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Nonlinear gas oscillations in pipes. Part 2. Experiment 

By B. STURTEVANT 

Graduate Aeronautical Laboratories 

California Institute of Technology, Pasadena 

(Received 28 March 1973) 

Forced nonlinear acoustic oscillations near the resonant frequency of closed 

and open tubes are studied experimentally. In  particular, the motion in tubes 

terminated with different orifice plates is studied, and comparison is made with 
second- and third-order theories of the motion which contain an adjustable end- 

wall reflexion coefficient. 

It is found that oscillations at resonance in an open tube exhibit remarkably 

large amplitudes despite the fact that in some cases shock waves are emitted 

from the open end. For oscillations at  resonance in a closed tube, the effect of 

substituting an orifice plate for the solid end wall is to reduce the amplitude and 

thicken the compressive portion of the shock waves which occur under these 

conditions. In  both the open-tube and closed-tube experiments the reflexion 

coefficients which are evaluated by fitting theory to experiment are found to 

increase with increasing amplitude, in agreement with the observations of pre- 

vious investigators (Ingard & Ising 1967). In  fact, for the open end the same 

linear dependence upon amplitude is observed, but the constant of proportion- 

ality is different. Qualitative differences are observed between the reflexion 

coefficients of a given orifice at the open-end and the closed-end resonant fre- 

quencies; at  the open-end frequency the reflexion from the given orifice is less 

ideal than at  the closed-end frequency. The implications of reflexion coefficients 

dependent on the wave forms are discussed. 

1. Introduction 

In the first paper of this series (Jimenez 1973)-/- the problem of forced acoustic 

oscillations in a pipe was studied theoretically. The present paper reports an ex- 

perimental investigation of the same problem. We examine the response of both 

open and closed tubes to near-resonant excitation by large amplitude oscilla- 

tions of a piston at  one end of the tube. 

The motion excited near resonance in a closed tube has previously been 
subjected t o  extensive experimental investigation. In  particular, the pioneering 

experiments of Lettau (1939) and, later, of Saenger & Hudson (1960) rather com- 

pletely exhibited the qualitative features of the motion, the most notable of which 

is the appearance of shock waves in the tube at  resonance. The discovery that 

shock waves occur for sufficiently large excitations stimulated several early 

7 

t Denoted hereafter as I. 
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Driver 

Lettau (1939) 34 12 0.20 Motor cycle engine 

Saenger & Hudson (1960) 3-2 1.7 0-28 Electrodynamic shaker 

Temlrin (1968) 2-0 1.5 0.16 Electromagnetic vibrator 

Cruikshank (1972) 1.8 1.7 0.14 Electrodynamic shaker 

Present work 49 3.2 0.82 Motorcycle engine 

TABLE 1. Parameters of experiments with closed tubes. I,, = maximum report amplitude 
of piston motion; L,, = typical length of resonant tube; pmaX = ((F -$O)/&)max = maximum 
reported shock amplitudelmean pressure. 

theoretical treatments of the nonlinear problem (cf. references of I), culminating 

in the theory of Chester (1964), which correctly predicted the occurrence and 

behaviour of shocks in a band of frequencics about the acoustic resonant fre- 

quency of the closed tube wd = na,,/L. 

The several experimental investigations of nonlinear resonance in closed tubes 

have differed considerably in detail, Table 1 summarizes the values of important 

parameters that characterize previous and present experimental arrangements. 

The present apparatus was designed (Sturtevant 1970) specifically to maximize 

the amplitude of the piston motion. 

In  the present series we have extended consideration of the behaviour near 
the closed-tube resonant frequency to problems in which only partial reflexion 

occurs at  the passive end of the pipe, and specifically, to the case in which the 

end is capped with an orifice plate; in I, Chester’s second-order theory for closed 

tubes was extended to include partial reflexion, while in the present paper ex- 

perimental results are presented. After a discussion in $ 3  of the relationship 

between theory and experiment, the theory of I is used in $4.1 to evaluate the 

effective reflexion coefficient b at the passive end of a closed tube from measure- 

ments of pressure wave forms ( p  vs. t at fixed location) and pressure amplitudes. 

