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Nonlinear FuzzyH . Guidance Law With Saturation
of Actuators Against Maneuvering Targets

Bor-Sen ChenFellow, IEEE Yung-Yue Chen, and Chun-Liang Lin

Abstract—A nonlinear H, guidance law based on a fuzzy |I. INTRODUCTION
model is proposed for tactical missiles pursuing maneuvering . .
targets in three-dimensional (3-D) space. In the proposed guidance HE PRINCIPLES of m_msﬂe gmdance are well known
scheme, the relative motion equations between the missile and to control engineers. Since the basic principles were ex-

target are first interpolated piecewise by Takagi-Sugeno linear tensively covered in [1] and [2], many technologies have been
LUZ%Y m(;)de|S-I_Then, ahﬂonlflfnear foZZyHoo_gUldance law 'Sd developed to improve guidance performance and to accommo-
esigned to eliminate the effects of approximation error and yaiq anyironmental disturbances. These techniques are mainly
exter_na_l dlstur_bances to achl_eve t_he desired goal. The linear b d | ical trol th Vari id | h
matrix inequality (LMI) technique is then employed to treat ©@S€d On classical control theory. various guidance laws have
this Ho optimal guidance design in consideration of control been exploited with different design concepts over the years
constraints. Finally, the problem is further transformed into a [2]. Currently, most popular terminal guidance laws defined
standard eigenvalue problem so that it can be efficiently solved py | gcke [1] involve line-of-sight (LOS) guidance, LOS rate
via a convex optimization algorithm, which is available from a id d-to-li f-sight (CLOS id ! 3 d
numerical computation software. guidance, command-to-line-of-sight ( ) guidance [ .] an
P _ _ other advanced guidances such as proportional navigation
Inlgex Te_rm_'ls—Fuzzl_y cor};rol, gunde}nce, maneuvering target gyidance (PNG) [1], augmented proportional navigation guid-
tracking, missile, nonlinear Hoo control. ance (APNG) [4] and optimal guidance law based on the linear
quadratic regulator theory [5], linear quadratic Gaussian theory
NOMENCLATURE [6], or linear exponential Gaussian theory [7].
. . Of the current techniques, guidance commands proportional
" Rglapve distance between theto the LOS angle rate are generally used by most high-speed
missile and the target. o 2 4 .
missiles today to correct missile course. This approach is re-

? $2\(/:thilr']r;_;f)_f;is'%Ttain?ée(\(il‘ooss))' ferred to as PNG and is quite successful against nonmaneu-
i Relative accgleratign alon 'tovering targets. While PNG exhibits optimal performance with
LOS g constant-velocity targets, it is not effective for uncertain target

é An L.llar velocity of¢ maneuvers and often leads to unacceptable miss distances [8].
p Angular velocity 0f6. Besides, the dynamic system representing relative motion be-
é Angular accele)r/atioﬁ of tween the pursuer (missile) and target is, in general, highly non-
i Angular acceleration 09' linear and uncertain due to unmodeled dynamics and parametric
z Un?t vector alona the LdS perturbations resulting from the plant modeling. Therefore, as a
ef Unit vector along the PLOé well-considered guidance system design, robustness of engage-
iy Unit vector along the YLOS. ment performance with respect to modeling uncertainties and
29 w0 s E Acceleration vegtor of tar e.t external disturbances must also be considered.
6T__u”éf+u9 ef+u¢ej” Acceleration vector of migsilé Based on the reasons depicted above, it is highly desirable
VM__ i bE6TRSES Relative velocity alond to Los, @ @PPly advanced control techniques developing an effective
VT - rd Relative veloé/it r?ormal .to guidance law to improve engagement performance for tactical

¢ PLOS y missiles. As one of the powerful modern control techniques,
Vo = rf cos ¢ Relati\./e velocity normal to the H,, control has been widely applied to treat the robust de-

a =

YLOS sign problem of systems contaminated by modeling uncertain-
' ties and external disturbances. In aerospace applications, for ex-
ample, the lineaf ., control designs have been applied to con-
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differential inequality (HJPDI) must be solved. Unfortunately, Z
such an equation is usually difficult to be solved except for
simple or special cases.

