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NONLINEAR FLUTTER OF A CIRCULAR CYLINDRICAL SHELL 

IN SUPERSONIC FLOW* 

By David zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Evensen 
NASA Langley Research Center, Hampton, Virginia 

and Mervyn D. Olson 

National Aeronautical Establishment, Ottawa, Canada 

SUMMARY 

A nonlinear analysis is presented for calculating the limiting amplitudes of cylin- 
drical shell flutter by using a four-mode approximation for the shell deflection. 

aerodynamic pressure is approximated by linear piston theory, and the nonlinearity enters 

the problem through the nonlinear shallow-shell equations for the cylinder. The governing 

equations a r e  reduced to four modal equations by applying Galerkin's method, and limit 
cycle solutions a r e  obtained by the method of harmonic balance. 

cycles is investigated numerically by integrating the modal equations on a digital 

computer. 

The 

Stability of the limit 

Two types of limit cycle flutter a re  obtained: (a) two-mode standing-wave flutter 
Under most conditions, the and (b) four-mode circumferentially traveling-wave flutter. 

two-mode standing-wave flutter becomes unstable and transforms into four-mode 

traveling-wave flutter. 
pressures below the linear flutter boundary. This fact may explain why recent results 
indicate a difference between experiments and linear theory for the flutter of cylindrical 
shells. 

The analysis indicates that flutter can occur a t  aerodynamic 

INTRODUCTION 

The self-excited oscillation of thin plates exposed on one side to a parallel super- 
sonic airstream is called panel flutter. 

of this flutter instability becomes the primary design criterion for the structure. 

For  some aerospace applications, the prevention 

Although panel flutter is usually associated with flat or curved plates, a thin-walled 
cylindrical shell can also exhibit this type of instability. Extensive reviews of the panel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_ .  

* This report, with author credits in reverse order,  is also being issued by the 
National Research Council of Canada as Aeronautical Report LR-486, December 1967. 



flutter problem and analyses dealing with the flutter of cylindrical shells are given in 

references zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 to 3. Experimental observations of cylindrical shell flutter are reported 

in references zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 5. 

A striking feature of the results of reference 5 is the fact that "almost all the flut- 

ter modes observed in these experiments were of the circumferentially traveling-wave 

type." Such traveling waves a r e  not predicted by l inear theory, and it was  suggested in 

reference 5 that nonlinearities in the shell were responsible for  the phenomenon. This 

suggestion motivated the present study, the purpose of which is to demonstrate that the 

circumferentially traveling-wave flutter can be predicted from a nonlinear analysis. 

Some introductory work on the nonlinear flutter of cylindrical shells appears in 

reference 6, which employed a two-mode approximation to the shell deflection. The pres- 

ent study utilizes four modes, the minimum number required to yield traveling-wave flut- 

ter .  In addition, the present analysis retains higher order nonlinear te rms which were 

neglected in reference 6. Thus, the present study extends the results of previous work 

to include the possibility of traveling-wave flutter and to examine the influence of higher 

order nonlinearities. 

The aerodynamic pressure acting on the shell is approximated by linear piston 

theory, which is commonly used for the high Mach numbers of interest in this study. At 

the present time, no completely acceptable aerodynamic theory is available for cylindri- 

cal shell flutter. However, in reference 6 it is shown that flutter predictions based on 

piston theory correspond fairly close to experimental findings, at least for moderate 

amounts of internal pressure in the shell. 

simplest theory to apply to flutter calculations. Note that there is no rea l  contradiction 

in using linear aerodynamic theory for nonlinear flutter calculations, because the limiting 

amplitudes of flutter wi l l  st i l l  be within the linear range from the aerodynamic point of 

view. 

Furthermore, piston theory is by far the 

The cylindrical shell is represented by the nonlinear shallow-she11 equations, and a 
Galerkin procedure is used to reduce the problem to four coupled ordinary nonlinear dif- 

ferential equations for the modal amplitudes. Approximate limit cycle solutions to these 

modal equations a r e  obtained by the method of harmonic balance. These approximate 

limit cycles were verified and their stability was investigated by numerically integrating 

the modal equations on a digital computer. 

The limit cycle solutions for flutter fall into two categories. The first type of flut- 

ter involves only two modes, whereas the second type involves four modes responding 

together in a very special way. The two-mode flutter is simi lar  to the standing-wave 

flutter investigated in reference 6 (and, in fact, is very s imi lar  to the flutter of flat 

panels), whereas the four-mode flutter involves circumferentially traveling waves. 

latter phenomenon is characteristic of axisymmetric structures. A noteworthy feature of 

This 
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the four-mode limit cycle results in  the conclusion that flutter can occur below the bound- 
a ry  predicted by linear theory. This observation might explain why cylindrical shell flut- 
te r  has been found experimentally to occur below the theoretical linear flutter boundary. 

