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Nonlinear Growth of the m=l Tearing Mode 

B. v. Waddell anq· M. N. Rosenbluth 
The Institute for Advanced Study, .Princeton, New Jersey 08540 

D. A. Monticello and R. B. White· 
Princeton University, Plasma Physics Laboratory 

· Princeton, New Jersey 08540 

ABSTRACT 

Numerical results are presented for the nonlinear· 

evolution of the tearing mode with peloidal mode number 

one. Nonlinearly, the mode continues to grow exponentially 

at approximately the linear growth· rate until it flattens 

the toroidal current inside the singular surface and ip-

creases the safety factor tp unity at the plasma center. 

The hypothesis tpat the mode causes the internal disruption 

in tokamaks is supported b~: the fact that. the time scale 

for the process agrees with experiment. 
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When the safety factor q is less than one at the plasma 

center, the fluctuations in the x-ray intensity from the ST 

tokamak shows a characteristic sawtooth behavi0r corresponding 

to internal (or minor) disruptions. The characteristics of the 

fluctuations as reported in reference 1 are: 

a) At the plasma center the rise time of the saw-

tooth is approximately 1.5 msec., while the 

decay or disruption time is.only about 0.03 msec. 

b) The disruption is preceded by m = 1 oscillations 

with a growth time of 0.1 m~ec. 

c) Outside the .q = 1 singular surface, which is 

located at a radius of. 2 centimeters, the saw-

tooth is reversed, i.e., the.x-ray intensity 

rises abruptly and decays slowly. 

Employing the parameters specified in reference 2 , one 

finds that the time for the current to increase by 10% at the 

origin due to the overall shrinkage of the current channel is of 

the same order as the rise time of the. sawtooth. Presently, the 

shrinkage of the current channel is attributed to the cooling of 

the plasma exterior by impurity radiation.
3 

. 1 . 4 
It has been suggested by von Goeler and Kadomtsev that the 

disruptive phase of the sawtooth is due to an m = 1 instability. 

Kaoomtsev has argued heuristically that as the internal kink 

mode grows, resistivity allows the plasma to evolve from a state 

,l 
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where the helical flux contours are circular to a lower energy 

state where the contours are again circular, thereby flattening 

'the current density and increasing the safety factor q to 

unity at the origin. There are two major questions associated 

with this argument: 

a) Is the lower energy state reaLly ac6essible? 

b) Is the nonlinear growth of the mode fast 

enough to explain the experimental data? 

The numerical results presented here show that, indeed, a· lower 

energy state is accessible .and the instability does grow 

sufficiently rapidly. 

In view of the results for the nonlinear growth of the 

tearing instability for peloidal mode nhmer m=2, it .is sur-

prising that the answer to question b) is yes. Specifically, 

it has been shown both.analytically
2 

and numerically
5 

that the 

nonlinear growth time of the m = 2 mode is only a few hundred 

times smailer than the skin t1me. In fact, for a re~sonable 

model of the resistivity profile, m = 2 saturated states have 

been found corresponding to an island width of about 10% of 

h . d' 5 t e m1nor ra 1us. It is known1 however, that the linear 

growth rate of the m = 1 mode is about ten times larger than the 

6-8 
m = 2 mode. The reason the m = 1 grows faster than the m = 2 

is th.at for the case of perfect conductivity the m = 1 is 

marginally stable while the m = 2 is stable. 
9 ~ 1 ° Furthermore, 

the growth rate for m=2 decreases sharply when the width of 

the magnetic island·produced by the mode exceeds the ·tearing 
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layer width (defined in reference 6), the island width increasing 

only linearly rather than exponentially in time. By contrast, 

it is the principal result of this paper that the m = 1 island 

growth is very""'rapid even in the highly nonlinear phase. In 

fact, it continues to grow exponentially at more or less the 

linear growth rate until the current is completely flattened 

within the q = 1 singular surface. 

