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Nonlinear gyrokinetic equations are derived from a systematic Hamilto-
nian theory. The derivation employs Lie transforms and a noncanonical 
perturbation theory flrst used by Littlejohn for the simpler problem of 
asymptotically small gyroradius. For deflniteness, we emphasize the limit 
of electrostatic fluctuations in slab zeometry; however, there is a straight
forward generalization to arbitrary field geometry and electromagnetic per
turbations. An energy invariant for the nonlinear system is derived, and 
various of its limits are considered. The weak-turbulence theory of the 
equations is examined. In particular, the wave-kinetic equation of Galeev 
and Sagdeev is derived from an asystematic truncation of the equations, 
implying that this equation fails to consider all gyrokinetic effects. The 
equations are simplified for the case of small but finite gyroradius and put 
in a form suitable for efficient computer simulation. Although it is possi
ble to derive the Terry-Horton and Hasegawa-Mima equations as limiting 
cases of our theory, several new nonlinear terms absent from conventional 
theories appear and are discussed. The resulting theory is very similar in 
content to the recent work of Lee. However, the systematic nature of our 
derivation provides considerable insight into the structure and interpreta
tion of the equations. 
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I. INTRODUCTION 

It is generally believed that the anomalous transport observed in mag

netized fusion plasmas is related to the existence of turbulent fluctuations of 

frequency much lower than the ion gyrofrequency. However, the description of 

such fluctuations involves complex nonlinear equations without simple analytic 

solutions. Furthermore, since such equations often describe collective motions 

on extremely disparate time scales, straightforward numerical methods are not 

viable because of practical limitations on computer time and memory. There

fore, in this paper we shall consider a powerful method for the derivation of 

reduced, nonlinear equations appropriate specifically for the description of low 

frequency fluctuations in a magnetized plasma, and which are in a form suitable 

for efficient numerical analysis. 

Our principal concern is with the so-called gyrokinetic equations, denned 

by requiring that the characteristic frequency of the fluctuations be small com

pared to the ion gyrofrequency, but that the average spatial scale of the fluc

tuations perpendicular to the magnetic field, k± , be of the same order as the 

average ion Larmor radius p,- [k±p( « 1). For longer wavelengths, k±p{ < 1, 

the equations reduce to the more familiar drift kinetic equations. Although 

linear gyrokinetic theory is well-understood,1"3 nonlinear theories necessary to 

describe possibly turbulent phenomena are still in a state of infancy. Recently, 

Lee4 obtained a nonlinear generalization of the linear gyrokinetic equations 

for the Vlasov-Poisson system which have the desirable property of being in a 

form suitable for efficient numerical analysis by means of the so-called particle 

pushing technique. That is, his nonlinear gyrokinetic Vlasov equation can be 

written as a total time derivative taken along a characteristic in phase space and 
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conserves pbase space volume along this characteristic; we call such equations 

"phase space preserving." However, by construction his equations are valid only 

for small but finite Larmor radius for the nonlinear terms. Our principal contri

bution in this paper is t: wrovide equations valid for fcj.Pt ** 1 f ° r t n e nonlinear 

terms as well as the linear terms, while retaining the important phase space pre

serving property. In earlier significant, pioneering work, Frieman and Chen 6'' 

followed a perturbative approach to obtain fully gyrokinetic equations, but in 

doing so they lost the phase space preserving property. They also retained only 

the E X B nonlinearity, which may not be the only important term in certain 

interesting regimes. Wong7 has derived a set of nonlinear gyrokinetic equations 

which are phase space preserving. However, his formalism, which involves the 

use of mixed variable generating functions and perturbative expansions of the 

equations of motion, is algebraically involved and rather opaque, and his final 

result is missing several terms (related to E X B drift motion). 

In this paper we attempt to set nonlinear gyrokinetic theory on a firmer 

and more transparent theoretical foundation through the use of covariant (non-

canonical) Hamiltonian techniques and Lie transformations, a methodology pio

neered by Littlejobn 8 , 9 for the problem of single particle drifts in a specified 

(non-self-consistent) potential in the drift kinetic ordering (fcxft- < 1). The 

Hamiltonian method has many advantages. Aside from its elegance and sim

plicity, the approach automatically ensures that the equations will be phase 

space preserving, and permits a clearer understanding of the underlying dy

namical structure (terms in the Vlasov equation can be immediately and easily 

linked to gyro-center drifts and accelerations; constants of the motion and adi-

abatic invariants are conspicuous). The covariant structure of Hamilton's equa-

http://fcj.Pt
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tions, long appreciated by mathematical physicists but only recently exploited 

by plasma physicists, allows new freedom in the choice of coordinates and mo

menta when one constructs the perturbation theory upon which the averaging 

procedure depends. Lie transformations, which replace the transformations 

based on mixed variable generating functions used in more conventional formu

lations, greatly simplify the form and manipulation of the perturbation series, 

especially at high order. We employ these powerful mathematical tools to aver

age away the fast gyromotion time scale and so construct the nonlinear gyroki

netic equations governing low frequency fluctuations in a magnetized plasma. 

Unlike the earlier applications, the resulting equations are self-consistent—that 

is, the gyrokinetic evolution equation for the distribution function of the gyro-

centers involves effective potentials which are self-consistently determined by a 

gyrokinetic transformation of Maxwell's equations. In fact, the determination 

of the self-consistent potentials introduces complexity absent from the non-self-

consistent problem. To isolate this complexity, and to be as pedagogical as 

possible, we have chosen to describe here the case of straight constant magnetic 

field and electrostatic fluctuations (which still describes a wealth of nonlinear 

physics). However, there is no conceptual difficulty with including electromag

netic and curvature effects; the general theory will be presented elsewhere. 

To reiterate, by employing noncanonical coordinates and a gyroaveraged 

irn distribution function Ft we maximize the simplicity of the gyrokinetic ion 

Vlasov equation. Other averaging procedures leave the Vlasov equation in a 

very complicated form because they either rely on cumbersome canonical co

ordinates or they fail to renormalize the distribution function (see Appendix 

A, for example). The distribution function which we use has intuitive physical 
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signiflcance. In fact, in the quasineutral approximation, the difference between 

the gyroaveraged ion density Ni (the velocity space moment of F{) and the 

laboratory ion density nt- will be shown to be equal to the contribution to the 

density fluctuations due to the polarization drift of the ions. Since one effect 

of the transformation to gyro-center coordinates is to remove the polarization 

drift from the equations of motion, 1 0 it is satisfying to see the effects of the 

drift reappear in the Poisson equation. 

