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NONLINEAR FOURIER ANALYSIS 

STEPHEN SEMMES 

What is nonlinear Fourier Analysis? Let us consider an example. 
Let Q be a domain in the plane bounded by a Jordan curve T that goes 

to oo. Let O be a Riemann mapping of the upper half-plane onto £2. 
How does O behave as a function of T? Is it continuous? smooth? real-

analytic? Let's think of ourselves as calculus students; we are presented 
with this function, and we want to study its basic properties. 

Of course, the Riemann mapping is not uniquely determined by the 
curve, and we have to do something about that. Let's ignore that issue for 
the moment. 

There is a more serious problem with the question we've raised. To 
talk about the continuity of this function, we need to specify a domain of 
definition for it, the range space for its values, and topologies for both. To 
consider smoothness or real-analyticity, we need more structure on both 
the domain and range. 

This brings us to another component of the above question: What are 
the most natural choices for the domain and range? We would like the 
domain to be as large as possible so that the function is defined and well 
behaved. In this case, the domain is a space of curves, and we want in 
particular to minimize the smoothness assumptions on the curves. We 
would like for the domain to be a space of curves characterized by some 
natural geometric condition. 

There is a beautiful theorem of Coifman and Meyer [CM3] that says 
that the Riemann mapping is a real-analytic function on a natural space 
of curves, and with a natural choice of range space. It is a bit technical 
to state it precisely now, but I shall say more about it at the end of this 
section. 

The problem of understanding the Riemann mapping as a function of 
the curve is a good example of a problem in nonlinear Fourier analysis. 
There are many basic objects in mathematics which can be viewed natu-
rally as nonlinear functions in infinite dimensions, and we want to study 
their basic properties as such. 

There are also cases in which we are forced to confront such issues of 
nonlinear dependence even when the original problem does not directly 
call for it. We shall see examples of this shortly. 

The reason that this is nonlinear Fourier analysis, and not just nonlinear 
analysis, is that we often need Fourier analysis to deal with the objects that 
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arise in these problems and to obtain needed estimates for them. This is 
particularly true when we try to make optimal choices for the domain and 
range spaces. 

This subject should be viewed very broadly, but the remaining examples 
described in this first part come from a short list of problems that have 
been studied extensively by Fourier analysts in recent years. Some of the 
general ideas for treating problems like these are discussed in the second 
section. The third section is devoted to a brief description of some aspects 
of Littlewood-Paley theory, which provides important tools for doing the 
analysis. 

I shall concentrate on explaining examples and general ideas used to 
treat them at the expense of recent results and more refined techniques. 
Few details will be included, in the hope of being accessible to as large an 
audience as possible. Essentially nothing of what I discuss is due to me. 

To balance these choices a fourth section is included with a brief guide 
to some other expository papers of a more technical nature on related 
topics. Fortunately, Yves Meyer is preparing a book that will provide a 
basic reference. 

The next example that I want to discuss is the Cauchy integral operator 
CT on a curve T, viewed as an operator-valued function of the curve. This 
operator is given by a principal value singular integral: if ƒ is a function 
on T, we define Cp( ƒ ) on T by 

(1.1) CTf{z) = ^pv f £^-dw, zeT. 

This operator is probably less familiar than 

(1.2) F(Z)==JL f ISEldw, z£Y, K ' v } 2ni Jrw- z * 
which is defined and holomorphic on C\T. There is a simple formula that 
gives the boundary values of F on T in terms of ƒ and Cp ƒ « 

The operator Cp also has important but nonobvious connections with 
the Riemann mapping and PDE. In particular, the dependence of the Rie-
mann mapping on the curve T is intimately related to the dependence of 
CT on T. 

As before, we not only want to study the dependence of Cp on T, but 
we also wish to choose an optimal space of curves on which to work. To 
simplify the discussion, we shall restrict ourselves to curves that are graphs, 
and work with a slightly simplified operator. 

Given A: R -» R, we define an operator TA, acting on functions ƒ defined 
on R, by 

(1.3) TAf(x) = pv j°° J^\—jr-^dy, x e R. 
v ; J-cox-y+ i(A(x)-A(y)) y 

This is the Cauchy integral on the graph of A written in terms of the 
graph parameterization x -» x + iA(x), except that we dropped a factor of 
1 + iA'{y) when we replaced dz by dy, and we also threw away a factor 
of -1/27T/. 
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We need to choose a domain and range for the operator-valued function 
A -+ TA. Let us take the range to be B(L2(R))9 the Banach space of all 
bounded linear operators on L2(R). 

We want to choose the domain of TA to be as large as possible so that 
it is a smooth function of A, or even real-analytic. Let us use the explicit 
formula for TA to compute its power series about A = 0. This will help us 
find what conditions on A are needed for TA to be smooth or real-analytic. 

From (1.3) we have 

(1.4, r^»).^£ji7(i + i4S^Öi)- ,
/W* 

oo 

= J^Tk(A)f 

In order for this series to have any hope to converge, we must have 

\A(x)-A(y)\ c l 

Moreover, for each k > 1, Tk(A) e B(L2) implies that A is Lipschitz, 
i.e., that there is an M > 0 such that \A(x) - A{y)\ < M\x - y\ for all 
x, y € R. Because T{ (B) is just the derivative of A -+ TA at A = 0 in the 
direction of By this says that for TA to be merely differentiate, we already 
need to restrict ourselves to functions A that are Lipschitz. 