Recently, there has been rapidly growing interest in fuzzy
control of nonlinear systems [17], [18]. Using this approach, a e,
nonlinear plant can be approximated by a fuzzy model, and a
model-based fuzzy controller can be developed to stabilize the
overall system [21], [24]. In the present approach, the three-di-
mensional (3-D) missile—target dynamics is approximated by
a perturbed fuzzy system motivated through a Takagi—Sugeno
fuzzy model [16], which is obtained by interpolating several
linearized systems at different operating points through fuzzy
certainty functions. Using this approach, solutions of the non-
linear HIPDI from the conventiondl ., guidance law design
problem can be approximated by piecewise interpolating a set of
linear Riccati-like equations via fuzzy certainty functions. Theig. 1. 3-D pursuit-evasion geometry.
problem is also parameterized in terms of an eigenvalue problem

(EVP) so that additional control constraints of actuators of migzhere the state vectar(t), the vector fieldF (x(t)), the missile

sile control can be included in our design. _ acceleration vectar(t), and the target acceleration vectaft)
For the convenience of design, the proposed design framga gefined, respectively, as follows:

work is characterized as a linear matrix inequality problem

Line-of-sight

X

(LMIP). For practical application, the saturation of actuators are I Vi i
also considered in the proposed nonlinear fuzy guidance Ve
law design. The LMIP is used to characterize a suboptithal oS ¢
guidance law with control constraints so that the corresponding r Vy
linear matrix inequalities (LMIs) are feasible. The EVPs or 0 o
LMIPs are to be solved via a convex optimization technique t) = ¢ F(a(t)) = V22
supported by the LMI toolbox of Matlab [19] software. Finally, Ve MU
a simulation example is given to illustrate the design procedure Vo r
and confirm the guidance performance. Vs _VVy | VeVstang
T T
V,Vy Vitané
Il. PLANT MODELING AND DESIGN OBJECTIVE L e
The 3-D pursuit geometry is described in the spherical coor- Ur Wr
dinates [29] where the relative position vector along the line df )= |us | w(t) = | we
sight is expressed by Fig. 1 is a pursuit—evasion geometry be- L 4o We
tween the missile and the target. The differentiation’ gives r0 0 0 0 0 0
the 3-D relative velocity as 0o 0 0 0 0 0
0 0 0 0 0 0
B= -1 0 0 D= 1 0 0 “)
S o ] > s 0 -1 0 0 1 0
7 =1€, + 18 cos P&y + rPey. Q) ) 0 1 0 0 1

Differentiating both sides of the above equation yields the ys denote the state variabjét) = [r Vs V] to be

relative accelerations as controlled as
n(t) = L'z(t) (5)
i—rp? —r%cos’ p =w, —u, where
76 cos ¢ + 270 cos ¢ — 2rdl sin ¢ = wg — ug 1 00 0 0 O
r<,£+21'"gz.5+r92005¢>sin¢:w¢—u¢. (2) L'=|0 000 10
00 0 0 0 1

The kinematics between the missile and the target in (2) can NOV: emark 1: When Vv,

: : ; ; Vs — 0, it means missile and target
be recast into the following nonlinear state-space equation:

in the head-on condition. Among three relative velocities of the
nonlinear system in (3), only the relative velocity along to LOS
(i.e., V;.) decreases the relative distance between missile and
&(t) = F(z(t)) + Bu(t) + Dw(t) (3) target. O
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A good guidance law must guarantee a decreasing relatiseapplied to represent the locally linearized input—output
distance and at the same time, keep the pitch and yaw LOS eglations around the operating points. This fuzzified linear
gular rates as small as possible, i.e., in the head on condition.rBadel is described by a group of if-then rules and is used to
our design objective is to specify the guidance commaftd deal with theH ., guidance design problem.
so that the controlled variablgt) reduces to zero. Because the Theith rule of this fuzzy model for the nonlinear guidance
target accelerations are generally uncertain but bounded, it cgstem (3) is described by
be viewed as an external disturbance to the missile system. Since
the H., guidance law has been shown to be an effective control Plant Rule; :
methodology to attgnuate the effect of uncertain external distur- If 21(t) is Giy and
bances on the desired control performance, the following
guidance performance index is considered here as the design ob- thenz(t) = A;x(t) + Bu(t) + Dw(t)

jective [11], [23] fori=1,2,...,1 (8)