The remainder of this paper is organized as follows. In Sec. II we use 

Littlejohn's technique of noncanonical variables, Darboux transformations, and 

Lie transformations to construct a gyrokinetic Hamiltonian for a single particle 

in a potential temporarily assumed to be given. In Sec. TH we enforce self-

consistency between the particle motion and the potential and use the averag

ing transformation constructed in Sec. II to derive the gyrokinetic equations for 

the Vlasov-Poisson system. In Sec. IV we construct an energy invariant for the 

system and discuss several limiting forms. We devote Sec. V to an exploration 

of various limits of the equations. For ftj.lt small we obtain what are basically 

Lee's equations, although there are differences between his equations and ours, 

which we discuss. In the limit of negligible ion temperature (77 —»0) we obtain 

fluid equations from which the Terry-Horton1J and Hasegawa-Mima ,s equations 

can be derived. In Sec. VI we find it instructive to consider briefly the weak 

turbulence theory of our equations. In particular, we point out that the wave 

kinetic equation of Galeev and Sagdeev1* follows from a certain truncated set 

of equations which is formally inconsistent with the gyrokinetic ordering. This 

indicates that they failed to consider all gyrokinetic effects. We state our con

clusions in Sec. VII. In Appendix A we rederive our gyrokinetic equations using 

http://ftj.lt
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a more complicated recursive formalism, and we derive the relationship between 

the distribution functions used in the two approaches. The recursive method 

is perhaps more familiar to workers in drift kinetic theory,14 but has several 

disadvantages. Along with its relative complexity compared to the Hamiltonian 

approach, the resulting Vlasov equation is not phase space preserving until a 

subtle renormalization of the distribution function is effected. In Appendices 

B and C we quote several intermediate algebraic results, and in Appendix D we 

sketch the weak turbulence calculation. 

II. A SINGLE PARTICLE GYROKINETIC HAMILTONIAN 

In all that follows we adopt the well-known "gyrokinetic ordering": 

0(e), kxfi„g =0(1), 

O(e), V , v , =0(e), 

0(e), 

where m is the particle's mass, e is the signed charge (in this section we do 

not commit ourselves to a particular species), pxvg = V/il,v is a characteris

tic particle speed, Ct = cB/c is the cyclotron frequency, Lcq is an equilibrium 

scale length, 57 and k are the characteristic frequency and wavenumber of the 

perturbed electric field given by E = — V̂ >, and £ is a small ordering param

eter. We define a Larmor radius involving a characteristic speed rather than 

a temperature since there is at this point only one particle, travelling through 

externally imposed fields, and temperature is a statistical concept useful only 

for an ensemble of particles. The gyrokinetic ordering is motivated, in part, 

by the nonlinear behavior of drift waves. It is consistent with experimental 

e<t> 

Ptvt _ 

u _ 
n — 
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observations, and agrees with simple theories of nonlinear saturation (taking 

e<j>jTt ~ l/kxLt1). Furthermore, it allows for wave-particle resonance effects, 

since both w and A|| enter at the same order. It is instructive to compare this 

gyrokinetic ordering with the so-called drift kinetic ordering, which several of 

us have discussed elsewhere.1*'1* 

The Hamiltonian K for a nonrelaiiv&tic charged particle in an electrostatic 

field is 

/ T ( x , p , t ) = i ( p - r ^ A ( x ) ) 2

 + e ^ x ! * ) , (1) 

in canonical coordinates (x,p), where x is the position, p is the conjugate mo

mentum variable related to the velocity v by p = v + (e/emc)A, A is the 

magnetic vector potential (which we take to be time-independent), and t is the 

time. This Hamiltonian is time-dependent, a property which tends to compli

cate the averaging procedure. We can circumvent this problem by introducing 

so-called "extended phase space" canonical coordinates17 (x, p, t, w), where now 

t is a coordinate conjugate to w in an extended eight-dimensional phase space. 

In these coordinates we write the Hamiltonian as 

tf(x,p,t,u,)=i(p-^A(x)) - w + €^x,t). (2) 

Since w equals the particle energy along the particle's trajectory through the 

extended phase space (as can easily be seen by application of Hamilton's equa

tions), the numerical value of the Hamiltonian is zero, and it is thus a constant 

of the motion. 

The motion generated by this Hamiltonian has a fast time scale component 

describing the Larmor gyrations at the cyclotron frequency. Our goal is to 
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systematically average away these gyrations. To this end, the gyromotion must 

be isolated. As Littlejohn has pointed out in a series of fundamental papers,*'18 

it is most inconvenient to restrict oneself to canonical coordinates at this point, 

since the canonical momentum contains both slow and fast time scale effects 

which greatly complicate the perturbation procedure. Instead, we follow his 

approach by introducing noncanonical coordinates {x,v±,v§,0,t,w), where 0 is 

the gyrophase of the gyrating particle: 

0 = tan"1 (^4). v y 

Here x and y are arbitrary orthogonal unit vectors in the plane perpendicular 

to B, and f|| = v • b and v± = \v X b| are the parallel and perpendicular 

components of the velocity (b = B/|B|) (see Fig. 1). The fast motion now 

arises implicitly through the coordinate 0; so if we remove the 0 dependence 

from the equations of motion, we will have achieved our goal of finding equations 

for the evolution on the slow time scale. 

The fact that the coordinates are no longer canonical in no way vitiates 

the Hamiltonian nature of the equations of motion. Hamiltonian theory can, 

in fact, be couched in a coordinate-free form; such covariant formulations have 

been discussed extensively1*'10 and we shall not attempt a detailed examination 

of the subject. For our purposes it will be sufficient to state several of the main 

results of this theory; interested readers v- 2 referred to the literature. 

