Non-linear gradient denoising: Finding accurate extrema from inaccurate functional
derivatives

John C. Snyder,"? Matthias Rupp,® Klaus-Robert Miiller,"* and Kieron Burke®

! Machine Learning Group, Technical University of Berlin, 10587 Berlin, Germany
2 Maz Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
3 Institute of Physical Chemistry, Department of Chemistry,
University of Basel, CH-4056 Basel, Switzerland
4 Department of Brain and Cognitive Engineering,
Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea
5 Departments of Chemistry and of Physics, University of California, Irvine, CA 92697, USA

A method for nonlinear optimization with machine learning (ML) models, called nonlinear gra-
dient denoising (NLGD), is developed, and applied with ML approximations to the kinetic energy
density functional in an orbital-free density functional theory. Due to systematically inaccurate gra-
dients of ML models, in particular when the data is very high-dimensional, the optimization must be
constrained to the data manifold. We use nonlinear kernel principal components analysis to locally
reconstruct the manifold, enabling a projected gradient descent along it. A thorough analysis of
the method is given via a simple model, designed to clarify the concepts presented. Additionally,
NLGD is compared with the local principal component analysis method used in previous work.
Our method is shown to be superior in cases when the data manifold is highly nonlinear and high
dimensional. Further applications of the method in both density functional theory and machine

learning are discussed.

CONTENTS

I. INTRODUCTION 1
II. BACKGROUND 2
A. Density functional theory 2

B. Kernel ridge regression 3

I1I. THEORY 4
A. Challenges of self-consistency 4

B. Nonlinear gradient denoising 5

IV. RESULTS 7
V. CONCLUSIONS 12
ACKNOWLEDGMENTS 13
References 13

I. INTRODUCTION

Kohn-Sham density functional theory (KSDFT) has
become the most prominent electronic structure method
for calculating the properties of molecular and materi-
als systems [1-3]. In KSDFT, an auxiliary system of
non-interacting electrons, the KS system, is solved, and
only a small fraction of the total energy, the exchange-
correlation (XC) energy, is approximated as a functional
of the (spin-)densities. This method has been used in
areas as diverse as astrophysics and soil science, using
one of about half a dozen popular expressions for the XC
approximation [4]. For many chemical purposes, chem-
ical accuracy, defined as errors in energy difference cal-

culations below 1 kcal/mol, is desired. Standard DFT
calculations do not reliably reach this accuracy, but are
sufficiently close to be useful in about 30,000 papers per
year [4]. As popular as KSDFT has become, the method
is limited in the size of systems that can be treated—
the main bottleneck is solving the KS equations, which
formally scales as O(N?3), where N is the number of elec-
trons.

A less well-known branch of DFT, predating the intro-
duction of the KS scheme, is known as orbital-free density
functional theory (OFDFT), and can scale linearly with
system size [5]. The key element in OFDFT is the ap-
proximation of the non-interacting kinetic energy (KE),
Ts[n], as a functional of the electronic density n(r) (the
basic variable in DFT) [5-7]. For OFDFT, the develop-
ment of an approximation to Ty[n] whose accuracy rivals
or exceeds that of current XC approximations would be
a huge breakthrough in the field of electronic structure.

Recently we developed a new approach to approximat-
ing density functionals by using machine learning (ML)
[8, 9], a branch of artificial intelligence that has had
widespread success in many applications [10-12] includ-
ing quantum chemistry [13-16]. ML algorithms learn by
induction: a model is generated by training on a set of
data, and this model can predict new data drawn from
the same underlying distribution as the training data.
For ML methods to work, there must be an underlying
pattern in the data, but for DFT, this is guaranteed by
the Hohenberg-Kohn theorem [2], which proves that all
properties of a system are functionals of its density. An-
other necessary condition is to have data to train on,
which can sometimes be exorbitant to collect or gener-
ate. In the case of OFDFT, a model for Ty[n] is found
by training on standard KS calculations. Since every it-
eration in every solution of the KS equations yields Ts[n]

exactly, where n(r) is the iterated density, a limitless
source of data is available for this procedure.

Unlike the usual procedure in DFT, where the exact
functional Tg[n] gives the correct KE for every conceiv-
able n(r), it is only necessary that ML yield accurate
predictions for a limited class of systems, namely collec-
tions of nuclei making up atoms, molecules, and solids,
i.e., for real densities. Thus the underlying complexity
of the problem is much less than that of allowing any
possible potential. In fact, in some recent studies in 1d
[8, 9, 17], designed as proofs of principle, it took rela-
tively little training data to reduce errors in Ts below 1
kcal/mol for all data in the data set.

There is also a more subtle difficulty that is the central
point of this paper. In OFDFT, the approximate Tg[n]
is used in two distinct ways. In the first step, it is used
to find the density of the problem at hand, by feeding
its functional derivative into an Euler equation for n(r).
The solution to this equation is often referred to as the
self-consistent density, since it is often found by iteration
to self-consistency. In a second step, the ground-state
energy is then found applying Ts[n] and other functionals
to that density. Naively, one needs an approximate Tg[n]
whose derivative is sufficiently accurate to produce an
accurate self-consistent density.

Inaccurate derivatives are a general issue with ML
models [18] but typically inconsequential because the
derivatives are not used. An ML model is often only
used for its predictive power, not in optimization. In
fact, the ML density functionals of Refs. [8, 9, 17, 18],
because they interpolate among very limited data, never
produce accurate functional derivatives. These were ac-
curate, however, when restricted to the manifold spanned
by the data. A locally linear projection was developed to
restrict the minimization of the total energy to the span
of the manifold. The projected functional derivatives
were highly accurate, and an algorithm was designed to
find the optimum density from this projection. Although
errors in the model evaluated on such optimum densities
could be as much as an order of magnitude larger than
those evaluated on the exact densities, they could still be
driven below 1 kcal/mol with an acceptable number of
training data.

However, in later work [9], we applied the linear pro-
jection to a more complex model, one of 1d diatomics.
There, we found the local projection unable to produce
sufficiently accurate minimizing densities. That is, the
ratio of errors in optimized densities was much greater
than that of exact densities in the test set, by two orders
of magnitude or more. Moreover, the algorithm would
fail to converge in a significant fraction of cases. This
fueled the development of a robust nonlinear method to
find minimizing densities, which fixed the problem in that
work [9], and is the primary subject of this paper.

In the present paper, we give a detailed account of our
non-linear gradient denoising (NLGD) technique. In Fig.
1, we show a cartoon of our methods. The manifold My
of training densities is represented by a curved line in

FIG. 1. A cartoon illustrating the difficulty in solving for the
self-consistent density with our MLA. Pictured are the density
manifold My (curved solid line), from which the training den-
sities n;(r) (black circles) are sampled, and the self-consistent
density 7(r) (green square). The blue dashed line shows the
minimization of the total energy using our ML approximation
for the KE via gradient descent (Eq. 3). Because the func-
tional derivative of the MLA is inaccurate orthogonal to My,
the minimization becomes unstable and quickly leaves the
manifold. In non-linear gradient denoising (NLGD), the op-
timization is constrained to the density manifold (red dashed
line) by projecting the functional derivative onto the tangent
of My, T[n], finding an accurate minimizing density.

the plane. From a given point on My, a simple gradient
descent in the direction of the ML functional derivative
immediately leaves My and essentially always fails. The
trick is to accurately estimate the tangent plane 7 [n]
to My at the present density, and to always project
along this direction. Our previous method, local PCA,
requires too much data locally to make this projection
accurately. Our new method of NLGD allows us to fol-
low the low-dimensional curve downhill at much higher
computational speed, i.e., it is a form of luging.