.andz,(t) is Gy

/tf [nT(t)Qn(t) + uT(t)Ru(t)] dt whereGij is the fuzzy setA; € R6%6 B ¢ RS*%3 [is the
0 number of fuzzy rules, and, (¢), ..., z,(t) are the premise
ts variables. The overall fuzzy system can be inferred as follows
< T (0)P(0) — o7 (t7)Pa(ty) + p° /0 Wl (Ot dt g1 g} ysy

Yuwl(t) € Ls[0, t]

wheret; denotes the flight time, the notati(w(t) € L0, ty] Z haz #() + Bu(®) + Du(t) ()
denotes all possible/(t) with f Jw(t)dt < oo; P =
PT >0,Q >0andR = RT > 0 are the weighting matrices, where
p? denotes the attenuation level which can be a prescribed value, T
i.e., from the energy viewpoint, the effect of uncertain target 2(t) = [z1(t) 22(1) -+~ 24(1)]
accelerations(t) onn(t) andu(t) must be less thap? for all g
possiblew(t) € L»[0, t¢]. pi(z(t)) = H Gij(z(t))
Now, using (5), we obtain j=1
¢ pi(=(t))
/ T OQ () + T () Ru(t)] dt hi(=(1)) = 5
0 > mi(z(t))
T(0)Pz(0) — zT(t5)Pa(ts) + p* /tf wT (t)w(t) dt -
v (0)Pa(0) =™ (i A oY andG;(z;(t)) is the membership grade of(t) in G;;.
Yw(t) € La]0, tf] (6) It is natural to assume
whereQ’ = Q"7 = L'TQL' > 0. wi(z(t)) >0, fori=1,...,1 forallt.

The closed-form solution off,, guidance law satisfies the ) )
performance in (6) for the 3-D guidance system in (3) can gderefore, we get the certainty functions
obtained byu(t) = —(1/2)BT(0U (z(t))/0x(t)) via solving .
the following(H)JPDI [(30/]:) OO0 (t) hi(2(1)) 20, fori=1,2,....1  (10)

and
QU ((t)) 1 aU(z( D (1 o r  apr z
ae) L) Zea <p_DD - BB ) > hi(z(t) =1. (11)
( (t)” =
( ) 2 ' (HQ'x(H) <0 (1) The physical meaning of the fuzzy model (9) is that the locally

_ _ linearized systemsg(t) = A;z(t)+ Bu(t) + Dw(t) at different
whereU (z(t)) is a Lyapunov function. _ operation points (different fuzzy set;) are interpolated piece-
In general, it is almost impossible to obtain a closed-foriise vig the certainty functioh; (=(t)) to approximate the orig-
solu_tlon U(x(t)) for 3-D .gwdance system from this nonlineak | nonlinear system (3). Note that identificationgf (; (1))
partial differential equation. andA; from F'(z(t)) can be easily obtained using the clustering

technique [14], [15].
[Il. NONLINEAR H., GUIDANCE DESIGN VIA Now, (3) can be rewritten as

Fuzzy MODEL METHOD

l
Construction for theH,, guidance law of the guidance i
system described in (3) needs to solve an HIPDI (7), whose z; hi(z (D) + &S+ Bult) + Du(t) (12)
solution is difficult to be solved even with numerical methods.

To overcome this problem, a fuzzy model is employed hewehereAf = F(x(t)) — 251:1 hi(z(t))A;z(t) denotes the ap-

to approximate the nonlinear relative motion equation in (3)roximation error between the nonlinear missile—target model
A fuzzy dynamic model proposed by Takagi and Sugeno [163) and the fuzzified missile—target model (9).
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With regard to the system (9), the following fuzzy guidancerhere the weighting matri® is a positive-definite symmetric
law is employed to deal with the guidance design problem: matrix, i.e.,P = PT > 0. The following lemma will be useful
in the design procedure.

