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NONLINEAR GRAVITY WAVES IN A THIN SHEET OF 

VISCOUS FLUID 

BY C. C. MEr 

1. Introduction. In the study of long gravity waves of finite amplitude, the 

main body of the existing theories has been built upon the simplifying assumption 

that the viscosity is either totally negligible, or adequately· described by an 

empirical law. To date very little systematic account of the viscosity effect has 

appeared that is based on the Navier-Stokes' equations of motion. Thus, in the 

important problems of flood waves in rivers, Chezy's formula and a variety of 

empirical laws of hydraulics have been used to replace the viscous stress terms, 

and this is the approach taken in most of the hydraulic studies on open channel 

flows. Among theoretical contributions along this line, one may mention the 

book by Stoker (1957), the works of Dressler (1949), and of Lighthill and Whit

ham (1955, I). Dressler developed a rigorous theory of roll waves. In particular 

he obtained a discontinuous periodic solution in the case of relatively large 

amplitudes and a continuous periodic (cnoidal) solution in the case of small 

amplitudes. General flood movement in long rivers has been masterfully investi

gated by Lighthill and Whitham (1955, I ), as a type of kinematic waves. Their 

method of predicting the transient motion of large amplitude waves with dis-

continuities (or shocks) is especially noteworthy. · 

Another existing approach to study viscosity in long gravity waves is to as

sume a shear profile in the basic flow; the wave motion is, however, assumed to 

be governed by inviscid equations. Although the shear profile can be made as 

realistic as possible, viscous effects come into the wave theories only implicitly. 

References may be made to Burns (1953), Hunt (1955), and Benjamin (1962) . 

In particular solitary and periodic cnoidal waves are found by these authors as 

possible wave forms which move at a steady speed without change of shape. 

Rigorous hydrodynamic theory of gravity waves based on Navier-Stokes' 

equations have been done only in the case of infinitesimal amplitude and rela

tively deep fluids. A summary of elementary results is given by W ehausen and 

Laitone (1960). The theories of Yih (1955, 1963) and Benjamin (1957) on the 

instability of a thin sheet of fluid flowing down an inclined plane also belong to 

the category of infinitesimal waves. t 
The reasons for lacking a rigorous theory on nonlinear shallow water waves 

with viscosity is not hard to seek, since the inviscid theory itself has been con

troversial even after the paper of Ursell (1953) (see Longuet-Higgins (1958) ). 

To state it briefly, there are two basic approaches to the inviscid shallow water 

theory. In the first, due to Friedrichs ( 1948), the Airy's theory which predicts 

the nonexistence of permanent waves is considered to be the first order result of a 

t One conclusion from their theories, which is supported by experimental findings of 

Binnie (1957), is particularly relevant here; that is, the stability of such a flow is governed 

by disturbances of long wave lengths at low Reynolds numbers up to order unity. 
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perturbation theory. The small parameter involved is essentially the ratio be

tween the depth (H) and a horizontal length scale (L) (with H / L « 1). Per

manent waves of the solitary and cnoidal types were later found as the second 

order result in the same perturbation scheme (see Keller (1949) ). In the second, 

Ursell first clarified that, in addition to the above mentioned ratio, the amplitude 

a0 provides a third length scale and, hence, another parameter. He found that 

Airy's theory belongs properly to the region 

H / L « 1, (ao/ L)(I-l/ L) -
3 » 1, 

the solitary wave and the cnoidal wave to 

H / L « 1, (ao/ L )(I-I / L )-
3 = 0( 1 ), 

and the linearized tide wave theory to 

H / L « 1, (ao/ L)(H/ L )-
3 « 1. 

Based on Ursell's deductions, Lin and Clark (1959) derived the general equations 

for long waves over a horizontal bottom in three dimensions. The second ap

proach seems to have received a wider support. 

The investigation of the effect of viscosity should naturally be of great im

portance in shallow liquids, for example, in flood problems or in oceanographic 

engineering. But the inclusion of viscosity leads to additional complications be

cause of a new length scale, i.e., the viscous diffusion length. In problems of the 

most practical interest the diffusion length is perhaps very small compared with 

the fluid depth which is itself small referring to a horizontal length. Thus, the 

depth is in an awkward position of being large compared to one length but small 

to another, and the mathematical problem is consequently difficult. A further 

source of difficulty is that the actual flow is frequently turbulent. 

As a first step towards a rigorous understanding of the role of viscosity in long 

gravity waves, we take the simpler case of high viscosity where the diffusion 

length is not too small as compared with the fluid depth. In the ordinary theory 

of flows at a small Reynolds number, it is well known that the pressure gradient 

and the viscous stress terms control the motion. Here, then, we shall consider 

the influence of gravity to be of equal importance as those two terms just men

tioned. The specific physical problem to be treated concerns with the flow down 

an inclined plane. 

In order to discover non-trivial wave motions in such a fluid, we shall find it 

necessary to decide first a suitable time scale. This situation is similar to the 

case of low Reynolds number flow, where one has to use a suitable pressure 

scale. The formal expansion procedure of Lin and Clark in their development 

of inviscid long wave theory will be adopted in the present paper. We shall 

discuss three cases according to the size of the amplitude. If we denote 

E = I-l/ L and a= (TJ*- H) / L 

where TJ* 1s the typical surface elevation, then in the first case of a= O(E) 
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we obtain a nonlinear partial differential equation for the dimensionless 'f/: 

E
2

'f/t + Ol'f/
2

'f/ x = t/3( 'f/
3

'r/ x)x • 

The notable feature of this equation is its nonlinear diffusion term on the right. 

The prof-ile of permanent waves of the type 'fi(X - Ct) is studied- it is found to 

be quite similar to the monoclinal flood waves where the Reynolds number is 

large. The variation of amplitude with wave speed is investigated and the result 

is supported by a more direct physical argument. It is also found that a critical 

case exists where the front invades a dry bed. 

In the second case we assume a = O(E2
). The governing equation for a becomes 

the well-known Burgers' equation '"hich has been thoroughly studied and made 

use of in gas dynamics. It is worth noting that here the diffusivity is propor

tional to the square of the Reynolds number and therefore smaller for higher 

viscosity, whereas in gas dynamics the converse is true (Lighthill (1956)). 

In the third case where a = O(t3
), solitary waves and cnoidal waves occur in 

the classical theory. We find not only monoclinal waves but waves resembling 

an undulating hydraulic jump. We also establish a condition whereby undulations 

may not appear. Periodic waves, and solitary waves are found in the case of 

vertical wall only. 

Comparison with experiments should be desirable but the author is yet unable 

to find directly usable data from the li terature (see Binnie (1957) for references). 

Furthermore, it is hoped that the effects of surface tension, which would make 

the mathematics more difficult, will be considered in the future. Some of the re

sults obtained here is, however, independent of this omission. 

2. Formulation of the Problem and the Shallow Liquid Expansions. Let us 

consider the two dimensional laminar flow clown a plane inclined at the angle () 

(Fig. 1). We shall assume that the fluid is incompressible and viscous with con

stant coefficient of viscosity. If the coordinate system is so chosen that the x

axis coincides with the inclined bottom and the y-axis is normal to it, the con

tinuity and the momentum conservation are expressed by the following three 

equations: 

where 

Ux + Vy 

Ut + UUx + VUy 

Vt + UVx + VVy 

0 

-p-
1
px + ga + v'tiu 

-p-lpy- g/3 + v\72v 

t = time, u(x, y, t), v(x, y, t) = velocity components 

p(x, y, t) = pressure, p = density, g = gravitational constant 

a = sin (), {3 = cos (), v = f.l/ p = viscosity coefficient 

On the bottom there must be no slip, hence 

u = v = 0 y 0. 