SYMBOLS 

a, f ree-stream speed of sound 

generalized coordinates of assumed modes 

A,B,C,D limit cycle amplitudes (see eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8)) 

DS shell bending stiffness, Eh3/12(l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- v2) 

E Young's modulus 

F 
1 a 2 F  Nx8 = --- 
R ax ae s t ress  function, defined by 

7 f 0  aerodynamic pressure parameters (eq. (6)) 

h thickness of shell wal l  

i , j  integers, ranging from 1 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Kj (xi) functional notation to denote equations (1 1) o r  (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) 

coefficients defined in appendix A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11 . . . 26 
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length of cylindrical shell 

f ree-stream Mach number of a i rs t ream 

axial and circumferential wave numbers 

stress resultants due to applied loads 

pressure 

f ree-stream static pressure 

shell internal pressure (net) 

radius of cylindrical shell 

time 

median surface displacements of shell (fig. 1) 

coordinates in the axial, circumferential, and radial directions, respectively 

(see fig. 1) 

vector representation of the unknowns B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, f, and (see eqs. (C2)) 

initial approximation to solution of equations (C2) 

gas constant, 1.4 

corrections to vector X i 0  

damping parameters (see eq. (12)) 

nonlinearity parameter (eq. (7)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3L/8M,am zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V Poisson’s ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 



shell material density 

aspect ratio of shell displacement, nR/nL 

steady-state phase angles 

flutter o r  vibration frequencies 

linear undamped modal frequencies (appendix B) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A dot over a quantity indicates differentiation with respect to time. 

THEORY 

In the following sections, the governing equations for a cylindrical shell are pre- 
sented and briefly discussed. A four-mode solution is assumed, and Galerkin's method 

is applied to reduce the problem to one involving ordinary differential equations. Approx- 
imate limit cycle solutions to these equations are obtained by the method of harmonic 
balance. Stability of the limit cycle flutter is also discussed. 

Governing Equations 

The nonlinear shallow-shell equations form the starting point for this investigation. 

These equations make use of Dormell's approximations for cylindrical shells and are 
derived in reference 7 .  In te rms of the radial deflection w and in a common notation, 

these equations are 

(1) 

and 

where w is the radial deflection of the shell and F is the usual stress function. The 

shell geometry and coordinate system are shown in figure 1. 

The aerodynamic pressure p is approximated by f irst-order piston theory, which 
yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 



In writing equations (1) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3), the reader wi l l  

note that (1) in-plane inertia te rms have been 

neglected, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) the equations a r e  written for 

w defined positive inward (fig. 1) and p 

defined positive outward. 

Four-Mode Approximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Galerkin's Method 

Equations (1) to (3) are  solved approxi- 

mately by using a four-mode deflection of the 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.- Shell geometry and coordinate system. form: 

w(x,e,t) = F l ( t ) s i n  + A2(t)sin + B ~ ( t ) s i n  sin nB 
L L 1 

+ - Al(t)sin E + A~( t ) s in  - 
n2[ 4R L L L L 

These mode shapes are similar to those used previously by the author in the nonlinear 

vibrations of cylindrical shells (ref. 8) and verified experimentally for the nonlinear 

vibrations of rings (ref. 9). The te rms which a r e  multiplied by n2/4R a re  included in 

equation (4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the solution will satisfy the periodic continuity condition on the c i r -  

cumf e r entia1 displacement v . 
Substitution of equation (4) into the compatibility equation (2) allows the latter to be 

solved for a particular solution F, which is given in appendix A. The complementary 

solution to equation (2) is taken to be zero. By substituting w and F into the appro- 

priate nonlinear strain-displacement relations of shallow-she11 theory, i t  can be shown 

that the following conditions a re  satisfied: 

(a) The displacements u, v, and w and their derivatives satisfy periodic con- 

tinuity conditions of the form: 

V(X, e,t) = V(X, e + 2 ~ ,  t) 

(b) The deflection w goes to zero at the ends of the shell, that is, at x = 0 and 

x = L. 

(c) The boundary conditions for a shell having freely supported ends a re  satisfied 

to a f i rst  approximation. 

which involve the amplitudes A1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1 linearly and nonlinear te rms involving 

For example, the axial bending moment is composed of te rms 
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products of A i ,  B1, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso forth. At the ends of the shell, the linear te rms go to zero, 

but the nonlinear terms do not vanish. A s imi lar  situation is true for Nx and v, where 
the nonlinear te rms do not go to zero at the ends of the shell. Since the nonlinear te rms 

a r e  relatively small, it is felt that these boundary conditions approximate those of a 
freely supported shell. 