Lemma 1 [20]: For any matrices (or vectorsy andY with

If 2 (t) is Gy and. .. andz,(t) is Gy, appropriate dimensions, we have
thenu(t) = K;z(t) XY +YT'X < XTIX +YTIT 'Y
fori=1,2,..., 1L

Guidance Law Rulé :

(13)  wheresis any positive-definite symmetric matrix. In this paper,

The overall fuzzy guidance law can be expressed as [16] W€ €t/ be an identity matrix. O
y9 P [16] The time derivative o¥/(¢) is
!
u(t) = hi(z(t)) Kix(t) (14) V(t) =& T (t)Px(t) + aT (t) Pi(t). (20)

=1

) ] ) By substituting (15) into (20), we get
where h;(z(t)) is defined as in (10) and (11) anl,, i =

l l

1, ..., [ are the control parameters. .
Substituting (14) into (12) yields the closed-loop system of V' (1) = Z Z hi(z(8))hj(2(t))
the following form: =1 =1
L {2 (t) [P(A; + BK;) + (A; + BK;)" P] z(t)
x(t) = 2; 2; hl(z(t))hj(z(t)){(Az + BK]).T(t)} +AfTP$(t) + x’T(f)P Af}
=1 iz
+Af + Dw(t). (15) +w (t)DT Px(t) + 2™ (t)PDw(t).
Suppose there exists a design scalaatisfying From (18) and Lemma 1, we obtain
l l l
IAFIl = |F(() = > hiz(0)Aw(t)|| < allz@)]| (16) V() < D D>~ hilz(t)hy(2(1)
i=1 i=1 j=1
for all trajectories, wherd - || denotes thd.,-vector norm. {2 (t) [P(Ai + BK;) + (A; + BK;)" P] x(t)
Remark 2: If we assumey = n andz;(t) = z1(t), 22(t) = r T’
xo(t), ..., zo(t) = z,(t), i.e., state variables are chosen as +AFUAf + T () PPo(t)}
premise variables, then the plant rule can be represented as + 2T (1) PDw(t) + wT (1)DT Pa(t)

Plant Rulei: If z4(t) is G;; and...andz,(t) is Gix

hi(z())h; (2(1))

i
MN

Il
=

theni(t) = A;z(t) + Bu(t) + Dw(t)

J

fori=1,2,...,1 17
' 7 {2"(t) (AT P+ PA; + PBK;
0 T nRT 2
From (16), we get +KjB'P + o’ + PP)a(t)}
. T + 2T (t)PDw(t) + w” (t)DT Px(t). (21)
TAF — , . o
AfFAf= {F(‘E(t)) - Z hl(z(t))All(t)} Theorem 2:If the fuzzy guidance law (14) is employed in
=1 the nonlinear guidance system (3) and there exists a positive-
! definite matrix? = PT > 0 such that the following matrix
“QF(x(t) = ) hi(2(1) Aix(t) inequalities:
1=1
1
<oz (t)x(t) (18) A P+PA;+PBK;+K/B"P+a’I+P <I + DDT>
- p
i.e., the approximation error via the fuzzy interpolation model P+ Q + KJ»TRKJ» <0 (22)
is bounded within a sector with slope. o o i
Stability is the most important issue in guidance system @€ satisfied fori, j = 1,2,...,1 then the nonlinear

sign. It is appealing for us to specify the control parameférs closed-loop s_ystem (15) is quadraticall_y stable in the absence
so that the stability of the closed-loop system (15) is ensurél. €xternal disturbances, and ti¢., guidance performance
In the following, we proceed to specify the fuzzy guidance lalifdex (6) is guaranteed for a prescribetlin the present of

to stabilize the system (15) with the guaranteéiof guidance €xtermnal d!sturbances. . O
performance index (6). Proof: See Appendix A.

Let us first choose a Lyapunov function candidate as In general, it is not easy to analytically determine a common
solutionP = PT > 0 from (22). Besides, the solution may

V(t) =" (t)Px(t) (19) not be unique. Fortunately, (22) can be reformulated as an
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LMIP [22]. As a group of LMIs is constructed, the problermand
can then be solved in a computationally efficient manner

: . : * ) = . Xpr, <v?
using numerical techniques such as the interior point method.