This suggests that the natural domain for TA is the Banach space Lip of 
all Lipschitz functions on R. (Note that an equivalent formulation of the 
Lipschitz condition on A is that A should be absolutely continuous and 
AfeL°°(R).) 

THEOREM 1.5. TA is a bounded operator on L2(R) if A is Lipschitz. 
Moreover, A-* TA is a real-analytic map from Lip to B(L2(R)). 

This theorem was proved by Calderón [Cl] when ||-4'||oo is small, and 
by Coifman, Mcintosh, and Meyer [CMM] in the general case. 

I should say something about what real-analyticity means in this context. 
I won't give a precise definition yet, but it means that the power series in 
(1.4) should converge absolutely in B(L2) when ||-4'||oo is small enough, 
and that an analogous power series expansion about any other A0 e Lip 
should converge in a small neighborhood of A$. In this particular case the 
radius of convergence about Ao = 0 is actually 1. 

The first half of Theorem 1.5 is extremely interesting in its own right. 
The assumption A e Lip is very natural; it is very geometrical, involving 
the right amount of smoothness, and it scales properly. 

The fact that TA e B(L2) if A e Lip is completely inaccessible by classi-
cal techniques. Because TA is not a convolution operator, standard Fourier 
transform methods (e.g., Plancherel's theorem) do not apply. Hubert space 
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results like the Cotlar-Stein lemma don't work either. If A were smooth, TA 

could be expressed in terms of the Hubert transform (= TA when A = 0) 
and a simple error term, and the Hubert transform can be dealt with using 
Plancherel or Hilbert space methods. When A is merely Lipschitz, this 
error term is no longer easily tractable. 

In other words, when A is not smooth, you cannot simply throw it away; 
when analyzing TA ƒ, you have to treat A on an equal footing with ƒ. Thus, 
although the question "Is TA bounded on L2 if A is Lipschitz?" does not 
superficially seem to involve the problem of the dependence of TA on A, 
this issue does arise when you try to answer the question. 

For example, it is natural to try to prove that TA e B(L2) for H-4'Hoo < 1 
by showing that each Tk{A) e B(L2) with norms that add up. Such an 
approach would automatically give the real-analyticity of TA also. 

It turns out that the real-analyticity of this particular operator-valued 
function TA is a soft and painless consequence of the fact that TA eB(L2) 
if A e Lip. Thus, it is not only natural to consider the dependence of TA 

on A when trying to prove that TA e B(L2), but in a very real sense the 
two are the same problem. 

The third example I want to discuss is the general problem of studying 
how the solutions of a PDE behave as nonlinear functions of the coeffi-
cients. 

Let us consider a specific case. Define a differential operator L on Rn 

by 

u
 j 

and let us assume that the coefficients are bounded and elliptic: 

^KI 2 <E^WC/0<C|C| 2 vCeR", 

where 0 < S < C < oo. 
Consider solutions of the initial-value problem for the heat equation 

associated to L, 
fhi 

— = Lu, u = u(x,t), u(x, 0) = ƒ (x). 
at 

We can view u as a function of both B = (bij(x)) and ƒ, and it is linear 
in ƒ. How does it behave as a function of Bl 

We can rewrite u as 
MO. 0 = **ƒ(•)• 

Thus the previous question is equivalent to asking how etL behaves as 
an operator-valued function of B. More generally, we can ask for which 
functions F it is true that F(L) is defined and real-analytic in B. 

Let me describe a closely related problem, often called Kato's problem 
by harmonic analysts, or the square-root problem by operator-theorists. 
Let A = (aij(x)) be a matrix-valued function on Rn that is bounded, mea-
surable, and accretive. This last means that 

Re^(x)C,0><*IC|2 
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for some ô > 0 and all x, Ç e R". In this case (div^4V)1/2 can be defined 
in a natural way, where 

div^V = 5 ^ -7r—aij(x)^—. 
4 ^ dXi J 'ox, 

IJ J 

The problem is whether the domain of (div^V)1/2 is the Sobolev space 
Hl, i.e., whether 

(1.7) (div^V)1/2/ eL2 if Vf G L2. 

If A is selfadjoint, then this follows from spectral theory, but that 
doesn't work in the general case. In fact, estimates for (1.7) in the gen-
eral case imply real-analyticity results for A -> (div^4V)1/2, which are not 
obtainable from spectral theory even in the selfadjoint case. 

When n — 1, (1.7) is true and it was proved by Coif man, Mcintosh, 
and Meyer [CMM] in the same paper where they proved that the Cauchy 
integral on a Lipschitz graph is bounded on L2. The two problems are very 
closely related; the Cauchy integral on the graph of A: R —• R turns out to 
be the same as F((l/(1 + iA'))(l/i)(d/dx))> where F(z) = sgn(Rez). 

When n > 1, (1.7) has been proved so far only in the case where 
\\A - I\\oo is small enough. 

The situation is similar for the first problem, concerning functions of 
L, L as in (1.6). As with (1.7), there is a close correspondence between 
real-analyticity results for F(L) and the problem of having estimates for 
F(L) if we allow the coefficients of L to be complex-valued. When n = 1, 
the situation is under control as soon as the coefficients are bounded and 
accretive. When n > 1, only the case where ||J? —- /||oo is small is under 
control. 