This reflexion coefficient, determined under the assumption that the fluid is ideal, 

is of course a measure of boundary-layer dissipation in the actual, viscous fluid 

(air) used in the experiments. In  $4.2, the effect of inserting orifice plates at the 

passive end is considered and the reflexion coefficients of the orifices are deter- 

mined for oscillations in the neighbourhood of aCz. Since orifices are very effective 

in damping the motion it turns out that the reflexion coefficients of all but the 

smallest orifices may be determined by comparing observed amplitudes with 

linear theory rather than with the full nonlinear theory.? 

The analogous problem of the nonlinear response of an open tube excited by 

a piston oscillating at  the acoustic resonant frequency wop = na,/2L was also 

studied by Lettau (1939), but his findings on this important problem attracted 
little attention. The investigation reported in the present papers was, in fact, 

stimulated by our own observation in exploratory experiments with an open 
tube of unexpectedly large motions a t  resonance; the amplitude of the observed 

7 The amplitude is much less sensitive to nonlinear effects than are the details of the wave 
form itself; in all of the exporiments reported in this paper the wave forms are highly dis- 
torted. 
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pressure wave form was nearly as large as at  resonance in a closed tube. Indeed, 

the motions induced in the present apparatus are so large that, though the 

wave form at the piston is continuous and smooth, the compressive portions of 
the wave steepen and break in less than one tube length, and shock waves are 

emitted from the open end. This remarkable behaviour was observed by Lettau 

(1939)  at higher harmonic excitation frequencies. In I a third-order theory for this 

problem is developed. By showing that nonlinear effects first appear in this prob- 

lem at only the third order, the theory provides the explanation of the large 

amplitudes observed. In $ 5.1 of this paper the theory of I is used to evaluate the 

reflexion coefficient of an open-ended tube, while in $5.2 the effect of inserting 

orifice plates at the end on oscillations in the neighbourhood of wop is described. 

In the final sections the results are compared and discussed. 

The combination of a nonlinear resonant tube and orifice plates constitutes 

a prototype model of more complicated systems involving the interaction of 

finite amplitude wave fields with arbitrary geometrical configurations. Ex- 

amples of such systems arise in a variety of problems ranging from the sonic boom 

to jet-engine inlets to the exhaust systems of small high-performance internal 
combusion engines or even to unstable rocket motors. By representing the effects 

of orifices, filters, mufflers, absorbers, etc., in terms ofa  reflexion coefficient and 

an effective tube length, the theory and experimental technique developed in 

this work provide a simple procedure for evaluating the reflective properties of 

such acoustic elements when subjected to intense sound fields. In  analogy with 

an established tool of acoustics, the system studied here could be termed a 

‘nonlinear impedance tube ’. 
Since the flow through the orifice for moderate to strong acoustic fields is 

separated, turbulent and unsteady, little analytical progress has been made 
towards predicting the reflexion coefficient of orifice plates. Therefore, at  present 

such properties must be determined empirically, and this paper presents some 
quantitative information about their behaviour. 

2. Experimental apparatus 

The tube used in the present experiments (figure 1) is made of aluminium and 

is 3in. (76mm) I.D. with 6-4mm thick walls. Its length L can be varied from 

0.9 to 4-7 m in 0.75 m increments. The piston mechanism is a J. A. Prestwick 

four-cycle single-cylinder motor cycle engine (80 mm, bore 100 mm stroke), the 

cylinder head of which has been replaced by the 3 in. diameter resonance tube. 

Though the amplitude 1 of the piston motion is fixed in these experiments, 
the normalized amplitude IIL can be varied by more than a factor of 5. The 

piston is driven by a variable-speed (0-6000r.p.m.) 15 h.p. d.c. electric motor. 

Thus, the difficult problem of sealing and lubricating a high-speed (20m/s) 

piston mechanism has been solved by using an existing design. The only modi- 

fications to the original engine were the installation of a flat-head piston and 

rebalancing of the flywheel. The entire mechanical system is mounted on a 

one-ton bed which is dynamically isolated from the laboratory floor by air 

springs. 
--- 
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Piezoelectric 
transducer 

76 mm I D. 

L 

Piezoelectric 
transducer 

‘ - %  
100 mm stroke 

80 mm bore 

FIGURE 1. Schematic diagram of experimental apparatus. (TDC stands for 
‘top dead centre’.) 

Since the strength of the shock waves produced in this apparatus is in principle 

limited only by the power available in the drive mechanism, as much power 

as 15h.p. can be dissipated in the resonance tube. Thus, for operation with 

strong shock waves, the tube must be (and is) water cooled. The wall temperature 

is measured at  0.75 m intervals along the tube by thermistors, and the values are 

recorded automatically with each measurement of the pressure wave form. 