In generalized (not necessarily canonical) coordinates, z, Hamilton's equa

tions take the form 

$ = {*,#}. <3) 
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where H(z) is the Hamiltonian and we have introduced "Poisson bracket" no

tation. The Poisson bracket of two phase functions f and g is defined by 

where J is an antisymmetric contravariant tensor called the Poisson tensor. This 

tensor can be defined by its form in canonical coordinates s c = (x,p): 

,M*{° o)' (4b) 

where O and 1 are the 3 x 3 null and unit matrices. Since J transforms con-

travariantly, it is possible to And its form in any set of coordinates » connected 

via a diffeomorpbism to canonical coordinates: 

In our chosen coordinates [x,v±,t)\i,ff,t,tu), the elements of J are given in 

Appendix B. In these coordinates the Hamiltonian becomes 

Although H' is ^-independent, 9 dependence, and hence a fast time scale. 

is introduced into the equations of motion by the Poisson tensor. However, in 

order to expedite an averaging procedure to remove the fast time scale, we want 

all of the 6 dependence in the Hamiltonian 3nd none in the Poisson brackets. 

We can remove all 6 dependence from the Poisson brackets by using a Darboux 

transformation18 to anew set of "semi-canonical" coordinates 

(More general approaches using an action form31 could also be applied; but for 

the present case of straight magnetic field and electrostatic fluctuations, our 
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method is quite adequate, and perhaps more physical.) This transformation 

is defined by the following prescription: given a coordinate (say 0), find the 

coordinate (call it ji) which is canonically conjugate to it, and construct the 

other variables of the system by requiring that they commute with 9 and p. 

This decouples ths fast scale from the slow scale to lowest order in c, allowing for 

a more "natural" description of the motion as a fast gyration superimposed on 

a slow drift both along the field lines (due to the near-constant parallel velocity) 

and across them (due to the electrostatic perturbation). In mathematical terms, 

we must solve the following set of coupled differential equations: 

{0,V} = 1, 

{6, Z} = 0 for all Z except p, 

{/i, Z} = 0 for all Z except 6, 

subject to given initial conditions; we take fi = 0,X = x,U = v^,T = t, 

and W = m at v± = 0. We are guaranteed that these equations do, in fact, 

have a solution as long as the phase space manifold is "symplectic"—i.e., that 

a closed nondegenerate two-form exists on the manifold.1* Since the inverse of 

the Poisson tensor is just such a two-form, we can solve these equations. We 

obtain 

X = x-p, U = vh T = t, W=w, and fi = | | , (7) 

where p = v_: a/fl and a is a unit vector defined in Fig. 1 and Appendix 

B. We see that X is the lowest order (in e) guiding center position, and (i 

is the lowest order adiabatic invariant;1* i.e., (i is merely the first term in 

an asymptotic series for the exact invariant, which we call ft and shall use 

later. Elements of the Poisson tensor in Darboux-transformed coordinates are 
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displayed in Appendix B. The Hamiltonian transforms to 

HiZ) = nn+-aV2-W + t-4{X+p,t). (8) 
i m 

Since 8 dependence now appears only in the perturbation Hamiltonian (the term 

proportional to <p), H is now in a form suitable for averaging. Although mixed 

variable generating functions17 could be employed, we find that Lie transforma

tions greatly simplify the algebra involved in the averaging procedure. Several 

very good elucidations of the theory and application of Lie transforms may 

be found in the literature;4 2*' one particularly readable elementary account 

is that of Littlejohn.24 The transformation equations from coordinates Z to 

gyroaveraged coordinates Z are 

I = TZ; (fla) 

the gyrokinetic Hamiltonian is therefore given by 

H="(-lH, (flb) 

since T is an area preserving (symplectic) near-identity transformation. The 

transformation T is defined to be 

T s exp(- / de L)s (9c) 

where 
oo 

m l 

U = {<?». }. 
The GKs are called the generating functions of the transformation. Upon ex

panding T, ~H, and H as power series in e, we find that 

H o = H o , (10a) 

Hi^Hi+LioHo, (10b) 

W2=H2+ L10Ht + i ( £ a o + L% + 2Lx, )H0, (10c) 
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where we have broken Ln up into a zeroth order part and a first order part: 

dGK 3 dGn 8 VG„ - _ 
U o = IfH ~ ~Wal+ IT' b x v ' 
Lai = b • v G , — - - ^ - b • v -

lau au~ ' ar aw 
Up to this point the transformation has been arbitrary. We now determine the 

generating functions of the transformation by solving Eqs. (10) subject to the 

conditions that the new Hamiltonian H be ^-independent and that the generat

ing functions contain no ^-independent parts (which would lead to secularities). 

Thus, by absorbing all 8 dependence into the generating functions, we are able 

to make H gyrophase-independent order by order. Furthermore, since this Lie 

transform is area-preserving, the functional form of the Poisson tensor remains 

unchanged under the transformation.18 The Hamiltonian becomes 

H(Z) - ? Q + \u2 - W + e - ? 2 m 

-^(|<*V<^bxW>) +^), (ID 

where 
4ixt%T) ={^x + p,r)} 

- / 
7jj3j <hiMk±p) exp(ik • X), 

^ • , i t , £ ? ) = # X + 7 i , T ) - 0 , 

*{X,H,6,T) = J 4>d§, 

where p = {2Jt/Uy^2a{0}. The generating functions Gi and G2 are also deter

mined at this order; they are displayed in Appendix C. 
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The quantity j* Is the true adiabatic invariant (correct to all orders in € 

in our formulation): /7 = Tp; the other barred quantities have similar inter

pretations. By assuming that the series for T converges, we are ignoring the 

possibility of stochasticity10 arising from resonant interactions between the gy-

romotion and other motions of the system. This stochasticity can often be 

shown to be unimportant. 1 0 , 1 5 The first order contribution 4> to H is the po

tential averaged over a Larmor orbit, familiar to workers in gyrokinetics. The 

second order contributions to H are related to the change in the lowest order 

invariant, v\/2U, due to the electric field fluctuations, and to the change in 

position of the guiding center due to the E X B drift. This can by seen by 

performing a simple analysis of the unaveraged equations of motion, obtained 

from Eqs. (3), (8), and (B2): 

§— ^ • i * 1 

Solving perturbatively, we find that 

$o = fiT, Mo'Xo are constant, 

and 
ft = -€;£*. 

