and ż perpendicular to the chord, and α is the angle of
attack. The velocity components and angle of attack are derived from the beam nodal h vector. The inflow
velocity λ0 is given by

λ0 =
1

2

N
∑

n=1

bnλn (62)

where the inflow states, λn, are governed by the differential equation

λ̇ = E1λ + E2z̈ + E3α̈ + E4α̇ (63)

The matrices Ei are given described in Ref. 22. The bn coefficients are binomial expansion coefficients
given in appendix C, Ref. 23. While λ0 is actually an infinite sum, N = ∞, λ0 can be approximated with
reasonable results by letting N be between 4 and 8.

To use this two dimensional theory for a three dimensional wing, a spanwise lift distribution function is
used to correct each sectional lift and moment contribution.

fLcorr
= 1 − e−τs (64)

where τ is a user defined input that controls the spanwise lift deficiency correction. In the final form the
generalized force and inflow equations take the form

F aero = f(q, q̇, λ0) (65)
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and
λ̇ = F1q̈ + F2q̇ + F3λ (66)

F. Complete EOM

Given the relationship between the dependent position vector h and the independent vectors, ǫ and b, and
summing up all the element virtual work contributions and the rigid body contributions, the total virtual
work is written as

δW =
[

δǫT δbT

]

(

−

[

MFF MFB

MBF MBB

][

ǫ̈

β̇

]

−

[

CFF CFB

CBF CBB

][

ǫ̇

β

]

+

−

[

KFF KFB

KBF KBB

][

ǫ

b

]

+ R

)

(67)

where
MFF = JT

hǫMJhǫ MFB = JT
hǫMJhb

MBF = JT
hbMJhǫ MBB = JT

hbMJhb + MB

CFF = JT
hǫM

˙Jhǫ + C CFB = JT
hǫMHhb + 2JT

hǫMHhǫ̇β̇

CBF = JT
hbM

˙Jhǫ CBB = JT
hbMHhb + 2JT

hbMHhǫ̇β̇ + MB

[

ω̃B 0

0 0

]

KFF = K KFB = 0

KBF = 0 KBB = 0

(68)

and M , C, and K are the assembled flexible-element mass, damping, and stiffness matrices, respectively.
The matrix MB represents the mass matrix associated with the rigid body portion of the structure. The
resultant force vector R is

R =

{

RF

RB

}

=

[

KFF

KBF

]

ǫinitial +

[

BgF

BgB

]

gB +

[

BfdstF

BfdstB

]

F dst +

[

BMdstF

BMdstB

]

Mdst +

+

[

BfptF

BfptB

]

F pt +

[

BMptF

BMptB

]

Mpt

where ǫinitial is an initial strain vector, gB is the body-frame-B resolved gravity vector, and F dst,Mdst, F pt,
and Mpt, are body resolved distributed and point forces and moments. The aerodynamic forces and moments,
F aero and Maero, which are functions of control surface inputs, u, are included in F dst and Mdst. The
remaining component details of the resultant force vector, R, are given in Ref. 16. From the Principle of
Virtual Work, Eq. 67 yields

[

MFF MFB

MBF MBB

][

ǫ̈

β̇

]

+

[

CFF CFB

CBF CBB

][

ǫ̇

β

]

+

[

KFF KFB

KBF KBB

][

ǫ

b

]

= R (69)

This set of equations can also be written in the compact form

MC q̈ + CC q̇ + KCq = R(q, q̇, λ) (70)

where the generalized mass and damping matrices are dependent on the strain state, while the generalized
stiffness is constant. All the other nonlinearities are built in R.

The final governing differential equations are

MFF ǫ̈ = −MFBβ̇ − CFF ǫ̇ − CFBβ − KFF ǫ + RF

MBBβ̇ = −MBF ǫ̈ − CBBβ − CBF ǫ̇ + RB

ζ̇ = −
1

2
Ωζζ (71)

ṗB =
[

CBG 0
]

β

λ̇ = F1q̈ + F2q̇ + F3λ
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G. Solution of EOM

To solve the nonlinear differential equations, Eq. 71, a high frequency dissipative time stepping approach was
implemented. The Generalized-α Method was selected based upon its ability to accurately integrate large
systems of equations including ones with repeated eigenvalues. Moreover, the method also offers a relative
ease of implementation with the current EOM modeling and the derivation of both a first and second
order method.24,25 Both set of differential equations are integrated together and utilize a modification of
Geradin’s26 implicit integration method for time marching integration of nonlinear EOM.