The paper is laid out as follows. We begin with a brief
background in both DFT and ML, which also serves to
introduce our notation. Then we present the theory be-
hind luging, including an algorithm for implementation.
In the bulk of the paper, we test the methods and present
results. We begin by introducing a simple model, which
primarily serves to illustrate the concepts and enables us
to analyze in detail the mechanics behind luging. Finally,
we apply our method to the particle in a box problem of
Ref. 17.

II. BACKGROUND
A. Density functional theory

In the case of XC approximations, it has long been
known that standard XC approximations, while yield-
ing usefully accurate energies, have potentials (functional
derivatives) that suffer from a number of issues [19]. The

most glaring of these is that they are insufficiently nega-
tive, leading to large errors in orbital energy levels, and
many orbitals being (incorrectly) unbound. Recently, it
has been shown that many errors are actually due to
potential errors producing large errors in n(r), and that
use of more accurate densities greatly reduces such errors
[19].

In OFDFT, the ground-state density is obtained
through a self-consistent minimization of the total energy
via an Euler equation. Because the KE is a much larger
fraction of the energy, the relative accuracy requirements
for a KE density functional, including its derivative, are
much stricter than for XC. Even small errors in the func-
tional derivative of Tg[n| will create large errors in the
self-consistent density, leading to bad predictions of en-
ergies and properties. As was found in previous work
[8, 9], the functional derivative of ML models exhibits
high levels of noise, leading to unstable solutions of the
Euler equation and highly inaccurate densities. Thus, a
modification of the standard self-consistent procedure is
necessary to yield sensible results.

The first theorems of Hohenberg and Kohn [2] proved
a one-to-one correspondence between densities and ex-
ternal potentials, motivating the use of n(r) as the basic
variable of DFT. We define the total energy functional
as

Ey[n] = Fn] + Vn] (1)

where F'[n] is the sum of the kinetic and electron-electron
repulsion energies and V[n] is the energy associated with
the one-body external potential v(r). In modern prac-
tice, the KS scheme is used [3], in which an auxiliary
system of non-interacting electrons is designed to repro-
duce the n(r) of the interacting system, and the KE of KS
electrons, T, is found by solving a one-body Schrédinger
equation called the KS equations [3]. However, in orbital-
free DFT, Ty is approximated directly as a functional
of n(r). The ground-state n(r) is found by the Euler-
Lagrange constrained minimization

6{Ev[n]—u(/d3rn(r)—N>} —0, (2

where the chemical potential u is adjusted to produce the
required particle number N. Using our expression for the
total energy functional, this reduces to

‘Zj(@ — = us(r), 3)

where vg(r) is the KS potential. At self-consistency (the
density satisfying this equation and minimizing E,[n]),
the functional derivative of Ty is negative the potential,
up to constant. This equation can be solved for the
ground state density using standard minimization tech-
niques.

B. Kernel ridge regression

Algorithms such as linear ridge regression are staples
of statistical methods [20]. However, they are limited
when dealing with non-linearity in data. In kernel-based
machine learning, a simple device, known as the “kernel
trick,” harnesses the simplicity and robustness of such
linear algorithms by transforming the data to a higher-
dimensional space, known as feature space, such that the
pattern in the data becomes linear. Then the familiar
linear methods are applied in feature space [20, 21]. The
trick is that the inner product in feature space is ex-
pressed implicitly via a chosen kernel, and the transfor-
mation to feature space (which can be infinite dimen-
sional) need never be carried out explicitly. Many ma-
chine learning methods are “kernelized” versions of stan-
dard linear methods such as linear regression or ridge
regression. Many forms of kernels have been tried and
the choice is often designed to work with specific types
of data [22]. Others are designed to be robust and work
for a broad spectrum of problems. As the non-linearity
is entirely embedded in the kernel, its choice is an impor-
tant aspect of model selection in machine learning [23].

In this work, we use kernel ridge regression (KRR),
which is a kernelized form of linear regression with reg-
ularization designed to prevent overfitting [14, 20]. By
mapping the data to a much higher-dimensional feature
space, KRR interpolates over a given set of examples
by piecing together weighted non-linear kernel functions.
KRR is the method used in previous work on DFT [8, 9],
and is particularly effective in high-dimensional spaces.
A number of KS calculations provide training densities
nj(r), and their exact non-interacting KEs, Ti[n;], to
build the KRR model. Its predictions are formally equiv-
alent to those of Gaussian process regression [24]. Let
the map from the input space H (in this case, a Hilbert
space) to feature space F' be @ : H — F, where F is a
reproducing kernel Hilbert space [25]. Then, the kernel
k is equivalent to the inner product in feature space:

kln, n'] = (@[n], &[n]). (4)

The map to feature space need not be known explicitly,
but is defined implicitly by the choice of kernel. Using
KRR, the machine learning approximation (MLA) for the
KE is

TSML[n] = Zajk[n’njL (5)

where «; are weights to be determined, n;(r) are training
densities, Np is the number of training densities, and k
is the kernel. The kernel can also be interpreted as a
measure of similarity between densities. In this work, we
use the Gaussian kernel

klni,nj] = exp (=[|ni —n;*/20%) , (6)

where o is a length scale. We define an L? inner product

between electron densities n(r) and n’(r) and the corre-
sponding norm:

') = [Ern@n'@. ol = w0

In calculations, all densities are represented by a finite
basis, and thus will have have a finite L? norm. Since
the kernel is expressed in terms of the L? inner product,
our equations are independent of the chosen basis.

The weights are found by minimizing the cost function,
which is the sum of the quadratic error in the KE plus a
regularization term

Nt
Cla) = > (T [n;] — T<[n,])” + A" Kat, (8)

=1

where @ = (aq,...,an,), K is the kernel matrix given
by K;j = k[n;,n;] and X\ is known as the regulariza-
tion strength. The regularization term Aa” K o penalizes
large magnitudes of the weights to prevent overfitting.
Minimizing C(a) gives

a=(K+A)'T, (9)
where 1 is the matrix and
T = (Ts[ni), ..., Ts[nng])-

Cross-validation is used to ensure that the global model
parameters are not optimized on the same data used to
learn the weights, which can lead to a biased model that
has low error on the training set but poor generalization
error on new data [14]. To determine the values of the
global parameters o and A (also called hyperparameters)
we use k-fold cross-validation. The Ny training samples
are divided into k£ bins. For each bin, the functional is
trained on the samples in the other k£ —1 bins, and ¢ and
A are optimized by minimizing the mean absolute error
(MAE) on the omitted bin. The MAE is minimized by
a grid search over a coarse logarithmic grid in ¢ and A.
Finally, the hyperparameters are chosen as the median
value over all omitted bins.

identity

III. THEORY
A. Challenges of self-consistency

When applying orbital-free DFT, the exact ground-
state density is not available. Instead, the density must
be found by minimizing the total energy in Eq. (3) with
the approximate KE functional. In previous work, we
have shown that the functional derivative of an MLA ex-
hibits large amounts of noise [8, 9, 17, 18], and using the
bare gradient of the MLA makes the energy minimiza-
tion unstable, as illustrated in Fig. 1. In general, the
external potential v(r) is determined by a set of parame-
ters {p1,...,pq} (for example, the positions of the nuclei
for a molecule). The density manifold My, defined as
the set of all densities that come from the potential v(r)

/
’I’L(t) ',»“'/— Correction step

Mn

Projection step j

(t)

FIG. 2. A schematic of the projected gradient descent. First,
we project the functional derivative onto the tangent space of
M at ng(r) (dashed line). Next, a step along the projected
functional derivative to n(, (r) is taken to lower the energy.
Next, g[n] is minimized orthogonal to the tangent space to
ensure the descent stays on My. These steps are repeated
until convergence.

over all valid values of its parameters for a given parti-
cle number NV, is a d-dimensional manifold embedded in a
Hilbert space associated with the inner product and norm
defined in Eq. (7). Because My is a low-dimensional
manifold embedded in a high-dimensional (essentially in-
finite) space, there are many directions in which no data
exists, even if the functional derivative is evaluated at a
density on M. Each direction creates uncertainty in
the functional derivative, and the accumulation of errors
from all these directions dominates, yielding a functional
derivative practically useless in optimization. Projecting
out these extra directions eliminates the noise, yielding
accurate functional derivatives.