The orifice plates used to change the condition at  the passive end of the tube 

are 6-4mm thick. The orifices are cut straight through; no attempt is made to 

bevel the faces of the plates. 

The instantaneous pressure is measured at two locations on the side wall of 
the tube as close to the ends as possible. The transducers are I - lcm diameter 

quartz piezoelectric gaugest with a nominal resonant frequency of 130 kHz. 
The data are recorded by a high-speed data acquisition system designed by 

Prof. D. Coles. Analog data from the pressure transducers are converted to digital 

data and recorded on magnetic tape alternately with data from a digital crank- 

shaft-angle encoder. Both pressure and shaft-angle data are recorded with a 
resolution of 1 in 256. The two channels of pressure data are sampled alternately 

at  a rate of 7500 s-l per channel. 

The data are read, sorted, reduced and plotted using a large batch-processing 

computer. The records are divided into segments one cycle long, which are 

Kistler Model 606A. 
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superposed and averaged. The wave forms from which amplitude data, etc., 

are obtained are averages of from 2 to 17 cycles and are made up of from 100 to 
350 discrete data points. 

3. Procedure for comparing experiment with theory 

For the purpose of comparing experiment with theory it is convenient to trans- 

form measured physical variables into the form used in the analysis of I, and 

to compare them directly with the normalized results of I. In this section we 

describe the procedure for processing the experimental data. 

In  I a normalized frequency w is defined in terms of the circular frequency a 
of the piston motion: 

0 = wL/a,, (1)  

where a, is the mean sound speed. The value of a, is calculated for each experi- 

ment using the mean value of the wall-temperature measurements described in 

$2 .  We treat the length L as unknown, determining it for each experimental 

configuration (i.e. given piston amplitude and end condition) by adjusting w 

to obtain a best fit between experimental and theoretical response curves intro- 

duced in subsequent sections.? A parameter which measures the difference 

between L and the actual tube length Lo, i.e. 

A = ( L - L , ) / L l ) 7  (2) 

serves to characterize end effects due to two-dimensional flow through the par- 

tially open end. Therefore, A is expected to be small for a closed tube and of order 

d/L,,, where d is the orifice diameter, for a partially open tube. For small ampli- 

tude motions A is positive, the classical value (Rayleigh 1945, vol. 2 ,  p. 183) 

being approximately 0.4 ld/L,, . 

3.1. Nonlinear theory 

In I the one-dimensional motion in a tube aligned with the x axis excited by 
an oscillating piston at  x = 0 is considered. The dependent variables are ex- 

panded in powers of the amplitude E of the excited motion, where E = S* for the 

closed tube and e = S4 for the open tube and where S = wl /L  measures the ampli- 

tude I of the forcing motion;$ e.g. for the plus and minus Riemann invariants, 

respectively, 

g ( 4  = .q1(a)+..., f (P)  = E f i ( P ) + . . . ,  (3) 

(4) 

where CI and P are the plus and minus characteristic variables; for the frequency 

w = w,(1+sw,+E2w2 = ...), 

t For response curves sharply peaked at resonance L can be determined very accurately 
by this procedure. However, for large damping, when the response curve is flat, the method 
loses its precision and definitive results are not obtained. 

$ For later convenience we also define special values of the expansion parameter at 
o = w,,, the first harmonic resonant frequency, namely, 8, = o,,l/L and E,, = or 6, respec- 

tively. 
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where w, = 71 for a closed tube and w, = 4. for an open tube; for the reflexion 

coefficient 

b = bo(l-Ebl-E2b2+ ...), ( 5 )  

where b, = + 1 for w, = 71 and b, = - 1 for w, = in, The reflexion coefficient is 

defined by the boundary conditions of the passive end and is the ratio between 

the reflected wave and the incident wave there: b = f (P ) /g (a ) .  

I n  defining the relation for transforming the physical variables to the normal- 

ized form used in I, we follow Chester (1964) and modify the definitions of I, 
within the accuracy of the second-order theory, to ensure that far from resonance 

the nonlinear theory agrees identically with acoustic theory. In  particular, we 

require (a )  that the expression for the Riemann invariant f ( t )  should agree 

asymptotically with the linear result (e.g. equation (I2.10)t) and (b )  that, in 

the limit, the predicted pressure (or equivalently, the sound-speed perturbation 

a(t)) should agree with the acoustic result. 