X. = - t j j j j C * X bT + — X b) = VET + Xi, 

Thus 
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where ^ = ^Xo + v#T + p({lT),T'} and 0 = fl + i V Upon averaging this 

equation over the fast time scale ftT we Dnd 

^ - em ( " ^ < v * x b' v # + So < * * £ > - ^ < * 5 ? } J 

which is the same as we would obtain using Eq. (3) with H. 

HI. THE GYROKINETIC VLASOV-POISSON SYSTEM 

In this section we use the single particle gyrokinetic Hamiltonian to find 

a Vlasov equation for the gyroaveraged ion distribution function F^ and we 

enforce self-consistency by writing the Poisson equation in terms of F,-. The 

electrons are assumed to be drift kinetic and the appropriate Vlasov equation 

is derived by taking the drift kinetic limit of the gyrokinetic Hamiltonian. 

In canonical coordinates the Vlasov and Poisson equations are 

{/,(x, p, t), Hi(x, p, *,»)} = 0, (12) 

W(x ,«) = -Axe [ | / t - (x ' , p ' , tMx- x')dV " ne (13) 

where nc is tbe electron density, /,- is the ion distribution function, and //, is 

the ion Hamiltonian. We have inserted the delta function in Eq. (13) in order 

to expedite the coordinate transformations in the six-dimensional phase space 

(x, p). We need not integrate over the full extended phase space because t is 

never changed during the transformations and the integrand is not a function 

of to. Defining a distribution function ft in terms of the Darboux transformed 

coordinates, 

gi(X,n,U,6,T) = fi(x,p,t), 
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Eqs. (12) and (13) become 

{9i,Hi} = 0, (14) 

V-0 = -iwe ^Jft(Z)*(X - x + p)d?Z - «.] , (15) 

where dPZ = \\dz/di'\\(PXd{idUd8. We now apply the averaging transforma

tion T - 1 to Eq. (14). Since T~l is area preserving, it commutes with the 

Poisson brackets (the form of the Poisson tensor remains unchanged): 

- {Fulh}, (16) 

where we have defined Fi = T~lQi and have used Eq. (9b). 

We may now average Eq. (16) over $ to obtain equations for the average 

part, Fi, and the fluctuating part, Fi, of F,-: 

{F f , i7 < }=Q, {Fs,Hi} = 0. 

Since we are not interested in Fi, and since F,- appears nowhere in the equation 

for Fi, we can set Ff = 0 to obtain the gyrokinetic Vlasov equ&tion: 

{Ft,Hi} = 0, (17) 

where F,- = (T - 1 ? , ) and T - 1a,- = (T -1tf,-). Actually, setting F,- = 0 is 

equivalent, by definition of F,-, to choosing a particular set of initial conditions 

for /,-. Since choice of a particular gyrophase distribution at t = 0 has negligible 

effect on the long-time evolution of the system, we are justified in doing this. 

By virtue of the relation between (f, and F,- given above, we can write the 

Poisson equation as 

VV(x, t) = -4ire \j [TF,(Z)] 6(X - x + p)d»2 - n. (18) 
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This is the gyrokinetic Poisson equation. The quasineutrality condition is ob

tained by setting the right hand side of Eq. (18) equal to zero. 

So far in this section we have made no approximations, and have introduced 

no ordering parameters. We need only find the form of T and H using Lie 

transformations to obtain gyrokinetic equations good to any order in £ that 

we wish. Of course, this again assumes that the time scales are sufficiently 

disparate so as to render negligible the stochastic regions around resonances. 

To Off3) the Vlasov and Poisson equations are 

oT ntilli m-t dU 

where 

and 

*=*-^( l<* ! > + <™-** v 4 (iflb) 

**,*> = -*« [/ (* + <^ (*§ + £ -b x VFt) 
** r H t f g - *<?)-(I*.b X ^ + 2 ? . b x W l § 

2m t- 4nf v ' r&a fffi^' 'Hi *' n, dfi 

+ <f> -^r) + < V ) U(X - x + p)d?Z -nt 
(20) 

where VF = ?F/dX, VF = dF/dx . p and p are sow specifically defined 

in terms of the ions, p = (27»/flt")l'2> m< l s t n e " , o n mass, and ft,- is the ion 

gyrofrequency. 

Although there are 0(e*) corrections to Eq. (lfla), we are guaranteed that it 

will be phase space preserving by the Hamiltonian approach. A word of caution 

in interpreting the order of the terms of Eq. (19a): taking |VF| = O(e) has 

allowed us to divide out a factor of e from the equation. This must be taken 
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into account when determining'what terms may be kept at any particular order. 

Thus, to 0(e*) we must keep terms like b'V4>d(6F{)fdU. 

The electron drift kinetic equation can be easily derived by taking the drift 

kinetic limit of the gyrokinetic Vlasov equation. Since the electron polarization 

drift is much smaller than that or the ions, we can neglect its effects in the 

g,f rokinetic Poisson equation (see Sec. V) and use the simplest possible equations 

to govern the drift kinetic electron motion: 

where 0 , is the (signed) electron gyrofrequency.m, is the electron mass, and 

where ne = J f9<Pv in the gyrokinetic T jisson equation. This equation, to

gether with Eqs. (10) and (20), constitute a closed set of equations describing 

low frequency electrostatic plasma fluctuations. Jr. the next section we will ex

amine the energy conservation properties of this system. 

