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[1] A nonlinear guiding center (NLGC) theory for
diffusion of charged particles perpendicular to the mean
magnetic field was recently proposed. Here, we draw
attention to a number of attractive features of this theory:
(1) The theory provides a natural mechanism to connect
the perpendicular mean free path with the parallel mean
free path. In fact, the parallel mean free path is the only
particle property required to determine uniquely the
perpendicular mean free path. (2) Under a broad range of
conditions, the theory predicts that the perpendicular
mean free path will be of order one percent or a few
percent of the parallel mean free path, in agreement with
numerical simulations of particle transport. (3) For
conditions representative of the inner heliosphere, the
theory predicts values of the perpendicular mean free path
in agreement with observational determinations from
Jovian electrons and from modeling Ulysses observations
of Galactic protons. INDEX TERMS: 2114 Interplanetary

Physics: Energetic particles, heliospheric (7514); 2116

Interplanetary Physics: Energetic particles, planetary; 2104

Interplanetary Physics: Cosmic rays; 7807 Space Plasma Physics:

Charged particle motion and acceleration.Citation: Bieber, J. W.,

W. H. Matthaeus, A. Shalchi, and G. Qin (2004), Nonlinear

guiding center theory of perpendicular diffusion: General

properties and comparison with observation, Geophys. Res. Lett.,

31, L10805, doi:10.1029/2004GL020007.

1. Introduction

[2] Understanding how energetic charged particles dif-
fuse perpendicular to a large-scale guide field has long been
a challenging problem of space physics and astrophysics.
Approaches based upon hard-sphere scattering [Gleeson,
1969] and related extensions based upon the Boltzmann
equation [Jones, 1990] provide a suitable description for
elastic scattering, but they are probably inapplicable to
most space plasmas, where field line random walk (FLRW)
is expected to play a key role [Jokipii, 1966; Forman et al.,
1974]. However a pure FLRW description also fails in the
presence of parallel diffusion, because the particles partially
retrace their paths after they backscatter. In the case of
pure slab turbulence (e.g., a field composed of Alfvén
waves propagating parallel to the large-scale field), this
backscattering completely thwarts diffusion in the normal
sense. Instead, particle displacements perpendicular to the

mean field scale subdiffusively [Urch, 1977; Kóta and
Jokipii, 2000; Qin et al., 2002a].
[3] Recent numerical simulations have provided impor-

tant new insights into perpendicular diffusion [Giacalone
and Jokipii, 1999; Mace et al., 2000; Qin et al., 2002a,
2002b]. Turbulence geometry is emerging as a crucial factor
in perpendicular diffusion, just as it is in parallel diffusion
[Bieber et al., 1994]. When the turbulent magnetic field
has sufficient perpendicular structure, the subdiffusive ten-
dency seen in pure slab turbulence can be overcome, and a
regime of ‘‘second diffusion’’ [Qin et al., 2002b] emerges.
[4] The process of perpendicular diffusion is thus a

combination of field line random walk, backscatter from
parallel diffusion, and transfer of particles across field lines
owing to the magnetic field’s perpendicular complexity. All
of these factors are considered in a recently proposed
theory of particle diffusion, the ‘‘nonlinear guiding center’’
(NLGC) theory [Matthaeus et al., 2003]. In this work, we
discuss the general properties of the NLGC theory and point
out several attractive features of the theory, most notably its
excellent agreement with observation.

2. Parallel Mean Free Path: Governing
Factor in Perpendicular Diffusion

[5] We find it convenient to recast the parallel and
perpendicular diffusion coefficients, Kk and K?, in terms
of equivalent mean free paths, lk and l?,

lk ¼
3

V
Kk; l? ¼ 3

V
K?; ð1Þ

where V is the particle speed. In terms of these mean free
paths, equation (7) of Matthaeus et al. [2003] can be written

l? ¼ lk
a2

B2
0

Z
d3k

Sxx kð Þ
1þ k2?l?lk=3þ k2z l

2
k=3

; ð2Þ

where a2 is a constant approximately equal to 1/3 according
to numerical simulations [Matthaeus et al., 2003], B0 is
the magnitude of the large-scale magnetic field, k is the
wave vector of a turbulent magnetic fluctuation, Sxx (k) is
the modal (three-dimensional) power spectrum of one of the
perpendicular components of the fluctuating field, k? =
(kx

