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Abstract. Four-wave interactions play an important role in the evolution of
the spectrum of surface gravity waves. This follows from direct simulations
of an ensemble of ocean waves using the Zakharov equation. The theory of
homogeneous four-wave interactions, extended to include effects of nonresonant
transfer, compares favourably with the ensemble averaged results of the Monte
Carlo simulations. In particular, there is good agreement regarding spectral
shape. Also, the kurtosis of the surface elevation probability distribution is
well-determined by theory even for waves with a narrow spectrum and large
steepness. These extreme conditions are favourable for the occurrence of freak
waves and are well-described by the so-called Benjamin-Feir Index (BFI), which
is essentially the ratio of the steepness of the waves and the width of the spectrum.
In order to validate the theory, many occurrences of extreme wave events are
required. Presently, this is only possible in the laboratory by performing wave
tank experiments. Good agreement between observed and theoretical probability
distribution functions is found. In October 2003 ECMWF introduced a new set of
wave parameters, such as the BFI, which serve as an indicator for extreme events.
Validation of such a Freak Wave Warning system is highly desirable.

Introduction

Recently, evidence for the existence of freak waves has
been found. Since ships have not been designed to withstand
these exceptional conditions, it is of the utmost importance
to be able to predict the probability that freak waves occur.

For sure, in the context of modern wave forecasting sys-
tems it is not possible to predict individual wave events. We
have to content ourselves with methods from probabilistic
wave forecasting.

The programme of this paper is as follows.

• Wave prediction

Wave prediction systems give the evolution of the av-
erage sea state in a box of the size of say 50× 50 km.
The sea state is characterized by the wave spectrum.
In past decade we have seen a good improvement in
our capability to predict parameters such as the signif-
icant wave height.

• Freak waves generation

On the open ocean extreme waves are generated by
nonlinear focussing, a process that also causes the
Benjamin-Feir Instability.

• Freak waves prediction

It is made plausible that, for given average sea state,
the probability of extremes such as freak waves may
indeed be obtained.

The main results of this work have been published else-
where, see e.g. Janssen (2003, 2004).

Stochastic approach

For various reasons forecasting of individual ocean waves
is not possible. One reason is that this requires knowledge of
the initial phases of the waves, while another reason is that
the deterministic equations exhibit chaotic behaviour, even
when integrated over a relatively short time, of the order of
1000 periods. Hence we consider the evolution of average
seastate: a spectral description!

Energy balance equation

It is therefore common practice in wave forecasting to
concentrate on the prediction of the ensemble average of, for
example, the action density spectrum N(�k, t). Action plays
the role of a number density and is defined in such a way that
energy spectrum F (�k, t) is given as

F (�k, t) = ω(�k) × N(�k, t)
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which is the usual rule in wave mechanics. From first prin-
ciples one finds the following evolution equation

∂

∂t
N + ∇�x · (�̇xN) + ∇�k · (�̇kN) = S = Sin + Snl + Sds, (1)

where �̇x = ∂ω/∂�k, �̇k = −∂ω/∂�x, and the source functions
S represent the physics of wind-wave generation, dissipation
by wave breaking and nonlinear four-wave interactions.

Wave forecasting

The energy balance equation (including nonlinear trans-
fer) is solved by modern wave prediction systems, where
the forcing of the waves is provided by surface winds from
weather prediction systems. For a large part (±80%) the
quality of the wave forecast is determined by the accuracy
of the surface wind field.

Operational ocean wave forecasting at ECMWF started
in June 1992 and is based on WAM cy4. Discuss global
implementation only.

The ECMWF global wave model (81 deg S to 81 deg N)
is coupled to atmospheric model [two-way interaction with
feedback of ocean waves on ocean surface roughness (since
June 29, 1998) thus giving a sea-state dependent momentum
and heat flux]. This setup is used in two applications:

• Deterministic forecasts:

Here the spectrum F (f, θ) has 30 frequencies and 24
directions. The model is implemented on an irregu-
lar lat-lon grid, ∆x = 55 km. In order to obtain an
optimal initial condition, ENVISAT Altimeter wave
heights and ERS-2 SAR spectra are assimilated. The
wave model is forced by atmospheric winds every
time step ∆t = 15 min.

Every day two 10–day forecasts from 00Z and 12 Z
are issued.

• Probabilistic forecasts:

In order to estimate forecast error an ensemble pre-
diction approach is followed. It is well-known that
the quality of the weather forecast is determined to
a considerable extent by the accuracy of the initial
conditions. A 50-member ensemble of low-resolution
weather (and since the wave model is tightly coupled
to the atmospheric model) and wave forecasts is gen-
erated by perturbing to the analysis with the most un-
stable perturbations. The current resolution of the en-
semble prediction system is Tl255 for the atmosphere
and 1◦ for the waves.

The potential use of probablistic forecasting is in es-
timating the probability of high sea state and in ship
routing. For example, error in forecast ship route
may be obtained from the shiproutes generated by the
winds and waves of the 50-member ensemble.