Finally, the expressions for w, F, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp a r e  substituted into equation (l), and a 
Galerkin procedure is used to obtain four coupled nonlinear ordinary differential equa- 
tions for the modal amplitudes A1 to B2. The expressions aw/aAl, aw/aA2, 

aw/aB1, and aw/aBg were used as the weighting functions in the Galerkin procedure, 
In a partly nondimensionalized form, the resulting coupled equations a r e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- tk la l (a12 + b12) + ~ l 9 F l ( a 1 ~  - bi2) + 4a1(az2 - bz2) + 2bl(albl + 4a2b2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 

+ bib2 ) (  + E Q a l  a22 + bz2) + E2Llal(a12 + b12)2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt2Z2[a2(a12 + b12) 

x (ala2 + blb2) + al(ala2 + blb2)iJ + E 2Z3a2(a22 + bz2)(ala2 + blb2) 

( 5 4  - 2 ~ ~ 1 4 a l ( a 1 ~  + b12)(az2 + b22) + E 2 Z5al(a22 + b22)2 = 0 

+ 4~k2[4aZ(a2~ - b2") + a2(a12 - b12) + 2b2(albl + 
(Equation continued on next page) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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where al, a2, b l ,  and b2 are the nondimensional 

modal frequencies are designated by m i n  and ~ 2 n  

namic influence comes through the two parameters 

The nonlinearity parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is given by 

modal amplitudes. The linear 

(see appendix B), and the aerody- 

Note that the equations become linear when E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. The coefficients k l  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk5 and 11 

to 16 in  equations (5) depend upon the shell material properties, mode shapes, and the 
axial membrane stress resultant wx; they are defined in appendix B. 

Limit Cycle Oscillations - Method of Harmonic Balance 

According to linear flutter theory, disturbances of the modal amplitudes away from 

zero are damped with time as long as the aerodynamic pressure parameter f is below 
the linear flutter boundary, given by f = fo. Conversely, when f is greater than fo, 

the linear theory predicts that disturbances of the modal amplitudes will increase expo- 

nentially with time. 
situation is altered considerably. 
and eventually a steady-state vibration with finite amplitude is usually obtained. 
vibration is termed a "limit cycle oscillation." (See ref. 10 for a discussion of limit 

cycles in nonlinear self-excited systems.) 

However, when nonlinear terms are included in the analysis, the 
The nonlinear te rms rest r ic t  the growth in amplitude, 

Such a 

Equations (5) exhibit limit cycle oscillations of the type just described. When the 
nonlinearities are relatively small  (for example, 
are nearly sinusoidal in time. In this case, the method of 'harmonic balance" (ref. 11) 
can be used to obtain approximate solutions for the limiting amplitudes and phases. 

Eki << W i n 2 ) ,  the l imit cycle vibrations 

To obtain approximate limit cycle solutions to equations (5), the amplitudes al(t) 
to b2(t) are assumed to be i n  the general form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 



a2(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= B cos(wt + @) 

bl(t) = C cos(ot + +) 

b2(t) = D cos(wt + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX) 

al(t) = A cos w t  

1 
that is, the limit cycle vibrations a r e  assumed to be sinusoidal in time. To apply the 

method of harmonic balance, equations (8) are substituted first into equation (sa), and the 
results a r e  grouped into terms multiplying cos wt, te rms multiplying sin wt, and higher 

harmonic terms. The te rms multiplying sin w t  and the te rms multiplying cos ut are  

then equated to zero, and the higher harmonics a r e  ignored, since they usually contribute 

little to the solution. 

This procedure results in two coupled algebraic equations involving the unknown 

The end result is a set of eight nonlinear algebraic equations for the 

amplitudes and phases. Applying a simi lar  procedure to equations (5b) to (5d) yields six 

more equations. 

eight unknowns A, B, C, D, @, +, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw.  Particular solutions to these equa- 

tions are now presented. 

Two-mode standing-wave .~ - .  solution. .- . .  - A possible approximate solution to equations (5) 

is given by 

a2(t) = B cos(wt + @) 

al(t) = A cos w t  

bl(t) = 0 

b2(t) = 0 

(9) 

which is the same as equations (8) with C = 0 and D = 0. In this case, the nondimen- 

sional shell deflection is given by 

cos w t  sin EZ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB cos(wt + @)sin cos ne + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiK c . 2 ~  + cos 2wi~sin2 E 
h L L 8 L 

+ B2D + COS 2(wt + @gsin2 + PABFos(2wt + @) + cos a s i n  E sin 
L L L 

Solutions represented by equati'ons (9) and (10) a re  referred to as "two-mode standing- 

wave flutter." 

For this type of f lutter, the algebraic equations which result from the method of 

harmonic balance reduce to the following four equations involving A, B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41, and w. 

10 

..... . - 



+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB2(2 + cos - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkq - 4k2) + 

B2)l + g A B 2 k 2  - 14)A2 + (13 +15)B (1 14 

(w2 - wln2)A +& A 3 4(kl - k2) + w2T]A2 + +(k3 - kq - 4k2) + w21]B2(2 + cos 2@) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC[ 
+ fB cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 [ 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(+ A2 + +  B 2 1  - $ A@11A4 + B2[2(12 - 14)A2 

+ (13 + Z5)B2 (3 + 4 COS 1 
- kq - 4k2) + w2 A2sin 24 I >  

1 + 15)B2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(12 - 14)A2 sin 24 = 0 (1lc) 

(w2 - wzn2)B + A  16 B k3 - kq - 4k2) + w2]A2(2 + COS 24) + 3 k5 - 16k2)+ wgB2 

L 

- AwA2sin 2 4  - f A  cos .[' + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( ;  A2 + 4 B 2 1  - B(,,,B4 + A2E(13 + 15)B2 

It may be noted that these equations reduce to those already presented in reference 6 
when the e 2  te rms are neglected. Solutions to equations (11) w e r e  obtained by a gen- 

eralization of Newton's Method. (See appendix C.) A typical calculation is discussed 

under "Results and Discussion. I' 

The results were found to be sensitive to small  amounts of structural damping. 