Thus, one way to rectify the unstable minimization
using our MLA is to replace the minimization in Eq. (3)
(over all densities normalized to N particles) by one over

My:
6{Ey[n] + (g[n]} =0, (10)

where ¢ is a Lagrange multiplier, and ¢ is any func-
tion that is zero on My and positive elsewhere (so that
My is given implicitly by g[n] = 0). We call the solu-
tion of this equation a constrained optimal (CO) density
neo(r), which is analogous to the self-consistent solution
of Eq. (3), and satisfies g[n] = 0.

In practice, the constrained minimization in Eq. (10)
is solved via a projected gradient descent. A schematic is
shown in Fig. 2. In the first step, the functional derivative
is projected onto the tangent space at n, 7[n]. In this
prescription, 7 [n] can be approximated directly.

A simple approach, used in previous work [8], uses
principal component analysis (PCA) to determine 7 [n]
empirically from the training densities as pictured in
Fig. 3. The approximate tangent space passes through
the weighted average density

Nt
a(r) = é;wjnj(r), (11)

where the distribution w(||n — »’||) only depends on the

FIG. 3. A cartoon illustrating how PCA is used to locally
reconstruct the density manifold. PCA is performed on the
set of training densities within a distance R of a density n(r)
(blue square). The first few PCs form a basis for the tangent
plane 77“4[n] (dashed line), which approximates M.

distance from n(r) to n'(r), w; = w(||n — n;||), and 2 =
Z;\Z w;j. The locality of the method comes from the
choice of the weighting function w. Here, we choose a
continuous weighting function that decays linearly up to
a cutoff

w(p) = (1 = p/pm)0(pm — p), (12)

where p,,, is the distance from n(r) to the m-th nearest
training density, and 6 is the Heaviside function. This
choice is computationally efficient and performs well in
practice.

Next, PCA is performed by spectral analysis of the
empirical covariance operator,

Nt
Fln] = %ijmnj ® Any), (13)
j=1

where ® is the tensor product defined by (a ® b)c =
(a,cyb, with a,b,c € H, and An(r) = n(r) — f(r) is
the density displacement from 7i(r). The eigenvalues and
eigenfunctions are given by

f[n]uj [n](r) = v;u;[n)(r), (14)

where the eigenvalues are ordered such that v; > ;1.
The principal components (PCs) are given by the eigen-
functions u;[n](r). There will be little to no variance
in directions orthogonal to 7T [n]. Thus, the first d PCs
form an approximate basis for T [n]. We construct the
projection operator

d

Pln] = u;ln] @ u;[n]. (15)

j=1
Then the local PCA tangent space is given by
TP n] = {n| P+ [n]An = 0}. (16)

5

where P+[n] = 1 — P[n] projects onto the complement
of Tln]. The g[n] that gives rise to this approximate
tangent space is chosen as the squared distance from n
to TP n],

9" n] = ||P*+ [n] An]P?. (17)

Note that g[n] is not unique. This defines an approximate
density manifold MPCA given as all densities n satisfy-
ing g"A[n] = 0. Since PCA is a linear method, this
assumes that the training densities are locally linear on
M. When the training data is sparse, or My is highly
curved, this approximation may fail even when the ML
functional is accurate within My.

B. Nonlinear gradient denoising

It is desirable to obtain the greatest accuracy using as
few training densities as possible. In cases where only a
few densities are needed to obtain accurate energy pre-
dictions TM¥[n], but My is highly curved relative to the
sampling density, the capability of kernel principal com-
ponent analysis (kPCA) [26] to capture the nonlinearity
in My can provide a significantly better approximation
than local PCA. kPCA is the kernelized form of princi-
pal component analysis (PCA) (i.e. PCA performed in
feature space), and is used, e.g., to study the structure
of data for unsupervised learning and dimensionality re-
duction (see also Ref. 27). As kPCA requires that the
samples have zero mean in feature space, we define the
centered map to feature space ®[n] = ®[n] — &, where

b = Z;le ®(n;]/Nr is the mean of the samples in fea-

ture space. The centered kernel is

kln,n'] = (@[n], B[n’])

1 Xz

+ % Z k’[’fli,nﬂ. (18)

In kPCA, we perform an eigendecomposition of the cen-

tered kernel matrix K, with elements K,; = k[n;, n;],

Kaj = NTﬁjaj, (19)

where o are the eigenvectors normalized by |o;| =

1/y/NrB; and B; are eigenvalues, ordered from largest
to smallest magnitude (j = 1,...,Nr). The principal
components (PCs) in feature space are

Nt
v; = Zai7jd5[nj]. (20)
j=1

Note that PCs are unique up to sign. The projection in
feature space onto the first ¢ PCs is

q
Q= Zviv; (21)
i=1

FIG. 4. A cartoon depicting the qualitative behavior of the
kPCA projection error p[n] in density space. The solid curve
represents My and the black circles show the training densi-
ties m;(r). The dashed lines show the contours of p[n], which
is small on My but increases rapidly moving away from the
manifold.

The square of the kernel PCA projection error (also called
the reconstruction error), given by

pln] = |@[n] — Q@In]|*, (22)

is a useful measure of how much information is lost in
the kPCA projection. We expand this further as

pln] = ||B[n] — QB[n]||?

q 2
= ||B[n]|* ~ Z(é[n]Tvi)vi
- Nt ~ ?
= k[n,n] — Z Zai,jk[n,nj] . (23)

The kPCA projection error is a measure of how well a
given density can be reconstructed in feature space from
the given training densities. Since all training densities
are on My, the reconstruction error will be low for den-
sities on My, and high elsewhere. A cartoon of this is
shown in Fig. 4. The key point here is the anisotropy of
the contours, which we see for a reasonable choice of ¢’
(the length scale used for the kPCA). Thus, observing the
curvature of p[n| enables a separation of directions along
the manifold from those orthogonal to it. There should
exist d directions with low curvature in p[n|, which form
a basis for T [n], assuming n(r) on or close to My.