In  writing down the relation between f(t) andf,(t) to be used for data reduction, 

some latitude exists in the precise form of the relation that may be selected 

because of higher order terms that are neglected in the nonlinear expansion (3). 

For reasons that will become clear later we choose 

Equation (6) agrees with the assumed expansion (3) to the required order. If, 

in accordance with requirement (a),  we specify that far from resonance (in the 

limit of large w1,2 and bl,2) f ( t )  should agree with the linear result (I 2. lo), then 

using (6), (I 4.5) and an equivalent result for the open end we obtain 

} (7) 
(4772~2, + b2,)-9 = € 1  b 14 [( 1 - b)2 + 4b sin2 (w - w0)]-9 

(n2wi + b$)-B = E/bl* [( 1 + b)2  + 4b sin2 (w - wo)]-s 

(closed end), 

(open end). . 

Equating separately the terms involving the frequency and reflexion coefficient 

we obtain the stronger conditions 

(8 )  

These expressions are equivalent to (I 3.10), and agree with it to the required 

order. Equations (8) are used to calculate w, ,~  from the measured frequency w 

and to calculate the reflexion coefficient b once b,, have been determined by 
fitting theory to experiment. It can be seen that the particular expression (6) 

was chosen in order to ensure that in (8) the equations for wl, would be indepen- 

dent of b, and vice versa. 

In  order to compare the measured pressures with the solutions f,(t) of I, we 

first calculate the normalized sound speed a(t)  from p( t )  assuming isentropicity 
(but not linearity) : 

(9) 

1 
new1 = sin(@-w,), lbl-*(l-b) = sb, (closedend), 

&ne2w2 = sin (w - w,), Ib1-8 (1 + b )  = e2b2 (open end). 

a(t) = (1 +p(t))  (YWY - 1. 

t The notation (12.10) is used to refer to equation (2.10) in the first part of this series 
(Jimenez 1973). 
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Next, a relation between a(t) and fi(t) is needed. As in the preceding paragraph, 

a certain amount of discretion may be exercised here because of the higher order 

terms neglected in the nonlinear theory, and in this case the choice is made to 

ensure that requirement ( b )  above is satisfied. Furthermore, for the purposes of 
the comparison it is convenient to consider only the pressure at  the piston when 

dealing with the open tube, and the pressure a t  the passive end when dealing with 

the closed tube. Therefore (cf. (16) and (17 ) )  

i(7 - 1)  I b 1-t ( 1 + b)fl( t )  (closed end), 

I )  c lbl-3 [( 1 - b)2 - 4b sin2 (o- 00)]3f1(t) (openend), 
a(t)  = 

uhere w and b are given by (8). Equations (10) agree with the equivalent relations 

(I 3.2) and (I 3.9) t o  second and third order, respectively. 

Equations (9) and (10) are used t o  calculate fi from the measured pressure. 

Since they are applied before bl, , are determined by comparison of experiment 

with theory, the data reduction procedure is necessarily iterative. 

3.2. Nonlinear theory: special considerations for the open end 

It became clear very early in the analysis of the data that the amplitude of the 

wave form in the open tube, plotted against frequency, did not follow the theor- 

etical curves for b, = constant, but instead seemed to suggest that b, increased 

wit'h amplitude (fImax). Further investigation confirm<d that b,  was in fact pro- 

portional to fi,,,. This result agrees precisely with the conclusion of Ingard & 

Ising (1967) that for large amplitude motions the acoustic impedance of an orifice 

is purely resistive and is proportional to the amplitude of the flow velocity through 

the orifice. Indeed, they found that the pressure amplitude p,,, and velocity 

amplitude Gmax at the orifice were related by a unique value of a 'wave pressure 
coefficient ', say C,, 

(11) 

Now, for an open tube the orifice velocity is equal to the acoustic disturbance 

velocity G = a,u at the passive end, and 

c, = &ax/(#poG&ax) --L 2.0. 