The Generalized-α Method has the basic form25

dn+1 = dn + ∆tvn + ∆t2
((

1

2
− β

)

an + βan+1

)

(72)

vn+1 = vn + ∆t ((1 − γ)an + γan+1) (73)

F
(

tn+1−αf

)

= Man+1−αm
+ Cvn+1−αf

+ Kdn+1−αf
(74)

where ∆t is the time step and

dn+1−αf
= (1 − αf )dn+1 + αfdn (75)

vn+1−αf
= (1 − αf )vn+1 + αfvn (76)

an+1−αm
= (1 − αm)an+1 + αman (77)

tn+1−αf
= (1 − αf ) tn+1 + αf tn (78)

The parameters αf , αm, γ, and β are used to control the amplification of high frequency numerical modes
which are not of interest. For this application the following relationships were used

γMCK =
1

2
− αm + αf (79)

βMCK =
1

4
(1 − αm + αf )

2
(80)

αmMCK
=

2ρ∞MCK
− 1

ρ∞MCK
+ 1

(81)

αfMCK
=

ρ∞MCK

ρ∞MCK
+ 1

(82)

where the subscript MCK refers to the set of second-order differential EOM. The single parameter ρ∞
is used to control the numerical dissipation above the normalized frequency ∆t/T , where T is the period
associated with the highest frequency of interest and

0 ≤ ρ∞ ≤ 1 (83)

If ρ∞ is chosen to be unity than the trapezoidal method is obtained. If ρ∞ is chosen to be 0 than frequencies
above ∆t/T will be dissipated in one time step, the so-called “asymptotic annihilation.”

In a similar manner Jansen, Whiting and Hulbert24 developed the first order Generalized-α Method for
a first order system of the form

λ̇ = aλ (84)

where the following relationships were developed

λ̇n+αm
= aλn+αf

(85)

λn+1 = λn + ∆tλ̇n + ∆tγ
(

λ̇n+1 − λ̇n

)

(86)

λ̇n+αm
= λ̇ + αm

(

λ̇n+1 − λ̇n

)

(87)

λn+αf
= λn + αf (λn+1 − λn) (88)

In a similar manner to the second order Generalized-α Method, the free parameters γ, αm, and αf are chosen
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Figure 4. Twin Tailed Model - No Loading

Figure 5. Flexible Aircraft Model at Steady State Deflection, Heavy Weight

in terms of a single high frequency spectral radius parameter ρ∞

γλ =
1

2
+ αmλ

− αfλ
(89)

αmλ
=

1

2

(

3 − ρ∞λ

1 + ρ∞λ

)

(90)

αfλ
=

1

1 + ρ∞λ

(91)

III. Numerical Example

To exemplify the importance of the geometric nonlinear effects on the dynamic response of a typical
HALE vehicle, a flexible aircraft model was developed as shown in Figure 4. It is a twin-tail conventional
configuration with ailerons, rudders, and an elevator as control surfaces. The basic aircraft geometric and
mass data are provided in Table 1.

For each simulation case presented, three different solutions of Eq. 71 were simulated. The first is a
reduced order solution where all elastic DOF are removed after the vehicle comes to a steady state deflection
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(rigid body with deformed structure and associated mass). A linearized solution retains the elastic DOF,
but only uses the Jacobian matrices (Jhǫ, Jhb, etc.) obtained from the steady state solution. The nonlinear
solution starts from the steady state deflection, and updates the Jacobian matrices at each time step, i.e., a
full time-marching simulation of Eq. 71.