Although we have accomplished our goal of removing the fast time scale 

from the equations of motion, it is not necessarily true that the equations, when 

used self-consistently, generate solutions with no high frequency component. We 

may be sure that fluctuations such as the ion or electron Bernstein modes, which 

depend on the cyclotron resonance, will not appear, but other high frequency 

modes (such as plasma oscillations) are not ruled out a priori. Since a thorough 

treatment of the normal modes of the system is outside the scope of this paper, 

which is primarily concerned with the form of the nonlinear interactions, we will 

only briefly touch upon this interesting subject. By linearizing Eqs. (19) and (20), 

it is a straightforward excercise to construct the linear gyrokinetic dispersion 

relation for a shearless slab with a density gradient. Assuming that the electron 
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and ion background distributions are Maxwellian, we find two modes: the usual 

drift-ion-acoustic mode, and a finifce-An variant of the convective cell which turns 

into an electron plasma oscillation in the limit of small k±. Only the latter 

mode exhibits possible high frequency behavior, and so it is to this mode that 

we devote our attention. In the high frequency limit (u > k\\v{,k^vt< where t>,-

and ve are the thermal velocities), the dispersion relation for the real part of 

this mode can be written as 

in the limit of small fcj.p,-, where \p^2 = (4xe?no)/Te, n 0 is the background 

density, p* = ^ / ( T O , ! ] , ) , and T„ is the electron temperature. Thus, as long as 

AxP» > ^ D e and fc||/fcj. < (me/rn,) 1 ^ 2 there are no high frequency (w ;> fi,) 

roots. We may therefore use the full Poisson equation rather than the quasineu-

tral approximation with no fear of the equations generating high frequency 

noise. (Although quasineutrality is often adequate, it is sometimes not uni

formly satisfactory in inhomogeneous systems.) However, if the numerical 

scheme being used is such that there is no control over the size of fcj_, it is 

important to be on guard against this possibility. 

IV. ENERGY CONSERVATION 

The Hamiltonian nature of the system and the elegance of the Lie transform 

approach allow us to find simple general expressions for the conservation laws 

of the gyrokinetic system. The method we employ is applicable to all the 

conservation laws; as an example of the general technique we consider energy 

conservation. There are several ways to attack this problem. One is to seek 
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a conserved moment of the gyrokinetic equation of motion, where the moment 

is taken over all phase space coordinates but time and energy. However, there 

exists no general procedure which dictates the appropriate moment. Therefore, 

we adopt an alternative procedure in which we begin with the conservation law 

in laboratory coordinates, then transform this law into the gyrokinetic variables. 

The integrands appearing in the moment equations of this section are sometimes 

written in terms of barred (averaged) variables, and sometimes in terms of the 

unbarred variables; it really makes no difference since they appear as dummy 

variables in the integrations and it should be clear from the context which set 

is being used in any particular equation. The well-known energy constant of 

the Vlasov-Poisson system is: 

t-f!!g,S,+ f2£s.*.+ f1E[L*m. (22) 
Since we employ the simplest possible electron drift kinetic equation, vj. is a 

constant of the electron motion and only the parallel electron kinetic energy 

plays a role in the energy conservation of the system. Using the averaging 

transformation T it is not difficult to write the ion kinetic energy in terms of 

Ki = j ^Uf* = /«,(/'«, + y ) W ^ . 

This can be couched in a more useful form by means of the following "integra

tion by parts" theorem: 

/ g"Tf<Pz = I fX~lgcPz for all / , g independent of w. 

Applying this to the expression for K,- yields the gyrokinetic energy conservation 

law: 
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l = f FiWf-Lmfafli + ^-)<PZ + / / « ^ - ^ + / ^ T ^ * = c°™tant. 

(23) 

Of course, one never deals with the exact gyrokinetic system, but rather 

with some asymptotic approximation to it, worked out to some order in e. The 

averaging transformation can then be expanded out to obtain an expression for 

the energy as accurate as needed for any particular application. In fact, in at 

least two cases Eq. (23) provides exact invariants for approximate gyrokinetic 

systems. By dropping the terms which are quadratic in 0 in the Poisson equation 

Eq. (20), we obtain 

V2flx, 0 = -4*6 I f\Fi + e - V ( ^ + ^ • b X VF{)\6{X. - x + p)d« J -
[y mfili op Ui 

(24) 

This equation, along with the gyrokinetic ion Vlasov equation (19) and the 

electron drift kinetic equation (21), form a system with the following exact 

energy invariant: 

This formula can easily be verified by taking the kinetic energy moments of Eqs. 

(19) and (21), subtracting them and substituting for the ion density using Eq. 

(24). The system can be further simplified while preserving eD' rgy conservation 

by dropping the nonlinear terms in ^ in Eq. (19b) and by linearizing the Poisson 

equation. The gyrokinetic Vlasov and Poisson equations are then 
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and 

( A ' X ^ + 1 - r 0(6) + [rx(6) - r 0(6)|ikx • V ± In rup?) ^ r * > 

- f Mk±P)Fik2*tlidiidU - n« k l (27) 

where, for the purposes of computation, we have assumed that the background 

distribution is Maxwellian in p with temperature Ti and linearly varying den

sity no, I\,(6) = /„(&) exp(-ft), /» is a modified Bessel function of order n , 

\DJZ = (4re Ino)/rf, p? = TV/mjfl*, b = k\$, and we have Fourier trans

formed the Poisson equation. The term in Eq. (27) proportional to ilcj. is 

neglected by most authors. These equations describe drift waves in the linear 

stage of growth, and they have the following exact energy invariant: 

+w/(^ | l- r*'')-°- ™ 
The gyroaveraged ion and electron kinetic energies and the electrostatic po

tential energy are apparent in all of the energy invariants presented. The last 

term in the invariants represents the perpendicular "sloshing'1 energy of the 

ions. This can be most easily seen by comparing the invariant for the linearized 

system with the expression for the energy of an electrostatic wave:4* 

where fifc is the frequency of the mode, and Z \ is the Hermitian part of the 

linear dielectric [see, for instance, Eq. (D2b)]. Electrostatic fluctuations cause 

the ions to oscillate as the potential wells pass by; the energy associated with 

this sloshing motion is equal to the extra term in Eq. (28). The electrons do 
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not contribute since their polarization drift is negligible compared to that or 

the ions. 

Although the approximate gyrokinetic systems presented in this section all 

conserve energy exactly, they neglect terms which are quadratic in $> in the 

Poisson equation. These terms are of the same order as terms which we kept in 

Eq. (24), and thus may be important to the nonlinear evolution of the system. It 

is possible to retain these quadratic terms and improve the energy conservation 

by adding in the next order [0(^J)j contributions to the Hamiltonian from which 

the gyrokinetic Vlasov equation is generated. These 0(4>a) terms balance the 

quadratic terras in Eq. (20); however, energy is no longer exactly conserved. 