(1) 

(2) 

(3) 

(4) 

(5) 
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On the free surface denoted by 

y = 17(x, t), (6) 

the kinematic condition requires that 

1'/t + U17x = V, Y = 17( X, t). (7) 

If we assume the surface to be free of external stress and surface tension, then 

the components of the stress force in the fluid must vanish on the free surface 

also (Wehausen and Laitone (1960 ) ), i.e., 

(p - 2}.LUx)1Jx + J.L(Uy + Vx) = 0 

p - 2J.LVy + J.L(Uy + Vx) 11x = 0. 

(8) 

(9) 

By introducing some characteristic time, length and velocity scales T, L, U, 

respectively, all the variables will now be made dimensionless in the following 

FIG. 1. Nomenclature 

manner: 

(u, v) -> Uo(u, v), t-> Tt, (1'/, x, y)-> £(1'/, x, y), 

Thus, Eqs. (1), (2), (3), (5), (7), (8) and (9) become 

Ux + Vy = 0 

p-> J.LUofJ/ L. 

(10) 

rUt + UUx + VUy = - R-1
Px + aF-2 + R-L,•iu 

TVt + UVx + VVv = - R -
1
'{Jy - {3F-

2 + R-
1
riv 

( 11) 

(12 ) 

(13) 

(14) 

(15) 

(16) 

( 17 ) 

u = v = 0 on y = 0, 

T1'/t + UT]x = VI 

(p - 2uxhx + _< Uv + vx) = 0 ~y = 17 (x, t) 

('{J- 2Vy) + (Uy + Vx)1'/x .= oj = E + a(x, t) 
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In the above equations the customary definitions of Reynolds (R), Froude (F) 

and Strouhal ( r) numbers have been used: 

R = UoLiv, F
2 

= U~lgL, r = L IUoT. ( 18) 

It may be pointed out that the pressure is non-dimensionalized so as to ex

hibit that the pressure gradient and the viscous stresses are equally dominant 

when the Reynolds number is small, a fact that is well lmown in Stokes flow. 

Here we wish to study the case where the effect of gravity is of comparable im

portance as those two terms just mentioned. Hence, without loss of generality, 

we may take 

(19) 

This choice determines our length scale L = ( Ucvlg)t. If we further choose 

Uo = (gH)t 

where H is a typical depth of the fluid, we have 

L = (Hig)tvt and t = HIL = (H 3 g)tv-~. 

(20) 

(21) 

There exists an elementary solution to the governing equations which will be 

called the primary flow where 

a 1 at = a 1 ax = v = o, 1) = t, u = U(y), fi = P(y). 

From Eqs. (12) and (13) we have, respectively, 

u!IY +a= 0, Pu + {3 = 0, 

with 

p = 0, y = t and U = 0, y = 0. 

The solution is easily found to be 

U(y) = m
2
(yiE- y

212i) (22) 

and 

P(y) = {3t(1 - yl t). (23) 

Equation (22) indicates that the typical magnitude of the speed involved 

here is really of the order E
2
(gH)' and not VgH as used in Eq. (20). But the 

present choice is made so that the parameter t = H I Lis conveniently introduced 

as the Froude number (cf. (19) ). A natural time scale is such that 

LIT = i(gH)t (24) 

which, by Eq. (21), implies that 

Going back to Eq. (18), we find that the Strouhal number should then be 

2 
T = f. 

(25) 

(26) 
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This choice is by no means trivial, and a way of obtaining it is given in Appen

dix I. 

Putting 

p = P + p and u = U + u 

we have from (11-17) 

Uz + V11 = 0 

t
3
u 1 + t{ ( U + u)uz + ( U 11 + U 11 )v} 

E
3
v, + E{ ( U + u)vz + VV 11 } 

u = v = 0, y = 0, 

t

2
TJ1+ (U+u)TJz = V} 

(P + p - 2uz)TJz + U 71 + Uy + Vx = 0 Y = TJ (X, l). 

P + p - 2V11 + ( U71 + U 11 + Vz)TJz = 0 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

We now state explicitly the fundamental assumption that the depth of fluid 

is small, i.e., 

t = H/L « 1 (35) 

and the amplitude of free surface is at most as large as 0( t). This provides a 

limit of applicability of the present studies. (For example, in heavy oils v ,......, 

10-
2 

fe/sec. If we let t = 0.1, the depth H is of order 10-
3 

ft and Uot
2

,......, 1 

in. / min.). It also enables us to introduce the following expansions in powers of y. 

1/;(x, y, t) = Lo yn-.f;(n)(x, t) (36) 

p(x, y, t) = Lo ynp(n)(x, t), (37) 

where 1/; denotes the stream function such that 

u = 1/;y, V = -1/tz. 

The first two terms in the series (36) can be quickly disposed, 

1/;(0) = 1/;(1) = 0 

(38) 

(39) 

because of ( 31). Recursive relations will be found by substituting the series in 

Eqs. (26) and (27) and comparing the like powers of y (see Appendix II) so 

that 1/;<nl and p<nl can be related to 1/;<
2
J and p<0

J. The results are as follows: 

p~O) = 61/;(3)' p(l) = - 21/;~2)' p(2) = - !p;~) (40-42) 

121/;<
4
J = - 21/;;;l + t 2 1/;~ 2 l, etc. ( 43) 

These recursion relations can then be used to derive from the three boundary 

conditions (32)-(34), three partial differential equations for three unknowns 

1/;<
2
J, p<ol and TJ (or a with TJ = t +a). For practical reasons, only terms of the 

first few orders will be kept in these equations, and this is systematically done 
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according to the size of the amplitude a for the following three cases: a = 0( ~), 

0 ( ~
2

) and 0(~
3
). 

Equations (40)-(43) also indicate that p <0>, p <1> · · · ..p<2>, ..p<3> ···etc. are all 

of comparable size; the precise order of magnitude can be expressed in terms of 

the free surface amplitude. Substituting the series (36) and (37) into (33) and 

making use of (22) and (23), one finds that the leading terms are 

Uv + Uy + · · · = - aa + 21/;<
2
> + · · · = 0, y = 7]. 

Hence, 1/;'
2
> = O(a). Similarly from the leading terms of (34) 

P + p + · · · = -{3a + p<o> + · · · = 0, y = 'Y/, 

one gets p<o> O(a). We may thus conclude that 

p <o>, p<Il, p<2l, ... ..p<2>, 1/;(3) , ..p<4>, ... = O(a). (44) 

3. Large Amplitude Waves a = O('YJ) = O(E). In this case it is convenient to 

use 'YJ throughout instead of a. To demonstrate the procedure of argument that 

is to be used repeatedly in this paper, the order of the leading terms will be 

written beneath them. Thus, from the first boundary condition (32), we have 

2 + [ 2 ('Y/ 'Y/
2

) + 2 .1.<2l + 3"'2.1,<3l + .. ·] ~ 'Y/t 'Y/x a~ ; - 2 ~ 2 'Y/'1' ., 'I' 

O(i) (45) 

+ 'Y/v~2) + 'Y/ 3 ""~ 3) + . . . = o 

oc~
3
) oc~

4
) 

If we decide to be accurate up to the order 0( ~
4
), all the terms appearing above 

must be retained. Furthermore, the unknowns ..p<
2
> and ..p<

3
> can be expressed 

in terms of 'YJ by making use of the other two boundary conditions. To do so in 

accordance with the desired accuracy, we must obtain ..p<
2
> valid up to the order 

0(~ 2 ) and ..p<
3
> up to 0(~). From (33) and (34) it follows that 

{- {3a + p<ol + 'YIP(!) + · · · - 2[2'YJ!f~
2
l + · · ·Jl 'Y/x 

-aa + 21/;<
2
l + 6'YJ1/Il

3
l + · · · - 7J

2
!f~!l - · · · = 0, 

and 

-{3a + P (Ol + 'YIP(!) + + 2(2'YJ1/1;
2
) + .. . ) 

+ { -aa + 21/;(
2
) + · · · -'Y/

2
1/1;;>- · · ·l'Ylx = 0. 