In order to study the nonlinear resistive MHD behavior of 

toroidal systems, it is desirable to use a simplified system of 

equations. Employing cylindrical geometry, we assume that a 

perturbation has a given helical symmetry in ·that it depends 

only on r , the radial coordinate, and -r _ me + k z , 

where 9 io the polodial coordinate, z. is thQ longitudinal 

(toroidal) coordinate, and m and k are the peloidal and 

toroidal mode numbers, respectively. We adopt the standard 

tokamak ordering in which the ratio of the peloidal and toroidal 

magnetic fields is much less than one, while.the safety factor 

is of order one, implying that k r << 1 . Then, introducing the 

helical flux function ~ and the velocity stream function A and 

retaining only ·lowest order terms in the expansion parameter k r , 

we obtain
11 

dt/J = 
dt 

-t')J 
z 

(1) 

/ 

I ·--



'~ 

J 

., 

apd 

d 0 2A = 
p dt v 

. " -z . 

where d/dt denotes the convective time derivative and the 

5 

(2) 

spatial derivatives are perpendicular to z . Here,·n is· the 

resistivity, J is the toroidal current, 
z 

B is the toroidal 
z 

magnetic field, p is the mass density, and " z is the unit 

vector in the toroidal direction. The radi~l and peloidal com-

ponents of the magrietic.field are give by B = (1/r) aljJ;ae ·and 
r . . 

Be = -aljJ/ar -krBz/m, respectively, and the fluid velocity v 

is given by v = ,VAxz We assume that the cylindrical con-

tainer is completely filled with plasma so that an equation for 

ljJ in the vacuum is unnecessary. For the case where n = 0 , 

these equations (together with the equation for ljJ in the 

vacuum) were used in reference 11 to study the nonlinear develop-

ment of surface kink modes. 

For numerical integration of the case n f 0 , an 

alternating direction implicit scheme is used to advance equat·ion 

· 1 while equation 2 is advanced explicitly. The resulting upper 

bound on the time step is large enough to allow the analysis of 

tearing modes. 

The linear version of equations 1- 2 can be solved 

' 8 
analytically for peloidal· mode number equal to .one. The linear 

growth rate y is given by 

= ( r q • ) 2/3 S -1/ 3 -1 
W THP 0 . ( 3) 



is the radius of the 

singular surface, s 

is the safety factor~ q' = dq/drj 
. rs 

cylinder, rs is the radius of the 

TR/THP 
2 - - is the - I TR = rw /n n I 

, r 
w 

q=l 

6 

characteristic magnitude of the resistivity, and THP = mpl/
2 I (kBz). 

The tim~ TK is the ~skin" time, i.~., the cha~~~t~rlstlc time 

for.the current channel to decay; 

time. Typically, the quantity s 

THP is the "peloidal" MHD 

is of the order of 10
6 

, 

so that y - 10
4 T~·l , which is about ten times larger than the 

growth rate for m > 1 modes.
9 

The tearing layer width E is 

equal to rw<rwq'S)-11
3

. and, typically, is about 1 millimeter. 

·J (r) = 
zo I (4) 

where J (0) 
zo 

is the magnitude of the ·current density at the 

origin. The current channel width r 
0 

is taken to be 

J (0) is adjusted so that q at the origin is 0.9 , 
zo 

0.6r ; 
w 

q at 

the wall is 3.4, and the radius of the singular surface is 0.2rw. 

The resistivity n is modeled by assuming that it is 

independent of time and given by 

n (r) = (~) 

I ·-
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The reason this model is employed is that for such a resistivity 

profile, the current remains constant if there is no tearing mode 

activity. 

For the results presented in reference 1, the particle 

density is 6 x1 0 
13 

crn-
3 

, the electron temperature is 700eV 

the peloidal B is 0.3, the wall radius is 13 ern, and the 

effective ion charge is · 5 . The corresponding S value is 

6x10 5 . The code, however~ was run for S = Sxlo
4 

in order to 

avoid numerical problems associated with a ~mall tearing ·layer 

width. Nevertheless, since the tearing.rnode growth rate is 

proportional to s- 113 ,· the disparity between the two S values 

should cause no qualitative difference in the results. 

For the parameters specified in _the preceding paragraph, 

the logarithm (base ten) of the fluid kinetic energy is plotted 

as a function of t/TR in Figure 1. Initially, the system ls 

given an rn = 1 perturbation such that the maximum width of the 

magnetic island is 4xl0-
2

rw The linear.growth rate calcu

lated from the initial slope of the curve in Figure 1 agrees 

with the value obtained from equat~on 3 to within 16%~ the 

difference in the two rates is probably due ·to the fact that 

equation 3 · was derived assuming constant resistivity. 

