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ABSTRACT

We present a general scheme for the nonlinear gauge realizations of spacetime

groups on coset spaces of the groups considered. In order to show the relevance of the

method for the rigorous treatment of the translations in gravitational gauge theories,

we apply it in particular to the affine group. This is an illustration of the family of

spacetime symmetries having the form of a semidirect product H ⊃× T , where H is the

stability subgroup and T are the translations . The translational component of the

connection behaves like a true tensor under H when coset realizations are involved.

1. Introduction

General Relativity has a geometrical setting. It was originally formulated on a

Riemannian space, in terms of coordinates of spacetime and a metric tensor defined

on them, determined by the Einstein equations. Cartan’s work(1) provided a more

suitable, coordinate–independent, framework for the geometrical approach to theories

of gravity. It is also defined on an n–dimensional manifold given a priori as an

unavoidable mathematical tool, but without observable physical meaning. There,

vielbeins eα := eα
i∂i are introduced to represent local frames. Parallel transport of

the reference frames is achieved by means of 1–form connections Γα
β . From the vector

bases eα, coframes or bases of 1–forms ϑα := eαi dx
i are defined, which are dual to

the frames with respect to the interior product eα⌋ϑβ = δβα. The coframes thus play

a central role in the geometrical formulation.

The geometrical interpretation of gravity is an essential feature of the theory.

Indeed, other dynamical theories, namely the Yang–Mills theories of the remaining

interactions, are necesarily defined on the geometrical background established by the
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gravitational theory. However, a unified scheme of all interactions seems to require

to treat all of them on the same basis, namely as gauge theories. The first attempt

to describe gravity as a dynamical theory of a local spacetime group was the work

of Utiyama(2), where just the Lorentz group was gauged, while the tetrads ϑα were

introduced a priori into the model as operators of reference frame changes. The co-

ordinates were given a priori too. Later work was done to describe the tetrads as

related to the gauge potentials of some spacetime symmetry group(3)(4), in particular

to those of the translations. Following this spirit, the Poincar group was introduced

as the symmetry to be gauged. Wider groups are found in the literature(5), which

have the Poincar group as a subgroup. However, several problems appear when trans-

lations, as constitutive part of the spacetime gauge group, are present. The physical

interpretation of the corresponding local transformations becomes dubitious, since

their gauge fields do not have any geometrical meaning. The main difficulty is that

one cannot identify them with the tetrads, which are covectors and lack the inho-

mogeneous term under gauge transformations. Some attempts were made to clarify

the link between the translational connections and the true coframes. In the early

works of Utiyama, Sciama and Kibble(2)(3), the role of the translations was played by

general coordinate transformations. Hehl et al.(4)(6) proposed an improved approach,

based on the Poincar group actively interpreted, regarding the gauged translations as

represented by parallel transport. They substituted the usual translational generators

by covariant derivatives. The price one has to pay is that the translations no longer

constitute an Abelian group.

Several authors(7) recognized that the reformulation of the dynamical gauge the-

ory of gravity in terms of its standard geometrical structure, and vice versa, can only

be realized by introducing extra nondynamical degrees of freedom in the theory. In

the context of Poincar gauge theories, Grignani and Nardelli called them the Poincar

coordinates ξα. The authors considered them as Higgs–type fields which transform as

vectors under gauge transformations of the Poincar group. The Lorentz group is the

residual gauge group which is left invariant by the particular choice ξα = 0, called

by the authors the physical gauge, because only in this case the components of the

gauge potential along the Poincar generators become the physical coframe and spin

connection respectively. But this restriction to the framework of a Lorentz gauge

theory of gravity is not the only one which makes physical sense. In general as shown

by Mielke et al.(8), introducing a vector–valued zero form ξα which transforms as a

Poincar (resp. as an affine) vector, and assuming that the relationship between the

tetrads and the linear translational gauge fields
(T )

Γα is given by

ϑα := Dξα +
(T )

Γα , (1.1)

the right transformation properties are guaranteed. Hayashi et al.(9) considered earlier

a simplified version of this definition of the tetrads.
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One of the goals of the present paper is to explain the origin of the coordinates

ξα mentioned above as coset parameters which, as we will show below, come out from

the nonlinear approach to the gauge theory of spacetime groups. Indeed, in the global

limit, they become indistinguishable from Cartesian coordinates via the identification

ξα = δαi x
i. They turn out to be an essential element in the definition of the nonlinear

connection. We will show that the term Dξα added to the translational connection to

construct the coframe, see (1.1), is a necessary contribution arising from the nonlinear

realization of spacetime gauge symmetries in general.