Model Parameters

Property Value Units

Light Heavy

Fuselage Length 26.4 m

Wing Span 58.6 m

Wing Area 196.3 m2

Root Chord 4.5 m

Tip Chord 2.2 m

Aspect Ratio 17.5 —

Horizontal Tail Span 18.0 m

Horizontal Root Chord 3.5 m

Horizontal Tip Chord 2.45 m

Vertical Tail Span 4.0 m

Vertical Root Chord 2.45 m

Vertical Tip Chord 2.0 m

Wing/Horizontal Tail Airfoil NACA 4415 —

Vertical Tail Airfoil NACA 0012 —

Aileron Location 16.3 to 22.8 m

Aileron, Elevator, Rudder Chord 0.2clocal

Elevator Location 1.8 to 9.0 m

Rudder Location 0.8 to 3.2 m

Aircraft Angle of Attack 0.64◦ 6.37◦ —

Elevator Deflection Angle −4.11◦ −13.43◦ —

Fuel Mass 0 32, 000 kg

Total Mass 1.52 · 104 4.72 · 104 kg

Fuel Fraction 0.0 67.8 %

Iss
xx

∗ 9.61 · 105 1.17 · 106 kg · m2

Iss
yy 8.21 · 105 2.94 · 106 kg · m2

Iss
zz 1.75 · 106 3.93 · 106 kg · m2

Iss
xy 0 0 kg · m2

Iss
xz 0 0 kg · m2

Iss
yz −1.65 · 104 −4.72 · 104 kg · m2

Elements per wing 9 —

Elements per horizontal tail 5 —

Elements per vertical tail 5 —

Elements in fuselage 10 —

Total Number of Elements 48 —
∗Note: Iss are the inertia properties in a steady state configuration

Table 1. Geometric and Inertia Properties of the Flexible Aircraft Model

Before any simulations were run the model was trimmed for zero pitching moment about the origin of
the B reference frame (which is the initial steady state center of mass of the aircraft) and 1-g level flight,
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Figure 6. Elevator Input for Case 2 Heavy and Light Weights

shown in Figure 5 for heavy weight. Trimming for 1-g flight and zero pitching moment was accomplished by
minimizing the following cost function

J = fT · f (92)

where

f =

{

pitching moment about the origin of B frame

lift − weight

}

(93)

The cost function J was minimized over the solution space using the elevator deflection angle, δel, and
the body angle of attack, αbod. A simple numerical Newton-Raphson method was used to find the local
minimum.

∆uk = −

[

∂

∂u
f

]

−1

k

fk (94)

where

u =

{

δel

αbod

}

(95)

Then u is updated by
uk+1 = uk + ∆uk (96)

and fk+1 and
[

∂
∂u

f
]

−1

k+1
are recomputed using uk+1 and the process continues until the cost function J

reduces to some prescribed tolerance. To prevent divergence of the solution, uk+1 was checked at each
iteration step and kept within a prescribed set of bounds. The final values for δel and αbod are given in
Table 1.

Three different cases were simulated at both heavy and light weight configurations. Case 1 is a simple
straight-ahead descending flight. Case 2 is also descending flight, but a simple modified cosine elevator input
was given to the aircraft as shown in Figure 6 to further excite the low elastic frequency modes. Case 3
is also a descending flight but with a modified cosine aileron input, as shown in Figure 7b, and a simple
rudder command to alleviate the adverse yaw due to aileron input, as shown in Figure 7c. The aileron input
was chosen to achieve a maximum of approximately 45◦ of bank using the reduced order solution. The
rudder was determined using a heuristic approach to minimize the associated yaw rate. All three cases were
simulated for 25 seconds with a constant time step of 0.01 seconds.

For Case 1, Figures 8 and 9 show the relevant body linear and angular velocities, vB and ωB . In both
figures, the beginning of the classic phugoid mode can be observed, as indicated by the relatively large
excursions in longitudinal velocity and small excursions in vertical velocity. For the heavy weight condition,
the short period mode is seen as high frequency oscillations, as one can see in Figures 8b and 8c. As expected
in traditional short period mode responses, the light weight configuration increases frequency and damping,
hence smaller oscillations are observed in Figures 9b and 9c. In both the heavy and light weight conditions
for this vehicle, little difference is seen between the linearized and nonlinear solutions for this case.

For case 2, similar results to Case 1 are shown in Figures 10 and 11. Larger variations in the body states
are the main difference between Cases 1 and 2. This is due to the elevator input as defined in Figure 6. There
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Figure 7. Control Inputs for Case 3, Heavy and Light Conditions
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Figure 8. B Reference Frame Relevant Linear and Angular Rates, Case 1, Heavy
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Figure 9. B Reference Frame Relevant Linear and Angular Rates, Case 1, Light
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are small variations between the linearized and nonlinear solutions, but essentially the linearized solution
captures well the B reference frame dynamics during symmetric loading and maneuvering. This is because
the dominant changes associated with the generalized mass matrix (inertia about the longitudinal axis) do
not couple with symmetric loading and maneuvering. This, however, is a very particular and restrictive case
for an aircraft to perform any realistic mission. Therefore, asymmetric maneuvers must also be analyzed, as
done next.
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Figure 10. B Reference Frame Relevant Linear and Angular Rates, Case 2, Heavy
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Figure 11. B Reference Frame Relevant Linear and Angular Rates, Case 2, Light