As we will see, these 0[4>s) terms play no role in the perturbation and weak 

turbulence theory of the next sections, so their importance is questionable. 

However, the 0{4>2) terms in the Vlasov and Poisson equations (18) and (20) do 

enter into the weak turbulence theory. Although it remains to be seen which 

set, Eqs. (19) and (20), or Eqs. (19) and (24), best approximates the actual 

dynamics, on the preliminary evidence of numerical simulations involving the 

small k±p limit of the latter set, we feel that the latter set is adequate for 

numerical work, and captures the dominant physics. 

V. LIMITING FORMS 

We shall now examine tw., limiting forms of Eqs. (19) and (20). By taking 

k±fi small, we obtain equations similar to those of Lee:* 

H + (Ub - i-^~Vf X b) • VFS - e—b • V ^ = 0(£ s). (29) 
8T milli m,- du 
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where 

and 

VV + - T - J (W,-V5> + Vj> • V±Ni) + 4M(A7,- - na) 
«oA/>,' 

= 0( £*) + 0[(fc±ft.)*], (30) 

where 

JV, = J d ^ X - «)F,, AT, = J 2rnidpdU^ exp(»k • x)J0(k±p)Fik. 

There are two differences between Lee's equations and Eqs. (29) and (30). 

The nonlinear contribution to i>' derived by Lee involves p instead of pt. This 

is traceable to an inconsistent renormalization of the distribution function (see 

Appendix A), a subtle issue. However, the difference is unimportant as long as 

the equilibrium distribution function is Maxwellian in p. Furthermore, Lee's 

Poisson equation overlooks the V_L0 • Vx-W,- term. The addition of this term is 

required for energy conservation, and also allows us to write the quasineutrality 

condition as 

"< -** 7 ^ v x ' [NiV±4>). (31) 

Thus, in the long-wavelength limit, the difference between the gyroaveraged 

density Af,- and the laboratory ion density n,- is the right-hand side of Eq. (31), 

which is the lowest order contribution to the density fluctuations provided by 

the polarization drift. It is also interesting to note the emergence in Eq. (31) of 

a term proportional to <5Af,V±̂ >, which Lee also retains in his Poisson equation, 

and which seems to have a large effect on the saturated state of drift waves in 

certain cases.4 We call this term the "nonlinear polarization density" term. This 
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is not the same as the "nonlinear polarization drift" term discussed by many 

authors, proportional to E X B • VEj., which gives rise to the mode coupling 

term of the Hasegawa-Mima equation. The nonlinear polarization density term 

is a higher order effect that is not contained in the Hasegawa-Mima equation. 

Another enlightening limiting form of Eqs. (10) and (20) is obtained by 

taking the perpendicular ion temperature to zero, i.e., (i —• 0. In this case one 

can take velocity-space moments of the resulting Vlasov equation to obtain a 

hierarchy of fluid equations, the first two of which are: 

^ - V ^ X b - W . + b - VJt = 0(e s ) , (32) 

^ - V*j X b • V J, + b • V((U)Jt + Pt) + b . V+jN, = 0(e*), (33) 

where 

* / = <S> ~ \Wx<t>)\ Ji = j UF&ilidpdU, 

(U) = ^ , Pi = j(U - {UrfFtfirQidfidU, 

and for the remainder of this section it is convenient to normalize distances to 

p, = (Te/rw,-!)*)1/2, times to Sly1, and e$ to Te- The Poisson equation becomes 

^ ( ^ 1 ) * ? * * + N i - n , + V±- (N,-V±<l>)+Ni\(VJ_V±<t>f - ( V i ^ ) 2 | = 0(e 3 ) , 

(34) 

where the norm of the tensor VxVj .^ appears. These equations are good for 

k±pt = 0(1) and k\\pt = 0(e). It is instructive to ''••ike the limit k\\pt —» 0 and 

^•De/fit ~~* 0. ' n *h' s c a s e a n equation for the time development of the potential 

can be derived which contains all terms necessary to perform a consistent weak 

turbulence analysis on the fluid system. Taking the time derivative of the 
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dt 

quasineutrality condition obtained from Eq. (34) and substituting for dNijdt 

yields 

V * / X b . V N i - ^ + Vj. • \V*t X b• VN, V x * + JV,V X |£| 

+ «i~[(Vj.V x*)« - (Vx*)*] = 0(e*). 

Ap| hinp che qaasineutrality condition once again then implies that 

1 - VV, X b ^ - Vj. • [(«. - n.Vi*)Vj>] - noKVxVj.^)4 - ( V 3 » 2 | ) 

- V x • (vij>f X b • V{nt - «, V j » V j > + (n, - r»o V 3 » V . L ^ ) 

- Bo£[(Vj.Vj>r - (V i^ 8 ! = 0{t*), (35) 

where no is the background density. Taking the electron response to be of the 

general form i5n.it = noil+ia^e^/T,), where a± represents the nonadiabatic 

electron response, and keeping only the lowest order terms, we obtain the Terry-

Horton equation: 

x [*"1 - k'l + .(o k« - ak>)] 6(k - k' - k"), (36) 

where ut = —k X b« Vlogno. Taking a^ to zero leads to the Hasegawa-Mima 

equation. 

http://i5n.it
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VI. WEAK TURBULENCE THEORY 

In this section we briefly consider aspects of the weak turbulence theory 

of the gyrokinetic system. We do not mean to imply that such a theory is 

adequate; indeed, for drift fluctuations a strong turbulence calculation is re

quired, at least for certain wavenumbers. However, many structural features 

of a complete strong turbulence calculation are already present in the simpler 

weak turbulence limit, and we will consider that limit in order to better un

derstand the power of the gyrokinetic approach and the various gyrokinetic 

nonlinearities. In particular, we wish to understand how our gyrokinetic for

malism is related to the well-known discussion of Gaieev and Sagdeev of a weak 

turbulence theory appropriate for drift waves. Those authors begin with the 

complete magnetized Vlasov equation, and therefore encounter significant dif

ficulties in systematically performing the required integrations along perturbed 

trajectories. The gyrokinetic description is much simpler and "cleaner." In 

fact, we show in Appendix D that the wave kinetic equation corresponding to 

the following truncated set of equations, 

and 

0 = f 6FnLMkJ_p)2wnidt,iU + {r[l - r0(6)l + 1 } ^ , (38) 

where r = T«/7V, is the same as the equations of Gaieev and Sagdeev. There 

are several typographical errors in Kef. 13. 

