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Computer experiments are performed on a model system of coupled mode equations 

designed to represent the Gunn instability, in order to investigate the origin of anomalously 

large fluctuations observed often over a wide range beyond an instability point in a dissipa

tive system. The experiments deal with a system of 40 modes which possesses a number of 

steady states (attractors) beyond the instability point. It is shown that the system travels 

in phase space along an erratic or chaotic trajectory for long time in the approach to one of 

these attractors from an unstable equilibrium point. According to the modern ergodic 

theory, trajectories are proved to be stochastic by demonstrating that they satisfy the expo

nential law of growth of stochastic instability, that is, they are unstable with respect to 

small disturbances. The system provides an example of rigidly deterministic systems whose 

dynamics are best described in stochastic terms. It is found that under the influence of 

random forces the system escapes from the reached attractor after fluctuating around it for 

some time and travels again along a long-lived stochastic trajectory. The system wanders 

erratically from attractor to attractor via macroscopically stochastic trajectories, which do 

not arise from external random forces, but from the nonlinearity inherent in the system. 

This wandering motion is observed as large fluctuations. 

§ 1. Introduction 

A dissipative system often exhibits anomalously large fluctuations over a wide 

range beyond an instability point. A typical example is fluid turbulence. The 

root mean squares of the fluctuations in the velocity of water in turbulent flow 

through a tube become anomalously large beyond the critical Reynolds number.ll 

Similar behavior is observed in the fluctuation phenomena of various physical 

quantities: the Nusselt number in a horizontal liquid helium layer heated below, 2l 

the local radial velocity in a fluid rotating between concentric cylinders,") the scat

tered (transmitted) intensity of neutron (light) in nematic liquid crystals,'),,) the 

current noise due to the Gunn instability6l, n or the acoustoelectric instability, s>, g) 

and the output intensity from junction lasers. 10l These experiments suggest that 

the occurrence of large fluctuations over a wide range is characteristic of instabilities 

in dissipative systems, in contrast with the critical fluctuations in the close vicinity 

of a phase transition point in an equilibrium system. 

Lorenz11l solved numerically a set of three differential equations designed to 

represent the Rayleigh-Benard convection and discovered nonperiodic solutions of 

chaotic type beyond the critical Rayleigh number. These solutions are unstable 
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Nonlinear Flue tuations ~A~ssociated with Instabilities 1875 

with respect to small modifications, so that slightly differing initial states can evolve 

into considerably different states. This feature is identical with that of stochastic 

instability, which leads to mixing and other statistical properties of motion, according 

to modern ergodic theory.!2)~ 141 Lorenz thought that turbulence might be described 

by nonperiodic solutions. These solutions were named later "strange attractors" 

by Ruelle and Takens. 15J Recently three more examples of strange attractors have 

been demonstrated by McLaughlin and Martin 161 and Rossler. m, 18> Since the non

periodic solutions of chaotic type are obtained without introducing external stochas

tic elements into the basic equations, the motion described by them is macroscopic, 

so that it may be observed as large fluctuations. 

In this paper, we propose an alternative mechanism for anomalous fluctuations 

on the basis of the results of computer experiments on the Gunn instability. In 

§ 2 coupled mode equations are set up to model the Gunn instability in a one

dimensional case. Our computations deal with a system of 40 modes. The readers 

who are not interested in the derivation of the equations may skip a large part 

of § 2 and go to Eqs. (13). In § 3 we report the numerical results. Beyond 

the instability point, at which an equilibrium point becomes unstable, our system 

possesses a number of attracting fixed points and attracting closed orbits. These 

will be called sometimes "attractors" hereafter. It will be shown that the system 

travels in phase space along a long-lived erratic trajectory to reach one of these 

attractors from the unstable equilibrium point. It will be seen also that these 

trajectories satisfy the exponential law of growth of stochastic instability, 12)~ 141 ac

cording to which initially close trajectory pair separates exponentially with time. 

Thus, our system provides an example of fully deterministic systems whose dy

namics are best described probabilistically. Dissipative systems are always exposed 

by random forces through contact with a heat reservoir (or environmental causes). 