Collecting only the leading terms (underlined) in the above two equations, we 

get 

p<o> = {3a + O(i), 

Because of ( 40) we have 

..p<
3
l = ifp~O) = 1J-f3ax + 0( i) = if37Jx + 0( i) · 
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Hence, 

21/;(Z) = a(71- €)- f37771x + 0(€3
), 

and ( 45) becomes, upon substitution, 

E
2

77t + tX77
2

71x = tf3(77
3
77x)x + 0(€

5
). 

273 

(46) 

Equation ( 46) is a nonlinear partial differential equation not yet seen in the 

literature. To discuss it, we first ignore the right hand side which is of 0( E
4
); 

thus, 

l71t + lX71
2

71x = 0( €
4

) • (47) 

This is an equation belonging to a general class of "kinematic waves" 

71 t + V ( 71 hx = 71 t + qx = 0 ( 48.a) 

where for the present case 

V = a(77/ E)
2 

and q = t7J3/f2 
( 48.b) 

J\Iany nonlinear physical phenomena are governed by "conservation laws" 

of this type to the crudest approximation which have been thoroughly studied 

by Lighthill and Whitham (1955, I and II) with regard to flood waves and 

traffic flows. Several salient features of Eq. ( 47) may be recalled. It possesses 

straight line characteristics in the x - t plane: 

dx jdt = V(71) 

along which 77 = constant. Hence, for any given initial data 77(x, O) 710(x) 

the solution is uniquely given by 

x = ~ + V( 77o(O )t 

until the crossing of characteristics occurs. Due to the nonlinearity, crossing 

will inevitably occur for some initial disturbance, leading physically to the break

ing of waves. If discontinuous solutions, i.e., shocks or bores, are admitted, one 

can, with the aid of a suitable shock condition, solve the initial value problem 

completely. The discontinuity is, of course, the idealization of a narrow zone of 

drastic changes. Within this zone some terms of higher order may no longer be 

ignored, and a better approximation must be sought to study the shock structure 

which can then be fitted into the discontinuity. For this reason, and for the 

analysis of weak shocks which any strong shock eventually reduces to, one must 

go back to Eq . (46). 

3a. Permanent Waves. The simplest non-trivial solution of Eq. (46) is of the 

type 

71(X, t) = 71(X - Ct) = 71(~) (49) 

so that the wave profile moves at the constant speed C without change of form. 

Upon changing 

a; at ---4 -ca;a~, ajax ---4 a;a~ 
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and integrating once with respect to~' Eq. (46) is simplified to an ordinary dif

ferential equation 

!fJr/11~ = !a11
3 

- Ce
2

11 + D. 

The constant of integration can be chosen by requiring that 11~ = 0 when 11 = e. 

Hence, 

or 

11~ = (a/(311
3
)(11- e)[11

2 + €11 + l(l- 3C/a)] 

-(a/{3 11
3
)[( 11- e)(H1- 11)](11 + H2) 

(50) 

Fw. 2. Monoclinal wave of large amplitude (a= 0(•)). a). Normal casewhereH;;: - ;::~;<•·Htl 

b). Critical case. 

where 

H1 = ~e[-1 + y3(4C/a- 1)], (51) 

H2 = ~e[l + y3(4C/a - 1)) (52) 

Clearly, the value of 11 lies between e and H 1 , i.e., 

and from (50), 

if 1-I 1 > e then H 1 > 11 > e 

if l-I1 < e then l-I1 < 11 < e 

11~ < 0 

(53.a) 

(53. b) 

(54) 

implying that the surface declines monotonically with ~- The wave profiles cor

responding to (53.a) and (53.b) are obtained and shown in Fig. (2a). Since the 

profile connects two levels, the larger of the two (l-I1, e) being the upstream 

level and the smaller being the downstream level, it can be used as the shock 
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structure for a given shock strength. It also stands on its own as a possible steady 

wave profile which can properly be called the "monoclinal wave"; the name is 

suggested by a somewhat similar situation in river waves (Lighthill and Whit

ham, 1955, I) . It is well known that when the frictional effect on the river bottom 

is approximated by Chezy's formula, a steady wave profile may exist in the 

0 (1,0) 

Fro. 3. Amplitude-Wavespeed relation 

c 
a 

water flowing down a sloping channel where the governing differential equation is 

= -S (77- ho)(hl- 77)(77- H) h· > > h > H 
77< 3 h3 • 77 0 • 

77 - c 

(55) 

When 77 >he Eq. (55) behaves remarkably like Eq. (50) . 

Equation (51) is an explicit relation between the wave speed C and the height 

H1. Since I H1 - e I is the maximum amplitude, one may follow the terminology 

of Lighthill and Whitham and call this the "amplitude dispersion relation"t 

in contrast with the ordinary frequency dispersion relation of linear waves. The 

plot of H1l e and CIa is shown in Fig. ( 3) which is a parabola. Since Ht/ e has to 

be positive, only the branch Q1Q2Q3 has physical significance. It is seen that the 

smallest wave speed CI a = 113 is associated with H 1 = 0 which corresponds to a 

t It corresponds to the Rankinc-Hugoniot relations of gas dynamics. 
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bore invading a dry bed (Fig. 2b). At the front of the bore (71 = 0) the free 

sw-face (according to Eq. (50)) is normal to the bed ( 71t = oo ) . A still better 

approximation is therefore needed if one wants a truer description of the neigh

borhood of such a bore front. Nevertheless, the velocity Cc = a/ 3 is the precise 

steady velocity at which a thin sheet of oil may advance down a dry bed as will 

be shown shortly by the elementary argument of mass conservation. In dimen

sional form, we have 

* 2_rr, 2 Cc = LCc/ T = ~O!E V gi-J = ~agi-J / v. (56) 

It is also seen from Fig. ( 3) that C j a increases monotonically with I-I I/ E 

(keeping in mind that the larger of the two (I-11, E) refers to the upstream and the 

smaller to the downstream). When I-11 ,..._, E the amplitude of the monoclinal 

wave is infinitesimal and we obtain the result that 

(57) 

At the same point the slope of the amplitude dispersion cw-ve is unity as is 

easily obtained from (51). Hence, the quantity c: plays the same role as ygH 

in the classical long wave theory for an inviscid fluid.t 

The explicit solution of (50) is easily found to be 

(58 .a) 

where 

i[(I-J1- E)(E + 1-J2)]-
1 

(58.b,C) 

and 

(58.d) 

Equation (51) as obtained here after numerous approximations is also the 

exact consequence of mass conservation. Consider the case where the sw-face 

elevation changes from E( l + Z) far upstream to E far downstream (the con

jugate case of E to E(l - [ Z [) is similar) . In the frame of reference where the 

wave front is stationary, the velocity profiles at far upstream and far down

stream are ( cf. Eq. (22)) 

u_- CE
2 = aE

2
(1 + Z)

2
{y/ E(l + z) - y

2
/ 2i(l + Z)

2
} - CE

2 

(59) 

In the above we have taken into account that C and U are nondimensionalized 

with different reference scales, i.e., L / T and V(ili respectively, and that L/ T = 
E

2V(ili from Eq. (24). Since the nmss flux must be constant, we can equate the 

corresponding discharges, 

f'(l+Z) f' 
Q- = Jo (U-- Ci) dy = Q+ = Jo (U+- CE

2

) dy. (60) 

t This result checks with the infinitesimal wave theory, see Benjamin (1957, Eq. (2.4)) 
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Upon substituting (59) into the preceding equation and carrying out the in

tegration, we get 

C = !a[l + (1 + Z) + (1 + Z)
2
]. (61) 

It then follows that, 

1 + Z = ![-1 + V3(4Cia - 1)]. (62) 

In the case where the surface elevation at ~ --> - oo is E, one simply interprets 

Eqs. ( 61) and ( 62) by allowing Z to have negative values. Then I Z I represents 

the difference in descent of surface from E to E(l - I Z j). Hence, ( 1 + Z) 

can be identified with HI/£ in Eq. (51). This simple derivation, of course, fur

nishes no information on the details of the transition region. Since Eq. (62) 

concerns only with surface heights at infinities where a 1 a~ = a2 1 a~ 2 = o, it is 

not affected by the presence of surface tension had the latter been assumed to be 

significant. Furthermore, Eq. (62) holds as long as the flow is laminar, 1.e., 

it does not subject to the lin1itations of any approximation. 