Wave forecast verification

Validation of the wind and wave forecast is of vital im-
portance. Routinely analyses are compared with observa-
tions, whilst forecasts are validated against analysis and ob-
servations. For example, first-guess wave height and ana-
lyzed wind are compared with ERS2 and ENVISAT altime-
ter data, wave height and peak period are verified against
buoy data, while forecast scores are obtained by verifying
forecasts against the analysis.

From this validation effort we have found that the quality
of the wave forecast is to a considerable extent determined
by quality of the winds, but model improvements have con-
tributed as well. Over the long term considerable improve-
ments are seen. Apart from improved winds this is caused by
new developments such as two-way interaction, introduced
in June 1998.

This conclusion follows from all our verification studies,
but I only show one example, namely the verification of fore-
cast wave height against analyzed wave height data. Note
the dramatic improvements from the middle of 1998 and on-
wards.
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Figure 1. Forecast verification against analysis for wind and
waves in the Northern Hemisphere.
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Freak waves generation

In linear theory there is no interaction between ocean
waves. Focussing of wave energy only occurs when the
phases of the waves are favourable (constructive interfer-
ence). Gives at best a doubling of wave height. Accordingly,
the probability distribution function for the surface elevation
η is given by the Gaussian distribution.

However, the situation for nonlinear waves is entirely
different, because now there is the possibility of wave-wave
interaction. Thus, a wave may borrow energy from its neigh-
bours. Because of this extra focussing, wave height may be-
come at most 3 times as large in 1D, while it 2 D it becomes
4.5-5 times as large as the average wave height.

As a consequence, for nonlinear waves the surface eleva-
tion distribution is rather different, in particular for the ex-
tremes.

Monte Carlo forecasting

I have shown this by performing Monte Carlo Forecasts
with the 1D version of the Zakharov equation, which de-
scribes the evolution of the complex amplitude a(�k) of the
free gravity waves:

∂a1

∂t
+ iω1a1 = −i

∫
d�k2,3,4T1,2,3,4a

∗
2a3a4δ1+2−3−4, (2)

where �k is the wave number and ω =
√

gk. T1,2,3,4 is a
complicated function of frequency and wavenumber, and has
a number of symmetries which garantee that the system is
Hamiltonian.

From the numerical results of an ensemble of 500 mem-
bers I obtained interesting quantities such as wave spectrum
and the pdf of the surface elevation.

Evolution of ensemble mean

In 1D there are no resonant four-wave interactions that
give rise to spectral change. Extended the well-known Has-
selmann equation for the action density by including non-
resonant four-wave interactions. These non-resonant inter-
actions give rise to an irreversible change of the spectrum.
In addition, the extended Boltzmann equation conserves the
ensemble average of the Hamiltonian but, of course, not the
linear energy.

For a homogeneous sea state the action density N(�k) is
defined as

Bi,j =< aia
∗
j >= Niδ(�ki − �kj), (3)

and the task is to derive an evolution equation for N from the
Zakharov equation. Because of nonlinearity, the equation
for the second moment couples to the fourth moment, etc,
resulting in an infinite hierarchy of equations, known as the
BBGKY hierarchy. Closure is achieved by assuming that the
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Figure 2. Initial and final time wave number spectrum ac-
cording to Monte Carlo Forecasting of Waves (MCFW) us-
ing the Zakharov equation. Error bars give 95% confidence
limits. Results from theory are shown as well.

waves, having a small steepness ε, are weakly nonlinear so
that the pdf of the surface elevation is close to a Gaussian
(Random-Phase Approximation (RPA)).

For example, the fourth moment is

< ajaka∗
l a∗

m > = Bj,lBk,m + Bj,mBk,l + Dj,k,l,m,

where D is the so-called fourth cumulant, which vanishes
for a Gaussian sea state. A similar relation applies for the
6th moment, and application of RPA closes the BBGKY hi-
erarchy. As a consequence, the fourth cumulant D, subject
to the initial value D(t = 0) = 0, becomes

Di,j,k,l = 2Ti,j,k,lδi+j−k−lG(∆ω, t)
[NiNj(Nk + Nl) − (Ni + Nj)NkNl] (4)

where ∆ω = ωi +ωj −ωk −ωl. This elegant result requires
extensive use of the symmetries of T . In addition, the action
density N is assumed to evolve on the slow time scale. The
function G is defined as

G(∆ω, t) = i

∫ t

0

dτei∆ω(τ−t) = Rr(∆ω, t) + iRi(∆ω, t).

Knowledge of the fourth cumulant is essential for

• evolution of N caused by four-wave interactions

• determination of deviations from normality.

Substitution of D in the equation for the second moment
gives an evolution equation for the action density N

∂

∂t
N4 = 4

∫
d�k1,2,3T

2
1,2,3,4δ(�k1 + �k2 − �k3 − �k4)Ri(∆ω, t)

× [N1N2(N3 + N4) − N3N4(N1 + N2)] , (5)
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Figure 3. Log of PDF for surface elevation (BFI=1.4). For
reference the Gaussian distribution is shown as well. Freak
waves correspond to a normalized height of 4 or larger.