The influence of this damping was estimated by assuming viscous damping and modifying 
the parameter A as follows. A new parameter A' was introduced in place of A, 

where 

11 



In this expression, A is the aerodynamic damping and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< represents the structural 

modal damping. The new parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA' was  introduced into equations (11) in place of 

A, and the limit cycle calculations were repeated for various values of damping ratio 5. 

Under certain conditions, the two-mode limit cycle w a s  found to be unstable with 

respect to disturbances i n  the quiescent modes b l  and b2. (The procedure used to 

determine stability of the limit cycles is discussed in a subsequent section of this report.) 

For some cases, it w a s  found that if the modes b l  and b2 were disturbed from zero, 

their amplitudes increased with time. For nonzero values of b l  and b2, all four modes 

participate in the flutter, and Waveling-wave flutter'' usually results. 

flutter is discussed in the following section. 

Traveling-wave 

Four-mode traveling-wave -. . solution. -~ - A second approximate solution to equations (5) 

is given by 

al(t) = A cos w t  

a2(t) = B cos(wt + @) 

bl(t) = &A sin w t  

b2(t) = *B sin(wt + @) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7r 

J 
which is the same as equations (8) with A = C, B = D, + = T - and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = @ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. The 

nondimensional shell deflection corresponding to equations (13) can be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2' 

L 
7rx 27rx 

W(X7e't) = A sin - cos(n8 T ut) + B sin - cos(n0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 @ 7 wt) + E h L L 4 

+ 2AB sin E sin 
L L 

The first two te rms of this expression for w/h represent circumferentially traveling 

waves. Hence, this type of flutter is referred to as "traveling-wave flutter.'? 

For this type of f lutter, the algebraic equations obtained by the method of harmonic 

balance again reduce to four equations involving A, B, @, and w as unknowns. These 

equations a re  - 
AwA - :(kg - 8k2)ABzsin 2@ - fB sin $11 - &I2 - B2)( + $ AB2(12A2 + 13B2)sin 2@ = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L 
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(w2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- wln2)A + A(2(k1 - k2)A2 + k 3  - 2k4 + k3 8k2 COS 24, B2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, ( -  ) 11 
L 

AwB + i ( k3  - 8k2)A2B sin 24, - fA sin @ 

It is interesting to note that equations (15) are appreciably less complicated than 
equations (11) for the standing-wave flutter. This condition is mainly due to the fact that 

for  the assumed traveling-wave solution given by equations (13), all the nonlinear te rms 
containing time derivatives in equations (5) cancel out; further discussion of this point is 

given in a subsequent section of the report. 

Equations (15) were also solved by the technique outlined in appendix C ;  the influence 

of damping w a s  again estimated by using AI in place of A (eq. (12)). 

In addition to the solutions represented by equations (9) and (13), one other type of 

limit cycle flutter was  observed. This final type of f lutter is designated as 'Your-mode 
in-phase flutter" and is discussed in the following section. 

Four-mode ~~ in-phase solution. - Another approximate solution to equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) is 

b2(t) = kB coS(wt + 4,) 

bl(t) = *A COS w t  1 
al(t) = A cos w t  

a2(t) = B cos(wt + 4,) 

which is the same as equations (8) with A = C, B = D, I& = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 , ~  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = @ + 0,~. The 
nondimensional shell deflection corresponding to this solution can be expressed as 

13 



x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 1 ~  + ~2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) + cos 
L L 

As may be seen by comparing equation (17) with equation (lo), this deflection shape 
The only difference is that one is equivalent to that for two-mode standing-wave flutter. 

deflection shape is rotated circumferentially with respect to the other by ia/4 radians. 

The values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B fo r  the two types of flutter are related by the factor since 

sin(1~/4) = cos(1~/4) = I/@. 

The algebraic equations for four-mode in-phase flutter are also related to those for 

One set can be transformed into the other by multiplying the ampli- the two-mode flutter. 

tudes A and B by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi factor. Thus, it can be said that four-mode in-phase flut- 

te r  is simply another form of two-mode standing-wave flutter, and the two cases need not 

be treated separately. 

Although the limit cycle solutions obtained by the method of harmonic balance have 

been discussed in some detail, several unanswered questions still remain. 

there is no guarantee that the three types of limit cycles just described are the only limit 

cycle solutions to equations (5). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q is not 0, +71/2 or  T ,  where A # C, B # D, and so forth. Secondly, the question of 

the stability of the various limit cycles has not been investigated. In order to study these 

questions, equations (5) were integrated numerically on a digital computer. 