(References to these and related results and applications to PDE include 
[CM4, CDM, CMM, FJK 1, 2, 3, KM, DJ].) 

Thus when n > 1, we do not know the correct domain of definition 
for (div^V)1/2 or for functions of L. We know that it contains a small 
neighborhood in L°°(Rn) about / , but we don't know if these domains 
should be the entire set of bounded, accretive matrix-valued functions. 
These partial results are still quite interesting though: they tell us that L°° 
is the correct Banach space in which the domains should live. 

Let me put this differently. Before we can talk about the domain of 
definition of a nonlinear function in infinite dimensions, we must first 
choose a vector space (preferably a Banach space) in which the domain 
should be an open subset. Before we can worry about choosing the domain 
to be as large as possible, we have to first choose this containing Banach 
space to be as large as possible. 

Thus in the preceding two examples the correct Banach space is the 
space of bounded measurable matrix-valued functions on Rw. In these 
two cases the correct domain of definition is not known. For the operator-
valued function TA, the correct Banach space is Lip, and the correct do-
main is all of Lip. 
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In each of these examples the Banach space containing the natural do-
main of definition is a classical Banach space like L°°. There are many 
natural examples where this is not the case. One such example is the true 
Cauchy integral, given in (1.1), rather than the simpler TA given in (1.3). 
Let me describe what happens in this case. 

Let T be an oriented rectifiable Jordan curve in the plane that goes to 
oo. Let us assume that 0 G T, and let z: R -+ T be the arclength parame-
terization that satisfies z(0) = 0. Given a function ƒ on R, define 

(1.8) Crm = ±Pvj^£^Ay)dy, * € R. 

This is simply the Cauchy integral operator (1.1) brought back to the real 
line using the arclength parameterization of T. 

We can view Cr as a nonlinear operator-valued function of the curve 
T. Let us take B(L2(R)) as our range space, and ask for a natural space of 
curves on which this function is continuous, smooth, or even real-analytic. 

It turns out that the natural space of curves is the space of chord-arc 
curves. We say that T is a chord-arc curve with constant k if 

| x - * | < ( l + f c ) | z ( j ) - z ( 0 | 

for all sj eR. Geometrically, we think of \z(s) - z(t)\ as the length of 
the chord joining z(s) and z(t), while \s - t\ is the length of the arc that 
joins them. The chord-arc condition keeps the curve from smashing into 
itself. For example, it forbids cusps. 

Let us see how the space of chord-arc curves can be naturally identified 
with an open subset of BMO(R). A locally integrable function ƒ on R is 
said to lie in BMO(R) (BMO = bounded mean oscillation) if 

||ƒ||* = sup |jy J \f(x) - ƒ/1 dx < oo, 

where the sup is taken over all intervals I, and ƒ/ = jjf ƒ/ ƒ• 
Clearly, L°° ç BMO, but the inclusion is proper, because log|x| lies in 

BMO. As the BMO norm indicates, BMO functions are really defined only 
up to an additive constant. 

BMO should be thought of as a close relative of L°°. There are many 
problems where you might naively hope that L°° is the correct space to 
work with, but for which that isn't true, and instead BMO is the right one. 
This is almost always the case when adding a constant to the function 
does not change the problem. Of course, this has to happen if BMO is the 
correct space to be working with. 

There is an open subset Q in the space of real-valued BMO functions 
such that r is a chord-arc curve if and only if z'(t) = eib^ for some 
b e il. (For example, b(t) = alog|f|, a e R, corresponds to logarithmic 
spirals.) This gives a topology for the space of chord-arc curves. With this 
topology, the map r -+ Cp of Q into B(L2) is a homeomorphism onto 
its image. Thus this BMO topology on the space of chord-arc curves is 
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not only natural, but it is forced on us by the operator theory. The map 
T -> Cp is also real-analytic and locally bilipschitz. 

We mentioned above that BMO functions are only defined up to an 
additive constant. If we add a constant to b(t) and define T as in the 
preceding paragraph, then T is merely rotated, and the operator Cp does 
not change at all. Thus the mapping of b e £2 to Cp is well defined for 
b € BMO. As mentioned above, this extra symmetry is what suggests that 
BMO is the correct space. By contrast, A -> TA defined in (1.3) does not 
have this symmetry, and the corresponding space of curves—i.e., Lipschitz 
graphs—is not rotationally invariant. 

This space of chord-arc curves also shows up in the theorem of Coifman 
and Meyer on the real-analyticity of the Riemann mapping as a function of 
the curve. Given an oriented chord-arc curve T, let D denote the domain 
bounded by T that lies to the left of T. Let *F be a conformai mapping on 
D onto the upper half-plane. (Thus x¥~l is a Riemann mapping.) Then *P 
extends continuously to T, and so h = \F o z defines an increasing homeo-
morphism on R. A theorem of Lavrentiev implies that log h' e BMO(R) 
if T is a chord-arc curve. The theorem of Coifman and Meyer states that 
the map T —• log A' is real-analytic, viewed as a map from Q c BMO into 
BMO. Moreover, its image is also an open subset of BMO, and the inverse 
mapping is real-analytic. (The precise definition of real-analyticity will be 
given in the next section.) 