This equation describes both the effects of resonant and
non-resonant four-wave interactions, and therefore there are
two timescales implied by Ri(∆ω, t) = sin(∆ωt)/∆ω:
for short times limt→0 Ri(∆ω, t) = t, hence TNL =
O(1/ε2ω0), the Benjamin-Feir timescale, while for large
times limt→∞ Ri(∆ω, t) = πδ(∆ω), corresponding to res-
onant wave-wave interactions, hence TNL = O(1/ε4ω0).

Deviations from Normality are most conveniently ex-
pressed by means of the kurtosis,

C4 =< η4 > /3 < η2 >2 −1,

Using D the kurtosis becomes

C4 =
4

g2m2
0

∫
d�k1,2,3,4T1,2,3,4δ1+2−3−4 (ω1ω2ω3ω4)

1
2

×Rr(∆ω, t)N1N2N3, (6)

As limt→∞ Rr(∆ω, t) = P/∆ω, the kurtosis is deter-
mined by both resonant and non-resonant interactions.

An important recent advance is that kurtosis can be re-
lated to a spectral shape parameter, namely the Benjamin-
Feir Index (BFI)

BFI = ε
√

2/σ′
ω, (7)

where σ′
ω = σω/ω0 is the relative width of the frequency

spectrum and ε = (k2
0 < η2 >)

1
2 is an integral measure of

wave steepness (with < η2 > the average surface elevation
variance and k0 the peak wave number).

Theoretically, the kurtosis is a very complicated expres-
sion in terms of the (action) wave spectrum N . For Gaussian-
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Figure 4. Normalized Kurtosis as function of the BF Index.
Shown are results for focussing from simulations with NLS
and with the Zakharov equation, and corresponding theoret-
ical results.

shaped spectra in the narrow band approximation the kurto-
sis shows a particularly simple form:

C4 =
π

3
√

3
× BFI2, (8)

hence the kurtosis depends on the square of the BF index.

Results

The next figures show results for

• Spectral evolution

• PDF of surface elevation

• relation between Kurtosis and BFI

It is noted that, even for large values of BFI, there is a
fair agreement between results from the theory of the ensem-
ble mean on the one hand and the Monte Carlo simulations
on the other hand.

Freak waves prediction

The theoretical picture has been confirmed by observa-
tions in a big wave tank in Trondheim (Onorato et al., 2004).
In particular, theory and Monte Carlo simulations seem to
give a reasonable description of the dependence of kurtosis
on fetch (cf. Fig. (5)).

An interesting quantity to obtain is the wave height dis-
tribution. Recently, for narrow spectra Mori and Janssen
(2005)(see also Mori and Yasuda, 2002) found, starting from
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a general expansion of the pdf in terms of cumulants (Edge-
worth distribution) an extremely simple result. It was found
that the probability that wave height exceeds h×HS equals

PH(h) = e−2h2
[1 + C4BH(h)] , (9)

where

BH(h) = 2h2
(
h2 − 1

)
. (10)

This result verifies extremely well with observations, as
can be seen from Figure 6.

In order to use a wave prediction system for extreme sea
state prediction a reliable estimation of the BFI is required.
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Figure 7. Comparison of modelled peakedness, integral steepness
and Benjamin-Feir Index against buoy observations over the period
October 2002 until April 2003.

This is possible by using a robust estimate of the width of
observed spectrum (Janssen and Bouws, 1986). This is fur-
nished by means of Goda’s peakness factor Qp defined as

Qp =
2

m2
0

∫
dω ωE2(ω) (11)

As a consequence, the observed BFI becomes

BFI = k0m
1/2
0 Qp

√
2π (12)

Figure 7 shows that the above procedure gives a robust
estimate of the BFI. In addition, compared to buoy data,
the ECMWF wave model shows good skill in estimating ex-
treme sea states.

Operational implementation

At ECMWF we have implemented since October 2003
the following scheme:

• From the predicted wave spectrum we infer the B.F.
Index.

• From the B.F Index we obtain the deviations from the
Normal distribution, e.g. as measured by the kurtosis.

• Given the kurtosis and the significant wave height, we
are able to answer question such as what is the en-
hanced probability on extreme events.
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Figure 8. Enhancement of extreme events caused by non-
linear focussing for the one-day forecast from 21 October
2003.

Probability that wave height exceeds h × HS is then
given by Eq. (9)

In Figure 8 we have given an example of output of a pos-
sible freak wave warning system. Here, we plotted the en-
hancement in the probability of occurrence of extreme sea
states owing to nonlinear interactions compared to linear
waves. Note that according to a normally distributed sea
state every 3000 waves there is at least one wave that has
a wave height larger than twice the significant wave height.
For this example we see that in areas such as the East coast
of the USA it is 5 times more likely that extreme events oc-
cur, signalling a warning.

Conclusions

From our work we have reached the following conclu-
sions:

• Recent observations of freak waves have confirmed
the theoretical picture of freak waves generation that
actually already existed in the mid 1960’s (Benjamin
and Feir, 1967)!

• Using well-established methods one can, for given av-
erage sea state, obtain estimates of the enhanced prob-
ability of extreme events. The theoretical results are
confirmed by laboratory results. Hence, in this sense,
freak wave prediction is feasible.

• However, validation of all this in the field is of course
desirable.
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