3b. Similarity of the General Equation. It would certainly be desirable to 

solve the full partial differential equation (46) exactly, since its solution would 

be valuable especially in studying the decay of an initially strong disturbance. 

The possibility of having similarity solutions is pointed out here to prepare for 

future research. As can be shown readily, Eq. (46) is invariant under the trans

formation 

X--> ')'X, t--> th. (63) 

Hence, we can take 

7J(X, t) xfU) = FCn l t (64) 

where 

xt (65) 

Differentiating, we have 

7Jz = J + t"J', ··"' " 7Jzz = 2tJ + ttJ (66)t 

It follows that upon substitution Eq. ( 46) may be written as 

EY + aJ\J + t"/) = f3[lCJ + rJ') 2 + tt"/(2/ + tf")], (67) 

which is a nonlinear ordinary differential equation. For any boundary value 

problem in which the boundary conditions are also similar, i.e., they are invariant 

under the same transformation (63), exact integration can be done at least nu

merically. 

3c. Further Remarks About the "Conservation Law" (47). General nonsteady 

solution of Eq. (46) is not easy to find: but, as has been pointed out earlier, the 

t Along any hyperbolic path xt = 1 = constant, the slope 1/z remains the same. 
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more approximate equation, obtained by omitting the right hand side of Eq. 

(46), lends itself to analytical investigations. We shall mention several general 

facts about its discontinuous solutions which are of relevance here. 

For any conservation law a shock condition can be derived 

[q] = C[11] (68) 

connecting the jumps ( [ ]) in 11 and q, and the shock speed C. Hence, in the pres

ent case, 

(09) 

where the subscripts "-" and "+" refer respectively to the upstream and down

stream side of the shock. This relation is completely equivalent to Eq. (61), sug

gesting that (47) and (68) represent the simple fact of mass conservation. It is 

well known that a question of uniqueness is associated with the conservation 

laws (see (e.g.) Lax (1957), Courant and Hilbert (1963), or Jeffrey and Taniuti 

(1964)), i.e., for the same prescribed initial data there exist many discontinuous 

(weak) solutions. t The correct choice can usually be decided by physical con

siderations. For example, in inviscid gas dynamics involving shocks this is 

achieved by requiring the entropy to increase from the upstream to the down

stream side of the shock, whereas in water wave theory involving bores or hy

draulic jumps the energy ;,;hould deerease across the shock. Alternatively, one 

can obtain the correct weak solution by retaining viscosity terms (generally of 

higher order derivatives) and finally taking the limit of small viscosity (Lighthill 

(1956)) . In the present example the corresponding "viscosity" term is the one 

on the right hand side of Eq. (46), and the monoclinal solution is obtained with

out neglecting it. Since the profile of the monoclinal wave, representing also the 

shock structure, always changes from a higher elevation to a lower one, we con

clude that across the discontinuity in the weak solution of Eq. (47) we must 

have 

17- > 17+. (70) 

This provides a further condition to render the problem determinate. The same 

conclusion can also be obtained by imposing a mathematical condition that a 

discontinuity is permissible if it indeed represents the breaking of a continuous 

solution (Courant and Hilbert (1962) p. 151), i.e., each point of the shock 

curve in the x - t plane is crossed by two forward-drawn characteristics, one 

from each side of the shock. This implies analytically that 

V_>C>V+. (71) 

It is easy to see that the shock speed as deduced from the jump condition Eq. 

(69) satisfies this condition if (70) holds. 

t Precisely the same equation (47) is used in Jeffrey and Taniuti to demonstrate this 

point (p. 119). 
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4. Medium Amplitude Waves, a = 0 (£
2
). In this case the leading terms, e.g., 

(e
2

111), in Eq. (45) are of the order O(e
4
). If we want the accuracy up to O(e

5
) 

only, then the terms kept in the analysis of §3 are more than adequate. Thus, 

we may take the result of Eq. (4;6) and simplify it by noting that 

71 = e +a, 

and obtain instead 

Letting 

we obtain 

(72) 

A a+ e/ 2 and l = 2at/e (73) 

(74) 

which is the well-known Burgers' equation. Its equally well-known solution for 

the initial value problem (Hopf ( 1950) Cole ( 1951)) has been used extensively 

by Lighthill (1956) to study viscosity effects in sound waves of finite amplitude. 

In the absence of such a general solution of Eq. ( 46), the Hopf-Cole solution is 

useful to analyze the decay of large amplitude waves when the assumption 

a = 0( e
2

) is satisfied, which is the eventual situation of most waves. 

The permanent wave solution for (72), corresponding to a = 0, at a~ = 0, 

is well known to be of the monoclinal type 

a/ e = Z/[1 + exp [(3a/{Je)Z~], X- Ct, (75) 

where 

Z = C/a- 1. (76) 

Hence, if C/ a - 1 z 0, the surface profile lowers from (' 0 ~z>) at upstream to 

(«t~ 1 z 1 ) at downstream (Fig. (4)). The amplitude variation with wave speed 

is now given by Eq. (76) which represents a straight line. The slope of the "am

plitude dispersion cmve" (Z vs. C / a) is unity. Because of the prerequisite 

a= O(e
2
), only the portion of the dispersion cmve lying within a narrow belt 

is of acceptable validity. Thus, while the dispersion curve of §3.a is the exact 

one, Eq. (76) is but an approximation near Z = 0 by the straight tangent there. 

The width of the region of relatively rapid changes is measmed by 

({Je/ 3a) (1/ l Z 1). (77) 

Thus, the wave front is steeper for a large difference in elevations, or a higher 

viscosity (small e), or a larger inclination (8 ~ 1rj 2, {J/a ~ 0). 

An important transient property of Burgers' equation may be mentioned 

(Cole, 1951), that the diffusion term on the right hand side smoothes out even 

the strongest initial discontinuity although the nonlinear convection term tends 

to steepen it. In particular, an initial step in A, A(x, O) = +AoH( -x), is 
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gradually smoothed out to the steady state solution of (75) like 

exp (-A~t/16 K). (78) 

where K is the "diffusivity" 

(79) 

In the present case, if the initial surface profile is a step function of the height 

Ao = fz, it will smooth out to the shape described by (75) with the deviation 

dying out with time like 

(80) 

FIG. 4. Monoclinal wave of medium amplitude (a = 0(e2)) where H <!-:,~x< ... <t+Z>l · 

where 

(81) 

can be called the relaxation time. Thus, the decay is faster for stronger initial 

discontinuity (larger Ao) and higher viscosity (or smaller depth, smaller f). 

The decay rate also depends on the angle of inclination 

Ta{3/ ol = cos 9/sin
2 e 

thus, 

To ---+ oo, e ---+ 0 and To ---+ 0, e ---+ 1r /2. (82) 

5. Small Amplitude Waves a = O(r.
3
). I is well known in the theory of long 

gravity waves in a perfect fluid that in the range of a = 0(f
3
), solitary waves 

(non-periodic) and cnoidal waves (periodic) exist; and, in developing a theory 
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for them, better approximations must be made than in the large amplitude case. 