To find such a basis, we consider the Hessian of p[n],
which contains information about its curvature. First,
we give the functional derivative of p[n]

q Nr

dp[n] 5k[n, n) B S A 5k[n, ny
on(r) on(r) 2;;:1 iy k[, 5] sn(r)

(24)

where, for the Gaussian kernel with length scale o/,

M_n/r_nr TLTL/ 0_/2
Gni) = () —nE)kn /o, (25)

and

Sk[n, n'] _ Ok[n,n’] 1 & dk[n, n;|

on(r) on(r) Nr = on(r) (26)
We denote the Hessian of p[n] by
s (27

which is given by
7 q Nt

N 5%k[n, n'] .
Hn](r,x") = Sn()on@) 2?::1];::1 Q0

) (azg[n,nj] Skl]\ g SRl) (28)

on(r) In(r) dn(r)on(r’)

where, for the Gaussian kernel with length scale o/,

&%kln,n'] o'l (—8(r — £ /o2
Sn(r)on(r’) kln,](J)/
+ (1 (r) = n(r)(n' (') —n(r")/a"), (29)
and
62k[n, n'] 5%k[n, n'] 1 & §2k[n, n;]

Sn(m)on() ~ on(myon() Ny 2= nw)an(e)” >

The curvature of p[n] is given by the eigenvalues and
eigenfunctions of H[n] [28]:

(H[n](r,x’), u;[n](x")) = Aju;[n](r). (31)

Eigenfunctions u,;[n](r) with small |\;| are the directions
in which p[n] is flat, and thus form a basis for 7NYGP[p],
an approximation to the true tangent space. We expect
a sudden increase in A; after the d-th eigenvalue, as the
eigenfunctions become directions away from My with
p[n] rapidly increasing. Given the projection operator
P [n] onto this tangent space, spanned by the d eigenfunc-
tions of H[n] with smallest eigenvalue magnitudes, again
given by Eq. (15), we define the NLGD approximation to
My as the set of densities for which p[n] is minimized
orthogonal to TNLGP[n]. Thus, choose gNFSP[n] as the
squared magnitude of the functional derivative of p[n]
orthogonal to TNFGDP[n):

2

NLGD [TL] PJ_ [n] M

on

g (32)
To solve for CO densities, a similar projected gradient
descent method (see Fig. 2) is employed. The details are
given in Algorithm 1.

We use a Gaussian kernel with length scale ¢’ (the op-
timal ¢’ will in general be different from the length scale
of the model). Typically, in applications of kPCA, the
number of principal components ¢ will be much smaller
than the number of training samples as the goal is to
reduce the dimensionality of the input space. Here, we
do not want to lose any information about the geom-
etry of My, as this will negatively impact our NLGD
approximation. We estimate that choosing ¢ > 2d is suf-
ficient, where d is the dimensionality of the manifold. For
q > 2d, the results are insensitive to ¢q. In practice, we
keep all principal components with eigenvalues above a
certain threshold (e.g. 1071%), as very small eigenvalues
can cause numerical instabilities.

IV. RESULTS

For the purposes of this work, we restrict ourselves to
a simple prototype system. This system is not meant
to demonstrate a real application of luging (for a more
realistic application of the method, see Ref. 9) but is only
presented to illustrate the concepts behind luging. We
consider non-interacting same-spin fermions confined to a
box in one dimension with hard walls at z = 0 and z = 1.
Inside the box, the fermions are subject to an external
one-body potential v(z). For non-interacting fermions,
the Schrédinger equation (in atomic units) reduces to
the one-body form

1 0%
(~37 +0@) B0 =60 63
where €; are the energy levels and ¢;(z) are the orbitals.
Assuming N same-spin fermions, the many-body wave-
function is simply a single Slater determinant constructed
from singly occupying the first NV orbitals. Then the elec-
tron density is given by

N
n(w) =Y | (). (34)
j=1
The total energy E is the sum of the KE
]' al ! * /!
n=-3) | wws@e@. e

where ¢/ () is the second derivative of ¢;(x) with respect
to x, and the potential energy

1
V:/O dx n(zx)v(x). (36)

The potentials considered in this work have the form
(37)

v(x) = asin(mx) + bsin(27x),

i.e., a two-parameter family. For a given v(z), we solve
Eq. (33) numerically on a real-space grid with N¢ evenly

Algorithm 1: Projected gradient descent via NLGD

Input: Training densities {n;} for j =1,..., Nr;
Cross-validated hyperparameters o, A, d, o’; ML
functional T2 [n]; kPCA eigenvectors a; for
i=1,...,q; Desired tolerances ¢, and dg.

Output: CO density nco(r) and its energies.

1: Choose the initial density as the training density with
lowest total energy

n(g) < argmin (TSML[n] + V[n}) .
ne{n;}

2: t+0

3: repeat

4: Compute the Hessian H[n)](r,r’") of the squared kPCA
projection error via Eq. (28).

5: Perform spectral decomposition of H[n](r,r’) via
Eq. (31) for the d eigenfunctions wu;[n](r) with the
smallest corresponding eigenvalue magnitudes.

6: Compute the projection operator P = P[n(t)] via
Eq. (15).

7: Apply the projection operator to the functional
derivative of the total energy and take a small step

toward lower energy
o).
n=n(e)

where € is a small positive constant (If convergence is
unstable, € should be decreased).
8: In order to return to the manifold, minimize p[n|

/ » g SML n
nl () nge (r) — cP <:§n(r[)]

orthogonal to TN"“P[n] (Assuming p[n] is convex locally
around the manifold, this is equivalent to minimizing
gVCSPIn]), using a standard minimizer (e.g. conjugate
gradient descent) starting from n’(t), to within tolerance

On. Let Pt =1—P. Then
n(e1) (T) < Ny (r) + Ptén/(r),
where

én/(r) = argmin p[n() + Ptéon(r)].

én(r)

9: tt+1
10: Compute total energy

Ew =T3" [n] + Ving).

11 until ||ng) — ne_yll < on and |Eyy — Eqg-1)| < 0r
12: return nco(r) < ng)(r)

spaced points fromz =0to 1 (ie. z; = (j—1)/(Ng—1)
for j =1,..., Ng) using Numerov’s method [29]. In this
work, Ng = 99 was sufficient to converge our energies
with errors less than 10~° Hartree. In this case, the
densities are represented by their values on the grid, and
so the inner product is approximated by the Riemann
sum

(n,n') ~ Z n(z;)n' (x;) A, (38)

100

0.0 0.5 1.0

(100,-20) (100,20)

(-100,20)

4! \"(100,-20)

(-100,0)

(c)

20 —21
19
10} 17
15
- 0| 13
11

-10 9

7

-20 ‘ s

=100 -50 100

FIG. 5. Selected densities from datasets (a) A and (b) B,
across the entire range of parameters a and b that define the
potential in Eq. (37). For dataset A, b = 0 and the values of
a are given by the labels. For dataset B, the label on each
density denotes the values (a, b) that determines the potential
from which that density came. Part (c) shows a contour plot
of the KE across the whole range of a, b in dataset B. Dataset
A lies along the horizontal b = 0 line.

where Az = 1/(Ng — 1) is the spacing between grid
points.

We use two datasets to illustrate the concepts pre-
sented in this work. In the first, dataset A, we set b =0
and vary only a. To generate a training set for the ML
model, we compute N7 densities n; and corresponding
exact KEs Ty ; for a evenly spaced from -100 to 100 (in-
clusive). The training sets for A are Npr = 6,8,10,12.
We also generate a test set with 19 samples, in order
to test the model on densities not contained in the train-
ing set (we consider the contributions from the endpoints
a = —100 and 100 as negligible). In the second, dataset
B, we vary both a and b. To generate a training set for
dataset B with Np densities, we again compute densities
and energies for a (b) evenly spaced from -100 to 100 (-20
to 20), inclusive, in a v/Nz x /Nt grid of samples (we
choose Nt as a perfect square). The training sets for B
are Np = 36,64,100, 144. For dataset B, we generate a
test set with 361 samples. The test sets are never used in
optimizing the ML model. This data is reserved exclu-
sively for evaluating the performance of our functional.