F i rs t  of all, 

Possibly other more general limit cycles exist where 

Solutions by Numerical Integration - Limit Cycle Stability 

The method of Runge-Kutta-Gill was used to integrate equations (5) numerically on 

a digital computer. The procedure used was to begin with a set of initial velocities and 

displacements for a l ,  a2, b l ,  and b2 and integrate forward in time until either the 

amplitudes decayed to zero or  some sor t  of steady-state limit cycle was reached. 

The stability of the limit cycles was  also examined numerically. Once a l imit cycle 

solution was obtained from the algebraic equations (11) or (15), it was  possible to deter- 

mine a set of initial conditions which corresponded to the limit cycle. 

integration was  then started with these particular initial conditions to verify the existence 

of the limit cycle. To test i t s  stability, small perturbations were introduced numerically 

in the initial conditions, and caused them to deviate slightly from those corresponding to 
the limit cycle. Then equations (5) were integrated forward in time by using these per- 

turbed initial conditions. 

solution which w a s  originally perturbed, that solution w a s  said to be stable. However, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
14 

The numerical 

If the numerical integration resulted in the same limit cycle 



the numerical integration did not return to the original limit cycle, then the solution w a s  
said to be unstable. 
types of flutter motions discussed previously. 

This procedure w a s  used to determine the stability of the various 

RESULTS AND DISCUSSION 

The preceding calculations were carr ied out for  the shell described in  references 5 

and 6. The shell properties, flow conditions, and loading are as follows: 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 16 x 106 lb/in2 (11 X 1O1O N/m2) 

h = 0.0040 inch (0.0001015 meter) 

L = 15.40 inches (0.381 meter) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R = 8.00 inches (0.203 meter) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ps = 0.000833 lb-sec2/in4 (8900 kg/m3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v = 0.350 

M, = 3.00 

a, = 8400 inches/sec 

N, = 0 

(213 m/sec) 

- 

- 
Ne = 4 lb/inch (701 n/m) 

pm = 0.50 lb/in2 (3440 n/m2) 

The calculations were nondimensionalized by using the two-mode linear results given by 
equations (C4). Most of these computations w e r e  carried out for  a circumferential wave 
number n = 23. This value of n w a s  selected since reference 6 shows that it results 

in the minimum static pressure for  flutter according to two-mode linear theory. 

Two-Mode Results 

The results of the calculations using equations (11) are shown in figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and 3 for 
the case of no structural damping. 

amplitudes with the static-pressure parameter f/fo. Note that for  small  amplitudes A 

and B, the curves of figure 2 approach the linear flutter boundary, which occurs at 

Figure 2 is a plot of the variation of the limit cycle 

f/fo = 1.0. 

15 
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4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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2-  

I -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Nondimensional flutter frequency, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw/wo 
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I I I ~~ I I 

Phase angle between modes, +, deg 

Figure 3.- Flutter frequency and phase angle dependence 
I 2 

Nondimensionol static pressure, f/fo on amplitude. Two-mode flutter. Dashed portions of 
curves do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot rewesent real solutions but merelv serve 

Figure 2.- Limit cycle amplitudes. Two-mode flutter. 
n = 2 3 ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< = O .  

to indicate the connection between the two branches. 
n = 2 3 ;  < = O .  

In order to interpret figure 2, imagine a shell flutter experiment and consider what 

might happen at various values of static pressure, that is, f/fo. 
f/fo < 1, that is, conditions below the linear flutter boundary, and imagine that the modes 

al(t) and a2(t) are disturbed from rest. If the disturbances are infinitesimal, they 

w i l l  be damped in  time and the shell will not flutter. This result is identical with linear 

flutter theory. 

First, consider 

On the other hand, if the disturbances are of the proper magnitude, limit cycle flut- 

ter might occur along segments bc (b'c') or de (d'e') of the curves in figure 2. 

example, imagine that f/fo = 0.4 and the modes are disturbed such that al(t) =: 1.0 and 

a2(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz 2.0. 

point on the bc (b'c') portion of the curves in figure 2. However, numerical stability 

studies have shown that segments bc (b'c') represent unstable limit cycles; thus, i f  this 

limit cycle flutter were disturbed ever so slightly, the amplitudes of a1 and a2 would 

either (a) damp down to zero or (b) increase up to the segments de (d'e') in figure 2. 

ments de (d'e') represent stable limit cycle flutter, and further disturbances in a1 and 

a2 would just result in a return to the limit cycle, that is, to flutter with A z 3.6 and 
B 10.7. 
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Under these conditions, the shell might experience limit cycle flutter at a 

Seg- 



Now consider what might happen above the linear flutter boundary, that is, at 
f/fo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1.0. Under these conditions, infinitesimal disturbances in  the modes a1 and a2 

increase with time. Linear theory indicates that the flutter amplitudes increase without 
bound; however, with nonlinearities present, the amplitudes eventually stabilize at points 

along ab (a'b') o r  ef (e'f') of the curves in figure 2. 