Case 3 addresses the asymmetric loading (aileron and rudder input, as defined in Figure 7). Results for
this case are shown in Figures 12 and 13. For the heavy weight condition, Figure 12, significant differences can
be seen between the linearized and nonlinear solutions. For this case, the inertia effects tend to accentuate
the geometrically nonlinear effects, driving the solution away from the linearized and reduced order solutions.
Mathematically, the dominant changes in the generalized mass matrix do couple with the B reference frame
dynamics. However for a relatively high stiffness to mass ratio (a low fuel fraction–light weight), there is
little difference between the nonlinear and linearized solutions, with the exception of the vertical velocity,
as shown in Figure 13c. In general, the reduced order approach performs poorly in predicting the linear
and angular velocities of the example vehicle. To further highlight the differences in the orientation of the
vehicle between the formulations, the classic Euler angles are recovered from the rotation matrix,18 CBG,
and presented in Figure 14. At the end of the simulation interval (t= 25s), the linearized and nonlinear
solutions disagree in the heading angle, Ψ, by almost 180◦ (see Figure 14a) and in the bank angle, Φ, by
more than 40◦ (see Figure 14c).

In general, the results for Case 3 heavy weight show a significant divergence of the solutions from the
three formulation approaches starting around 10 seconds. Looking closer to the vehicle flexible states at
15 seconds, one can see that the wings are under different vertical bending deflections, as illustrated in
Figure 15. In fact, while the nonlinear formulation gives a wing tip deflection with respect to the initial
trimmed condition of approximately 10% of the its semi-span, the linearized one gives 19%. Clearly this is a
deformation range that is outside the scope of linearized formulations. The difference is due to the geometric
stiffening effect that is captured by the nonlinear formulation but not by the linearized one. To make matters
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Figure 12. B Reference Frame Linear and Angular Rates, Case 3, Heavy
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Figure 13. B Reference Frame Linear and Angular Rates, Case 3, Light
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Figure 14. B Reference Frame Classic Aircraft Euler Angles, Case 3, Heavy

Figure 15. Head on View of Vehicle Deflection for Case 3 Heavy Weight, 15 seconds

more interesting, while the nonlinear formulation predicts a slightly higher left wing tip, the linearized one
shows a higher right wing tip. As pointed out before, the reduced order approach is inherently flawed and
does not capture the elastic motions of the vehicle that is altering its flight dynamics response.

IV. Concluding Remarks

A framework for analyzing the flight dynamics of highly flexible vehicle configurations typically used in
HALE aircraft was presented. It tighly couples the nonlinear 6-DOF equations of motion of a reference point
in the aircraft with the aeroelastic equations that govern its geometrically nonlinear structural response. The
structural dynamic analysis of the entire vehicle used a low-order strain-based geometrically nonlinear for-
mulation. The unsteady aerodynamics used an incompressible finite-state potential flow formulation. The
coupled nonlinear flight dynamics/aeroelastic equations of motion were then integrated using an implicit
modified Generalized-α Method incorporating first and second order nonlinear differential equations. Using
the proposed framework, analyses and simulations were conducted in a representative twin tailed HALE ve-
hicle. The investigated cases compared nonlinear rigid body solutions, nonlinear vehicle 6-DOF coupled with
tbe linearized aeroelastic solutions, and full nonlinear vehicle 6-DOF and aeroelastic solutions. Simulations
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used both full and empty fuel states for level gliding descent, low-pass square elevator input gliding descent,
and low-pass filtered square aileron input rolling/gliding descent. In all heavy weight cases it was seen that
the rigid body solutions were not sufficient to capture the dynamics of a very flexible aircraft and higher or-
der formulations are required. When studying simple symmetric maneuvers, results indicated that linearized
solutions may be acceptable to capture the main aircraft dynamics. However, when performing asymmetric
maneuvering at heavy weight, results showed significant differences in the three reference point axes (pitch,
roll, and yaw), requiring the nonlinear analysis approach to properly capture the vehicle response. Overall,
simulation results showed the importance of having a minimum of a linearized structural analysis for sym-
metric maneuvering and nonlinear structural modeling for asymmetric maneuvering of a flexible aircraft like
the ones being considered for high-altitude long-endurance civilian and military missions.