Fig. 5 shows selected densities from the two datasets,
and a contour plot of the KE. Note that the densities
in dataset A are spatially symmetric about the midpoint
x = 1/2, while those in dataset B are not. However,
densities coming from potentials with parameters (a,b)
and (a, —b) are simply reflections of each other and thus
give rise to the same energies. The ML model does not
account for this symmetry, and treats this densities as
distinct. Thus, the dataset must include both densities
to learn. This is not a failing of the model but rather of
the representation. Prior knowledge about the symmetry
of the system (spatial symmetries are a general feature
of quantum mechanical systems) should be incorporated
into the representation. However, such measures are not
needed in this simple case.

To visualize My explicitly for the potential studied
here, we perform linear PCA on the test set and project
the densities on the first two principal components. Fig. 6
shows each density as a point in this reduced coordinate
system (the full coordinate system is 99-dimensional).
PCA picks out the two directions of maximum variance
in the data. Although the remaining dimensions are col-
lapsed onto these first two (a great deal of geometrical
structure is hidden), these plots illustrate the structure
of the My (intrinsically associated with the inner prod-
uct and norm used here). Clearly, My for dataset A
is a one-dimensional manifold, while My corresponding
to dataset B appears to be a two-dimensional manifold.
The four labeled corners of the surface correspond to the
boundary of the dataset.

To check that the characteristic noise in the functional
derivative observed in previous work exists in this case,
a typical functional derivative compared with the exact
one is shown in Fig. 7 for datasets A and B. Excellent
agreement between the functional derivatives projected
onto T[n] is found, demonstrating that the model does
capture the derivative of the KE functional along My
(since data lies along these directions).

To see that the kPCA projection error p[n| can indeed

(a)
1
~ O
Q
[a N
-1
a=100
-2
0 10
PC 1
(b)
10
(—100,20) (—100,-20)
(@] N
a)
; A
G 3
-10} Ao A
(100,20) (100,—20)
~10 0 10
PC1

FIG. 6. The projection of the densities in datasets (a) A
and (b) B onto the first two principal components (PC 1,
PC 2) using linear PCA. These two coordinates show the most
variation in the data. Each dot represents one density, with
(a) Nr =19 and (b) Ny = 361. Part (a) shows the density
manifold to be a 1-dimensional curve. In (b), the labels give
the values of (a,b) at the “corners” of the sampled rectangle
of potential parameter space.

capture information about the tangent space, we take a
density n € My and displace it by an amount £z(z),
where z(z) is a randomly chosen displacement density of
unit length (z(x) is representative of directions in which
no training data exist), in order to check that Fig. 4 is an
accurate picture of the behavior of p[n]. We then mea-
sure the kPCA projection error as a function of £ and the
distance d it takes to reach n(x) by moving along My
from a chosen starting density, in this case the density
corresponding to the boundary of dataset A at a = —100.
Fig. 8 shows the resulting contour plot of p[n], for Ny = 8
and for different values of o/. We define ' as the me-
dian over all nearest neighbor distances between train-
ing densities, in the spirit of Darken and Moody [30].
This is a good initial value as we want to reconstruct
M locally and thus kernel functions to overlap between
nearest neighbor densities, but only minimally beyond
that. As expected, in Fig. 8 we see that p[n| is small on

-20

—60(| | | [A

—-80
00 02 04 06 08 1.0

FIG. 7. The functional derivative (in atomic units) of our
MLA (green), evaluated at the ground-state density n, is
very different from the exact derivative v(z) (blue dot dashed)
since the data does not contain all the required information.
However, agreement is excellent when the derivatives are pro-
jected onto the tangent of My at n (black and red dashed).
Evaluated at (a) dataset A with Ny = 8, a = —44.4 and (b)
dataset B with Ny = 64, (a,b) = (—66.7,—17.8).

My and increases rapidly elsewhere. More importantly,
we notice that p[n] is flat in directions along My (i.e.
low curvature) and in other directions has a large posi-
tive curvature. When o’ is too small, we observe “eye-
let” features, where neighboring Gaussians have minimal
overlap. When ¢ is larger, i.e., 0/ = 45’, we observe a
“taco-shell” shape.

Additionally, we should expect a jump in the eigen-
values, \;, of H[n] corresponding to the dimensionality
of the dataset (i.e. j = 2 for dataset A and j = 3 for
dataset B). Let A; be the mean \; over the test set. This
quantity is shown in Fig. 9 for different values of ¢’. The
error bars give the standard deviation of A; over the test
set. For smaller ¢/, the standard deviation is much higher
and the eigenfunctions are not always well separated by
curvature. This is easily remedied by increasing o’ to,
e.g., 46’. Thus, in cases where the dimensionality of the
dataset is not known a-priori, this eigenvalue spectrum

10

- 0.30 o/ =25 0.040 o =45’

— - —0.010
—0.27 — Ho0.036 11 0.009
0.05 0.24 005 110032 0.05 0.008
0.21 ﬁ\/\/ 0.028 0.007
0.18 0.024 0.006

« 0.00 . \ : . :
015 & 0.00 0020 0-00 0.005

R N
0.12 0.016 0.004
—0.05 H0.09 _ggs———————— H0.012 _gg5 1 0.003
L1 0.06 ~ | Ho.008 - 0.002
Ia L U g,.03 e——————3 0.004 L'0.001
0.00 . . . 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
d d

FIG. 8. Contour map of the squared kPCA projection error p[n] given in Eq. 22, evaluated at n(z) + £2(z), where n(z)
is a density on the manifold My and Z(x) is a randomly chosen density displacement normalized such that ||2|| = 1. 2(z)
is representative of a direction that is statistically nearly perpendicular to the manifold. The plots are the same for different
random choices of Z(z). Here, d is the arc length along My from the density corresponding to a = —100 to n(z), given by
d = [|ldn/dal|da. Thus the £ = 0 axis corresponds to My, and the x symbols mark the locations of the training densities
Nr = 8). The scales on the £ and d axes are the same, so that the curvature of p[n] along either direction can be compared
visually. We use the Gaussian kernel and keep all nonzero principal components in kPCA. The plot is repeated for different
values of the kPCA length scale o/, for ¢’ at different multiples of &' = 0.21, which is the median distance between nearest
neighbor densities in the training set. The projection error vanishes at each training density, and increases as we move away

from Mpy. Note the different contour scales.

can give an indication of the underlying dimensionality
of the data.

To test these methods, we solve Eq. (10) given the ap-
proximation gN“GP [n] for neo () using the projected gra-
dient descent method, given in Algorithm 1. In Fig. 10,
we observe the dependence of the error evaluated on CO
densities as a function of the kPCA length scale ¢’. For
small length scale, the kernel is too local. Gaussians
on neighboring training densities have little overlap, and
so the method cannot reconstruct My accurately. In
this case, the sweet spot of ¢’ lies between &’ and 105”.
Within this range, the error is not particularly sensitive.
When ¢’ becomes large, many local minima develop on
the manifold, leading to large errors and convergence is-
sues. Additionally, the kPCA eigenvalues decay faster
for large o’ so a larger cutoff may be needed to prevent
numerical instabilities. If each calculation is started from
a random initial density, it only finds the nearest local
minimum. For ¢’ on the correct scale, the energy mini-
mization is convex restricted to the manifold, leading to
accurate results with one global minimum. Additionally,
we find that this region with minimal error corresponds
to maximal convergence. For dataset B, note that con-
vergence for all test densities is never reached, as some
test densities lie on the boundary of the “interpolation
region” of the functional. This can be always remedied
by increasing the extent of the dataset.