We propose a scheme in which the coframes turn out to be nonlinear connec-

tions associated to the generators of the coset, with the right tensorial transformation

properties. The translational connection does not appear as an independent object

of the theory, since the translations are realized nonlineary, so that the translational

covariance is present but does not become explicitely apparent. Only the particular

combination (1.1) of the translational gauge fields and the coset parameters occurs,

playing the role of the coframes. The whole geometrical setting arises as the result

of gauging the nonlinear realization of the group in a coset space, without making

recourse to any a priori structure other than the basic symmetry group. Indeed, non-

linear group realizations allow to interpret a quotient space of the whole group space as

the very spacetime manifold, as noticed by several authors(10). The coset parameters

are interpreted as spacetime coordinates. The coordinate–independent formulation

of the theory in terms of differential forms thus shows that the theory is independent

of the coset parametrization. In our approach, the translational generators obey the

usual commutation relations.

2. Nonlinear realization of spacetime groups

The coset representation introduced by Coleman et al.(11) in the context of phe-

nomenological Lagrangians is based on the non linear action of a group on itself. More

precisely, the group acts on the cosets defined with respect to a subgroup H which

classifies the fields of the theory. The coset parameters play the role of the spacetime

manifold. The explicit gauge covariance with respect to the classification subgroup is

maintained. The technique, initially proposed to treat internal symmetries, was soon

extended to spacetime symmetries. In fact, several attempts were made to apply

the nonlinear realizations to gravity. Isham, Salam and Strathdee(12) considered the

nonlinear action of GL(4 , R), taking the Lorentz group as classification subgroup,

see below, and Borisov and Ogievetski(13) proposed to require covariance under si-

multaneous nonlinear realizations of the affine and the conformal groups. But none

of these works solved the main problem of explaining the relationship between the

tetrads and the translational gauge fields since they only considered the global group

action. Instead, a symmetric tensor constructed from the parameters of the symmet-

ric affine transformations was identified as the ”vierbein field”. Stelle and West(14)

investigated the nonlinear realization allowed by the spontaneous symmetry break-

ing of SO(3,2) down to SO(3,1). Pseudotranslations were defined from the broken
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generators of SO(3,2). Their parameters, i.e. the nondynamical SO(3,2) vector fields

ξα constrained to take their values in an internal anti–de Sitter space, were identi-

fied as the Goldstone fields associated to the symmetry breaking, not as coordinates.

Chang and Mansouri(15) made use of the general nonlinear approach as we do, but

they did not emphasize its relevance for the gauge teatment of the translations and

thus for the link between tetrads and translational gauge fields. They also introduced

an auxiliary coordinate manifold alien to the group. Volkov and Soroka(10) consid-

ered a nonlinear realization of the Poincar group in the context of the spontaneous

breakdown of supersymmetry. They identified the coset parameters with the points

of spacetime itself. Lord(10) interpreted the gauge generalization of a spacetime group

G in the language of fiber bundles as a gauge generalization of the stability subgroup,

together with diffeomorphisms, following Hehl et al.(5). The translations thus loose

their Abelian character. According to him, the gauge potentials on the coset space

are the pullbacks of the connection on G, while we define them as the generalized

Maurer–Cartan 1–form given in eq.(3.4).

Our treatment resembles more closely that of Chang and Mansouri(15), but we

identify the coset space with spacetime itself, as Lord and others(10) do. We claim

that the coset parameters do not play the role of any kind of field, but they must be

considered as the coordinates themselves, as we have mentioned before.

Here we will outline the basic nonlinear machinery briefly. Let G = {g} be a

connected, semisimple Lie group, and H = {h} a subgroup of G. We assume that

linear representations ρ(h) of the classification subgroup H exist, acting on functions

ψ belonging to a representation space of H. One defines the action of G on the

coset space G/H. The ”points” of G/H are equivalence classes of the form cH, with

cϵ (G−H). Because we are dealing with Lie groups, the elements of G/H are labeled

by continuous parameters, say ξ. We choose the coset indicators c(ξ) parametrized by

ξ as the representatives of the points of G/H. As we will see, these coset parameters

will play the role of a kind of coordinates. Now we let act the group elements gϵG on

G/H according to

g : G/H → G/H

c (ξ) → c (ξ′) ,
(2.1)

according to the general law

g c (ξ ) = c (ξ′)h (ξ , g) . (2.2)