2 + ky
2)1/2 is perpendicular wave number, and kz is parallel

wave number. Following Matthaeus et al. [2003], we
assume the turbulent field is transverse to the large-scale
field and axisymmetric with respect to the large-scale field.
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The theory is nonlinear and does not require the fluctuations
to be small in comparison with the mean field. Here we
consider NLGC theory in the magnetostatic limit, setting
g(k) = 0 in the nomenclature of Matthaeus et al. [2003].
[6] In order to derive quantitative results, we specify the

following two-component (2D/slab) spectrum model:

Sxx kð Þ ¼ 2

p
C nð Þl2DdB2

2D 1þ k2?l
2
2D

� ��nk
2
y

k3?
d kzð Þ

þ C nð ÞlSLABdB2
SLAB 1þ k2z l

2
SLAB

� ��n
d kxð Þd ky

� �
; ð3Þ

where

C nð Þ ¼ G nð Þ
2p1=2G n� 1=2ð Þ

: ð4Þ

Here dB2D
2 is the total (sum of the two perpendicular

variances) variance in the 2D component, dBSLAB
2 is the total

variance of the slab component, l2D and lSLAB define the
break points of the 2D and slab spectra, and 2n is the inertial
range spectral index. With this spectrum model, equation (2)
can now be recast in the form

l? ¼ lk
2a2C nð Þ

B2
0

(
dB2

SLAB

Z 1

0

dx
1þ x2ð Þ�n

1þ x2l2
k= 3l2SLAB
� �

þ dB2
2D

Z 1

0

dx
1þ x2ð Þ�n

1þ x2l?lk= 3l22D
� �

)
: ð5Þ

[7] The feature of equations (2) and (5) we wish to stress
is that the only properties of the particle that appear on the
right hand side are the parallel (lk) and perpendicular (l?)
mean free paths. If lk is specified (whether from theory or
observation), then equations (2) and (5) become integral

equations for l?. Thus, in the NLGC theory of perpendic-
ular diffusion in magnetostatic turbulence, the perpendicular
mean free path is governed entirely by the parallel mean
free path and properties of the turbulent field.

3. Scaling of K???With Kkkk

[8] In applications of cosmic ray transport such as
modulation modeling, the perpendicular diffusion coeffi-
cient is often taken to be a fixed fraction of the parallel
diffusion coefficient, i.e.,

K? ¼ bKk; ð6Þ

with b a constant typically taken to be in the range 0.005–
0.05 [e.g., Jokipii et al., 1995; Ferrando, 1997; Burger et
al., 2000; Ferreira et al., 2001] It has been something of a
puzzle that equation (6) worked so well, because in the field
line random walk picture of perpendicular transport the two
diffusion coefficients should scale inversely. An increase in
turbulence level decreases the parallel diffusion coefficient,
because resonant scattering is more intense, but it increases
the perpendicular diffusion coefficient, because the rate of
field line diffusion is increased. In order to produce scaling
of K? with Kk, factors beyond field line random walk must
be considered [e.g., Chuvilgin and Ptuskin, 1993].
[9] Approximate scaling of K? with Kk is also indicated

by numerical simulations of particle transport. Giacalone
and Jokipii [1999] and Qin [2002] both found that K?/Kk
is in the range 0.01–0.05 for representative solar wind
conditions, and depends rather weakly upon particle
rigidity.
[10] Figure 1 illustrates this property of perpendicular

diffusion using our particle trajectory tracing code [Qin,
2002; Qin et al., 2002a, 2002b]. Simulation results are
shown by data points connected by the solid line, and these
closely follow the NLGC prediction shown by the dotted
line. The ratio K?/Kk ranges from 0.05 at the left edge of the
graph to about 0.02 at the right edge. Neither the field line
random walk (FLRW) limit nor the Bieber and Matthaeus
[1997] (hereinafter referred to as BAM) prediction provide a
satisfactory description of the simulation results.
[11] Shalchi et al. [2004] have provided analytic

approximations to the NLGC result, which shed light on
the scaling of K? with Kk. For either pure 2D or composite
2D/slab geometry, the ratio K?/Kk is constant or nearly
constant in a regime defined by l?lk/(3l2D