Datasets A and B exemplify when nonlinear methods
such as NLGD are necessary. To compare and contrast
with other work, we also test NLGD on the “box” dataset
first used in Ref. 8 and later studied in greater detail
in Ref. 17. In that work, non-interacting fermions were
confined to a 1d box subject to a potential inside, a lin-
ear combination of Gaussian dips with varying heights,
widths, and centers. All together, the potential had 9 pa-

rameters, which were sampled randomly over intervals to
generate training densities and energies. In this case, the
local PCA projection was used to perform a constrained
optimization of the density [17], and gave accurate re-
sults.

The final results are summarized in Table I. The MAE
is given on exact and CO densities using either NLGD or
local PCA, for various training set sizes. The parameters
d, ¢/ and m were chosen to give the best performance on
the test set!. While the optimum d nicely corresponds
with the underlying dimensionality of the manifold for
datasets A and B, in the box data it is about half. In
general, the optimum values of d and ¢’ will depend on
how data is sampled over the manifold. In A and B, the
data is sampled uniformly over a grid, while in the box
case it is randomly sampled. It may be sparse in certain
areas or dimensions and dense elsewhere, and there may
not be a clear separation in the eigenvalues of the Hes-
sian of g[n] delineating the dimensionality d (see Fig. 9).
However, the analysis given in this paper provides good
starting values.

The performance gain found with NLGD for datasets
A and B is striking. For A, the error is reduced by a factor
of 100-1000. For B, by 30-100. Clearly, local PCA fails
in these cases. To achieve the same accuracy with local
PCA as NLGD, we would need significantly more train-
ing densities. In the box case, useful reductions in errors
are also found (= 30%), but they are less dramatic. For
more than 1 particle, the improvement is even less signifi-

1 We verified that a cross validation of these parameters yields
similar optimum parameter values and errors. In general, these
parameters should be cross validated like the other hyperparam-
eters, but with respect to the errors on self-consistent densities.

J
(b)
1" ' P et &
e
—1b ‘

1 2 3

J

FIG. 9. The curvature of p[n] corresponding to the first 5

eigenfunctions, given as the mean eigenvalue \; of the Hessian
H{n] over the test set (error bars give standard deviation over
the test set), and normalized such that the largest eigenvalue
is 1 so that the spectrum is easily compared, for (a) dataset A
with N7 = 8 and ' = 0.21 and (b) dataset B with Ny = 64
and 6’ = 0.14. For larger ¢, the variance in the eigenvalues
decreases but the separation between the eigenvectors corre-
sponding to 7N“SP[n] and its orthogonal complement is less
sharp. Thus, by increasing o', we describe the manifold bet-
ter globally at the cost of reintroducing some noise in the
functional derivatives. This leads to an increase in error but
better overall convergence. If we increase ¢’ too much, then
the noise creates many local minima over the manifold, lead-
ing to large errors and convergence issues.

cant (= 10—20%). Our code was implemented in Python
built on the NumPy [31] and SciPy [32] packages together
with the Atomistic Simulation Environment (ASE) [33]
and Scikit-learn [34]. The implementation was not fully
optimized. To estimate the increased computational cost
of NLGD over local PCA, we averaged the time to com-
plete one self-consistent calculation over the test set. For
datasets A and B, the projected gradient descent with lo-
cal PCA was between 10 and 50 times faster than NLGD.
In the box case with N = 1, NLGD was only 2-3 times
slower than local PCA, but for N > 1, this increased to
about 50 times slower. In these cases, local PCA might

11

0.2 0.4 0.6 0.8 1.0
log,(0’/")

—
=3
=

=
o

convergence
o
9,1}

FIG. 10. (a) The MAE (in kcal/mol) evaluated on CO
densities via NLGD as a function of the length scale ¢’ of the
Gaussian kernel in kPCA, shown for datasets A (N7 = 8,12)
and B (Np = 64, 144). (b) The corresponding fraction of test
samples that converged.

be the better approach as the computation can be faster
without suffering a huge increase in errors. In any given
problem, the use of NLGD will usually be determined by
the computational cost of generating training data.

Unfortunately, the linear scaling of orbital-free DFT
is reduced to that of KSDFT due to the computation of
H[n] and its spectral analysis. However, the projected
gradient descent algorithm may not be the most efficient
numerical way to perform the constrained optimization.
Further systematic studies of the computational cost and
scaling of these methods as well as an exploration of
numerical optimizations is needed (preferably for three-
dimensional systems and not the simple model presented
here). For example, the cost might be minimized by ap-
plying kPCA locally (e.g. combining aspects of the lo-
cal PCA and NLGD methods) or by using Lanczos al-
gorithms [35, 36] for the spectral decomposition of H[n],
since only d eigenvectors are needed and d is generally
much smaller than the size of the basis Ng.

12

NLGD local PCA
data N Nr o A-10" JAT| |AT|™> d & o'/ |AE| |AE|™ ¢ m |AE| |AE[™™ ¢
1 6 9.9 5200 1.1 6.9 1 028 52 33 16 1 4 270 470 0.5
AL 8 19 3.7 0.02 0056 1 021 43 043 3.5 1 4 140 200 0.6
1 10 84 1 0.01 013 1 017 51 0.14 033 1 4 79 190 0.7
1 12 23 1.9 0.0098 0.052 1 014 3.9 0.057 013 1 4 59 120 0.8
1 36 7.1 1 7.4 580 2 018 79 3.1 60 09 6 120 1400 1
B 1 64 19 1 2.5 230 2 014 62 053 6.5 09 5 66 4600 0.8
1 100 7.1 1 0.11 12 2 011 62 079 98 09 7 35 360 0.9
1 144 44 1 0.068 12 2 0084 55 1.2 120 09 7 23 250 0.9
1 60 1.8 10. 0.58 4.7 4 0.027 85 045 2.1 120 063 43 1

box 1 80 1.5 54. 0.24 1.5 4 0.025 10. 0.28 1.6 20 044 26
1 100 1.6 45 012 1.2 4 0024 85 0.27 1.5 120 039 23 1
2 100 22 1.0 0.13 1.4 4 0.027 10. 0.41 3.9 1 20 044 25 1
3 100 25 1.9 0.2 1.0 4 0.022 12. 0.48 2.8 120 059 38 1
4 100 2.7 1.4 0.08 0.76 4 0.017 14. 0.53 3.2 120 064 50 1

TABLE 1. Mean and max absolute errors (in kcal/mol) measured over the test set for datasets A and B and the box dataset

from Refs. 8, 17. We report the errors in KEs on exact densities |AT'| and the errors in total energies | AE| evaluated on neo(z)
found via NLGD or local PCA. The column ‘c’ denotes the fraction of test samples that converged successfully. There are 19
(361) test samples for dataset A (B), and 100 for the box dataset. The box was generated on a grid of 100 points (sufficient
to yield accurate reference energies). For each training set with Nt samples, the cross-validated hyperparameters of the ML
KE functional, o and A, are given, as well as the dimensionality d of the projection method (same value used for both NLGD
and local PCA), the kPCA length scale o', and the number of nearest neighbors m. In kPCA, all principal components with
eigenvalues greater than 107** are kept for N = 1. In the box case when N > 1, a larger cutoff, 107!, is chosen to prevent

numerical instabilities.