Moreover, eq.(2.2) defines the group element h (ξ , g) ϵH governing the behavior of

the fields ψ under G. The elements g of the whole group G considered in (2.2) act

nonlinearly on the representation space of the classification subgroup H according to

ψ′ = ρ (h (ξ , g))ψ . (2.3)

Formally, eq.(2.3) resembles the linear action of H, but the nonlinearity manifests

itself in general through h (ξ , g) as given by eq.(2.2). Generally h and therefore ψ
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itself are functions of ξ. The action of the group is realized on the pairs (ξ , ψ). It

reduces to the usual linear action of H when we take in particular for g in (2.2) an

element of H.

3. Local theory

Now we will discuss the main point of this paper. Our aim is to construct the

connection suitable to define a covariant differential transforming like (2.3) under

local transformations. In other words, we look for the connection associated to the

nonlinear realization of G, which will behave like a connection of the classification

subgroup H. Even in the global case, in which g does not depend on ξ, the appearence

of ξ in the transformation h (ξ , g), see (2.2), implies that h is not a constant, and a

particular kind of covariant differentials is required, namely

o

Dψ :=

(
d +

o

Γ

)
ψ , (3.1)

where
o

Γ is the Maurer–Cartan connection 1–form with values on the group algebra

o

Γ := c−1d c , (3.2)

transforming as
o

Γ
′
= h

o

Γh−1 + hdh−1 . (3.3)

We emphasize that, when local transformations are involved, the previous scheme

must be extended to include a dependence of the parameters of gϵG on the coset co-

ordinates ξ. We then generalize (3.2) to the connection corresponding to the nonlinear

realization of the group, namely

Γ := c−1Dc , (3.4)

where the covariant differential on the coset space is defined as

Dc := (d +Ω) c , (3.5)

with the ordinary linear connection Ω of the whole group G transforming as

Ω′ = gΩ g−1 + g d g−1 . (3.6)

It is easy to prove that the nonlinear gauge field Γ defined in (3.4) transforms as

Γ′ = hΓh−1 + hdh−1 , (3.7)

thus allowing to write true local covariant differentials of the ψ fields of the theory as

Dψ := (d + Γ )ψ , (3.8)
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obeying the same transformation law (2.3) under the local action of gϵG. The com-

ponents of the connection Γ have very intersting transformation properties. In fact,

it is easy to read out from (3.7) that

a.- only the components of Γ related to the generators ofH behave as true connections,

i.e. transform inhomogeneously,

b.- the components of Γ over the generators associated with the cosets c transform as

tensors with respect to the subgroup H notwithstanding their nature of connections.

We notice that these properties provide us with a general scheme which repro-

duces the main features of the gauge versions of gravity. In it the translational

components of the connection appear as pure tensors, as we are going to see in the

next section.

4. Nonlinear gauge approach to the affine group

As a relevant example, let us consider the affine group A(n ,R) = GL(n ,R) ⊃× Rn

in n dimensions, defined as the semidirect product of the translations and the general

linear transformations. The following discussion is also appliable to the Poincar group.

The commutation relations read

[Lα
β , L

µ
ν ] = i

(
δαν L

µ
β − δµβL

α
ν

)
,

[Lα
β , Pµ] = i δαµPβ ,

[Pα , Pβ ] = 0 ,

(4.1)

where Pα are the generators of the translations, and Lα
β those of the linear transfor-

mations. We will realize the group action on the coset space A(n ,R)/GL(n ,R). We

choose in particular for the cosets the following parametrization:

c := e−i ξαPα , (4.2)

where ξα are the coset coordinates. As we will see below, they are equivalent to

Cartan’s generalized radius vector or the Poincar coordinates considered by other

authors(7)(8). The group elements of the whole affine group A(n ,R) are parametrized

as

g = ei a
αPαei uα

βLα
β , (4.3)

and those of the classification subgroup GL(n ,R) are taken to be

h := ei u
′
α

βLα
β . (4.4)

Other parametrizations which lead to equivalent results are of course possible. The

fundamental eq.(2.2) defining the nonlinear group action then reads

ei a
αPαei uα

βLα
βe−i ξαPα = e−i ξ

′αPαei u
′
α

βLα
β . (4.5)
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Repeatedly using Hausdorff’s formula, the explicit expressions for the transformed

coset parameter ξ
′α and for u′α

β , in the r.h.s. of (4.5), are calculable. After a little

algebra, we get

ξ
′α =

(
Λ−1

)
β

α ξβ − aα , u′α
β = uα

β . (4.6)

In eq.(4.6) and in the following, we use the definitions

Λβ
α := euβ

α

,
(
Λ−1

)
β

α := e−uβ
α

. (4.7)

These matrices which stand for the regular representation of (4.4) describe the two

possible actions of the group associated to covariant and contravariant characters.