Acknowledgments

This work was partially sponsored by AFOSR grant F49620-02-1-0425. The technical monitor is Dr.
Clark Allred, Capt. USAF. The views expressed in this article are those of the authors and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

References

1Tilmann, C. P., Flick, P. M., Martin, C. A., and Love, M. H., “High-Altitude Long Endurance Technologies for Sensor-
Craft,” RTO AVT Symposium on “Novel Vehicle Concepts and Emerging Vehicle Technologies”, Brussels, Belgium, April 7–10
2003, MP-104-P-26-1.

2Whitson, S., “The Proteus, Giving Shape to Forms Unknown,” Private Pilot , Vol. 33, No. 12, December 1998, pp. 44–50.
3Patil, M. J., Hodges, D. H., and Cesnik, C. E. S., “Nonlinear Aeroelasticity and Flight Dynamics of High-Altitude Long-

Endurance Aircraft,” 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and
Exhibit , St. Louis, Missouri, April 12–15 1999, AIAA Paper No. 99-1470.

4Newman, B. and Buttrill, C., “Conventional Flight Control for an Aeroelastic Relaxed Static Stability High-Speed
Transport,” AIAA Guidance, Navigation and Control Conference, Baltimore, Maryland, August 7–10 1995, pp. 717–726,
AIAA Paper No. 95-3250-CP.

5Gregory, I. M., “Dynamic Inversion to Control Large Flexible Transport Aircraft,” AIAA Guidance, Navigation, and
Control Conference and Exhibit , Boston, Massachusetts, August 10–12 1998, pp. 1224–1232, AIAA Paper No. 98-4323.

6Gregory, I. M., “Modified Dynamic Inversion to Control Large Flexible Transport Aircraft - What’s Going On?” AIAA
Guidance, Navigation, and Control Conference and Exhibit, Portland, Oregon, August 9–11 1999, pp. 392–402, AIAA Paper
No. 99-3998.

7Gregory, I. M., “Stability Result for Dynamic Inversion Devised to Control Large Flexible Aircraft,” AIAA Guidance,
Navigation, and Control Conference and Exhibit, Montreal, Quebec, August 6–9 2001, AIAA Paper No. 2001-4284.

8Meirovitch, L. and Tuzcu, I., “Unified Theory for the Dynamics and Control of Maneuvering Flexible Aircraft,” AIAA
Journal , Vol. 42, No. 4, April 2004, pp. 714–727.

9Li, X. and Agarwal, R. K., “Application of Reduced-Order-Models to Robust Control of the Dynamics of a Flexible
Aircraft,” AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, August 11–14 2003, AIAA Paper
No. 2003-5504.

10Nam, C., Chen, P., Liu, D., Urnes, J., and Yurkovich, R., “Adaptive Reconfigurable Control Based on a Reduced
Order System Identification for Flutter and Aeroservoelastic Instability Supression,” 42nd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, Washington, April 16–19 2001, AIAA Paper
No. 2001-1523.

11Schimdt, D. K. and Raney, D. L., “Modeling and Simulation of Flexible Flight Vehicles,” AIAA Modeling and Simulation
Technologies Conference and Exhibit, Boston, Massachusetts, August 10–12 1998, AIAA Paper No. 98-4359.

12Chavez, F. R. and Schimdt, D. K., “Systems Approach to Characterizing Aircraft Aeroelastic Model Variation for Robust
Control Applications,” AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, August 6–9 2001,
AIAA Paper No. 2001-4020.

13van Schoor, M. C. and von Flotow, A. H., “Aeroelastic Characteristics of a Highly Flexible Aircraft,” Journal of Aircraft,
Vol. 27, No. 10, October 1990, pp. 901–908.

14Drela, M., “Integrated Simulation Model for Preliminary Aerodynamic, Structural, and Control-Law Design of Aircraft,”
40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, St. Louis,
Missouri, April 12–15 1999, pp. 1644–1656, AIAA Paper No. 99-1394.