Our numerical experiments will show that if initial conditions are the same each 

other, at the early stage a system exposed by random forces travels along almost 

the same trajectory as that of a system without them, but after some time two 

trajectories begin to separate from each other, and at the later stage exhibit com

pletely different paths. This means that the influence of random forces accumulated 

gradually on the system during its travel along the trajectory provokes an unex

excted behavior of the system after some time. Thus, one will see that under 

the application of external random forces the system escapes from the attractor 

after fluctuating around it for some time, and begins to travel again along a 

long-lived stochastic trajectory; the system wanders erratically from attractor to 

attractor via long-lived stochastic trajectories. This wandering motion looks seem

ingly like a strange attractor in a sense that there is no stable point to stay 

eternally. This motion will be observed as large fluctuations, because the motion 

itself is provoked by random forces, but its stochasticity is caused by the nonli

nearity inherent in the system, in contrast with the thermal fluctuations in equilib

rium systems. In the last section, we state our conclusions. 
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1876 K. Nalwmura 

§ 2. Dynamical system representing the Gunn instability 

We consider the Gunn instability in a one-dimensional case, which is governed 

by the following equation 191 for the electric field E(x, t): 

(1) 

where e is the electronic change, n0 the equilibrium electron density, c:0 the static 

dielectric constant, and D the diffusion constant. Here v (E) is the electron drift 

velocity and J(t) is the total current density. We Fourier-analyze E(x, t) in the 

form 

E(x, t) =Eo+~ ck(t)eik(x-v,t), 
k=f-0 

(2) 

where Eo is the applied electric field and v 0 = v (E0 ). If the periodic boundary 

conditions are imposed on E(x, t), the wave number k is given by k= (2rriL)m 

as usual, in which L is the sample length and m are positive or negative integers 

except zero. It is convenient to label normal modes by m instead of k. Using 

Eq. (2) in Eq. (1), we obtain the system of coupled mode equations 

(3) 

where k0 = 2rrl L and v 0 r.,, = (d8v (E) I dE8 ) E~E,· The growth rate am is given by 

am= (Dk0
2) (p-m'), with p=- (4rren0v 0 cvlc:0Dk0

2 ), in which p is the parameter 

proportional to the negative differential mobility - v 0 (]) and controls the instability 

of the system. When p > 1, the modes satisfying the inequality I m I< y'p are am

plified. The total current density J(t) is expressed as 

J ( ) - T 1 (2) "\' I I 2 1 (3) '\-, • • 
t -uo+~vo ~ Cm +~vo ~ CmCm•Cm"+ · , 

2 m 6 (m+m'-1 m"~O) 
(4) 

where J0 = en0v 0 is the ohmic current density. 

In Eq. (3), we disregard all higher-order terms than four-mode coupling term 

( s = 3) and take i'1to account only such a coupling as 

L:m•Cm£ -m,cm in this term, omitting the imaginary factor 

ik0v 0 c21 m. For the numerical experiments, we consider 

a system of a finite number of modes whose maximum 

index is lV[, as illustrated in Fig. 1. It is convenient 

to introduce dimensionless time T by T = (Dk0
2t;) t, 

where t;= (P-1) for JY>112(M2 +1) and t;= (JYJ2 

-p) for P<112(1\P+l). Furthermore, let us intro-

duce dimensionless variables and quantities: 

Xm = (VI Dfco't;) Cm , 

g=DI<o'TVI\7', a=-kovo(J)IV, 

... .. ... . . 

Fig. 1. The growth rate am as 

a function of m. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

7
/6

/1
8
7
4
/1

9
3
9
0
7
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Nonlinear Fluctuations L"lssociated with Instabilities 1877 

where 

In this approximation, Eq. (3) is reduced to 

Xm=[(-P-~_m 2 )-~gl£ (1-..!.om,m') IXm,I']Xm+_!_(l+ima) 2.:,; xm,xm,, 
~ m'~l 2 2 (m'+m"~m) 

(5) 

where the dot on X,, denotes differentiation with respect to T. For a typical 

sample of GaAs (n0 = 1015 em- 3 and L = 10 jLm), the modes up to at most I m I= 10 

are amplified in the negative mobility region. Then it will be sufficient to· take 

M = 20 as shown in Fig. 1. 