V. CONCLUSIONS

We have presented a new method of reconstructing a
smooth approximation to the density manifold My in
the context of orbital-free DFT with machine learning
approximations for density functionals. The advantage of
local linear PCA is its simplicity and efficiency. However,
when the training densities are sampled sparsely, the lin-
ear approximation breaks down, and one must consider
nonlinear extensions. NLGD is one such method, which
makes use of the projection error in kPCA. By observ-
ing that the curvature of the projection error contains
information about the directions in which data lie, an
approximate 7 [n] can be constructed, and highly accu-
rate optimized densities can be found, even for strongly
nonlinear problems where PCA fails.

When obtaining training samples is computationally
expensive (as is the case when applying these methods
to more complex molecular systems), nonlinear methods
for approximating My will be vital. This was the case
when we applied our ML algorithms to a 1d model of di-
atomics [9]. In that work, My was highly nonlinear and
the local PCA approximation failed, driving the devel-
opment of NLGD to combat these inaccuracies and en-

able highly accurate CO densities with limited training
data. Additionally, it was shown that an ML functional
could accurately dissociate a chemical bond. In local
and semilocal functionals, bonds dissociate incorrectly if
you do not account for the so-called derivative disconti-
nuity [37]. However, we only ever train and apply our
functional to integer particle numbers, so never directly
experience this discontinuity, allowing the use of smooth
kernels such as the Gaussian kernel. The kernel here is
sufficiently sensitive to very small changes in the density
as bonds stretch to still yield binding energy curves very
accurately.

The theory behind luging is completely general: the
traditional formulation of orbital-free DFT is modified
to account for inaccurate functional derivatives of ML
models, providing a framework for developing better ap-
proximations for g[n]. Local PCA and NLGD are just
two examples of approximations for g[n]. In developing
an orbital-free DFT for three-dimensional systems, non-
linear methods such as NLGD will be needed to fight the
curse of dimensionality, as the systems grow in complex-
ity and size. Any method capable of reducing the number
of training densities needed should be extremely useful,
especially for three-dimensional systems where generat-
ing training data is significantly more expensive. In the

case of the KS KE functional, note that the exact func-
tional derivative is always available in KS reference calcu-
lations (as just negative the KS potential). Thus, it may
be possible to use this information in the training pro-
cess in order to eliminate the noise at the source. Future
work will study this direction. More generally, NLGD
should prove useful in other ML applications, such as
machine learning applied to learn molecular properties,
where the goal is to optimize desired properties across
chemical compound space [38], as well as in other ar-
eas of machine learning, such as lossy compression [39]
and computer vision [40]. Whenever optimization is done
over an underlying smooth manifold, the gradient of re-
gression or support vector machine models may exhibit
noise, and nonlinear methods such as NLGD can be used
to improve performance.

13

ACKNOWLEDGMENTS

The authors thank Katja Hansen for helpful discus-
sions and input on the manuscript, and Li Li for helpful
comments. The authors also thank the Institute for Pure
and Applied Mathematics at UCLA for hospitality and
acknowledge NSF Grant No. CHE-1240252 (JS, KB),
the Alexander von Humboldt Foundation (JS), EU PAS-
CAL2 (KH), Swiss National Science Foundation Grant
No. PPOOP2.138932 (MR). This research was also sup-
ported by DFG, the Einstein Foundation, and the Na-
tional Research Foundation grant (No. 2012-005741)
funded by the Korean government (KRM). Correspon-
dence to K. Burke and K.-R. Miiller.

[1] R. M. Dreizler and E. K. U. Gross, Density Functional
Theory: An Approach to the Quantum Many-Body Prob-
lem (Springer, 1990).

[2] P. Hohenberg and W. Kohn, “Inhomogeneous electron
gas,” Phys. Rev. B 136, 864-871 (1964).

[3] W. Kohn and L. J. Sham, “Self-consistent equations in-
cluding exchange and correlation effects,” Phys. Rev.
140, A1133-A1138 (1965).

[4] Aurora Pribram-Jones, David A. Gross, and Kieron
Burke, “Dft: A theory full of holes?” Annual Review of
Physical Chemistry (2014).

[5] V.V. Karasiev and S.B. Trickey, “Issues and challenges
in orbital-free density functional calculations,” Computer
Physics Communications 183, 2519 — 2527 (2012).

[6] Valentin V. Karasiev, Randy S. Jones, Samuel B. Trickey,
and Frank E. Harris, “Recent advances in developing
orbital-free kinetic energy functionals,” in New Develop-
ments in Quantum Chemistry, edited by José Luis Paz
and Antonio J. Herndndez (Transworld Research Net-
work, Kerala, India, 2009) pp. 25-54.

[7] Fabien Tran and Tomasz A. Wesolowski, “Link between
the kinetic- and exchange-energy functionals in the gen-
eralized gradient approximation,” International Journal
of Quantum Chemistry 89, 441-446 (2002).

[8] John C. Snyder, Matthias Rupp, Katja Hansen, Klaus-
Robert Miiller, and Kieron Burke, “Finding density
functionals with machine learning,” Phys. Rev. Lett.
108, 253002 (2012).

[9] John C. Snyder, Matthias Rupp, Katja Hansen, Leo
Blooston, Klaus-Robert Miiller, and Kieron Burke,
“Orbital-free bond breaking via machine learning,” The
Journal of Chemical Physics 139, 224104 (2013).

[10] Igor Kononenko, “Machine learning for medical diagno-
sis: history, state of the art and perspective,” Artificial
Intelligence in medicine 23, 89-109 (2001).

[11] Ovidiu Ivanciuc, “Applications of support vector ma-

chines in chemistry,” in Reviews in Computational Chem-

1stry, Vol. 23, edited by Kenny Lipkowitz and Tom Cun-

dari (Wiley, Hoboken, 2007) pp. 291-400.

Fabrizio Sebastiani, “Machine learning in automated text

categorization,” ACM computing surveys (CSUR) 34, 1-

47 (2002).

=
)

[13] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert
Miiller, and O. Anatole von Lilienfeld, “Fast and ac-
curate modeling of molecular atomization energies with
machine learning,” Phys. Rev. Lett. 108, 058301 (2012).

[14] Katja Hansen, Grégoire Montavon, Franziska Biegler,
Siamac Fazli, Matthias Rupp, Matthias Scheffler,
O. Anatole von Lilienfeld, Alexandre Tkatchenko,
and Klaus-Robert Miiller, “Assessment and valida-
tion of machine learning methods for predicting
molecular atomization energies,” Journal of Chemi-
cal Theory and Computation 9, 3404-3419 (2013),
http://pubs.acs.org/doi/pdf/10.1021/ct400195d.

[15] Zachary D. Pozun, Katja Hansen, Daniel Sheppard,
Matthias Rupp, Klaus-Robert Miiller, and Graeme
Henkelman, “Optimizing transition states via kernel-
based machine learning,” The Journal of Chemical
Physics 136, 174101 (2012).

[16] Albert P. Barték, Mike C. Payne, Risi Kondor, and
Gabor Csanyi, “Gaussian approximation potentials: The
accuracy of quantum mechanics, without the electrons,”
Phys. Rev. Lett. 104, 136403 (2010).