(ab o r  ef) depends upon the initial disturbances as wel l  as f/fo. 

The branch that wi l l  be reached 

It is of interest to note that the lower branches (abc, a'b'c') of the curves shown in  

figure 2 are practically identical with the results given in figure 9 of reference 6. How- 
ever, since te rms of order € 2  have been retained in  the present analysis but were 

neglected in reference 6, the present results have additional branches (def, d'e'f') running 
off to the right with increasing aerodynamic pressure. 

In order to define two-mode limit cycle flutter fully, it is necessary to specify the 

flutter frequency and phase angle in addition to the modal am.plitudes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B. Fig- 
ure 3 gives the flutter frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw/wo  and phase angle $I for various values of the 

modal amplitude A. 

branches abc and def of figure 2. Note that the dashed portions of the curves in figure 3 

do not represent real solutions; they merely serve to indicate the connection between the 
two branches. 
flutter amplitude, whereas the phase angle first decreases to 90° and then increases at 
the higher amplitudes. Decreasing frequency with amplitude is characteristic of the 

"softening" type of nonlinearity noted in the vibrations of cylindrical shells. 

The curves of figure 3 have been labeled to correspond with 

The flutter frequency is seen to decrease continuously with increasing 

(See ref. 8.) 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 shows sample time traces of the steady-state motion obtained from the 

numerical integration of equations (5) at f/fo = 2.0. 

amplitudes b l  and b2 were set equal to zero in the numerical integration. For 
this particular case, the steady-state motion contains a small  amount of beating. 

influence of the nonlinearities is exhibited by the distinctly nonsinusoidal character of the 

a1 
the .predominant frequency, and the phase angle between the modes obtained from the 
curves of figure 4 agree well'with those predicted by the harmonic balance method. 

fig. 2, for  example.) 

To obtain these results, the modal 

The 

curve in figure 4. Despite this nonsinusoidal behavior, the average modal amplitudes, 

(See 

The influence of structural damping on the two-mode results is shown in figure 5. 

For < = 0 (zero damping), the theory indicates that the limit cycle curves extend to the 
left until f = 0. With damping present, however, the resul ts are fundamentally different. 
The amplitude curves now do not continue to the left until f = 0, but instead bend up 

steeply at  small values of f .  One would expect that they would then bend again and 
approach the upper branches (def, d'e'f') for increasing f .  The second-mode amplitude 
B does indeed behave in this way. However, the first-mode amplitude A actually 

overshoots and then approaches the branch def from above. A s  a consequence, the curves 

17 



I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.1 

Time, sec zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Figure 4.- Numerical integration results. Two-mode flutter; f/f, = 2.0. n = 23; < = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

m 

a 

Nondimensional static pressure, f/fo 

Figure 5.- Two-mode results, with damping. n = 23. 
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f o r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA exhibit horizontal tangencies at f/fo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.42 and 1.46 for [ = 0.0005 and 0.001, 

respective ly . 
Numerical stability studies indicated that the damped curves of figure 5 were 

unstable to the left of the horizontal tangencies just mentioned. For  example, with 
< = 0.001, numerical integration of equations (5) w a s  carried out for  f/fo = 0.38 and 1.20 
in an attempt to obtain limit cycles at these points. Initial conditions for the numerical 

integration were obtained from the curves of figure 5. In both cases, the amplitudes 

decayed to zero and no limit cycle was obtained. On the other hand, when a similar pro- 
cedure was tried at f/fo = 1.60, a steady-state limit cycle resulted. These results show 
that the damped two-mode limit cycle solutions have a stability boundary (in te rms of 
f/fo) between 1.2 and 1.6. It is suspected that the boundary occurs at the point of hori- 

zontal tangency (f/fo = 1.46). The boundary location is difficult to pinpoint exactly by 
using numerical integration, since near-zero damping and long integration times are 
involved . 

These stability studies thus identified segments of the damped curves in figure 5 
(to the right of f/fo = 1.42 and 1.46) which represent limit cycles which are stable with 

respect to disturbances in the modes a1 and a2. When other disturbances were con- 
sidered, however, it w a s  found that the two-mode limit cycles were unstable with respect 

to the modes b l  and b2. This instability with respect to the b-modes usually leads to 

traveling-wave flutter. 

Trave ling-Wave Results 

Results for traveling-wave flutter were calculated from equations (15) and are 
shown in figures 6 to 8. 
aerodynamic-pressure curves. These curves are fundamentally different from the cor- 
responding ones for standing-wave flutter in that they first proceed upward with negative 

slope until a vertical tangency occurs at  a finite value of the aerodynamic pressure. 

curves then bend back to positive slope and proceed indefinitely to the right, the first- 
mode amplitude being larger than the second, that is, A > B. Note that B was larger 

than A for  the standing-wave flutter at large amplitudes. 