15Cesnik, C. E. S. and Brown, E. L., “Modeling of High Aspect Ratio Active Flexible Wings for Roll Control,” Proceedings
of the 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conferences, Denver, Colorado, April
22–25 2002, AIAA Paper No. 2002-1719.

16Cesnik, C. E. S. and Brown, E. L., “Active Wing Warping Control of a Joined-Wing Airplane Configuration,” Proceedings
of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conferences, Norfolk, Virgina, April
7–10 2003, AIAA Paper No. 2003-1715.

17Noll, T. E., Brown, J. M., Perez-Davis, M. E., Ishmael, S. D., Tiffany, G. C., and Gaier, M., “Investigation of the Helios
Prototype Aircraft Mishap,” Tech. rep., NASA, January 2004.

22 of 26

American Institute of Aeronautics and Astronautics



18Stevens, B. L. and Lewis, F. L., Aircraft Control and Simulation, John Wiley & Sons, Inc., New York, 1992.
19Reid, J. G., Linear System Fundamentals Continuous and Discrete, Classic and Modern, McGraw-Hill, Inc., New York,

1983.
20Bay, J. S., Fundamentals of Linear State Space Systems, WCB/McGraw-Hill, Boston, 1999.
21Brown, E. L., Integrated Strain Actuation in Aircraft with Highly Flexible Composite Wings, Ph.D. thesis, Massachusetts

Institute of Technology, Boston, Massachusetts, June 2003, PhD Thesis.
22Peters, D. and Johnson, M. J., “Finite-State Airloads for Deformable Airfoils on Fixed and Rotating Wings,” Aeroelas-

ticity and Fluid/Structure Interation, Proceedings of the Winter Annual Meeting, ASME, November 6–11 1994.
23Peters, D. A. and Cao, W., “Finite State Induced Flow Models Part I: Two-Dimensional Thin Airfoil,” Journal of

Aircraft , Vol. 32, No. 2, March-April 1995, pp. 313–322.
24Jansen, K. E., Whiting, C. H., and Hulbert, G. M., “A Generalized-α Method for Integrating the Filtered Navier-Stokes

Equations with a Stabilized Finite Element Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 190, No.
3-4, 27 October 2000, pp. 305–319.

25Chung, J. and Hulbert, G. M., “A Time Integration Algorithm for Structural Dynamics With Improved Numerical
Dissipation: The Generalized-α Method,” Journal of Applied Mechanics, Vol. 60, June 1993, pp. 371–375.

26Geradin, M. and Rixen, D., Mechanical Vibrations: Theory and Applications to Structural Dynamics, John Wiley and
Sons Ltd., 2nd ed., May 1997.

27Kreyszig, E., Advanced Engineering Mathematics, John Wiley & Sons, Inc., New York, 7th ed., 1993.

Appendix – Jacobian Matrices

To reduce the total virtual work, Eq. 67, to a set of independent coordinates, the absolute variations
between the dependent coordinates, h, p, and, θ (a rotation angle), and the independent coordinates, ǫ and b
are given by

dh = Jhǫdǫ + Jhbdb

dp = Jpǫdǫ + Jpβdb (97)

dθ = Jθǫdǫ + Jθβdb

with the six strain-dependent Jacobians matrices, Jhǫ, Jhb, Jpǫ, Jpβ , Jθǫ and, Jθβ , relating the variation of h
to ǫ, h to b, p to ǫ, etc. As an example, the of Jhǫ is presented here for a single beam as seen in Figure 3.
The remaining Jacobinans Jpǫ, Jθǫ, Jpβ and Jθβ are not derived here but can be found in Ref. 21.

As indicated in Eq. 46, the equations represented by the h column vector were developed with hbc as a
12×1 column vector of the boundary conditions. Taking the partials of h1

i,j with respect to ǫi, several of the
terms are equal to zero, where ǫi refers to the i-th element vector of strains

ǫi =
{

ǫxi
κxi

κyi
κzi

}T

(98)
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The partial derivatives with respect to ǫ1 are
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Along a single beam the following recursive relationship is found

(Jhǫ)3(i−1)+j,k =
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(101)

where i, k represent element numbers and j represents nodal numbers, with j = (1, 2, 3). The boundary
condition hbi

is

hbi
=











hbc i = 0

Di,i−1hi−1,3 i > 0

(102)

Finally Jhǫ is written as

Jhǫ =
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Note that each entry of Jhǫ is a 12×4 matrix.
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