(28)

First, the Riccati-like inequalities (22) are transformed to thghere X, denotes thé:th diagonal element ok . This is, if
1

equivalent LMIs by introducing the new variablés = P~
andY; = K;W

1
WAL + AiW + BY; + Y BT + *WW + <I + DDT>
P

+WQ'W +Y]"RY; <0. (23)

the control constraint§u(t)|| < v are enforced for théf .,
guidance law, then parametdfg, Y; andK; = Y;W ! must
be solved under the LMI constraints (24), (27), and (28), simul-
taneously.

In general, it is appealing to eliminate the influence of ex-
ternal disturbances on the guidance performance as possible,

By the Schur complement [22], the quadratic inequalities ab&-» make the attenuation leye as smalll as possible to achieve

the H., optimal guidance performance. In this situation, the

equivalent to the LMIs shown in (24) at the bottom of the pag€)€ THGHILS . !
fori, j=1, 2, ..., I. Then, theH., guidance problems with a /- robustness optimization design for the guidance system (3)

prescribed disturbance attenuation lewét reduced to how to
solveW,Y;,j=1,2..., [ fromLMlsin (24). If the LMIs in
(24) have a common positive-definite solutidn, then the non-
linear system described by (15) wiffi; = Y;W~! would be

stable, and thél ., guidance performance index (6) is achieved.

is formulated as a constrained optimization problem
. . - 2
minimize p
{Y1,...., Y1}

subject toW = W7 > 0, (24), (27), and (28) (29)

To consider the saturation of actuators in practical applica-

tions, the constraints on control commands should also be i

posed in the design of a guidance lawz(f) is restricted to stay
in an invariant ellipsoid,. = {z(t) € Rz (t)W ~lz(t) < 1
or [W=/2g(t)||? < 1} for all t > 0, then from (14), we get
[22]

max ||ug(t)|| = max
>0 >0

l
[Z m(z(t»mw@]
=1

l
max

nax 3 [ha(e(6) | VW (0], ]

i=1

k

IN

IN

{ [ w2,

rEe,

> hi(z)} .
=1

(25)
By (11), we obtain

< max max H (Y,;W_lzv)
1 TEE,

maxfu (1) il

maxX max
1 TEE,

(Yiw—(lﬂ)W—(l/?)x) H
k

(1/2)
k

IN

max (viw=tyh) (26)
where we have used the fdgi—(1/2)z(t)|| < 1.

Therefore, the constraints on control commajhals(t)|| < v
for all k are enforced at all time> 0 if the following LMIs [22]
hold fori =1, ..., [:
wT(U)]

>0

>0

(27)

w

X T
Y, W

R

Fhe above constrained optimization problem is called as an
EVP. This EVP can also be solved very efficiently by convex
optimization algorithms such as the interior algorithm [22].
Software packages, such as the LMI optimization toolbox of
Matlab [19], have been developed for this purpose and can be
utilized to solve the problem. After the EVP in (29) has been
solved by the optimalV, Y;, for: = 1, 2, ..., [, then the cor-
responding control parameters are calculatefas Y; W 1,

for: = 1,2, ..., [. Based on the analysis above, the optimal
H, fuzzy guidance design can be summarized as follows.

Step 1) Select the fuzzy plant rules and membership functions
via the Takagi—Sugeno fuzzy model (8) for the system
(3) and find the upper bound from (16).

Step 2) Select the weighting matric@sandR according to the
design purpose.

Step 3) Transform the Riccati-like equations (23) into the LMI
(24).

Step 4) Solve the EVP (29) to get optim@l, Y;, for i
1, 2, ..., l and the corresponding minimupd.

Step 5) Obtain the control parametdfs = Y; W1, for i
1,2, ..., 1

Step 6) Realize the fuzz#i., robustness optimization guid-
ance law (14).

Remark 3: The EVP [22] is to minimize the maximum eigen-
value of a matrix that depends affinely on a variable, subjectto an
LMIconstraint (ordetermine thatthe constraintisinfeasible),i.e.,

minimize A

subject toA] — A(z) > 0, B(z) >0

1
WAZ.T+A¢W+BYJ»+Y]-TBT+I+F

w
Y,

J

YT

J
(@ T+Q) T 0
0 ~R!