The specific acoustic resistance r = ~/poa,,.ii is given by 

so (11) becomes (cf. equation (6)) 

Combining (14) and (8) and retaining only the largest terms gives 

which conforms to our preliminary observations. Therefore, in presenting the 
theoretical response curves (amplitude us. frequency), we plot curves of constant 

C, rather than of constant b2 as in I. C, is treated here as an adjustable parameter 

to be determined by our experiments. 
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FIGURE 2. Normalized pressure wave form at closed end for wo = T. Time measured 
from maximum amplitude of piston (TDC). File 283.05 (cf. table 3). 

3.3. Linear theory 

For orifice area ratios Ao/A greater than about but smaller than about + the 

amplitude of the wave motion in our experiments is sufficiently small that there 

is little difference between the amplitudes predicted by the linear and nonlinear 

theories. Therefore, for such cases we simply evaluate the reflexion coefficient b 

by comparing the measured amplitude amax, calculated from (9), with the pre- 

diction of acoustics; for the closed end (for which pressure is measured at the 

passive end) 

and for the open end (pressure measured a t  the piston) 

amax = ;(y - 1) e2( 1 -I- b)  [( 1 - b)2 + 4b sin u]-9, 

amax = i ( y -  1) [(I - b)2+ 4b COS~W]* [(I - b2) + 4b sin2wI-*. 

(16) 

(17 )  

4. Results for closed tubes 

4.1. Solid end 

In  figure 2 are examples of the now-familiar (e.g. Chester 1964) wave forms 
observed for nonlinear oscillations near resonance in closed tubes (wo = n). 

Below a lower critical frequency and above an upper critical frequency the wave 

forms are smooth. As the frequency approaches the resonant frequency the 

amplitude increases but the phase difference between the pressure response and 

the piston motion is virtually constant, On the other hand, at frequencies inter- 
mediate between the two critical frequencies, the wave forms are discontinuous 
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FIGURE 5. Comparison of the observed (symbols) and predicted (solid line) wave forms for 
the experiment of figure 4. b, = 0.50. Curves: 1, w1 = - 1.39; 2, w,  = -0.71; 3, wI = - 0.60; 

10, o1 = 0.69. File 94.19. 

4, 0 1  = -0.48; 5, 6 4  = -0.22; 6, W 1  = -0.08; 7, W1 = 0.16; 8, 6 J l  = 0.43; 9, 0 1  = 0.54; 
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FIGURE 6. Response curve for partially closed end for wo = 7r. Orifice diameter = 2.5 cm. 
Cf. figure 4 for legend. File 283.07. 

(shock waves occur) and the phase angle changes continuously by 180" as the 

frequency band is traversed. 

The effect of the amplitude of the driving motion has been investigated by 

conducting experiments with two different tube lengths. The dependence of the 

pressure amplitude at  resonance (w = wo) on E,, is indicated in figure 3. 

Figure 4 is a comparison of theoretical and experimental response curves for a 

closed tube; there are four characteristic pressures on the wave forms of figure 2 

which are of interest, namely, the absolute maximum and minimum pressures 

and pressures just behind and just ahead of the shock wave, when it occurs. 
These four pressures are separately plotted to form the characteristically egg- 

shaped response curves of figure 4. Comparison between experiment and theory 

on that figure is judged to imply a best-fit value b, = 0.50. The quantitative 

disagreement apparent especially near the critical frequencies is typical of all 

experiments conducted with our apparatus; measured critical frequencies differ 

from those predicted by +-I % and consistently occur further from the resonant 

frequency than is predicted by theory. Therefore, in view of the very sensitive 

dependence of amplitude on frequency near the critical frequencies, the ob- 

served amplitudes in that region are always substantially larger than those 

predicted. 
After choice of an appropriate value of b,, a more detailed comparison between 

theory and experiment may be made by comparing the wave forms. In  figure 5 the 

theoretical waveform is plotted as a solid line while eachplotted symbol represents 

the mean of 7-1 1 experimental data points, depending on the frequency, taken 

one each cycle (cf. $2).  It is seen that, to a large extent, the theory contains the 

qualitative features exhibited by the experiments. Furthermore, it is our experi- 

ence that changes of f 0.05 in b, cause easily observable deterioration of the 
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FIGURE 7. Comparison of the observed (symbols) and predicted (solid line) wave forms for 
the experiment of figure 6. b,  = 2.6. Curves: 1, o1 = - 1.30; 2, w1 = -0.91; 3, W1 = -0.57; 

10, o1 = 1.02. File283.07. 
4, w1 = -0.38; 5, 01 = -0.22; 6, ~1 = 0.07; 7, 01 = 0.29; 8, 01 = 0.55; 9, 01 = 0.74; 
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FIGURE 8. Comparison of experiment with linear theory for wo = 7r. 
Orifice diameter = 5.1 om. -, theory; e ,  experiment. File283-10. 

agreement exhibited in figure 5.  Therefore, in view of (8), it is concluded that the 

reflexion coefficient b is determined with a resolution of approximately 0.01. 