Decomposing complex variables Xm into real and imaginary parts as Xm = Y,m-l 

+ iY,m for positive integers m, and using the relation Xn, =X _'I'm for negative integers 

m, we can write Eq. (5) in the form convenient for the numerical computations 

Y4n-3= [rzn-!-~g(J-tY.'n-3-lYfn-2)JY4n 3+ (Ai;{-l+B~;{_,) 

- (2n -1) a (A~2-r + B~2-1), 

+ (2n -1) a (Aj;{ 1 + Bi~( ,) , 

- 2na (Al2 + Bl2) + l (Y,'n-1- Y,'n) - 2naY,,_,Y,n, 

Y,n= [rzn -~g (I -lY42n-1 -tYln)] Y4n +(At(+ Bl2) 

for n=l, 2, ... , 10, where 

40 

I=" Y.' Li .7 ' 
jo:-:1 

n I 

B~~?-1 =I: (Yu-I Y,n-2/-3- Y,z Y4u-u-z), 
1~1 

n l 

Bl2 .. , =I: ( Y,z-1 Y,n-u-z + Y21 Y,n-zz-s). 
l=l 

n-1 
B~;{ =I: ( Y21 1 Y,n-u-1- Yu Y,n-zt). 

l=l 

(6a) 

(6b) 

(6c) 

(6d) 

(7) 

(8) 

(9a) 

(9b) 

(lOa) 

(lOb) 

(lla) 
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1878 K. Nakamura 

n-1 
Bi~ = 2.:: (Y2/-J Y,, 21 + Y,l Y4n-u-,), (lib) 

l~l 

with the definition of A)~ 1 = "1W = 0, B, lr) = B, liJ = 0 and B, lr) = B, liJ = 0. We must 

110\V treat the dynamical system of 40 modes. 

Let us replace the nonlinear terms Bl~-t on the right-hand sides of Eqs. (6a) 

and (6b) for n =3, 4, ···, 10 by new terms B)~ 1 _ 1 defined as 

n-·1 

B);2_1 = :z:= (Y2n-1 Y4n-2l-2 + Yu Y4n-2l--3), (12) 
L--1 

which can be obtained by replacing Y,1 _, on the right-hand side of Eq. (lOb) 

by Y2,- 1• For n = 1, 2, however, B 1 liJ and B 3 lil remain unchanged. Thus, Eqs. (6) 

are rewritten as 

Y4n 3= [/2n-1-c;g(I-]rYfn-3-tYfn-2)]Y4n-3+ (A~~{z+B)2 1) 

- (2n -1) a (A)~-1 + lJ):;_1), 

Y4n-2= [/2n-1-,;"g(I-tYfn-3·-1JY}n-2)]Y4n-2+ (Aj~-1+Bj~ 1) 

+ (2n -1) a (Al2-1 + Bl2-1), 

Y,n 1 =the right-hand side of Eq. ( 6c), 

Y4, =the right-hand side of Eq. (6d), 

(13a) 

(13b) 

(13c) 

(13d) 

for n=I, 2, ···, 10, with the definition of B, 1i 1 =B110 and B3
10 =B3 (i). Here, Eqs. 

(13c) and (13d) are the same as Eqs. (6c) and (6d). In the next section, 

we report the results of numerical experiments on the dynamical system of Eqs. 

(13). 

§ 3. Results of computer experiments 

We have solved numerically the system of Eqs. (13) by a standard Runge

Kutta-Gill integration routine. The dimensionless time increment was taken as 

L1T=0.02. In the experiment, 61 the current noise was measured. FromEq. (4), 

the current density J is determined in the lowest-order approximation by the quan

tity I defined by Eq. (8). Thus, a knowledge of the dynamics of the system may 

be obtained by investigating the time evolution of I. 

(A) Stochastic travel to a steady state 

Figure 2 shows the time behavior of I for jJ =- 5000, g = 0.002 and a= 3.5, 

with the initial conditions Yj (0) = 0.1 for all j ( = 1, 2, · · ·, 40). In this case, all 

modes are amplified. Figure 3 presents the approach to an equilibrium point (Yj 

= 0 for all j) in an equilibrium state chosen as p =- 5000, g = 0.002 and a= 3.5. 