Thus we see from (4.6) that the coset parameters ξα transform as affine covectors,

as postulated by other authors(8) for Cartan’s generalized radius vector. We notice

that in the global case the differentials of the coordinates transform as contravariant

GL(n ,R) vectors, as seen from (4.6), so that the distinction between covariant and

contravariant tensors is already present in the scheme. Observe that for the particular

choice of the coset space we are dealing with, the parameters u′α
β of the r.h.s. of (4.5),

i.e. of the parameters characterizing hϵH, according to the general formulation (2.2),

coincide with those uα
β of the parametrization of gϵG in the l.h.s. of (4.5). Although

this result is not valid for arbitrary choices of the coset space, it simplifies things

in our case since the action (2.3) of the whole affine group on arbitrary fields of a

representation space of GL(n ,R) reduces to ψ′ = ρ (h (g))ψ . Actually we have

ψ′ = ρ (Λ)ψ , (4.8)

with

ρ (Λ) := ei uα
βρ(Lα

β) (4.9)

being an arbitrary representation of GL(n ,R) transformations. Now we define the

suitable connection for the nonlinear gauge realization in two steps, first introducing

the ordinary linear affine connection Ω in (3.5) as

Ω := −i
(T )

ΓαPα − iΓα
βLα

β , (4.10)

which includes the true translational potential
(T )

Γα and the GL(n ,R) connection Γα
β .

The transformations (3.7) take the standard form

Γ′
α
β =

(
Λ−1

)
γ
βΓδ

γΛα
δ +

(
Λ−1

)
γ
βdΛα

γ , (4.11)

and
(T )

Γ
′α =

(
Λ−1

)
β

α

[
(T )

Γβ +D
(
Λγ

βaγ
) ]

, (4.12)
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with D as the covariant differential constructed with the GL(n ,R) connection exclu-

sively. Making then use of definition (3.4), we get

Γ := ei ξ
αPα (d +Ω) e−i ξαPα = −i

(
Dξα +

(T )

Γα

)
Pα − iΓα

βLα
β . (4.13)

The components on Pα in the connection (4.13) play a crucial role in gravitational

gauge theories. As we mentioned before, in spite of the fact that they arise as a

constitutive part of the connection required in the nonlinear realization, they do not

transform as a connection, but as a covector of the classification subgroup. Let us

define them as the coframe

ϑα := Dξα +
(T )

Γα . (4.14)

According to (3.7), it transforms as a covector under GL(n ,R). Applying (4.6,11,12),

we find explicitely

ϑ
′α =

(
Λ−1

)
β

αϑβ . (4.15)

The coframe (4.14) provides the link between the dynamical approach and the geo-

metrical interpretation of the formalism, since it plays the role of the basis of 1–forms.

In terms of ϑα, we geometrize the dynamical theory defining the vector basis eα by

means of the general relation

eα⌋ϑβ = δβα . (4.16)

The vector basis transforms as a vector, namely

e′α = Λα
βeβ . (4.17)

The general linear connection in (4.13) transforms as before, see (4.11).

Commutation of two covariant differentials (3.8) yields

D ∧D = −i TαPα − i Rα
βLα

β , (4.18)

with the torsion Tα and the curvature Rα
β respectively defined as

Tα := Dϑα , (4.19)

and

Rα
β := dΓα

β + Γγ
β ∧ Γα

γ , (4.20)

thus showing the groupal character of the torsion as the field strength of the transla-

tions.

Finally, we notice that neither the field equations nor the Noether identities as

given in the literature(5) are modified by our nonlinear approach. The diff–invariance

is still present in the theory as an essential feature, thus leading to the first Noether
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identity, and the invariance under the nonlinear local action of the spacetime group

yields the second Noether identity.

5. Final remarks

In our scheme, the expression (4.14) reproduces the same results obtained in

reference (8) without any ad hoc assumptions. We claim that the general scheme

of gauge nonlinear coset realizations provides the natural framework for the gauge

theories of gravity. The restriction to the Poincar group follows exactly the same

lines as the treatment of the affine group and consequently we do not need to insist

on.
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