DDT w

<0 (24)
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where A(z) and B(xz) are symmetric matrices that depend 2) Ramp target:
affinely on the optimization variable:. This is a convex

optimization problem. O Wy = Apte,
Remark 4:The above design procedure is based on .
perfect state measurement. In the noisy measurement, an wy = )\Tt_—¢ &
observer-based guidance law is introduced as follows. \/#2 + 6 cos? ¢
Suppose only, V;., V,, V,, can be measured directly but cor- )
rupted by measurement noises, 6 cos ¢ .
ie., wy =Art

T €p-
v/ $2 + 0 cos? ¢
#(t) = F(xz(t)) + Bu(t) + Dw(t)

3) Sinusoidal target:
y(t) = Cu(t) + n(t)

where n(t) denotes the external noises, for example, the wr = Az sin(Qt)e,

tracker noises or target glint noises and so on in the navigation ) —¢ .
process, whose statistical characteristics are unknown or with wg = Ar sin(Q1) T €o
uncertainty. By the same technique presented in this paper, \V¢? +0cos?

we can obtain the overall fuzzy system, fuzzy observer, and i cos ¢

observer-based guidance law, respectively, as follows. Wy = A sin(Q) ———— ¢,
Fuzzy system: $2 + 6 cos? ¢
l
() = Z hi(z(t))A;z(t) + Bu(t) + Dw(t) where \r is the target’s navigation gain adl = 20 (rad/s).
P ‘ ‘ In our simulation, we set the navigation gain as a random value
_c within 0~4G.
y(t) = Cu(t) +n(t). To demonstrate performance robustness of the proposed
Fuzzy observer: method, the following scenarios are considered.
' Case 1: Target escapes from missile),. > 0)
l
2(t) =Y hi(2(t) {Aid(t) + Bu(t) + Li(y(t) — §(t))} - r=1km 0=m/3 ¢p=m/3

=1 V., =—500m/s Vs =200m/s V,=300m/s

Observer-based guidance law:
Case 2: Target escapes from missile),. > 0)

u(t) =" hi(2(t) Kid(t). r— 4 Kkm é=n/3 6=n/3

=1
' V, = —500m/s Vy =200mis V, =300m/s

After some manipulations, we can obtain the robust estimation
gainsL; first and control gaind(; next. By this arrangement,  Case 3: Target is toward to missiléw, < 0)
the robust observer-based guidance law can be found. O

r =10 km =m/3 p=m/3

IV. SIMULATION EXAMPLE V, = —1000m/s Vp=200m/s V, = 300 m/s
Engagement performance and robustness of the proposed

fuzzy nonlinearH.,, guidance law(F'H..G.) and the APNG In all simulations, the constraintfu(t)|| < 6G have been
[4] against different types of targets are compared. Thré@&posed on the control commands.
maneuvering strategies of targets in 3-D [2] are employedBased on the predescribed design procedure, we design an
to examine the robustness and tracking performance of tHe- guidance law via the following steps.

guidance laws, i.e., the external disturbaneg3) in 2) is Step 1) Selectthe fuzzy plant rules and membership functions

generated by the following maneuvering targets to test the for the guidance system model. To reduce the design ef-
robustness in this example. fort and complexity, rules of the fuzzy system are used
1) Step target: as few as possible. After some tests by ANFIS algo-
. rithm [14], [15], 18 rules based on the premise vari-
Wy = Aré; ablesz(t) = (z1(t), 2z2(t), 2z3(t)) = [r, Vo, Vy] =
—é . [z1(t), z5(¢), x6(t)] are used here to approximate the
Wy = Ap ————= 6 system. Membership functions for the state variables
\/ #? + O cos? ¢ Vs, andV,, are shown in Fig. 2.