Equations (37) and (38) may be obtained from Eqs. (19) and (20) by lin

earizing 0, applying the quasineutratity condition to the linearized gyrokinetic 

Poisson equation, taking the electrons to be adiabatic and taking k\\ —• 0, and 
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again assuming that the background distribution function is Maxwellian in ft. 

The details of the calculation, presented in Appendix D, are similar to those of 

Kadomtsev.2 7 We solve perturbatively for the potential, assuming that the tur

bulence is almost delta-correlated in frequency around the zeroes of the linear 

dispersion relation, and that the Fourier amplitudes of the turbulent spectrum 

are stochastic functions with near-Gaussian statistical properties, which allows 

us to drop the fourth order cumutants appearing in the equation. We repeat 

that this calculation is by no means original to this paper and in itself is rather 

uninteresting; however, it is important to note that it is based on a truncated 

set of equations. Only the nonlinear E X B drift appears in the equations upon 

which this result depends; many other gyrokinetic effects have been neglected, 

including the nonlinear polarization drift term, V • (5NjV<j>), appearing in vari

ous forms in Eqs. (20), (24), (30), and (34). Although the E X B nonlinearity is 

the largest nonlinear term, it is not necessarily a good approximation to leave 

out the higher order drifts. Although they are small, they are correlated to 

the lower order fluctuations in such a way that their effect on the nonlinear 

mode coupling and growth rate is of the same order as that of the E X B drift. 

Examination of the gyrokinetic equations leads to the conclusion that terms of 

order <f> in both the Vlasov and Poisson equations are required for a consistent 

weak turbulence analysis. Thus, Eqs. (19) and (20) contain all terms necessary; 

however, this calculation is rather involved and space precludes a discussion 

here. We reiterate that the discussion of the present section is primarily peda

gogical: since weak turbulence theory does contain many of the salient aspects 

of other renormalized theories, it provides several instructive insights into the 

structure of the nonlinear equations. 
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vn. CONCLUSIONS 

Through the use of noncanonical Hamiltonian techniques and Lie trans

forms, we have been able to derive fully gyrokinetic, phase space preserving 

nonlinear equations governing self-consistent low frequency electrostatic plasma 

fluctuations in a straight, constant magnetic field. Energy conservation for the 

nonlinear system was discussed, as was the physics of the nonlinear drifts. 

By linearising both the gyrokinetic potential Eq. (lflbj, and the gyrokinetk 

Poisson equation (20), equations may be obtained which are equivalent to the 

equations of Frieman and Chen. Our gyrokinetic equations also reduce to the 

familiar Terry-Horton and Hasegawa-Mima equations in the limit of negligible 

ion temperature, and to equations similar to those of Lee in the small &j.p limit. 

They are similar to the equations of Wong, but contain several terms missing 

from bis gyrokinetic potential and his renormalized gyrokinetic distribution 

function. It is interesting to note, however, that his equations still conserve 

energy [neglecting the 0(4?) terms in his Poisson equation] even though they 

are not complete. The weak turbulence theory of the equations was briefly 

investigated and we found that the theory of Galeev and Sagdeev does not in

clude all relevant gyrokinetic effects. In any case, it is clear that the gyrokinetic 

approach affords a more expeditious route to the derivation of nonlinear statis

tical descriptions (for either weak or strong fluctuations) than do approaches 

based on the full Vlasov equation. 

From a practical as well as a theoretical point of view, we believe that 

the most important feature of this work is that it provides self-consistent gy

rokinetic equations in phase space preserving form. This allows for particu

larly efficient solution of the fully nonlinear equations using existing numerical 
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techniques. Since it is also important for the equations to exhibit energy con

servation, especially in numerical work, we feel that Eqs. (19) and (24) are 

appropriate equations to use for a fall numerical study of low frequency plasma 

fluctuations. Although these equations may have defects (cf. Sec. TV), they do 

contain all the physics of previous formulations, as well as new effects such as 

the nonlinear polarization density term. Furthermore, preliminary numerical 

results indicate good agreement with simulations involving the full unaveraged 

Vlasov equation. The effects of arbitrary magnetic fields and electromagnetic 

fluctuations can be incorporated into the formalism in a relative'y straightfor

ward manner. Such work is in progress, and has already yielded useful insights. 

Although much work remains to be done, we believe that these tools lay the 

proper foundation for a detailed analysis, both analytical and numerical, of 

nonlineaj low frequency fluctuations in magnetized plasma, 
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APPENDK A: THE RECURSIVE APPROACH 

In this appendix we present an alternative derivation of the gyrokinetic 

equations, using the so-called recursive method. Although the approach is quite 

cumbersome, it provides a useful comparison to the more powerful techniques 

used in the main body of the text, and is probabably more familiar to workers in 

drift kinetic and gyrokinetic theory. Here, we break the Darboux-transformed 

distribution function tf,(Z) into an averaged part, g{, and a fluctuating part, 

gf. We then average the equation of motion, Eq. (14), to obtain two coupled 

equations for j/,- and gt: 

({9>+ii,Hi}) = 0, (Ala) 

{?. + ft. Hi) - {{?,- + g(tHi}) = 0. (Alb) 

Since Hi is ^-dependent, these equations no longer decouple as they did when 

we Lie transformed to the gyroaveraged Hamiltonian r7,-; now both equations 

involve g( and p,-. 