As expected, the approach exhibits a monotonous decay with the relaxation time 

~ 1 in the dimensionless time unit. However, the situation is changed completely 

in the negative mobility state (P > 1), in which the equilibrium point becomes 
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~Vonlinear Fluctuations Associated with Instabilities 1879 

~~~~~P, 
1.0 

0.5 

o ~ ~ ~ m n ~ ~ m ~ 
t1me 

Fig. 2. Time evolution of I in an unstable ,;tate (p=5000, g=0.002 and a=3.5), where the 

initial conditions have heen taken ae; Y 1 (0) c'O.l for j~ I, 2, ···, 40. 

0.4 

0.3 

I 

0.2 

0 3 

Fig. :-3. Time evolution of I m an equilibrium 

state (p=-5000, g=0.002 and a=:-3.5), where 

the initial conditions are the same as those 

in Fig. 2. 

Lg D 

- 1 

- 2 

-3 

-4 

-5 

time 

-6 
2 3 4 5 6 

Fig. 4. Graph showing a typical curve of ex

ponential growth in separation die;tance D 

between two trajectories starting with slightly 

differing initial conditions: (1) Y 1 (0) =0.01 

for all j, and (2) Y1 (0) =0.01 for j~l, 2, ···, 

39, but Y" (0) =0.010001. Here the numeri

cal values of p, g and a are the same as 

those in Fig. 2. 

unstable. Erratic or chaotic behavior continues for long time until the system 

reaches a steady state (attracting fixed point) P 1 from the unstable equilibrium 

point; in phase space the system exhibits a long-lived erratic trajectory in the 

approach to P 1 • The life time of the erratic motion is ~77, which is much longer 

than the relaxation time ~ 1 in the equilibrium state. According to the modern 

ergodic theory, 12l~w the stochasticity of motion can be determined by investigating 

the growth in trajectory-pair separation distance. The theory states that trajec

tories are stochastic if initially close trajectory-pairs separate exponentially with time. 

This is called stochastic (or exponential) instability. In order to see the sto

chasticity of our long-lived erratic motion, we have computed the growth of separa

tion distance D betvveen two initially close trajectories in Fig. 4. One finds that D 

increases vvith time approximately in the exponential form: D=D0exp(ht), where 
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2 

Fig. 5. Time behavior of two trajectories starting with slightly differing initial conditions; 

solid curve: Yj(O)=O.Ol for all j, and dotted curve: Yj(O)=O.Ol forj=l,2, .. ·,39, but 

Y,,(O) =0.00999. Here, p=lOOO, g=0.002 and a=2.0. 

Do is the initi'll distance and his the Kolmogorov-Sinai dynamical entropy. Thus, 

our erratic motion is certainly stochastic. The saturation behavior of D denotes 

that the stochastic region is bounded in phase space. However, we must mention 

that if initial conditions are set in the close vicinity of P, the approach to P 1 

is of course monotonous, as in the equilibrium case, because P 1 is an attracting 

fixed point. Thus, a small region around P 1 is not stochastic. In Fig. 2, a 

giant peak is observed near T = 66.5. Such peaks are generated irregularly. This 

suggests that our trajectorial flow is something like a single spiral whose outer 

portion returns after an appropriate twist toward the side of the same spiral with 

the outermost parts again facing the more central parts, as demonstrated by Ros

sler181 as an example of a strange attractor. If the system trajectories obey the 

exponential law of growth of stochastic instability, two states differing by imper

ceptible amounts with respect to initial values { Yi (0)} must evolve eventually 

into two considerably different states, when the syst~m starts with the equilibrium 

state. Figure 5 shows the time behavior of I for p = 1000, g = 0.002 and a= 2.0, 

with two different initial conditions: (1) Yi(O) =0.01 for all j, and (2) Yi(O) 

=0.01 for j=1, 2, ... , 39, but Y40 (0) =0.00999. This case corresponds to the initial 

trajectory-pair separation distance Do= 10-'. One sees that two trajectories exhibit 

completely different paths after a certain time~4. \Ve may say that stochastic 

trajectories are unstable with respect to small modifications of initial condi

tions. It is impossible to give always the same value to {Yi(O)} because of 

thermal fluctuations inherent in the equilibrium state: there is any error whatever 

in observing the initial values { Y; (0)}. Thus, whenever the same measurement 

is made repeatedly on the same sample under the same condition, observed states 

represented by points in phase space must be different from each other. *1 Al

though the basic equations (13) themselves are deterministic, a jYrobabilistic 

*1 In an example of Fig. 5, the system reached a limit cycle at T~52 for Y,,(O) =0.01 (see 

Fig. lO(a)) and two different fixed points at T~RO and 72 for Y"(O) =0.009999 and 0.01000001, respec

tively. However the system trajectories were erratic even at T=90 for Y"(O) =0.00999 and 0.010001. 

The fact that completely different final states appear by the small modifications of initial conditions 

is observed also in morphogenesis, (see R. Rosen, Dynamical System Theory in Biology (John 

Wiely and Sons, New York, 1970), Vol. I, Chap. 7.4). 
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Nonlinear Flue tuations Associated with Instabilities 1881 

approach is needed to understand the physical properties of their solutions. 