écos</> . Theisth rule is

Wy = Ay ——e—= . Rulei: If risr; andVj is Vy; andV, is Vy;;
V8?2 + fcos? theni(t) = A;z(t) + Bu(t) + Duw(t), i = 1, ..., 18



CHEN et al: NONLINEAR FUZZY H., GUIDANCE LAW 775

1 10 : : : : . . : :
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FH G |
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0 3000 5000 7000 10000 0 1 2 3 4 5 6 7 8 9 10
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r (m
10 : : ; : ; ; ; : |
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5 T __FHG
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= e
5| T
10 A
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0 : f ; y i . : @
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=° 41
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Fig. 2.  Membership functions for (&) (b) V5, and (c)V. 0
2 2 4 6 8 10 12
where operation pointg Vy, V, are given by t(sec)
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Fig. 3. Control commands foF H.,G and APNG versus sinusoidal target

with different initial conditions. (a) Case 2. (b) Case 3.
T10 =T11=T12=T13=T14 =715 =716 =717 =718 = 9000 @) (b)

Vi1 = Vo2 = Vi3 = V10 = V11 = V12 = —200 _ . .
tions. In the current study, the available flight envelope was
Voa = Vs =Viae = V13 =Vh14=Vp15=0 chosen as for relative distancel, andV,, for tangential ve-
o _ _ _ locities in yaw and pitch axes, respectively. They are shown
Vo7 = Vos = Voo = V16 =Vo17= V515 =200 by membership functions in Fig. 2. Over the flight envelope,
Vg1 =Voa=Vypr =Vi10=Vp13=V416 =—200 the flight conditions were uniformly partitioned into 18 parts as
those in the fuzzy rules in Step 1. O

Voz = Voo =Vos =Vo11 =Vo14= V7 =0 Step 2) Select the weighting matric@sand R

V¢3 = Vd)G = V¢9 = V¢12 = V¢15 = V¢18 =200.

0.005 0 0 0.01 0 0
Remark 5: Operating conditions were chosen according to

the portioned flight envelope. The available flight envelop on - 0 0.0 0 R= 0 0oL 0
the guided missile was characterized according to the system 0 0 0.01 0 0 0.01
specification (such as speed, max acceleration capability, and
achievable altitude, etc.) determined during the concept expttep 3) Solve the EVP in (29) to gBt, Y1, ..., Yis.
ration phase based on the missile aerodynamic configurati®tep 4) Obtain the fuzzy control parametéfs = Y; W1,
propulsion, weight, and structure, etc. The available flight en- j =1, ..., 18 and the corresponding minimup =
velope was then uniformly partitioned into several flight condi- 0.7225.
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®) Fig. 5. Trajectories of relative distances between missile and target for
Fig. 4. Tangential relative velocities 8T H .. Gand APNG versus sinusoidal FH..G and APNG versus sinusoidal target with different initial conditions.
target with different initial conditions. (a) Case 2. (b) Case 3. (a) Case 2. (b) Case 3.

Step 5) Realize the fuzzyi., robustness optimization guid-tion of Case 3, in which the target is toward to the missile. For

ance law both cases we see that the guidance commands in the APNG de-
sign are all larger than that df H..,G. Therefore, concerning
18 about energy consumptiot; H,G yields better results. This
u(t) = Z hi(r, Vo, Vo) (Kiz(t)). is owing to the fact that the factor of control energy consump-
i=1 tion has been included in the designed performance index; on
) the other hand, larger acceleration commands issued from the
Step 6) For brevityA; and K, fori = 1,..., 18 are not ApNG lead to a higher control energy consumption.
presented here and will be available from the authors.
u B. Comparisons of Tracking Errors

Some discussion follows. Our design objective is to develop an effective guidance law

to keep the pitch LOS angular rate, yaw LOS angular rate, and
relative distance as small as possible under uncertain target ac-

Comparisons between”"H,,G and APNG versus the celerations. From Fig. 4(a) and (b), it is obvious that the angular
sinusoidal target are discussed. Control commands for balécaying rate¥s andV, in the pitch and yaw axes of the pro-
guidance laws are shown, respectively, in Fig. 3(a) and (Iposed design method all converge to zero rapidly than the con-
Fig. 3(a) illustrates the simulation result with the initial conventional one. This finding reveals that the proposed method
dition of case 2, in which the target escapes from the missij@ssesses excellent target tracking ability, and it is possible to
Fig. 3(b) illustrates the simulation result with the initial condi-get smaller miss distances than that of the APNG.