It may seem strange that we are using ¥:!> -• VHP rather than a 
conformai mapping O: VHP —> D. The reason is the latter just doesn't 
work out. To understand why, let's remember that *F and 4> are not well 
defined, but are only defined modulo an affine transformation z -+ az + b 
of the upper half-plane onto itself. However, if you replace *P by cW + ft, 
then that merely amounts to replacing log h' by log h' + log a. Because 
BMO functions are well defined only up to an additive constant, we get 
that the map T -• log h' is well defined as a map into BMO. 

It doesn't work out this way if we use O instead of *¥. Even if you 
add normalizations to make the map T —• O well defined, it is not well 
behaved. 

Thus with this problem, as with the previous case with the Cauchy in-
tegral, we see that the symmetries of the problem tell us that BMO is the 
natural space, as well as how to set up the correct theorem, i.e., that the 
inverse of the Riemann mapping should be used. 

References for these last results include [CM 2,3, D], and the expository 
paper [S]. 

2. Some general techniques. Let me now discuss how one might deal 
with nonlinear functions like those discussed in the preceding section, fol-
lowing ideas of Coifman and Meyer. 

Let À(a, ƒ ) be a functional that is linear in ƒ and nonlinear in a, where 
each of a, ƒ, and A.(a, ƒ ) are functions on Rn. For example, take k{a, ƒ) = 
TAf with a = A\ n = 1, and TA as in (1.3), or set A(a,f) = exp(^L)/, L 
as in (1.6), a = (bij). 
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We say that k(a, ƒ ) is real-analytic in a at a = 0 as a function from 
L°° x L2 into L2 if there is a 5 > 0 so that 

oo 

(2.1) A(fl./) = £>*(<!,ƒ) 
A:=0 

for all f e L2 and all a € L°° such that ||a||oo < à. Here each kk(a,f) 
should be linear in ƒ and a homogeneous polynomial of degree k in a. 
This last means that there is a (A: + l)-linear map lic(a\>--->ak> f) such 
that 

kk(a,f)=kk(a,...,a,f). 

We also require that the power series converge absolutely in L2, with the 
estimate 

(2.2) l l4(^/) l lL2<C^| |a | |^ | | / | | 2 . 

In the case of the operator-valued function Cp defined in (1.8), we take 
k(a,f) = Crf, where T has arclength parameterization z(t) = ^eia^ ds, 
a e Q c BMO, and in (2.2) we replace ||<z||oo by ||#||*. In the case of 
the Riemann mapping function, k(a) = log A', h as in the end of the 
preceding section, we define real-analyticity in the same way, except now 
Ma) = Yl^kià), where each kk{a) is a homogeneous polynomial of degree 
k, and ||A*(fl)||. < GJ-*||fl||5. 

This definition may seem complicated, but in the examples it is often 
not so hard to write down the power series explicitly. We already saw how 
to do this for TA in (1.4). 

The goal now is to find methods for proving an estimate like (2.2) so 
that we can sum the series (2.1). 

Let's bring Fourier into this. Let xt denote the operator of translation 
by t, rth(x) = h(x -1). We say that k(a, ƒ) commutes with translations if 

TtMa,f))=X(Ta.Ttf) 

for all /. This holds in the examples described above. This is a cute 
point: if you fix A and view TA as a linear operator on L2, then it is not 
a convolution operator, but if you view TA ƒ as a function of both A and 
ƒ, then it does commute with translations. 

If k{a, f) commutes with translations, then so does each kk(a,f), and 
there is a representation theorem in terms of Fourier transforms. Under 
mild continuity assumptions on k^a, ƒ ), there is a distribution a^a, Ç) = 
0A:(ai>û!2,...,aA:,C) such that 

kk(a,f)(x)= [ ... ƒ e^^J^^a^Oâia^-^ia^fiQdadC 
JR» JR» 

We call Ok(oL, Ç) the symbol of A*, and it is uniquely determined by kk if 
it is symmetric in the ay's. 

When k = 0, ko(a, ƒ ) does not depend on a, and the above representa-
tion reduces to the well-known result that a convolution operator T can be 
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written as (Tf)^(Q = m(Qf(Q for some m(Q. In this case T is bounded 
on L2 iff m e L°°, by PlanchereFs theorem. 

When k > 0 we do not get useful estimates from Plancherel. We do, 
however, have the following result of Coifman and Meyer [CM1]. 

THEOREM 2.3. Suppose o^oc, 0 is smooth away from the origin and 
satisfies 

i(£)'(*)'*<-« <C(p,q)(\a\ + \Ç\)-M-< forallp.q. 

Then \\^k{^*f)\\i < CIMlSoll/lh» where C depends on k and the constants 
C(p, q) above. 

This result is really quite fundamental. It and its proof techniques give 
a lot of insight into the way multilinear operators should be analyzed. I 
shall give a simple example of this at the end of the section. 

There are two main problems with this theorem. The first is that the 
symbol is usually not so smooth in the examples. This turns out not to be 
too serious—the examples can usually be dealt with using straightforward 
technical refinements of the theorem or by adding comparatively simpler 
ad-hoc arguments. 

The second problem is more serious. We want to use Theorem 2.3 
for summing series like (2.1), with estimates as in (2.2). Unfortunately, 
Theorem 2.3 does not give enough control on the norm of Xk as a function 
of k to get (2.2). However, the following result of David and Jorné [DJ] 
can often be used to get estimates like (2.2). 