We confirmed that such stochastic trajectories appeared over a wide range of 

p = 10'~ 101• When there is no steady state (attractor), our stochastic motion 

must be identical with a strange attractor. The system of Eqs. (13) provides 

an example of rigidly deterministic systems whose dynamics are best described 

in stochastic terms. The importance of deterministic models with chaotic dynam

ics has been discussed by May201 in the field of population biology. 

(B) Effect of external random forces 

Dissipative systems are always exposed by random forces through contact with 

a heat reservoir (or environmental causes). One will see that external random 

forces have an effect similar to that of initial conditions. These forces can be 

taken into account by adding sri to each right-hand side of Eqs. (13) (or in the 

form of a Langevin equation), where ri is n1:1dom numbers defined in the interval 

[ -1, 1] and 2 is the parameter.'u Our random forces do not obey the Gaussian 

distribution, but such a thing is not important for the study of their influence 

on system trajectories. Figure 6 shows the time evolution of I for the system 

applied by the random forces of 2 = 10- 5 under the same conditio'1 as that in Fig. 2. 

The system exhibits a stochastic trajectory with rather shorter life time ~44 to 

approach a new steady state (attracting fixed point) P,. Figure 7 tells us that 

if initial conditions are the same, at the early stage a system exposed by random 

Fig. 6. Time evolution of I for the oystem applied by the random forces of E = w-' under the 

same condition as that in Fig. 2. 

1.0 

0.5 

0 2 3 4 

E = J0- 5 

,'\1 ,, 
'' '' '\ 
' ' ' ' 

/ \ 

' \ 

5 

Fig. 7. Graph showing the infiLlence of random forces on the trajectorial flow under the 

same condition as that in Fig. 2. 
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1882 K. Nakamura 

forces travels along almost the same trajectory as that of the system in the absence 

of random forces, but after some time two trajectories begin to separate from each 

other and at the later stage exhibit completely different paths. This behavior is 

quite similar to that in Fig. 5. This means that the influence of random forces 

accumulated gradually in the system during its travel along a trajectory provokes 

an unexpected change of the system after some time. In fact, in the case c = 10- 2 \ 

the system approached another steady state (attracting fixed point) P 3 after a 

long-lived stochastic travel. Thus, stochastic trajectories are unstable with re

spect to small disturbances due to unknown environmental causes. This behavior 

is closely related to the stochastic instability. There seems to be no "most probable 

path" in the approach to a steady state from the unstable equilibrium point. 

(C) Escape from a steady state 

As mentioned in the preceding subsection, our system possesses a number 

of steady states (P1 , P,, P 3 , ···) in the negative mobility state beyond the instability 

point and it reaches one of them via a long-lived stochastic travel from the unstable 

equilibrium state. Without external random forces, the system must stay eternally 

at this attractor. However, the situation is changed completely by the application 

of random forces. Figure 8 shows a time evolution of I for the system initially 

at P 1 under the application of random forces of c =-c 1.8. The system fluctuates 

around P 1 for a certain time ~27, and then escapes rather suddenly from P 1 

to travel again along a stochastic trajectory. This trajectorial behavior is quite simi

lar to that of c = 0 in Fig. 2. Thus, our motion is macroscopically stochastic. 

Figure 9 indicates that the duration of stay at the attractor depends sensitively on 

the strength, c, of random forces. We may say that the influence of random forces 

accumulated gradually in the system gives eventually rise to its escape from the 

attractor, as expected from Fig. 7. This is an important effect. Figure 10 shows 

also the approach to an attracting closed orbit (limit cycle) for P= 1000, g=0.002, 

a= 2.0 and c = 0, with the initial conditions Yj (0) = 0.01 for all j, and the escape 

from it under the application of random forces of c: = 2.0. The experiments showed 

that the system possessed two more attracting fixed points. 

2.0 

time 

Fig. 8. This graph shows clearly that the system can escape from the attractor P1 under the 

application of random forces; p=5000, g=O.Om, a=3.5 ancl E=l.8. 
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116 118 120 
time 

122 124 

Fig. 9. The E-dependence of the duration of stay at P1. 

time 

1883 

' 

Fig.lO. Time evolution of I in an unstable state (p=lOOO, g=0.002 and a=2.0). (a) Ap

proach to a limit cycle; the initial conditions Yj(O) =0.01 for all j. (b) Escape from the 

limit cycle under the application of random forces of E=2.0. 

§ 4. Discussion 

Our computer experiments indicate that there are three interesting phenomena 

associated with instability in a dissipative system. First, the system exhibits a 

long-lived stochastic trajectory in its travel to a steady state from the unstable 

equilibrium point. Stochastic trajectories are unstable with respect to external dis

turbances. This is closely related to the exponential law of growth of stochastic 