4.2. Orifice Flutes at end 

Even a small departure from a solid wall at the end of the tube has a substantial 

effect on the amplitude of the resulting motion. Figure 6 is the response curve 

for a tube terminated with a 2.5 cm diameter orifice (orifice area ratio A,/A = 0-1 1) 

in an experiment which is otherwise identical with that of figure 4. The best- 

fit value of b, has increased to 2.6, implying (cf. equation (8)) a reflexion coeffi- 

cient at resonance of only b, = b(o,) = 0.57. It is seen from the measured wave 

forms (figure 7) that not only does the presence of an orifice decrease the ampli- 

tude of the shock waves but it also seems to thicken them. It is possible that the 

shocks are dispersed by refraction or scattering in the neighbourhood of the ori- 

fice plate, and this interesting effect should be investigated further. 

Figure 8 shows the result of introducing a still larger orifice (5-1 ern diameter; 

A,/A = 0.44); the amplitude is so low that comparison with linear theory suffices. 

The values of the parameters determined from our experiments with w, = n- 

are summarized in table 2 and in figures 3, 9 and 10. Figure 9 shows the variation 

of the transmission parameter b, of the nonlinear theory with area ratio AJA.  
Figure 10 shows the reflexion coefficient b, a t  the resonant frequency determined 

by both nonlinear and linear theory for all the experiments conducted with 
w, = n-. It is notable that, in qualitative agreement with the nonlinear behaviour 

in open tubes already alluded to and described more fully below, the reflexion 

coefficient of each of the orifice plates tested is larger for larger amplitude motion 

than for smaller amplitude motion. Furthermore, the condition for zero reflexion 
and therefore for purely progressive waves in the tube occurs with a surprisingly 

smallorifice (A, /A & 0.25). 
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FIGURE 9. Transmission parameter of nonlinear theory verus orifice area ratio for w,, = T. 

FIGURE 10. Reflexion coefficient at resonant frequency versus orifice area ratio for wo = T. 
A, L = 3.2111, E,., = 0-22; 0, L = 47m, E,, = 0.18. Flags: 6, data from nonlinear theory; 
0, data from linear theory. - - -, open-end results. 
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- 0.250 t- 

-0.500 I I J 
0 0.5 I .O 

Time 

FIGURE 11. Normalizedpressure waveform in open tube (a,, = in). (a) Pressure at piston end. 

(b) Pressure at open end. Time measured from maximum amplitude of piston (TDC). o/oo: 
0, 0.84; A, 0.90; +, 0.95; x ,0.98; 0, 1.01; +, 1.03; 7, 1.09. File 94.03 (of. table 3). 

5. Results for open tubes 

5.1. Open end 

Typical pressure wave forms observed at both the piston end and the passive 

end of an open tube (wo = in) are shown in figure 11. Most notable is the fact 

that the pressure at  the open end is by no means zero, as would be the case if the 

reflexion coefficient were b = - 1.0 (b,  = 0); in fact, the pressure amplitude at  the 

open end is of the same magnitude as that at  the piston, and for the experiment 

exhibited in figure 1 I, the wave forms there are discontinuous. That is, even though 

the wave at the piston is smooth and continuous, its compressive portions 

steepen to form shocks in less than one tube length. Therefore, repeated shock 
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FIGURE 12. Normalized pressure amplitude at resonant frequency versus 

eoinopen tube (wo = 4~). Ao/A: 0, 1-00; 0$9; A, 0-44; 0,0-26.  

waves are emitted from the open end of the tube, and the machine is a remarkably 

effective noisemaker ! Despite the energy loss by radiation which inevitably ac- 

companies such behaviour, the amplitude of the motion is extremely large. 