In summary, the nUmerical results show that nonlinearly 

.the kinetic energy grows exponentially at approximately the 

linear growth rate until a maximum of · 1 ev per particle is 

reached. (Kadorn£sev's heuristic theory predicts that about 3eV 

per particle should be released by the magnetic field~) By the 

time the kinetic energy is maximum, the toroidal current has · 
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flattened inside the singular surface and the safety factor at 

the plasma center has increased to approximately unity. The 

magnetic island structure produced by the ins~ability is very 

complicated and fills the interior of the plasma inside the 

singular surface. However, the helical field is very small 

so that practically speaking the structure is not appreciably 

different from a uniform q = 1 situation. The time for this 

process to occur is of the same order as the time for the internal 

disruption. After reaching a maximum, the kinetic ener.gy 

decays by a factor of 5 at an average rate of about 1/16 of the 

linear growth rate. 

In Figure 2, the contours of constant helical flux are 

plotted in the peloidal plane at the times.indicated by the 

circles in Figure 1. The radius of the outermost circle is 

0 .'lrw • At 
-3 

the show that the in eta-t=l.92xlO TR I contours 

bility is essentially the linear m=l disturbance. However, 

when the kinetic energy reaches a maximum near 
-3 

t=3.8xlQ TR' 

the contour structure is complicated and fills the region in-

side the singular surface. As the kinetic energy decreases, 

the contours evolve slowly but remain complex. A strict inter-

pretation of the results leads to the conclusion ·that the plasma 

does not evolve to a state where the flux contours are circular, 

as suggested by Kadomtsev.
2 

The flux function, ~owever, is 

·fairly uniform inside the singular surface at t = 1. 36xlo-2 T R-l 

so that any distinction between circular contours and these 

contours is not important except perhaps for the analysis of 

the heat transport parallel to the magnetic field. 

J 

r ,.,,... 
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Figure 3 shows the fluid flow patterns corresponding to 

~he flux contours in Figure 2. The shape of the flow patterns 

remains essentially the. same as the instability evolves except 

that relative to the velocity in the singular layer, the velocity 

at the plasma center increases. 

In Figure 4, the current density is plotted as a function 

· of r along the line going through the x-point and the center 

of the magnetic island. The times are the same as those in 

Figures 2 and 3. At -3 
t = 1. 92xlO TR , the current begins to 

flatten in the center of the island while a skin current develops 

at the x-point. When the kinetic energy reaches the maximum, 

J the current is flat through most of the plasma interior and the 

J 

skin current is quite large. Then, as the kinetic energy de-

creases, the skin current disappears and the current through the 

plasma interior remains fairly flat. The magnitude of the 

current at the plasma center corresponds to a q of approxi-

mately one. 

Presumably, the flattening in the current corresponds to 

convection leading to a decrease in temperature inside.and an · 

increase outside the singular surface. (Notice t~at the total 

current in Figure 4 does· not remain constant because in the code 

the electric field at the·wall, rather than the total current, 

is held fixed. ) The time required for the flattening to occur 

is essentially the time for the kinetic·energy to reach the maxi-

mum value, i.e., the time for the magnetic island width to in-

crease to approximately 2r 
s 

Cons~quently, for an iriitial 
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island width of about 1 millimeter and S = 6x10
5

, the time for 

the flattening to occur in ST is 7 .Y1 
::= 0. 04 msec, in agree-

ment wi.th the experimental disruption time. 

It should be emphasized that the preceding result can 

be affected by finite gyro radius and toroidal corrections. 

One should also take into account the-modifications in Ohm's 

law due to the fact that the ratio of the mode growth rate to 

the electron c.ollision frequency is not ·small. 

Furthermore, in order to obtain a more detailed ex-

planation of the internal disruption, transport processes must 

be included in the analysis. Specifically, an explanation of 

the slowly growing m = 1 oscillations preceding the disruption 

must include the self-consistent time evolution of the tempera-

ture and, thus, the resistivity. In addition, in order to 

produce a series of sawtooth oscillations, the long ~ime.scale 

effect of the transport on the evolution of the current density 

must be incorporated into the code. 
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FIGURE 2 . 762030 

Helical flux contours in the peloidal plane at selected times. 
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FIGURE 3 762035 

Fluid flow patterns in the peloidal plane at selected times. 
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FIGURE 4 7620.34 

Toroidal current density as ~ function of r at 
selected times. 
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