THE r ( l ) THEOREM. Let T:Cg°(Rn) — C§°(Rn)' be linear and con-
tinuous, and suppose that T is associated to a kernel K(x, y) such that 
K(x, y) — -K(y, x) and 

(2.4) \K(x,y)\<C\x-y\-n 

\—n-(2.5) \VxK(x, y)\ + \VyK(x, y)\ < C\x - y\ 

Then T extends to a bounded operator on L2(Rn) ifT(\)e BMO(Rw). 

The connection between this result and estimates like (2.2) is not obvi-
ous, and I'll explain that after I've explained some of the definitions. 

Here CQ° means the space of C°° functions with compact support. To 
say that T is associated to K(x, y) means that if ƒ, g G C °̂(R") have 
disjoint support, then 

(Tf,g)= f f g(x)K(x,y)f(y)dydx. 
JR» JR" 

This holds if Tf (x) is given by a principal value integral with K(x, y). 
There is a version of this theorem when K is not antisymmetric, but then 

an additional mild continuity assumption is needed, and T(l) e BMO is 
replaced by T(l), T*(l)e BMO. 
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BMO(R) was defined at the end of the first section. (See ( 1.9).) BMO(R") 
is defined in the same way, except that intervals are replaced by balls. 

If T is bounded on L2 and is associated to a kernel K(xf y) that satisfies 
(2.4) and (2.5), then in general T does not map L°° into L°°. Indeed, T(f) 
will not even be well defined if ƒ is merely bounded, because (2.4) is not 
strong enough to make the integral converge at oo. However, one can 
show that T(f) is defined modulo additive constants, using (2.5). Thus 
it is natural that T actually maps L°° into BMO. Moreover, BMO is the 
smallest space of functions for which this result holds. 

Let me illustrate how the T(l) theorem can be used to obtain estimates 
like (2.2) through an example, namely, the series for TA in (1.4). 

If A is Lipschitz, then A' e L°°, and one can easily check that the kernel 
(A(x) - A{y))k/(x - y)k+l of Tk = Tk{A) satisfies the hypotheses of the 
T(l) theorem. An integration by parts computation gives 

Tk(l) = Tk-X(A'). 

Hence, if Tk_x is bounded on L2, so that Tk_i also maps L°° into BMO, 
then Tk(l)e BMO, and Tk is also bounded on L2, by the T(l) theorem. 

This induction argument gives the estimate 

\\Tk(A)f\\2<ck\\A'\t\\f\\2. 

This allows the series (1.4) to be summed when H '̂Hoo < C"1, and to 
obtain Theorem 1.5 in that case. To prove that the radius of convergence 
is 1, and to prove Theorem 1.5 in the general case, requires more refined 
arguments. 

This example is quite typical of how the T(l) theorem is used. Given 
a (k + l)-linear functional L(a\,...,ak, f ), the T(l) theorem reduces the 
problem of getting estimates for this to the task of controlling an object 
like L(a\,..., ak, 1). In other words, the T(l) theorem allows one to go 
from a (k + l)-linear functional to a A>linear functional, which sets up a 
natural induction procedure. 

In the next section I shall discuss some aspects of the proof of the T(l) 
theorem, and also an extension of it. 

I'd like to end this section with an example to illustrate how one analyzes 
multilinear operators on the symbol side, using Theorem 2.3. 

Let ƒ, g be two functions on R. Setting D = d/dx, we have the familiar 
Leibnitz rule 

D(fg) = {Df)g + f(Dg). 

This formula no longer holds if we replace D by some power of D. Even 
for integer powers of D we still get extra terms. 

Let's ask for a weaker form of the Leibnitz rule for powers of D. Given 
s > 0, can we find nice bilinear operators B\{f, g), Bi(f> g) such that 

(2.6) \D\s{fg) = *!(|D|'ƒ g) + B2(f, \D\sg)<> 

Here \D\S is defined by 

(iDivno = ici'Ac). 
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By "nice" we mean in particular that B\(-, •) and B2{-, •) should satisfy Lp 

estimates like those for B(f, g) = f g given by Holder's inequality. 
Let us compute on the Fourier transform side. By definitions, 

fix)g{x) = l j f(C)6(fi)dCdfi 

and \D\*(fg)(x) = ƒ !lnix{^n) |C+if|'ƒ (C)*fa) rfC rfij. To get (2.6), we want 
the symbols <Ji(£ if) and (T2(C> tl) of 2?i(*> •) and Bi(-, •) to satisfy 

(2.7) IC + IJI' = *,«;, iJÎlCI' + ^ C . i ï M . 

and we want these symbols to be reasonably well behaved. 
We use a suitable cut-off function. Let 0(Ç, tf) be such that <̂ (C, rj) = 0 

if ICI < ikU 0(C. »f) = 1 if 2|i|| < Id, and 

|ôc'a,^(C,fj)|<c(p,flr)(|C| + |»jir,'-«. 
Thus 0(C, */) vanishes when Ç is small compared to f7. (We can also choose 
<t> to be homogeneous of degree 0.) 

Set 

ui(C.i;) = |C + 9HCrV(C^) 

^2(c.i?) = ic+iji'kr ,(i-0(c.i?)). 
Then (2.7) holds automatically, and the specific choice of (j> keeps a\ and 
ai from blowing up. 