The wave form a t  the piston exhibits a characteristic asymmetry which is un- 

typical of the behaviour of any second-order theory, but which, as we shall see, 

is predicted by the third-order theory of I. These last two facts constitute strong 

evidence that finite amplitude motion in an open tube is a third-order pheno- 

menon. 
The mean half-amplitude of the pressure on the piston at  resonance (w = w,J 

is plotted versus the amplitude of the exciting motion in figure 12. It is seen that 

the pressure varies very nearly as e2. This in turn implies a very specific, though 

not necessarily simple, dependence of the reflexion coefficient on amplitude. 
The reflexion coefficient, or more properly the ‘wave pressure coefficient ’ defined 

by (1 l), is determined by transforming the piston pressure t o  fi as described in 
Q 3, plotting the amplitude versus the normalized frequency and comparing with 

8 P L M  63 
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FIGTIRE 13. Response curve for experiment of figure 11; open tube. - , theory. 
0, experiment. File 94-03. 

the theoretical response curves for C, = constant. An example of this is shown in 

figure 13. After determining the best-fit value of C, (0.76 for the case shown) 

the experimental and theoretical wave forms may be compared (figure 14). 

As noted above, the qualitative features of the observed wave forms are ex- 

hibited by the theory. The largest distortions of the piston pressure wave form 

occur, of course, when shocks form somewhere in the tube (as in figure 11). 

Unfortunately, in most of these cases the theory is inapplicable so solution of the 

equations of motion is not carried through (cf. $5 of I). Therefore, comparison 

between experiment and theory can not be made in many cf the most interesting 

cases. The quantitative disagreement between the observed and predicted 

wave forms which does occur in figure 14, particularly in the phase shift between 

experiment and theory, is typical of all the comparisons that have been made. 

Why the predicted wave form consistently lags the observed one is not under- 

stood. 
Figure 15 exhibits the dependence of the wave pressure coefficient at  the open 

end on co. It mill be recalled (cf. $3)  that for fixed c0 C, remains constant as the 

wave amplitude fim,, varies in the neighbourhood of aresonance peak (figure 13). 

However, figure 15 shows that C, is not independent of the forcing amplitude e0. 

In  order t o  compare the results with those of Ingard & Ising (1967) obtained 

under very different conditions, orifice Reynolds numbers Re based on the 

maximum velocity amplitude in the orifice have been formed for the two experi- 
ments, and C, is also plotted versus Re in figure 15. For the present experiments 

the perturbation velocity amplitude at  the open end is calculated from the 

measured amplitude using (12) and then the orifice Reynolds number is calcu- 

lated: 

Re = (aod/v) umax, (18) 
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FIGURE 14. Comparison of the observed (symbols) and predicted (solid line) wave forms for 
the experiment of figure 13. C,, = 0.76. Curves: 1, w1 = - 140; 2, o2 = - 0.84; 3, o2 = 0-06; 

4, wz = 0.69; 5 ,  w2 = 0.20. File 94-03. 

where I.' is the kinematic viscosity of air. Ingard & Ising measured the orifice 

velocity so Re is calculated directly from their tabulated results. It should be 

emphasized that Re is used here primarily as a measure of amplitude. Because 

there are so many other differences between the two experiments (e.g. frequency, 
method of excitation, etc.), we do not mean t o  imply that the differences between 

the two experiments apparent in figure 15 are due solely to viscous effects. How- 

ever, the present results do indicate that Reynolds number effects should be 

examined more carefully, both with the present apparatus and with others. 

8-2 
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FIGURE 15. Wavepressure coefficient for an open tube versus amplitude e0 and orifice 
Reynolds number Re. 0, present data; A, data from Ingard & Ising (1967). 

5.2. Ori$ce plates at end 

As shown in figure 16, which is plotted on the same scale as figure 11, the addition 

of solidity to the end boundary condition is effective in reducing the amplitude 

of oscillations at  wo = in; the experiment of figure 16 is identical to that of figure 

11 except that a plate with a 5-1 cm diameter orifice (Ao/A = 0.44) caps the pas- 

sive end. Even though the wave forms are highly distorted, comparison of the 

wave amplitude at the piston with the predictions of 2inea.r theory is sufficient to 

determine the reflexion coefficient of the orifices; figure 17 is a, typical response 

curve used for this purpose. 