Figure 6 shows the variation of modal amplitude with 

The 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 shows how the flutter frequency and phase angle between the modes vary 
with the traveling-wave flutter amplitude. In this case, the flutter frequency first 

decreases very slightly and then increases with amplitude. 
the standing-wave flutter, where the frequency decreased with increasing amplitude. 

that the amount of frequency shift is very much smaller here than for the standing-wave 

case. The large softening nonlinearity exhibited by the standing-wave flutter may be 

attributed to the nonlinear te rms involving time derivatives in equations (5). As noted 

previously, these te rms cancel out for  the traveling-wave solution, nonlinearities being 

This result is in contrast to 
Note 
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a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Nondimensional static pressure, f/fo 

Figure 6.- Limit cycle amplitudes. Traveling-wave flutter. 
n=23;  < = O .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

left only in the spring and aerodynamic terms. 

The final hardening nonlinearity shown by the 

frequency curve in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 results from the 

€ 2  spring te rms in equations (5). The 

phase angle between modes shown in fig- 

ure 7 is seen to decrease at high amplitudes, 

but it does not approach 90° as did the phase 

for the standing-wave flutter. 

The influence of structural damping on 

the limit cycles for traveling-wave flutter is 
shown in figure 8. 
first-mode amplitude is plotted, since the 

effect on the second-mode amplitude was  
very similar. It is seen that the damping 

shifts the point of vert ical tangency slightly 

to the right, but does not alter the nature of 
the curves. This result is in contrast to the 

standing-wave case where a small  amount of 

structural damping caused a large change in  

the shape of the limit cycle curves. 

For clarity, only the 

Nondimensional flutter frequency, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw/wo 

Phase angle between d e s ,  #I, deg 

Figure 7.- Flutter frequency and phase angle 
de pen dence on amp1 itude. Traveli ng-wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf I utter. 
n = 8 ;  < = O .  

I2r 

a 

Nondimensioml static pressure, f/f, 

Figure 8.- Influence of damping on the traveling-wave results. 
n = 23. 

20 



The results of a numerical integration involving all four modes are shown in fig- 

u re  9 fo r  f/fo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2.0. The initial conditions for  this calculation were taken from the 
limit cycle results of f igures 6 and 7. In contrast with standing-wave flutter, these time 

traces are remarkably close to pure sinusoidal waves of constant amplitude and fre- 
quency. The numerical integration results thus verify the amplitudes, frequency, and 

phase angle predicted for  this case by the method of harmonic balance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 0.1 
Time, sec 

Figure 9.- Numerical  integration results. Traveling-wave f lut ter ;  f/fo = 2.0. n = 23; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = 0. 

Stability studies involving perturbations in all four modes showed that only those 
portions of the curves in  figure 6 with positive slope represent stable limit cycle oscilla- 

tions. The same results would be expected to hold for the cases with structural damping 

(fig. 8). 

Although most of the calculations were made fo r  the n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 mode(s), qualitatively 

similar results were obtained for other values of the Circumferential wave number n. 
This fact was  demonstrated in reference 6 for two-mode flutter, and it is illustrated in 

figure 10 for traveling-wave flutter. The curves of figure 10 were calculated for values 
of n ranging from 17 to 27 and for zero  structural damping. Figure 10 shows that the 
flutter mode depends upon the spatial distribution of the initial disturbances as well as 
upon their magnitude. 

flutter for various n-values, depending upon the circumferential wave number corre- 
sponding to the initial disturbance. If the only disturbances present are infinitesimal, 
figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 shows that the shell wi l l  not flutter until f = 1.405 x 105, which is the linear 
flutter boundary for the n = 23 mode. Note that regardless of the n-value excited, the 
minimum limiting amplitudes of flutter given in figure 10 are about 4 to 5 shell 

For  example, a t  f = 1.0 x 105, i t  is possible to excite limit cycle 
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IO- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5- 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

thicknesses. This analytical result can be compared with the experimentally observed 

values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 to 2 shell thicknesses reported in reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 

Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a, -0 

Aerodynamic pressure parameter, f 

Figure 10.- Limit cycle amplitudes for various values of n. Traveling-wave flutter. 2, = 0. 

Once limit cycle flutter is initiated for some value of the circumferential wave 

number, it is not clear whether modes with other n-values will begin to participate in the 

motion or  not. The experimental results (refs. 4 and 5) suggest that flutter occurs with 

only single values of n. However, the flutter mode (that is, the value of n) may change 

as the static pressure is varied. 

experimental flutter amplitudes do not increase monotonically with increasing stagnation 

pressure; instead, they exhibit noticeable fluctuations. With respect to figure 10, these 

experimental results suggest the possibility that the shell might flutter in one mode 

(n = 22, for example) and then change to another mode (perhaps, n = 23) as the param- 

eter f increases. Such a change in mode might be associated with a jump downward in 

amplitude from the n = 22 curve to the n = 23 curve in figure 10. Additional mode 

changes might occur as f is further increased; however, a thorough discussion of this 

problem would necessitate an analytical study involving combinations of circumferential 

harmonics n. 