If s is an even integer, Theorem 2.3 applies to the bilinear operators 
B\ and #2, and the proof of Theorem 2.3 gives much more information 
(other Lp estimates, in particular). Even if s is not an even integer, the 
method of proof of Theorem 2.3 permits one to show that B\ and B2 are 
well behaved. 

This example is very simple, but the computations used are quite typical. 

3. Some aspects of Littlewood-Paley theory. Littlewood-Paley theory 
provides an important tool for analyzing operators and functions. To get 
an idea of how it works, let us consider a specific problem. 

Let T be as in the T{\) theorem, but with T{\) = 0. Let us see why 
T has to be bounded on L2. We restrict ourselves to the real line for 
simplicity. An example of such an operator is the Hilbert transform 

A general method for analyzing an operator T is to choose an orthonor-
mal basis {eft for L2 and to express T in terms of this basis: 

(3.0) Tf = Y,(Tet,eJ)(f.et)e1. 
u 

Information about the matrix (Tej,ej) can be used to get information about 
T, for example, the boundedness of T on L2. 
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To make this work, we need to choose the basis {et} carefully, so that 
we can compute {Tet^ej) and also get something that we can work with. 
We would like to choose the basis {et} so that T is almost diagonalized, 
in some reasonable sense. 

One choice for an orthonormal basis for L2 is given by the Fourier 
transform. Of course this isn't an orthonormal basis in the usual sense, 
but all that means is that we have to replace sums with integrals. This 
works in the case of the Hubert transform, because it is diagonalized by 
the Fourier transform, and L2-estimates follow from Plancherel's theorem. 

However, if T is as in the T(\) theorem, but T is not a convolution 
operator, then the Fourier transform approach doesn't work. For this 
problem, the Fourier transform is too sensitive to the algebra and not 
sensitive enough to the geometry. 

A better choice of basis for L2(R) is the Haar basis, defined as follows. 
Let A denote the collection of dyadic intervals on R, i.e., the intervals of 
the form [k V, (k + 1)2-0 f ° r h keZ. Given I e A, define the associated 
Haar function hi on R by hi(x) = 0 if x £ I, hi(x) = |/|~~1/2 if x lies 
in the left half of / , hi(x) = -\I\~l/2 if x lies in the right half of / . (If 
ƒ = [k 2J, (k + 1)2-0, ^en the left and right halves of I are given by 

[k2Jf(k + \)V) and [(k + \)2J ,(k + 1)2'), 

respectively.) 
The definition of hi implies that ƒ \hi|2 = 1 for all 7. It is not hard to 

show that hi, I G A, forms an orthonormal sequence in L2(R). This uses 
the basic fact that if I, J e A, then either ICJ,Jçi,orInJ = 0. 
Moreover, hi, I e A, forms an orthonormal basis for L2(R). 

In a very real sense, operators T that satisfy T(\) = 0 and the assump-
tions of the T(l) theorem are almost diagonalized by the /i/'s. One can 
show that the matrix entry (T hi,hj) gets small as you move away from 
the diagonal, i.e., when I and / are far away from each other, or when 
one is much smaller than the other. A precise version of this fact can be 
used to prove that T is bounded on L2. For example, Schur's criterion 
says that T is bounded on L2(R) if 

(3.1) s u p ^ l (T hi.hj) | + sup]Tl (T hi M | < oo. 
1 J J i 

One can check that (3.1) holds under our assumptions on T. 
The hi's form a good basis for functions on R in other respects as well. 

For example, {hi} forms an unconditional basis for LP(R), 1 < p < oo. 
(It is known that L1 and L°° don't have unconditional bases.) This means 
that every ƒ e LP(R) has a unique expansion of the form ƒ = £ aihi, and 
that the Lp norm of ƒ depends essentially only on the size of the a/'s (and 
not on oscillation properties, for instance). In this case of the A/'s one has 
(xi — (ƒ hi), and the Lp norm of ƒ is equivalent in size to ||v4(/)||p, where 

/ \ i / 2 

(3.2) A{f){x)=(y^\ai\2\I\-') . 
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By contrast, there is no reasonable characterization of the Fourier trans-
form of Lp functions. 

The basis {hi} respects the geometry of R much better than the Fourier 
transform. In this regard it is very helpful that the A/'s are localized in 
space—i.e., supported in the interval I—and that they also don't oscillate 
much. The A/'s do have an important weakness, which is that they are not 
very smooth. There is a fairly simple alternate approach that doesn't have 
this problem, but let me invert the order of history and first describe an 
elegant approach of Strömberg [Sb]. (See also [M,l, 2 and LM].) 

Strömberg showed that, given m, one can find a function i// so that y/ 
and its first m derivatives decay exponentially fast at oo, and such that if 

(3.3) ¥l(x) = \I\-{'2¥(2-J(x-ky)), 

I = \kV, (k + 1)2-0, then { V/}> / € A, is an orthonormal basis for L2(R). 
Notice that the A/'s can be obtained from h = fyo.i] exactly as in (3.3). 

Unlike the A/'s, y/i is not supported in ƒ. However, y/i is mostly con-
centrated near ƒ; as x moves away from ƒ, y/i(x) goes to 0. Although y/i 
is not piecewise constant like hi is, its smoothness means that it is roughly 
constant on invervals that are small compared to 7. Like hi, y/i satisfies 
J>/ = 0. 