Our strategy will be to solve for gi perturbatively as a functional of {?,•, and 

use this relation to obtain the evolution equation for g(. Solving Eq. (Alb) for 

iiiSt) y>e'ds Si = gn + gi2, where 

- « Mi 

hi —7^2 f -M^*) + v* x b • vg{ + n,b. v#|2i 
rrnUi I. op. ov\\ 

and L = a/df+[w||b-(e/m,)V^X b/Sli}-V-[e/mi)b-V4>d/dvtt. Substituting 

this expression into Eq. (Ala) yields the following rather messy equation, which 



-81-

is clearly not phase space preserving as it stands: 

It is certainly not obvious that this equation can be put in phase space preserv

ing form, but nevertheless if we substitute the relation 

we find, after very lengthy algebra, that we are led again to Eq. (19). We can 

complete the calculation by writing the Poisson equation in terms of git 

where the braces indicate functional dependence. Then substitution of Ft for 

Qi using Eq. (A2) reproduces Eq. (20). Of course, Eq. (A2) is exactly what we 

would jet by solving the coupled equations 

Fi = {J-l0i) and 0 = T- lfl, - (T-'y,), 

which we derived in Sec. Ill using Hamiltonian techniques. Equation (A2) would 

not have been obvious if we had not already been aware of the answer. The 

power of the Hamiltonian technique lies in the way that it automatically renor-

malizes g(, keeping the Vlasov equation in a simple phase space preserving form. 
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APPENDDC B: POISSON BRACKETS 

In the coordinates (x, v±,0,v\\,t,w) all Poisson brackets except the follow

ing vanish: 

{x,v±} = £, {x,U||} = b , {x,9} = , (Bla,b,c) 

{0,vj_} = —, {w,t} = 1 , (Bld.e) 

where a = xcosfl — ysin0,c = — xsin0 — ycos6. 

In Darboux transformed coordinates Z = (X, p., 0, U, T, W), all Poisson 

brackets except the following vanish: 

{X,X} = *-*-? , {X,U} = b , (B2a,b) 

{lt,0} = l, {W,T} = 1 . (B2c,d) 

APPENDIX C: GENERATING FUNCTIONS 

The following functions generate the averaging transformation: 

(Cla) 8Gi 
60 

eij> 
= ~mtt 

dG2 e 2 

00 ~m 2n 2 

V * -

mm2 vvdn + dp}9 K9 " do[Vdpf 

+ — - b X V ^ - < — - b X V0) + 2 — - b X V^ 

+ 2 - ( ^ + Ub-V*)Y (Clb) 
e at } 
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APPENDEC D: DETAILS OF THE WEAK TURBULENCE CAL

CULATION 

The object of this section is to obtain an equation for the evolution of the 

eloctric held intensity on the nonlinear saturation time scale, assuming that it 

is almost delta-correlated and that it is small. The latter assumption allows us 

to solve Eqs. (37) and (38) recursively for <p; we find through 0(4>*) that 

+ fF{WtiX\fr*_rK**$f = o, (Di) 

where 

D(k,k') = *k ^ '^"Ofc-fc ' f FuMk±p)Mk'±p)2Knidpdu 
+ {T\l-r0(b)] + l}8(k-k')(2x)\ 

g ( f e , A , , f c " ) 5 - , l c ' ? < b M k 4 I FMMk±p)j0ik'±p)Mk'ip)2*nidfldu, 
1CJ W J 

x JFuJo(k'ip)M\k± - k'±\fi)M\kl - k'jp)Mk±p)2*nidtldu. 

We have normalized e<f> to r«, w to Q,-, fc-1 to p„ and A is here defined to be the 

four-vector (—w,k) with k the three-vector wavenumber, FM is a Maxwellian 

distribution in p, u't = w.(k'), and w» = - | k X b • Vlog(no)] * s t n e drift 

frequency. Multiplying (Dl) by 4>*k and expanding fy perturbatively [<f> = <f>o + 

^ t + ..., where £ 0 is the linear potential, exactly delta-correlated around the 

zeros of the linear dispersion relation, tf>, represents the first order nonlinear 
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line broadening, etc.), we find that 

fcWW* 2iy dX dk dx 8k ' 

E(k-k',kt-k')E(ktk\k - k' 
Dk-k' 

where 

- \F(h, k-h',-k')+F(k, * - A', *)]) {uh Wig j ~ 

V f \E(k, k', k - fc')|2 , x , , . ±,. d*fc' 
+ 2 J IX, -t-Mt-i'Mh' jgjj* • < D 2 a ) 

^ j ( x ) s - ( « , / w J T 0 + r ( l - r . ) + l (D2b) 

is the linear dielectric function for adiabatic electrons and k\\ -» 0 (in the 

quasineutral limit), E[a, b, e) = £(a. b, c) + E[a, c, b), and x = (r> R) are the co

ordinates representing the slow time and space scales of the macroscopic plasma 

parameters. We have used the "Random Phase Approximation," throwing away 

the fourth order cumulants to write the four point correlation functions (ob

tained by expanding 4>) in terms of the wave intensities, {<f>4>)~k- Assuming that 

these intensities are fairly sharply peaked around the zeros of D-k has allowed 

us to use a W.K.B. approximation on the term D(k,k )(4><t>)i' of Eq. (Dl) by 

Fourier transforming over the fast fluctuations in space and time and allowing 

Dk to depend parametrically on the slow scales. This sharp peaking allows us 

to perform the frequency integrations as well; substituting for Dk and writing 

the equation in terms of the wave action Jv^ = {4>4)kdDk/d<>>\u~nt, we ob

tain the well-known Gateev and Sagdeev -wave kinetic equation for drift wave 

turbulence: 
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+ ^ k / | ^ ( k X k ' 'b) 2 ^^yF M Jo(k ± pfJ Q (k ' J _pf2 i r n i d^ l RJ 

[f FM Mk±fi)Mk'±p)M\ k± - k' x \p)2rQidtidV\i\ 

_ _ _ _ _ Ji*Wk-n_-MW>_-

1 fd>k'd>k" cp'rilMDi-n.*))),*', u* « 

2 J [2x)> l K X K D ' ftk V "k"' 

* [ | F„MkjLp)Mk'±p)j0{k'J_P)2Kaidndu] 

x {^) k ' {#) k »5(k - k' - k > ( f i k - ilk> - ftk«)(2jr)4, (D3) 

where v 8 = ^ReD^/Awl,,—.^ is the group velocity, n k is the real linear 

frequency, satisfying Re D^ —= 0, and 71 is the well-known linear growth rate. 

( 
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Figure Caption* 

FIG. 1. Geometric representation of gyromotion. The vectors p, a, and c 

rotate with the particle. 
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