To search for possible waves in the present case of high viscosity, we write down 

the kinematic boundary condition again, 

t
2
a1 + ax { a;

2 

[ 1 - (; )] + 2TJtfl<
2
l + 3rN<

3
l + · · ·} 

oa) O(t)
3

{ oa) O(t
6

) O(d O(d } 
(83) 

O(l) 0(;) O(l) 

in which tfl<
3
l and 1/1(

4
) can be eliminated through (40) and (43). Only terms of 

order up to 0( t 7
) will be kept. We will also attempt to transform (83) to a single 

equation for a; hence, we must express t/1<
2
l, t/1<

3
l, and t/1<

4
l in terms of a valid up 

to the order O(t
5
), O(e

4
) and O(t

3
), respectively. From the boundary conditions 

(33) and (34), it follows that 

ax{ -(3a + p(O) + • · · -2(2TJtfl~ 2
) + · · ·ll 

O(t
3
){ O(t

3
) O(t

4
) } 

and 

[ -(3a + p <Ol + TJP(l) + 
-- -- --

+ 2(2TJtfl~ 2
) + 0 0 0 )] 

0( e
4

) 

0(/) 

+ ax( -aa + 21/1(
2
) + 0 0 0

) = 0 

O(t
3

) (O(t3
) + ... 

(84) 

(85) 

Collecting the underlined terms which are of major importance, we have from 

(84) 

21/1(
2

) = aa + TJ 2 1/I~; l - 6TJ1/1<
3
l - 12TJ

2
1/1<

4
l + 0( e6

) 

= aa + 3TJ 2
1/I~;l- TJP;o) + O(t

6
). 

But from (85) and (41) 

(86) 

p <ol = (3a- TJPul - 4TJ!f;
2
l + O(t5

) = (3a- 2TJ1/1;2l + O(t5
). (87) 

Hence, by combining (86) and (87), we obtain 

and 

p<Ol = (3a - aeax + 0( t 5
) 

2if'
2

) = aa + 3TJ 2 1/I~; l - TJl.Ba - 2TJ1/1;
2
l]x + 0( t 6

) 

= aa - f3wx + -frt
2
aaxx + 0( e

6
) 

(88) 

(89) 
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Substituting into (83), we finally obtain 

(90) 

It is seen that this equation differs from the Burgers' equation (72) by a term 

of third order derivative. However, it must be emphasized that Eq. (72) is not 

merely the approximation of Eq. (90) by omitting af
4
axxx; since this term is of 

higher order than all the terms kept in (72) whereas it is of the same order as 

the nonlinear term kept in (90) (i.e., cnaax = 0(f
7
)). This feature is already 

present in the classical nonlinear shallow water wave theory, where in the case of 

smaller amplitude (small but nonlinear effect still important) one has to bring 

m a higher order derivative. If the slope of the bed is small, e.g., 

a = 0(1), (91) 

Eq. (90) can be approximated as 

(92) 

which is the heat equation for a moving medium. 

The existence of permanent waves of the type 

a = a(~) = a(x - Ct), ~ = X- Ct (93) 

will certainly be of great interest. Changing aj at to -Ca j a~ and ajax to aj a~ and 

integrating with respect to~ once, from (90) we get 

(94) 

We have again taken the integration constant to be zero so that a< a« = 0 

when a= 0. 

The appearance of a first derivative (negative "damping") in Eq. (94) now 

makes analytic solution infeasible in general, and we shall resort to the topologi

cal method on the phase plane (see e.g., Davis (1960) ). Defining, 

a/ f = O", 'Y = U e and s = O"-y 

we may rewrite Eq. (94) as 

ds ({3/3a)s = [c/ + (1 - C/ a)O"] ({3/3a)s - (]"((]" - Z) 

s s 

with 

Z = (C/a) - 1. 

(95) 

(96) 

(97) 

We shall first assume Z to be positive. Two singular points, I and I I, appear in 

the phase plane ( (]", s) as shown in Fig. ( 5) : 

I:((]" = 0, s = 0), II:((]" = Z, s = O) (98) 

Following standard procedures, one finds point I to be a saddle point. Three 
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different types of singular behavior may be expected near II, according as: 

> 0 Unstable node 

(!1/3a)
2 

- 4Z = 0 Unstable degenerate node 

< 0 Unstable spiral point. 

(99.a) 

(99.b) 

(99.c) 

Detailed study shows that the solution curve connecting these two singular 

points exists and is shown in Fig. (5a), (5b) and (5c). Clearly, I(O, 0) corre

sponds to the surface level far downstream and II(Z, 0) to the far upstream. 

The various profiles are drawn qualitatively in Fig. (6a) and (6b). While (99.a 

and 99.b) again give monoclinal waves, (99.c) now gives a profile with some 

undulations in the upstream which may be called the "polyclinical wave." The 

waviness becomes more and more pronounced towards the wave front which 

finally makes a decline to the downstream level. 

The case of Z = (C/a) - 1 < 0 is similar. The singular points arc now lo

cated at 

I: (u = - I Z I, s = 0) and II: (u = 0, s = 0), (100 ) 

andhencetheyareshiftedtothe leftbyadistance ICC/a) -11 andtheanaly

sis can be performed just as before. Physically, the surface elevation changes 

from ~ at far upstream to ~o - I Z I) at far downstream. While the down

stream point (I) is again a saddle, the upstream point (II) has various singular 

behavior according to (99.a, band c) if Z is replaced by I Z I . In summary, we 

have 

monoclinal wave ~0 (lOLa) 

if C11/3a)
2 

- 4 I z I 

polyclinal wave <0 (lOl.b) 

The "amplitude dispersion curve", Z vs C/a, is again a straight line (cf. Eq. 

(97) ), same as the medium amplitude case. 

Equation ( 101) also provides the condition whether corrugations may or 

may not occur on the surface of a highly viscous fluid flowing down an inclined 

plane. The criterion is that corrugations do not occur if 

(!1/3a)
2 

- 4 I Z I = t Cot
2 

0 - 4 I Z I ~ 0, 

o ~ tan-l (1/6v[z-D 
(102) 

In general, the limiting angle can then be close to 'IT' / 2 because of the smallness of 

z. 
Of particular interest is the case of vertical wall where 11 = 0 and a = 1. 

Equation (94) reduces to 

( 103.a) 



FIG. 5. Phase plane t rajectories for small amplitude waves (a = O(e3)). a). Node to sad

dle. b). Degenerate node to saddle. c). Spiral point to saddle. 

284 
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or, upon integration, 

(u'Y/ = 2[-!u + HC- 1)u
2

- A1u + A2] 

= -§-(u1 - u) (u - u2) (u - ua), <T1 > 0"2 > ua 
(103.b) 

in which we have kept the integration constants A1 and A 2 • With minor differ

ence in the coefficients this is just the well known cnoidal wave equation. Its 

periodic solution, cnoidal wave, can be expressed as follows, 

(104.a) 

with 

( 104.b) 

FIG. 6. Small amplitude wave profiles where Ho.-m~x<•·•<l+Zll. a). Monoclinal wave. b). 
' tnlO 

Polyclinal wave. 

and the wavelength 

( 104.c) 

Experiments regarding wave formation in a vertical sheet of liquid exist (see 

Binnie (1957) for a survey). Since they all indicate fairly large amplitudes, the 

present nonlinear theory may be of some relevance. However, due to the lack 

of measurements of wave amplitudes direct comparison of theory and experi

ments has not been made. 