A. Comparisons of Control Efforts
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Fig. 6. Trajectories of relative distances between missile and target for  sooo
FH,, G and APNG versus step target (Case 1) and ramp target (Case 2) with

different initial conditions. (a) Case 1. (b) Case 2.
6000

Although Fig. 4 shows that the APNG can make the pitch and
yaw LOS angular rates converge to zero finally, however, the
guidance law generates large control commands (see Fig. 3).
Fig. 5 illustrates, respectively, convergence of the relative dis-
tance for the initial conditions in cases 2 and 3.

4000 -

C. Robustness

Robustness of the guidance design is examined by three types
of target acceleration commands. According to the definitidtig. 7. The plots of| A f|| (dash line)< af|z(#)]| (solid line) for the missile
of performance robustness index, a robust guidance law sho ra king the target with different initial conditions. (a) Case 1. (b) Case 2. (c)
keep the engagement performance with less sensitivity to the
external disturbances, i.e., the target acceleration commandstép and ramp targets, but the proposed robust guidance law still
has been shown in [4] that APNG can successfully engage tean accomplish the missions. Hence, the proposed guidance law
gets with sinusoidally evasive acceleration when the navigatimmore robust to uncertain target accelerations than the con-
gain N lies in the range of 3.3- 3.8. However, the successfulventional one. It is easy to find the upper bound= 1.01 for
engagement is based on the assumption that information abfoaizy approximation errors by computer simulations (ANFIS
the target acceleration profiles is precisely known. Simulati@approach method), and the relative simulation results for dif-
results in Fig. 6 have indicated it is hard for the APNG to tracferent initial conditions are shown in Fig. 7.
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V. CONCLUSION From (22), we further have

A nonlinear fuzzyH ., guidance law with control constraints T , LA T
against maneuvering targets without solving the complicatedV (t) <—#" (£)Q"x(t) — DN hilz(t)hy((1)2" (1)
HJPDI as that of the conventionAl,, control design is success- i=1 j=1
fully developed in this paper. The problem of nonlinear fuzzy AKTRK;} x(t) + p*wT (t)w(t)

H,, guidance law design with saturation of actuators is first
transformed to an EVP so that it could be efficiently solved T , ! T

with available computer software. The proposed guidance law < - (H)Qu(t) — Z hi(2(1))h; (2(1))z" (t)
possesses higher maneuverability and results in smaller LOS =1 =1

angular rates than the traditional APNG. It also consumes less . {KiTRK]-} x(t) + p*wT (t)w(t). (31)
control energy and offers better performance against uncertain

target accelerations. Simulation results show that the proposadm the properties of;(z(¢)) in (10) and (11), (31) implies
guidance law offers the potential to be applied in the high-per-

formance missile system designs. V(t) < =27 (1)Q"x(t) — uT () Ru(t) + p*wT (Hyw(t). (32)

Assumingw(t) = 0, we get

APPENDIX V(t) < =27 (1)Q x(t) — u” (t) Ru(t) < 0
A. Proof of Theorem 2 This dempnstrates_ tr_\at the closed-loop system is quadratically
stable while there is in the absenceu(ft).
Proof: From (21), we get Integrating (32) from = 0 to ¢t = ¢; yields

i hi( 1) {eT (£)(ATP + P A, V(ty) =V(0) < - /0 ' [27 (1)Q"x(t) + uT (t)Ru(t)] dt

1 j=1

MN

o
Il

ty
+p? / w” (t)w(t)dt. (33)
+ PBK; + K] B"P+ o*1 + PP)x(t)} 0

That is

+ {xT(t)PDw(t) +w" (t)D" Pu(t) ty

/o [+7 ())Q(t) + u” (t)Ru(t)] dt < 27 (0)Pa(0)
2 T _ in Tpy ty

— p w’ (t)w(t) p (t)PpD" P (t)} —aT(t;) Pa(ty) +p2/0 wT (t)w(t)dt. (34)

+ L aT()PDDT Pat) + pPu” (Hyw(t)

2 This demonstrates that thél., guidance performance is
achieved with a prescribedt. O
l l
— i T
= Z Z hi(2(6)hs (2() {=" () (AT P + PA; REFERENCES
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