The family {y/i} forms an unconditional basis for LP(R), 1 < p < oo 
and also for Sobolev spaces, Lipschitz and Besov spaces, Hardy spaces, 
and BMO. The Haar functions do not work in these other cases because 
of their lack of smoothness. Unconditional bases for these spaces were 
known previously, but they were not as elegant as {^/}. 

Like the Haar basis, {y/i} "almost diagonalizes" operators T that satisfy 
the hypotheses of the T(\) theorem and also T(l) = 0. In fact, {y/i} works 
better than the Haar functions; the estimates for (T y/i,y/j) are better than 
those for (T hi, hj), because of the discontinuities of the A/'s. 

There are other applications of the bases {y/i} and the methods used to 
construct them, but I shall not say more about that. The upcoming book 
by Meyer will be the basic reference. Papers currently in existence include 
[Sb, Ml, 2 and LM], and further references can be found in these. 

I should point out that the Haar functions and the i//i's have suitable 
versions in Rn. 

Let me describe now an older and more straightforward method of fixing 
the nonsmoothness of the Haar functions. 

Let y/{x) be any real-valued Schwartz function that is radial and not 
identically zero, and that satisfies ƒ y/ = 0. Set y/t{x) — t~ny/(x/t) for 
t > 0. Then there is a c ^ 0 such that 

f°° dt 
(3.4) f = CJ Vt*Vt*fY 

for all ƒ on R". This is easily checked using the Fourier transform. The 
identity (3.4) is often called a Calderón reproducing formula. 
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Let us rewrite (3.4) in a more suggestive way. Setting i//t,u(
x) — Vt(x-u)> 

we have 
f°° f dt 

(3.5) ƒ = c ƒ / ^,w (ƒ, w,M) rfw—. 
Jo JRn l 

We think of this as being analogous to the formula for expanding ƒ in 
terms of an orthonormal basis {£/}, 

(3.6) ƒ = £<ƒ*/>*/. 
i 

with the index / replaced by (w, f) G R++1, and the sum replaced by the 
integral. 

The expansion (3.5) satisfies L2-estimates similar to those for (3.6). 
Analogous to |M| = (El (vtet) I2)1/2, ||E*/*/ll < (EN2)1 / 2> we have 

(3.7) m2 = a^fj(ff¥ttU)\^y^ 
and 

II f°° C dt\\ / C°° C dt\Xl2 

(3.8) / W,,uG{u,t)du^\ <C[ \G(u,t)\2du^-\ 
\\Jo JRP l Ü2 \J0 JRn l / 

for some a ^ 0, C < oo, and for all functions ƒ on R", G on R"+1. 
Just as the Haar functions and Strömberg's bases were unconditional 

bases for other function spaces, there are also analogues of (3.7) and (3.8) 
for Lp spaces, BMO, Lipschitz spaces, etc. (In these cases, the version of 
(3.7) will be an equivalence of norms.) 

Similarly, if T satisfies the hypotheses of the T{\) theorem and also 
T{\) = 0, then T is almost diagonalized by the expansion (3.5). Just like 
(3.1), we have 

/•oo ç /-oo ç rfs tff 
Tf = I II (T Vt,u> ¥s,v) (ƒ, Wt,u) Ws,v dv—du—, 

Jo JRn
 JO JR» S l 

Again the "matrix entries" (T i//ttU> y/s>v) tend to 0 as (t, u) and (s, v) move 
away from each other, and the boundedness of T on L2 can be derived 
from a precise version of this fact and Schur's lemma. 

An important respect in which (3.5) is not like an orthonormal expan-
sion is that there is no uniqueness: given ƒ, there are many functions 
F(u,t) onRf 1 such that 

f = r i Vt,uF(u,t)du^. 
Jo JRn l 

For many applications, though, this lack of uniqueness does not matter, 
and (3.5), (3.7), and (3.8) are already good enough. 

The y/t,u$ respect the geometry in much the same way the A/'s and y/j's 
do. The y/t,u$ are localized in space; i//ttU is roughly concentrated in the 
ball B(u, t) = {x: \x - u\ < t}9 in the sense that i//t,u(x) 8°e s t 0 0 as |x - u\ 
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becomes large compared to t. If we choose the original function y/ to be 
supported in B(0,1), then we would actually have supp y/t>u Q B(u, t). 

Also, the y/t,u$ a r e smooth at the scale of t. It is easy to compute the 
gradient of i//ttU and check that y/ttU is almost constant on balls with radius 
that is small compared to /. 

This last property can be rephrased in terms of Fourier transforms by 
saying that y/tM is roughly concentrated in the annulus 

Indeed, 

and this tends to zero as tÇ tends to oo or 0. This last holds because ^(0) = 
ƒ y/ = 0. We could have chosen i// so that supp y/ ç {-̂  < |£| < 10}, which 
would give 

supp^cj^r^KKiOr 1}. 
Thus the y/t,u's are localized both in the space and frequency variables, 

and that is really what makes the whole thing go. 
I have not said anything so far about how the T(\) theorem is proved 

when T(\) ^ 0, nor how to prove Theorem 2.3. The analysis in these cases 
requires more tools. A principal ingredient is a certain class of operators 
(often called paraproducts) introduced by Coifman and Meyer. These 
operators act as basic building blocks; many of the operators that arise 
in practice can be written in terms of paraproducts together with other 
terms that are simpler. Paraproducts have also been used by Bony [B] in 
connection with regularity problems for nonlinear PDE. 