A cnoidal wave of infinite wavelength is the solitary wave which corresponds 

to the solution of Eq. (103) with A1 = A2 = 0. The amplitude is given by the 

formula 

(105) 

where uo is the maximum value of u. Hence the highest elevation above the level 
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at infinity is related to the w:wespeed as, 

C = 1 + i-amax/ E. (106) 

Finally, it may be remarked that in the case of {J ~ 0 the effect of non-zero 

integration constants would be to lower or to heighten the surface levels at in

finity and no significantly new feature is found. 
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Appendix I. vVe present here an argument which shows that the choice of 

the time scale is the logical one. As is briefly explained near the end of §2 and 

later demonstrated in §§3, 4 and 5, the approximate governing equation is ob

tained from the three boundary conditions (15, 16, 17) on the free surface. An 

observation of these equations indicates that the time dependence appears ex

plicitly in Eq. (15) only through the term T7Jt • In order that non-trivial dynami

cal motion may be treated, one must choose the Strouhal number r such that 

this term is equally important as the other first order terms. Expressing (15) in 

terms of expansions we have 

T7Jt + f !ai[1 - (a/ E)
2
] + 27}1/t<

2
l + · · ·)7Jx + 7} 2

1/t ~
2
l + 7}<

3
>1/t; + · · · = 0. 

In view of (44), it is now clear that we should taker = 0(E
2
). Without loss of 

generality Eq. (26) may be adopted from which the time scale (Eq. (25)) is 

derived. 

Appendix II. De1·ivation of Recursive Relations. By differentiating the senes 

(36), the following expressions are obtained: 

Yty = L o yn(n + 1)1/t<n+O, Ytyy = Lo yn(n + 1)(n + 2)1/ttn+2l) 
(a) 

YtYYY = Lo yn(n + 1) (n + 2)(n + 3)1/t(n+al 

with 1/t<o> = 1/t(l) = 0. Written in terms of 1/t, the momentum equations are 

i lf!yt + E[ ( u + Yty) Ytxy - Ytx( uy + Ytyy) ] = -p, + Ytyyy + Ytyxx (b) 

and 

(c) 

Substituting the series (36) and (37) in (b) and making use of (a), we have 

E3LYn(n + 1)1/t;n+ll + E(aEy- !ay2) Lyn(n + 1 ) 1/t ~n+l) 

+ E[L yn(n + 1)1/t(n+l)][L yn(n + 1)1/t ~n+ll] - E(aE - ay) L ynlf!;n) 
(d) 

E[L ynlf!;n)][ L yn(n + 1) (n + 2)1/t(n+2)] 

- L y"p;n) + L yn(n + 1)[1/t;;+I) + (n + 2)(n + 3)1/t<n+3l]. 
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Since this must hold for arbitrary 0 ~ y ~ 71, the coefficient of each power of y 

vanishes individually. Hence, from 

(e) 

and 

y
1 :2f

3.J;i2
l + p~ 1 l = 21/;~!l + 241/;<

4
l, etc. (f) 

Eq. (c) can likewise be written in series as follows, 

(L y".j;~~) + f(afy - !ay
2

) L y"y;~;) + f[L y"(n + l)y;<n+l))[L y"y;~;l] 

f[L y".j;~")][Ly"(n + 1)1/;~nHl] (g) 

from which, 

(h) 

and 

y
1
:0 = 2p<

2
l + 61/;;3l, etc. (i) 

Equations (40)-(44) follow immediately from (e), (f), (h) and (i). 

REFERENCES 

BENJAMIN, T. B., (1957), Wave formation in lamin ar flow down an inclined plane. J. Fluid 

Mech. 2, 554-574. 

BENJAMIN, T. B., (1962), The solitary wave on a stream with an arbitrary distribution of 

vorticity. J. Fluid Mech. 12, 97-116. 

BINNIE, A.M., (1957), Experiments on the onset of wave formation on a film of water flow

ing down a vertical plane. J. Fluid Mech. 2, 551-553. 

BoRNS, J. C., (1953), Long waves in running water, (Appendix by M. J. Lighthill). Proc. 

Camb. Philo. Soc. 49, 695-706. 

CoLE, J. D., (1951), On a quasi-linear parabolic equation occurring in aerodynamics. Q. 

Appl. Math. 9, 225-236. 

CouRANT, R. AND D. HILBERT, (1962), Methods of mathematical physics, II, Interscience, 

New York. 

DAVIS, H. T., (1960), Introduction to nonlinear differential and integral equations. Dover. 

DRESSLER, R. F., (1949), Mathematical solution of the problem of roll-waves in inclined 

open-channels. Comm. Pure Appl. Math. 2, 149-194. 

HoPF, E ., (1950), The partial differential equation 1t t + uux = p.Uxx . Comm. Pur Appl. 

Math. 3, 201-230. 

HUNT, J. N., (1055), Gravity waves in flowing water. Proc. Roy. Soc . London, 231A, 496-

504. 

JEFFREY, A. AND TANIUTl, T., (1964), Non-linear wave propagation, Academic Press, New 

York. 

KELLER, J. B., (1948), The solitary and periodic waves in shallow water. Comm. Pure Appl. 

Math. 1, 323-330. 

LAx, P. D., (1957, Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math. 

10, 537-566. 

LIGH~'HILL, M. J., (1956), Viscosity effects in sound waves of finite amplitude in Survey in 

Mechanics ed. G. K. Batchelor and R. M. Davies, Cambridge. 

LIGHTHILL, M. J. AND WHITHAM, G. n., (1955), On kinematic waves, I. Flood movement in 



288 C. C. MEI 

long waves, II. Theory of traffic flow on long crowded roads . Proc. Roy Soc. Lon

don, 229A, 281-345. 

LIN, C. C. AND CLARK, JR., ALFRED, (1959), On the theory of shallow water waves. Tsing 

Hua J. of Chinese Studies, 55-61. 

LoNGUET-HIGGINS, (1958), Review on Water waves by J. J . Stoker, J. Fluid Mech. 4, 435-

439. 

STOKER, J. J. , (1957), Water waves, Interscience, New York. 

URSELL, F., (1953), The long wave paradox in the theory of gravity waves. Proc. Carob. 

Philo. Soc. 49, 685-694. 

WEHAUSEN, J. V. AND LAITONE, E. V., (1960), Surface waves in Handhuch der Physik. 

Springer-Verlag. 311-758. 

YIH, C. S., (1954), Stability of parallel laminar flow with a free surface. Proc. 2nd U. S. 

Nat'l. Congr. Appl. Mech., 623-628. 

YIH, C. S., (1963), Stability of liquid flow down an inclined plane. Phys . Fluids 6, 321-334. 

DEPARTMENT OF CIVIL ENGINEERING 

MASSACHUSETTS lNSTITU'rE OF TECHNOLOGY 

CAMBRIDGE, MASSACHUSET'rS 

(Received July 9, 1965) 



DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS 

ISSUED UNDER 

CONTRACT Nonr-220(35) 

(Single copy unless otherwise specified) 

Chief of Naval Research 
Department of the Navy 
Washington 25, D. C. 
Attn: Codes 438 (3) 

461 

463 

466 

Commanding Officer 

Office of Naval Research 
Branch Office 

495 Summer Street 
Boston 10, Massachusetts 

Commanding Officer 
Office of Naval Research 
Branch Office 

207 West 24th Street 

New York 11, New York 

Commanding Officer 

Office of Naval Research 

Branch Office 

1030 East Green Street 

Pasadena, California 

Commanding Officer 

Office of Naval Research 
Branch Office 
1076 Mission Street 

San Francisco, California 94103 

Commanding Officer 

Office of Naval Research 

Branch Office 

Box 39, Navy No. 100 

Fleet Post Office 

New York, New York (25) 

Director 

Naval Research Laboratory 
Washington 25, D. C. 

Attn: Code 2027 (6) 

Chief, Bureau of Naval Weapons 
Department of the Navy 

Washington 25, D. C. 