The results of our study of the open tube (wo = in)  with and without orifice 

plates are summarized in table 3 and in figures 12 and 18. The reflexion coefficient 

at the resonant frequency, determined for the complete set of experiments with 

wo = &T, is shown in figure 18. As with the studies at  wo = 7~ (figure 10) the re- 

flexion coefficient increases with increasing amplitude 4. The dependence on 
area ratio Ao/A observed with wo = n (more specifically, a line drawn through the 

data for the lowest amplitude motion) is also indicated in figure 18. It is seen that 

a solid end or a small orifice, and also an open end or a large orifice, are more 

ideal reflectors at  wo = n than at wo = 8.n. By ideal we mean that the reflexion 

coefficient is closer to + I or - 1, respectively. The reason for this remarkable 
result is not known, though it might be hypothesized that differences between 

the wave forms observed at wo = n and at w,, = &r must be important. It is likely 
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FIGURE 16. Normalized pressure wave form in an opentube terminated with a 5-lcm 
diameter orifice. (a )  Pressure at piston end. @)Pressure at open end. o/wo:  0,040; A ,  0-89; 
+, 0.98; x , 1.05; 0, 1.22. File 94.09. 
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FIGURE 18. Reflexion coefficient at  resonant frequency versus orifice area ratio for w,, = Qlr. 

Symbols with flags indicate data obtained from nonlinear theory; symbols without, data 
from linear theory. ---, closed-end results. 
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that incorporation of a reflexion coefficient which depends on the instantaneous 
value of the orifice velocity rather than simply on its amplitude, as has been done 

for more conventional impedance tube measurements by Zorumski & Parrott 

(1971), would reduce the observed discrepancy, but this is beyond the scope of 

the present work. 

6. Conclusions 

Measurements have been made of nonlinear oscillations in pipes. The effect 

on the motion of orifice plates inserted at  the passive end of the tube has been 

studied. 

It has been found that for dosed tubes when shock waves occur the effect 

of increasing orifice area is not only to weaken the shocks but also to thicken them. 

By adjusting both the effective length of the tube and the radiation coefficient 

very good agreement between theory and experiment may be obtained. 

Oscillations a t  resonance in an open tube have remarkably large amplitude, 

owing to cancellation of second-order nonlinearities. Though the wave forms at  

the piston are continuous in ourIexperiments, in some cases compression waves 

steepen in less than one tube length to form shocks, and shock waves are emitted 

from the open end. The wave forms at  the piston predicted by third-order theory 
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are qualitatively similar to the observed wave forms, but consistently lag behind 

them by an observable amount. 

By comparing the experimental results with nonlinear theory, wave reflexion 

coefficients of the orifice plates are determined at  both closed-tube and open- 

tube resonant frequencies. It is found that for both cases the reflexion coefficient 

of a given orifice increases with amplitude, in qualitative agreement with earlier 
studies of the nonlinear acoustic behaviour of orifices (Ingard & Ising 1967). 

In  fact, for oscillations at resonance in an open tube i t  is found that for fixed c0 

the radiation coefficient b, is proportional to the amplitude, so a wave pressure co- 

efficient C, is used to measure the impedance of the open end. When the wave ampli- 

tude is changed by altering the normalized amplitude IIL of the piston motion, 

C, varies somewhat; this is interpreted as a possible Reynolds number effect. 
Quantitative differences are observed between the reflexion coefficient for 

oscillations at  the open-tube and closed-tube resonant frequencies; reflexion 

from the end tends to be rather less ideal for wo = &r than for wo = 7~ (i.e. the 

reflexion coefficient departs more significantly from - 1 for an open end and from 

+ 1 for a solid end). The plane from which the waves effectively reflect tends to be 

outside the tube (A > 0, cf. table 3) for wo = &I. This is similar to the behaviour 

observed in classical acoustics. On the other hand, at wo = IT, in at  least one case 

the effective plane of reflexion is inside the tube. It is possible that the dependence 

of the reflexion process on the wave form could be accounted for in the nonlinear 

theory by incorporating a reflexion coefficient which depends on the instantane- 

ous amplitude, but the limitations of this approach are evidenced by the observa- 

tion of Zorumski & Parrott (1971) that even with such a modification it is 

necessary to introduce parameters dependent on the wave form, i.e. a rise time, 

to explain experimental results. 
It has been shown that by use of a nonlinear theory the reflective properties 

of terminating elements can be defined and measured even when subjected to 

intense periodic pressure pulses. In acoustic terminology, pressure levels of from 

140 to 190db have been observed in the present experiments. Future reports 

will describe measurements with more complicated terminating elements. 
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