instability. Since these trajectories are obtained without introducing external sto-
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chastic elements into the basic equations, the motion described by them is macro

scopic. Thus, our system provides an example of fully deterministic systems whose 

dynamics are best described probabilistically. If the system stays eternally at the 

reached attractor, the long-lived stochastic motion on the way to the attractor will 

be observed simply as a large enhancement of fluctuations in a transient phenomena. 

Such an enhancement effect was discussed by many investigators in connection 

with the transient statistical properties of a laser, superradiance and electrical 

oscillation. In particular, Suzuki") has recently developed a scaling theory of 

transient fluctuations. However, the problems discussed by them seem to be essen

tially different from ours, because in these cases the enhancement effect does not 

come from the nonlinearity inherent in the system, as in our case, but from the 

nonlinear transformation of external random forces. In fact, since the solutions 

of an equation of motion X= X(p- X), which presents a good model for a laser and 

has been adopted by Suzuki as an example for the fluctuation-enhancement effect, 

exhibit always a monotonic decay to a steady state from an unstable equilibrium 

point (P >O) and do not show any stochastic behavior, there is no fluctuation in 

the absence of external random forces, from our viewpoint. Now, the situation 

is changed completely by the application of random forces. Secondly, under their 

influence, the system can escape from the attractor after fluctuating around it for 

some time. The escape effect never occurred in the equilibrium state. Thirdly, 

the system travels again along a stochastic trajectory after its escape from the 

attractor. We confirmed that these three phenomena occur over a wide range 

of p = 10 2 ~ 104 • From these results, we conclude that the system wanders errat

ically from attractor to attractor via long-lived stochastic trajectories. This wander

ing motion looks seemingly like a strange attractor in a sense that there is no 

stable point to stay eternally. We must now emphasize that the wandering motion 

is provoked by the external random forces, but its stochasticity is governed by the 

macroscopic motion arising from the nonlinearity inherent in the system. This 

is in contrast with the thermal fluctuations in equilibrium systems, whose magnitude 

varies in proportion to the strength of external random forces. Thus, the wander

ing motion will be observed as large fluctuations. If a system possesses a single 

steady state beyond the instability point, stochastic trajectories may be viewed as 

long-lived excitations in the steady state. Then, it is easily understood that the 

very existence of these excitations enhances anomalously fluctuations, as compared 

with short-lived excitations in the equilibrium state. We may say that the concept 

of a strange attract or corresponds to a special case, in which there is no attractor, 

to our wandering motion. Generally speaking, however, it is not so easy to obtain 

wandering solutions. We could not find any stochastic motion for small values 

of a. For example, for jJ = 100, g = 0.04 and a~= 0, the system trajectory was 

similar to that in the equilibrium state. However, when a= 2.5, the system trajec

tory was again stochastic. For jJ=10', gc=0.002 and a~=2.0, the system (1:3) 

completed a closed orbit with short relaxation time. Our numerical analysis show-
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eel that the system could not escape from the orbit even under the application 

of random forces of 2 = 5.0 and fluctuated around it as if the orbit was crushed. 

Our computer experiments indicated that an attractor was stable under the ap

plication of random forces if the approach to it fi-07n the unstable equilibrium 

jYoint exhibited a monotonic decay with short relaxation time ·~1, while it 

became unstable zf the approach exhibited a long-lived stochastic behavior. 

Figuratively speaking in topographyical terms, the former case is compared to 

the motion of a ball in a deep valley whose slope is steeply nsmg, while the 

latter one is compared to its motion on a basin (like a frying pan or a billiard 

table) possessing a number of shallow traps. 

One may say that our dynamical system (13) is rather unrealistic in a sense 

that a part of actual nonlinear interactions has been replaced by artificial forms, 

or that it has, as a model of a model, no longer an immediate physical interpre

tation. However, the discovered phenomena are natural from the physical point 

of '•iew. Therefore, we may say that these phenomena are generic and characteristic 

of instabilities in dissipative systems. We propose our wandering motion as a 

candidate for the mechanism of anomalous fluctuations. Then, the following ques

tions will be raised. How long does the system stay at an attractor? Which 

attractor does the system reach after escaping from this attractor? How long 

does the system travel along a stochastic trajectory? These questions must be 

answered on the basis of a statistical concept. 
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