Attn: Codes RUAW -r 

RRRE 
RAAD 

RAAD-222 
DIS-42 

Commander 
U. S. Naval Ordnance Test Station 
China Lake, California 

Attn: Code 7 53 

Chief, Bureau of Ships 

Department of the Navy 
Washington 25, D. C. 

Attn: Codes 310 

312 

335 
420 

421 

440 
442 

449 

Chief, Bureau of Yards and Docks 

Department of the Navy 

Washington 25, D. C. 

Attn: Code D-400 

Commanding Officer and Director 

David Taylor Model Basin 
Washington 7, D. C. 

Attn: Codes 108 

Commander 

142 

500 

513 
520 

525 

526 

526A 
530 

533 

580 

585 

589 
591 

591A 

700 

U. S. Naval Ordnance Test Station 
Pasadena Annex 

32 02 E. Foothill Blvd. 
Pasadena 8, California 

Attn: Code P-508 

Commander 

Planning Department 

Portsmouth Naval Shipyard 
Portsmouth, N-ew Hampshire 



Commander 

Planning Department 

Boston !'faval Shipyard 
Boston 29, Massachusetts 

Commander 
Planning Department 
Pearl Harbor Naval Shipyard 

Navy No. 128, Fleet Post Office 

San Francisco, California 

Commander 

Planning Department 

San Francisco Naval Shipyard 

San Francisco 24, California 

Commander 
Planning Department 

Mare Island Naval Shipyard 

Vallejo, California 

Commander 

Planning Department 

New York Naval Shipyard 
Brooklyn 1, New York 

Commander 

Planning Department 

Puget Sound Naval Shipyard 
Bremerton, Washington 

Commander 

Planning Department 

Philadelphia Naval Shipyard 
U. S. Naval Base 

Philadelphia 12, Pennsylvania 

Commander 

Planning Department 

Norfolk Naval Shipyard 

Portsmouth, Virginia 

Commander 
Planning Department 

Charleston Naval Shipyard 

U. S. Naval Base 
Charles ton, South Carolina 

Commander 

Planning Department 
Long Beach Naval Shipyard 

Long Beach 2, California 

Commander 
Planning Department 

U . S. Naval Weapons Laboratory 

Dahlgren, Virginia 

Commander 
U . S. Naval Ordnance Laboratory 

White Oak, Maryland 

2 

Dr. A. V. Hershey 
Computation and Exterior 

Ballistics Laboratory 
U. S. Naval Weapons Laboratory 
Dahlgren, Virginia 

Superintendent 
U. S. Naval Academy 

Annapolis, Maryland 

Attn: Library 

Superintendent 
U. S. Naval Postgraduate School 

Monterey, California 

Commandant 
U. S. Coast Guard 

1300 E Street, N. W. 
Washington, D. C. 

Secretary Ship Structure Committee 

U. S. Coast Guard Headquarters 
1300 E Street, N. W. 

Washington, D. C. 

Commander 

Military Sea Transportation Service 

Department of the Navy 

Washington 25, D. C. 

U. S. Maritime Administration 

GAO Building 

441 G Street, N. W. 
Washington, D. C. 

Attn: Division of Ship Design 

Division of Research 

Superintendent 

U. S. Merchant Marine Academy 

Kings Point, Long Island, New York 

Attn: Capt. L. S. McCready 
(Department of Engineering) 

Commanding Officer and Director 

U. S. Navy Mine Defense Laboratory 

Panama City, Florida 

Commanding Officer 
NROTC and Naval Administrative 

Massachusetts Institute of Technology 

Cambridge 39, Massachusetts 

U. S. Army Transportation Research 

and Development Command 
Fort Eustis, Virginia 

Attn: Marine Transport Division 

Mr. J. B. P3.rkinson 

National Aeronautics and 

Space Administration 
1512 H Street, N. W. 

Washington 25, D. C. 



Director 

Langley Research Center 

Langley Station 
Hampton, Virginia 

Attn: Mr. I. E. Garrick 

Mr. D. J. Marten 

Director Engineering Science Division 

National Science Foundation 
1951 ConstitutionAvenue, N. W. 

Washington 25, D. C. 

Director 

National Bureau of Standards 

Washington 25, D. C. 

Attn: Fluid Mechanics Division 

(Dr. G. B. Schubauer) 

Dr. G. H. Keulegan 

Dr. J. M. Franklin 

Defense Documentation Center 

Cameron Station 

Alexandria, Virginia (20) 

Scientific and Technology Division 

Library of Congress 

Washington, D. C. 20540 

California Institute of Technology 

Pasadena 4, California 

Attn: Professor M. S. Plesset 

Professor T. Y. Wu 

Professor A. J. Acosta 

University of California 

Department of Engineering 

Los Angeles 24, California 

Attn: Dr. A. Powell 

Director 

Scripps Institute of Oceanography 

University of California 

La Jolla, California 

Professor M. L. Albertson 

Department of Civil Engineering 

Colorado A and M College 

Fort Collins, Colorado 

Professor J. E. Cernak 

Department of Civil Engineering 

Colorado State University 

Fort Collins, Colorado 

Professor W. R. Sears 

Graduate School of 

Aeronautical Engineering 

Cornell University 

Ithaca, New York 

State University of Iowa 

Iowa Institute of Hydraulic Research 

Iowa City, Iowa 

Attn: Dr. H. Rouse 

Dr. L. Landweber 

3 

Massachusetts Institute of Technology 

Cambridge 39, Massachusetts 

Attn: D epartment of Naval Architecture 

and Marine Engineering 

Professor A. T. Ippen 

Harvard University 
Cambridge 38, Massachusetts 

Attn: Professor G. Birkhoff 
(Department of Mathematics) 
Professor G. F. Carrier 
(Department of Mathematics) 

University of Michigan 

Ann Arbor, Michigan 

Attn: Professor R. B. Couch 

(Department of Naval Architecture) 

Professor W. W. Willmarth 

(Department of Aeronautical 

Engineering) 

Dr. L. G. Straub, Director 

St. Anthony Falls Hydraulic Laboratory 

University of Minnesota 

Minneapolis 14, Minnesota 

Attn: Mr. J. N. Wetzel 
Professor B. Silberman 

Professor J. J. Foody 

Engineering Department 

New York State University 

Maritime College 

Fort Schylyer, New York 

New York University 

Institute of Mathematical Sciences 

25 Waverly Place 

New York 3, New York 

Attn: Professor J. Keller 

Professor J. J. Stoker 

The Johns Hopkins University 

Department of Mechanical Engineering 

Baltimore 18, Maryland 

Attn: Professor S. Corrsin 

Professor 0. M. Phillips (2) 

Massachusetts Institute of Technology 

Department of Naval Architecture and 

Marine Engineering 

Cambridge 39, Massachusetts 

Attn: Professor M. A. Abkowitz 

Dr. G. F. Wislicenus 

Ordnance Research Laboratory 

Pennsylvania State University 

University Park, Pennsylvania 

Attn: Dr. M. Sevik 

Professor R. C. DiPrima 

Department of Mathematics 

Rensselaer Polytechnic Institute 

Troy, New York 



Director 

Woods Hole Oceanographic Institute 
Woods Hole, Massachusetts 

Stevens Institute of Technology 
Davidson Laboratory 
Castle Point Station 
Hoboken, New Jersey 
Attn: Mr. D. Savitsky 

Mr. J. P. Breslin 
Mr. C. J. Henry 
Mr. S. Tsakonas 

Webb Institute of Naval Architecture 
Crescent Beach Road 

Glen Cove, New York 
Attn: Professor E. V. Lewis 

Technical Library 

Executive Director 
Air Force Office of Scientific Research 
Washington 25, D. C. 
Attn: Mechanics Branch 