I'd like to discuss now a generalization of the T( 1 ) theorem and a related 
generalization of Littlewood-Paley theory. Yves Meyer posed the question 
of whether there might be a version of the T(l) theorem in which the 
function 1 is allowed to be replaced by any b e L°° such that Re b > S on 
R" for some S > 0. An example of an operator to which such a theorem 
would apply is the Cauchy integral on a Lipschitz graph: the operator TA 

in (1.3) satisfies TA(b) = 0, with b = 1 + iA', because of Cauchy's theorem. 
When I first heard of this question, my reaction was "Why should that 

be true?" and "How could one possibly prove it?" Thus it came as quite 
a surprise to me when Alan Mcintosh and Meyer [McM] showed that it 
was true, at least in the case T(b) = 0. 

This beautiful theorem of Mcintosh and Meyer was extended in [DJS]. 
In particular, the class of admissible functions b was enlarged so that there 
are now necessary and sufficient conditions on b for the theorem to hold. 

The method of proof in [DJS] was to build a version of Littlewood-
Paley theory that is adapted to the given function b. In other words, the 
set-up is adjusted to the measure b(x)dx instead of Lebesgue measure. Let 
me explain what this means. 

We would like to have analogues y/ttU of the functions y/ttU that satisfy 
f WtAx)b(x)dx = 0 instead of ƒ y/tM = 0. The size and smoothness 
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properties of y/ttU should be the same as those for i//ttU, that is, y/t,u should 
be smooth at the scale of t, and y/t,u(

x) should decay as |JC - u\ becomes 
large compared to t. 

We also want the y/t,u$ to satisfy properties similar to (3.5), (3.7), and 
(3.8), i.e., 

(3.9) ƒ(x) = c f°° f y/tM{x)b{u)F(u, t) du^-
JO JR" l 

with F{u, 0 = ƒ Vt,u(y)Hy)f(y)dy, and 

r i \F(u,t)\^ <cwf m 
Jo JR»

 l 

as well as (3.8) with y/t)U replaced by y/t>u. 
If we could build y/t,u satisfying these properties, then we could prove 

the T(b) theorem (=the T(l) theorem with 1 replaced by b) in the same 
way as the T(l) theorem. For example, the argument outlined before for 
the case T(l) = 0 would go over with only cosmetic changes. 

Building the y/t,u* is a substantially more difficult task than in the case 
6 = 1. For one thing, the identity (3.5) came from a Fourier transform 
calculation that is not available when b is not constant. This is already 
an issue when b is real and positive, or if you want a version of the T{\) 
theorem on a space where there is no Fourier transform. 

In the case where b > 0, this problem was resolved by Coifman, and his 
solution is described in [DJS]. However, Coif man's approach used heavily 
the fact that b is positive; the estimates used Hubert space tricks that break 
down when b is complex. This obstacle was overcome in [DJS], and ^>M's 
were constructed with the necessary properties. (I'm cheating here slightly; 
the correct version is a bit more complicated than what's written above.) 

4. Other expository papers on related topics. The natural place to start 
is [CM4]. There is some overlap between that paper and this one, but the 
symmetric difference of the two is large. In the overlapping parts, [CM4] 
gives more details. 

I am very fond of the paper [C4] by Calderón. A hugh amount of 
progress has occurred since then, but he gives a very lucid explanation of 
some reasons for the interest in the Cauchy integral on Lipschitz graphs 
and in the estimates for the Calderón commutators, i.e., the operators 
Tk(A) in (1.4). 

One reason for Calderón's interest in these operators came from his in-
terest in building algebras of singular integral operators for studying prob-
lems in PDE. The pseudodifferential calculus gives an alternate approach 
to similar problems with a more powerful symbolic calculus, but at the 
expense of needing the coefficients of the given differential operators to be 
smooth. Calderón's approach gives a less powerful calculus, but with min-
imal smoothness requirements on the coefficients. The L2-boundedness of 
the first commutator T\(A) is an important ingredient for that. 

Boundary value problems on Lipschitz domains gives another class of 
PDE problems related to these topics. A classical approach is the method 
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of layer potentials, in which a boundary value problem is reduced to solv-
ing an integral equation on the boundary. These integral equations involve 
singular integral operators whose boundedness on Lp follows from the the-
orems of Calderón and Coifman, Mcintosh and Meyer. This implies that 
the integral equations are well defined on Lp, but solving the integral equa-
tions is another matter. A good reference for this is the survey paper of 
Kenig [K]. 

The complex-variable aspects of these topics are discussed in more detail 
in [S]. The work of Coifman and Meyer on the real-analyticity of the 
Cauchy integral operator and the Riemann mapping on the space of chord-
arc curves is described, as well as the relationship between their work and 
quasiconformal mappings and d. 

The discussion of Littlewood-Paley Theory given in §3 is quite limited 
in scope. The reader would be well-served by reading the expository paper 
[Snl] by Stein to learn about other aspects of the subject, and also its 
historical development. Another good reference is the monograph [Sn2]. 
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