2 ) 	 1. A higher
energy regime defined by l?lk/(3l2D

2 ) 
 1 and where also
lk 
 31/2lSLAB may be applicable to most cosmic ray
energies at 1 AU. Here Shalchi et al. [2004] find l?/ lk1/3.
(We observe that these conditions are marginally satisfied
on the left edge of Figure 1, and well satisfied on the right
edge.) Thus, a perpendicular mean free path that increases
monotonically with the parallel mean free path is a robust
property of the NLGC model, in contrast with the FLRW
picture, but in accord with simulations and with common
practice in modulation modeling.

4. NLGC Mean Free Path in Comparsion With
Observation

[12] Figure 2a compares the NLGC prediction for elec-
trons (red curve) and protons (blue curve) with selected

Figure 1. Particle perpendicular mean free path l? plotted
against the numerically determined parallel mean free path
lk (both scaled to the slab correlation length lc =
2pC(n)lslab). This numerical simulation used a composite
turbulence geometry with 80% energy in 2D modes and
20% in slab modes, with dB/B0 = 1, and with l2D = lslab/10.
Solid line indicates simulation result, dotted line the NLGC
theory, equation (5), dashed line the FLRW limit, and dash-
dotted line the BAM theory.
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mean free paths derived from observation, and with the
FLRW and BAM models of l?. For the theoretical models,
we used turbulence parameters representative of the solar
wind at 1 AU: dB2D

2 = 21.1 nT2, dBSLAB
2 = 5.28 nT2, B0 =

4.12 nT, lSLAB = 0.023 AU, l2D = lSLAB/10 (motivated by
Robinson and Rusbridge [1971]), and n = 5/6. For the BAM
model we assumed the ultrascale is lULTRA = 10lSLAB
[Matthaeus et al., 1999]. The energy of turbulence in the 2D
and slab components is in the ratio 80:20, in accord with
observation [Bieber et al., 1996].
[13] In order to plot l? as a function of rigidity in

Figure 2a, it is necessary to specify the rigidity dependence
of lk. For this purpose we used the rigidity dependence
shown in Figure 2b. The curves correspond to the ‘‘damping
model’’ of dynamical slab turbulence [Bieber et al., 1994]
with a = 0.1 and with a turbulence amplitude corresponding
to the 20% slab portion in our turbulence model. Possible
nonresonant or nonlinear contributions of the 2D compo-
nent to lk were ignored. Technically we should employ
an expression for l? that also includes dynamical effects
[Matthaeus et al., 2003], but explicit computation shows
that it would shift the curves in Figure 2a by less than
0.1%.
[14] It is important for our purpose that the parallel mean

free path we use to compute l? be compatible with
observation, and the curves in Figure 2b are indeed
representative of the observational results for lk reported

by Dröge [2000]. Scattering in dynamical turbulence has
the property that the parallel mean free path depends
explicitly upon particle speed as well as rigidity; hence low-
rigidity electrons and protons have different parallel mean
free paths at the same value of rigidity. Considering the
results of Section 2 above, this translates into a correspond-
ing electron-proton difference in perpendicular mean free
paths.
[15] The NLGC theory predicts that l? shows remark-

ably little variation over the 5 decades of rigidity shown in
Figure 2. All of Figure 2 is in the ‘‘higher energy’’ regime
discussed in the previous section, where l?/ lk