Commander 

Wright Air Development Division 
Aircraft Laboratory 
Wright-Patterson Air Force Base, Ohio 
Attn: Mr. W. Mykytow, 

Dynamics Branch 

Cornell Aeronautical Laboratory 
4455 Genesee Street 
Buffalo, New York 

Attn: Mr. R. White 

Massachusetts Institute of Technology 
Fluid Dynamics Research Laboratory 
Cambridge 39, Massachusetts 
Attn: Professor H. Ashley 

Professor M. Landahl 
Professor J. Dugundji 

Hamburgische Schiffbau-Versuchsanstalt 
Bramfelder Strasse 164 
Hamburg 33, Germany 
Attn: Dr. H. Schwanecke 

Dr. H. W. Lerbs 

Institut fur Schiffbau der 
Universitat Hamburg 
Berliner Tor 21 
Hamburg 1, Germany 
Attn: Professor G. P. Weinblum 

Max-Planck Institut fur Stromungsfors
chung Bottingerstrasse 6/8 
Gottingen, Germany 
Attn: Dr. H. Reichardt 

4 

Hydro-og Aerodynamisk Laboratorium 
Lyngby, Denmark 
Attn: Professor Carl Prohaska 

Skipsmodelltanken 
Trondheim, Norway 
Attn: Professor J. K. Lunde 

Versuchsanstalt fur Wasserbau and 
Schiffbau 

Schleuseninsel im Tiergarten 
Berlin, Germany 

Attn: Dr. S. Schuster, Director 
Dr. Grosse 

Technische Hogeschool 
Institut voor Toegepaste Wiskunde 
Julianalaan 132 
Delft, Netherlands 
Attn: Professor R. Timman 

Bureau D'Analyse et de Recherche 
Appliquees 
47 Avenue Victor Bresson 
Is sy- Les -Moulineaux 
Seine, France 
Attn: Professor Siestrunck 

Netherlands Ship Model Basin 
Wageningen, The Netherlands 

Attn: Dr. Ir. J. D. van Manen 

National Physical Laboratory 
Teddington, Middlesex, England 
Attn: Mr. A. Silverleaf, 

Superintendent Ship Division 
Head, Aerodynamics Division 

Head, Aerodynamics Department 
Royal Aircraft Establishment 
Farnborough, Rants, England 

Attn: Mr. M. 0. W. Wolfe 

Dr. S. F. Hoerner 
148 Busteed Drive 
Midland Park, New Jersey 

Boeing Airplane Company 
Seattle Division 
Seattle, Washington 
Attn: Mr. M. J. Turner 

Electric Boat Division 
General Dynamics Corporation 
Groton, Connecticut 
Attn: Mr. Robert McCandliss 

General Applied Sciences Labs. , Inc. 
Merrick and Stewart Avenues 
Westbury, Long Island, New York 

Gibbs and Cox, Inc. 

Technical Information Control Section 
21 West Street 
New York, N. Y. 10006 



Lockheed Aircraft Corporation 
Missiles and Space Division 
Palo Alto, California 

Attn: R. W . Kermeen 

Grumman Aircraft Engineering Corp. 
Bethpage, Long Island, New York 
Attn: Mr. E. Baird 

Mr. E . Bower 
Mr. W. P. Carl 

Midwest Research Institute 
425 Volker Blvd. 

Kansas City 10 Missouri 
Attn: Mr. Z eydel 

Director, Department of Mechanical 
Sciences 

Southwest Research Institute 
8500 Culebra Road 

San Antonio 6, Texas 

Attn: Dr. H. N. Abramson 

Mr. G. Ransleben 
Editor, Applied Mechanics 
Review 

Convair 

A Division of General Dynamics 
San Diego, California 
Attn: Mr. R. H. Oversmith 

Mr. H. T. Brooke 

Hughes Tool Company 
Aircraft Division 

Culver City, California 

Attn: Mr. M. S. Harned 

Hydronautics, Incorporated 
Pindell School Road 
Howard County 

Laurel, Maryland 

Attn: Mr. Phillip Eisenberg 

Rand Development Corporation 
13600 Deise Avenue 
Cleveland l 0, Ohio 

Attn: Dr. A. S. Iberall 

U. S. Rubber Company 

Research and Development Department 
Wayne, New Jersey 

Attn: Mr. L. M. White 

Technical Research Group, Inc. 
Route 110 

Melville, New York, 11749 
Attn: Mr. Jack Kotik 

Mr. C. Wigley 
Flat l 02 

6-9 Charterhouse Square 
London, E. C. l, England 

5 

AVCO Corporation 

Lycoming Division 
1701 K Street, N. W. 
Apt. No. 904 
Washington, D. C. 
Attn: Mr. T. A. Duncan 

Mr. J. G. Baker 
Baker Manufacturing Company 
Evansville, Wisconsin 

Curtiss-Wright Corporation Research 

Division 

Turbomachinery Division 
Quehanna, Pennsylvania 

Attn: Mr. George H. Pedersen 

Dr. Blaine R. Parkin 

General Dynamics/ Convair 
Plant 71 P. 0. 1128 

San Diego, CaUfornia 

The Boeing Company 
Aero-Space Division 

Seattle 24, Washington 
Attn: Mr. R. E. Bateman 

Internal Mail Station 46-74 

Lockheed Aircraft Corporation 
California Division 
Hydrodynamics Research 
Burbank, California 

Attn: Mr. Bill East 

National Research Council 

Montreal Road 

Ottawa 2, Canada 

Attn: Mr. E. S. Turner 

The Rand Corporation 

1700 Main Street 

Santa Monica, California 
Attn: Technical Library 

Stanford University 

Department of Civil Engineering 
Stanford, California 

Attn: Dr. Byrne Perry 
Dr. E. Y. Hsu 

Dr. Hirsh Cohen 

IBM Research Center 

P. 0. Box 218 

Yorktown Heights, New York 

Mr. David Wellinger 

Hydrofoil Projects 

Radio Corporation of America 
Burlington, Massachusetts 

Food Machinery Corporation 
P. 0. Box 367 

San Jose, Ca~ifornia 

Attn: Mr. G. Tedrew 



Dr. T. R. Goodman 
Oceanics, Inc. 

Technical Industrial Park 
Plainview, Long Island, New York 

Commanding Officer 
Office of Naval Research 
Branch Office 
219 S. Dearborn Street 

Chicago 1, Illinois 6 06 04 

University of Colorado 

Aerospance Engineering Sciences 
Boulder, Colorado 

Attn: Professor M. S. Uberoi 

The Pennsylvania State University 
Department of Aeronautical 

Engineering 
Ordnance Research Laboratory 

P. 0. Box 30 
State College, Pennsylvania 

Attn: Professor J. William Holl 

Institut fur Schiffbau der 

Universitat Hamburg 

Lammersieth 90 
2 Hamburg 33, Germany 

Attn: Dr. 0. Grim 

Technische Hogeschool 

Laboratorium voor Scheepsbounkunde 

Mekelweg 2, Delft, The Netherlands 
Attn: Professor Ir. J. Gerritsma 

Dr. I. S. Pearsall 
National Enginee ring Laboratory 

Glasgow, Scotland 

Prof. Jacques Dodu 
Maitre de Conferences a la Faculte 

d es Sciences 
Laboratoires de Mecanique des Fluides 

44-46, Avenue Felix-Viallet 

Grenoble (Isere), France 

Dr. Karlo K. Mustonen 

Head - Documents Division 

Utah State University 
Logan, Utah 84321 

Dr. James W. Daily 
Department of Engineering Mechanics 
College of Engineering 

The University of Michigan 
Ann Arbor, Michigan, 48104 

6 

The Transportation Technical Research 
Institute 

Investigation Office Ship Research Institute 
700 Shinkawa, Mitaka 
Tokyo, Japan 