[17] Li Li, John C. Snyder, Isabelle M. Pelaschier, Jes-
sica Huang, Matthias Rupp, Klaus-Robert Miiller, and
Kieron Burke, “Understanding machine-learned density
functionals,” submitted to J. Chem. Theory Comput.
(arXiv:1404.1333).

[18] John C. Snyder, Sebastian Mika, Kieron Burke, and
Klaus-Robert Miiller, “Kernels, pre-images and opti-
mization,” in Empirical Inference - Festschrift in Honor
of Viadimir N. Vapnik, edited by Bernhard Schoélkopf,
Zhiyuan Luo, and Vladimir Vovk (Springer, Heidelberg,
2013) p. 245.

[19] Min-Cheol Kim, Eunji Sim, and Kieron Burke, “Under-
standing and reducing errors in density functional calcu-
lations,” 111, 073003 (2013).

[20] Trevor Hastie, Robert Tibshirani, and Jerome Friedman,
The Elements of Statistical Learning: Data Mining, In-
ference, and Prediction, 2nd ed. (Springer, New York,
2009).

[21] Klaus-Robert Miiller, Sebastian Mika, Gunnar Rétsch,
Koji Tsuda, and Bernhard Schélkopf, “An introduction
to kernel-based learning algorithms,” IEEE Trans. Neural

http://dx.doi.org/ 10.1103/PhysRev.140.A1133
http://dx.doi.org/ 10.1103/PhysRev.140.A1133
http://arxiv.org/abs/1408.4826
http://arxiv.org/abs/1408.4826
http://dx.doi.org/10.1016/j.cpc.2012.06.016
http://dx.doi.org/10.1016/j.cpc.2012.06.016
http://dx.doi.org/10.1002/qua.10306
http://dx.doi.org/10.1002/qua.10306
http://dx.doi.org/10.1103/PhysRevLett.108.253002
http://dx.doi.org/10.1103/PhysRevLett.108.253002
http://dx.doi.org/http://dx.doi.org/10.1063/1.4834075
http://dx.doi.org/http://dx.doi.org/10.1063/1.4834075
http://dx.doi.org/10.1002/9780470116449.ch6
http://dx.doi.org/10.1002/9780470116449.ch6
http://dx.doi.org/ 10.1103/PhysRevLett.108.058301
http://dx.doi.org/10.1021/ct400195d
http://dx.doi.org/10.1021/ct400195d
http://arxiv.org/abs/http://pubs.acs.org/doi/pdf/10.1021/ct400195d
http://dx.doi.org/ 10.1063/1.4707167
http://dx.doi.org/ 10.1063/1.4707167
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/ 10.1103/PhysRevLett.111.073003

Network 12, 181-201 (2001).

[22] A. Zien, G. Rétsch, S. Mika, B. Scholkopf, T. Lengauer,
and K.-R. Miiller, “Engineering support vector machine
kernels that recognize translation initiation sites,” Bioin-
formatics 16, 799-807 (2000).

[23] M. L. Braun, J. M. Buhmann, and K.-R. Miiller, “On
relevant dimensions in kernel feature spaces,” Journal of
Machine Learning Research 9, 1875-1908 (2008).

[24] Carl Rasmussen and Christopher Williams, Gaussian
Processes for Machine Learning (MIT Press, Cambridge,
2006).

[25] B. Scholkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-
R. Miiller, G. Réatsch, and A.J. Smola, “Input space
versus feature space in kernel-based methods,” Neural
Networks, IEEE Transactions on 10, 1000 —1017 (1999).

[26] B. Scholkopf, A. Smola, and K.R. Miiller, “Nonlin-
ear component analysis as a kernel eigenvalue problem,”
Neural computation 10, 1299-1319 (1998).

[27] G. Montavon, M. Braun, T. Krueger, and K.-R. Miiller,
“Analyzing local structure in kernel-based learning: Ex-
planation, complexity, and reliability assessment,” Signal
Processing Magazine, IEEE 30, 62-74 (2013).

[28] Carlos Fiolhais, F. Nogueira, and M. Marques, A
Primer in Density Functional Theory (Springer-Verlag,
New York, 2003).

[29] Boris Vasil’evich Numerov, “A method of extrapolation
of perturbations,” Roy. Astro. Soc. Monthly Notices 84,
592-601 (1924).

[30] John Moody and Christian J Darken, “Fast learning in
networks of locally-tuned processing units,” Neural com-
putation 1, 281-294 (1989).

[31] Stéfan van der Walt, S. Chris Colbert, and Gael Varo-
quaux, “The numpy array: A structure for efficient nu-
merical computation,” Computing in Science & Engi-
neering 13, 22-30 (2011).

14

[32] Eric Jones, Travis Oliphant, Pearu Peterson, et al.,
“SciPy: Open source scientific tools for Python,” (2001-
), [Online; accessed 2014-09-23].

[33] S. R. Bahn and K. W. Jacobsen, “An object-oriented
scripting interface to a legacy electronic structure code,”
Comput. Sci. Eng. 4, 56-66 (2002).

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research 12, 2825-2830 (2011).

[35] Walter Edwin Arnoldi, “The principle of minimized iter-
ations in the solution of the matrix eigenvalue problem,”
Quarterly of Applied Mathematics 9, 17-29 (1951).

[36] Danny C Sorensen, Implicitly restarted Arnoldi/Lanczos
methods for large scale eigenvalue calculations (Springer,
1997).

[37] John P. Perdew, Robert G. Parr, Mel Levy, and Jose L.
Balduz, “Density-functional theory for fractional particle
number: Derivative discontinuities of the energy,” Phys.
Rev. Lett. 49, 1691-1694 (1982).

[38] Gregoire Montavon, Matthias Rupp, Vivekanand Go-
bre, Alvaro Vazquez-Mayagoitia, Katja Hansen, Alexan-
dre Tkatchenko, Klaus-Robert Miiller, and O Anatole
von Lilienfeld, “Machine learning of molecular electronic
properties in chemical compound space,” New Journal of
Physics 15, 095003 (2013).

[39] J. Robinson and V. Kecman, “Combining support vec-
tor machine learning with the discrete cosine transform
in image compression,” Neural Networks, IEEE Transac-
tions on 14, 950-958 (2003).

[40] Milan Sonka, Vaclav Hlavac, and Roger Boyle, Im-
age processing, analysis, and machine vision (Cengage
Learning, 2014).

http://dx.doi.org/ 10.1093/bioinformatics/16.9.799
http://dx.doi.org/ 10.1093/bioinformatics/16.9.799
http://dx.doi.org/10.1109/72.788641
http://dx.doi.org/10.1109/72.788641
http://dx.doi.org/10.1109/MSP.2013.2249294
http://dx.doi.org/10.1109/MSP.2013.2249294
http://dx.doi.org/http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/http://dx.doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
http://dx.doi.org/10.1109/5992.998641
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://stacks.iop.org/1367-2630/15/i=9/a=095003
http://stacks.iop.org/1367-2630/15/i=9/a=095003
http://dx.doi.org/10.1109/TNN.2003.813842
http://dx.doi.org/10.1109/TNN.2003.813842

	Non-linear gradient denoising: Finding accurate extrema from inaccurate functional derivatives
	Abstract
	 Contents
	I INTRODUCTION
	II BACKGROUND
	A Density functional theory
	B Kernel ridge regression

	III THEORY
	A Challenges of self-consistency
	B Nonlinear gradient denoising

	IV RESULTS
	V CONCLUSIONS
	 ACKNOWLEDGMENTS
	 References