1/3. In the
case of protons, for which lk varies with rigidity P
approximately as P1/3 below 10 GV, this implies l?/ P1/9,
a very flat rigidity dependence indeed. Electrons have a
more complex rigidity dependence, but their perpendicular
mean free path displays even less variation than the protons,
less than a factor of 2 between 1 MV and 10 GV. The
ratio l?/lk remains in the range 0.01–0.04 for electrons
and 0.01–0.10 for protons between 1 MV and 10 GV.
[16] The very weak rigidity dependence of the perpen-

dicular mean free path is supported by Ulysses measure-
ments of the latitude gradient of Galactic cosmic ray
protons. The perpendicular mean free path deduced from
the Ulysses observations is shown as blue data points in
Figure 2a [Burger et al., 2000, Figure 2a]. Agreement with
the NLGC model is excellent.
[17] Jovian electrons and their 13-month modulation with

the Jovian synodic year provide a particularly sensitive
method for determining l? observationally, because the
particles are emitted from a known point source. The
principal mechanism for them to travel from the Jupiter-Sun
to the Earth-Sun magnetic field line is via perpendicular
diffusion. Thus the width of the 13-month modulation
envelope provides a relatively model-independent measure
of the perpendicular mean free path. As shown in Figure 2a,
the Jovian electron result [Chenette et al., 1977] (red data
point) is in a low rigidity region where the different
theoretical models diverge widely. The FLRW and BAM
predictions are incorrect by orders of magnitude, but the
NLGC result displays essentially perfect agreement with the
Jovian electrons.

5. Can L???///Lkkk Approach Unity?

[18] There are recent reports that l?/lk is occasionally
very large, even approaching or exceeding unity [Dwyer et
al., 1997; Zhang et al., 2003]. It is beyond the scope of this
Letter to address this issue in detail. However, we should
like to point out that the NLGC theory can predict rather
large values of l?/lk in certain parameter regimes.
[19] For instance, the Dwyer et al. [1997] result is for

relatively low rigidity ions. It is a property of the NLGC
theory (somewhat counter-intuitively) that ions have the
largest l?/lk ratios at smaller values of lk. In Figure 2a,
the ratio for protons is only 0.01 at 10 GV but is 0.10 at
1 MV. Further, in a regime defined by the two conditions,
lk 	 31/2lSLAB and l?lk/(3l2D

2 ) 	 1, Shalchi et al. [2004]
show that

l?

lk
� a2

2

dB2
2D

B2
0

: ð7Þ

Figure 2. (a) Perpendicular mean free paths at 1 AU from
several theoretical models (curves) compared with observa-
tions (circles). The NLGC theory predicts different mean
free paths for electrons (red) and protons (blue) of the same
rigidity. The NLGC theory is clearly favored by observa-
tional determinations from Jovian electrons [Chenette et al.,
1977] and Ulysses measurements of Galactic protons
[Burger et al., 2000]. (b) Parallel mean free path used in
computing the perpendicular mean free path shown in upper
panel.
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With sufficiently strong turbulence (and recalling that a2 =
1/3) the ratio l?/lk could indeed approach unity in this
regime.

6. Summary

[20] The nonlinear guiding center (NLGC) theory shows
promise of solving the long-standing puzzle of how cosmic
rays diffuse perpendicular to a large-scale guide field. Key
features of the theory include:
[21] 1. The parallel mean free path is the only property of

the particle required to specify the perpendicular mean free
path.
[22] 2. In two-component (2D/slab) turbulence, the

perpendicular mean free path increases monotonically with
the parallel mean free path, in accord with indications from
modulation modeling.
[23] 3. The NLGC theory is in excellent agreement with

numerical simulation results.
[24] 4. For conditions representative of the solar wind at

1 AU, the perpendicular mean free path has an extremely
weak dependence on particle rigidity, in accord with con-
clusions derived from Ulysses observations of Galactic
protons.
[25] 5. For conditions representative of the solar wind at

1 AU, the ratio l?/lk is in the range 0.01–0.10 between
1 MV and 10 GV.
[26] 6. The perpendicular mean free path derived from

the 13-month modulation of Jovian electrons applies to a
low rigidity regime where the theoretical models diverge
widely. The Jovian electron result decisively favors the
NLGC model of perpendicular diffusion.
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National Science Foundation under grants ATM-0000315 and ATM-
0105254, and by NASA under grant NAG5-11603.
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