For example, figure 8 of reference 5 shows that the 

CONCLUDING REMARKS 

A four-mode nonlinear analysis of cylindrical shell flutter using piston theory and 

the nonlinear shallow-shell equations has been presented. The results obtained from this 
analysis lead to the following conclusions: 
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1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe occurrence of circumferentially traveling-wave flutter, which has been 

observed experimentally, is predictable by the nonlinear theory. 

2. Limit cycle flutter in a circumferentially traveling-wave mode can occur below 
the stability boundary predicted by linear theory. This fact may help to explain the dif -  

ferences between experimental results and linear theory. 

3. The two-mode standing-wave limit cycle results were found to be very sensitive 

to small amounts of structural damping, whereas the traveling-wave results were not. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.  The limit cycle amplitudes predicted by the present analysis a re  somewhat 

larger than the experimental results. It is expected that the theoretical limiting ampli- 

tudes would be reduced i f  the longitudinal displacement u w a s  made to vanish at the 

ends of the shell. 

ments than a re  the boundary conditions satisfied in the present analysis. 

Such an axial restraint would be more representative of the experi- 

5. One limitation of the present study is the fact that it has been restricted to only 

four modes. It is expected that adding more modes in the axial direction would alter the 
present results quantitatively but not qualitatively. On the other hand, it is harder to 

estimate the influence of adding more circumferential modes to the analysis. When the 
aerodynamic pressure exceeds the linear flutter boundaries of two o r  more modes with 
different values of circumferential wave number n, it is not clear how the modes might 

combine. The answer to this question is left to a future investigation. 

Langley Research Center, 

National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., October 31, 1967, 

124-08-05-08-23. 
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APPENDIX A 

PARTICULAR SOLUTION TO EQUATION (2) 

Define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y = n/L and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = n/R. Then a particular solution to equation (2) which 

corresponds with the assumed deflection shape w is 

where Ai, A2, B1, and B2 are functions of time. 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
APPENDIX B 

DEFINITION OF CONSTANTS USED IN EQUATIONS (5) 

The linear undamped modal frequencies a re  given by 

(m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,2) 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACT = *; then the coefficients k l  to k5 a r e  defined by 
n/R 

k l  =- 
psR2 (02 + 12(1 

E o4 

1 6psR2 
k2 = 

' I  16PsR21(.2 + 4)2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9u2 + 4)2 

81 + . 
k q =  

Similarly, the coefficients 11 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 a r e  given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r - 

1 11 =-- 

l6 psR2 Eu4i-++ (02 + 1) (9.2 + 1) 
L - 



APPENDIX B 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 +  

25 - 
2 +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE o4 22 =- 

8 p s R 2 i ~ 2  + 1) 2(402 + 1)2 2(9a2 + 1) 

225 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 5 +  l7 + 
(402 + 1)2 32(902 + 1)2 32(25a2 + 1)2 

3 1 

8(16a2 + 1) 

24 =- 

2psR (9a2 + 1) - 

1 25 =- 

16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=2 3E04[ + 1 

psR (402 + 1)2 (3602 + 1) 
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APPENDIX C 

SOLUTION OF THE ALGEBRAIC EQUATIONS 

The complexity of the algebraic equations (11) and (15) precludes the possibility of 

a closed-form solution, and a numerical method must be employed. Such a method w a s  
introduced in reference 12 and yielded satisfactory results. The method as used herein 

is outlined in the following paragraphs. 

The four unknowns A, By zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw in equations (11) and (15) a r e  required as 
functions of the aerodynamic pressure for a given shell geometry, speed of sound, 

and Mach number of the airstream, and for various values of the circumferential wave 

number n. The aerodynamic pressure comes into the algebraic equations through the 
two parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and f .  The damping parameter A' (see eq. (12)) may be put i n  

the form: 

p, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3L/8M,a,. Hence, the parameter f may be used to represent the aerody- 

namic pressure. 

It is convenient for the calculations required herein to treat A as known and By 

w ,  f ,  and @ as unknowns. Let the four component vector xi (i = 1 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) denote the 

unknowns such that XI = By x2 = w ,  x3 = f ,  and x4 = Cp; then each set of equations (11) 
or  (15) is of the functional form 

( i , j  = 1,2,3,4) (C2) 

The solutions to these equations a r e  obtained by a generalization of Newton's 

method to many variables as follows. If xio is a good initial approximation to the 

sought-for solution xi such that xio = X i  - 6xi, then by expanding equations (B2) in a 
Taylor ser ies  from xio to xi, 

Now the 6xi may be found from equation (C3), since by definition Kj(xio) # 0. When 

this is done, the new approximation for  xi is xi1 = xio + 6xi, and the foregoing pro- 
cedure is repeated over again until the corrections bxi become negligibly small. 
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APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The initial approximation used to start this process is that obtained from the 

linear flutter problem. This approximation results f rom the linearization of equa- 

tions (11) or (15) and may be shown to be 

A = B  

Initially, A is taken to be a smal l  number, and the linear solution given in equation (C3) 

is used to start the iteration process. Thereafter, A is increased by a smal l  amount, 

and the solution for  the previous value of A is used to res ta r t  the iterations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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