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Abstract

Background: This study investigates the variations of Heart Rate Variability (HRV) due
to a real-life stressor and proposes a classifier based on nonlinear features of HRV for
automatic stress detection.

Methods: 42 students volunteered to participate to the study about HRV and stress.
For each student, two recordings were performed: one during an on-going university
examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis
of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation
dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical
comparison, we adopted the Wilcoxon Signed Rank test and for development of a
classifier we adopted the Linear Discriminant Analysis (LDA).

Results: Almost all HRV features measuring heart rate complexity were significantly
decreased in the stress session. LDA generated a simple classifier based on the two
Poincaré Plot parameters and Approximate Entropy, which enables stress detection
with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%,
and 95% respectively.

Conclusions: The results of the current study suggest that nonlinear HRV analysis
using short term ECG recording could be effective in automatically detecting real-life
stress condition, such as a university examination.

Keywords: Heart Rate Variability, real-life stress, automatic classification, linear discri-
minant analysis

Background
Stress has been investigated as a risk factor for cardiovascular disease [1] and for

reduced human performances, which in some situation, such as dangerous works or

driving a car, may results in negative consequences. Stress influences the balance of

Autonomous Nervous System (ANS) [2].

HRV is a non-invasive measure reflecting the variation over time of the period

between consecutive heartbeats (RR intervals) [3] and has been proved to be a reliable

marker of ANS activity [3].

For this reason, several studies investigated cardiovascular reaction induced by stress

using Heart Rate Variability (HRV) focussing on acute, laboratory stressors: cognitive

(e.g., mental arithmetic) [4-6], psychomotor (e.g., mirror tracing) [4] challenges and
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physical stressors [7-9]. Moreover, as standard laboratory stressors do not always

engage subjects’ affective response, real life stressors (e.g. precompetitive anxiety [10]

or social interaction stressors such as public speaking tasks [11]) are often applied to

provide a more appropriate social context in which negative emotions might be elicited

[12]. Some studies [13-16] investigated HRV variations in the case of university exams

as it is a real-life stressor. These studies included only linear HRV measurement,

except for the study by Anishchenko which considered nonlinear measures such as

Approximate Entropy [13]. In the current study, we investigated how the most com-

mon nonlinear HRV measures vary in subject under stress due to university examina-

tion. Furthermore, we proposed a classifier for automatic detection of stress based on

nonlinear HRV features.

Methods
We performed a prospective analysis, examining 5-minute HRV extracted from ECG

records of volunteer students in two different conditions: the first record was per-

formed during an on-going verbal examination (stress session); the second one was

performed after holidays (control session).

Sample of data

The data were acquired from 42 students of the School of Biomedical Engineering of

the University Federico II, who volunteered to take part in the study. This study was

performed in compliance with the Human Study Committee regulations of the Univer-

sity of Naples “Federico II”. After obtaining written consent, a 3-lead electrocardiogram

(ECG) was recorded on 2 different days: the first recording was performed during an

ongoing university verbal examination (stress session), while the second one was taken

in controlled resting condition (rest session) after a holiday period, far away from stress

induced from study routines.

There are many factors that may influence the HRV, such as circadian rhythm, body

position, activity level prior to recording, medication, verbalization and breathing con-

dition. For that reason, we took special precautions to maintain similar condition, such

performing both recordings at similar time of day and in a sitting body position after

an adaptation time of at least 15 minutes. Furthermore, we asked about consumptions

of drugs, and none of the students declared consumption of drugs. Finally, we induced

participants to speak also in the control session.

Short-term nonlinear HRV measures

We performed a short-term 5-minute HRV analysis according to International Guide-

lines [3]. The RR interval time series were extracted from ECG records using an auto-

matic QRS detector, WQRS available in the PhysioNet’s library [17], based on

nonlinearly scaled ECG curve length feature [18]. Two scientists independently

reviewed and corrected the QRS detection and manually labelled the normal beats

obtaining the so called series of normal to normal (NN) beat intervals. QRS review

and correction was performed using PhysioNet’s WAVE [17]. The fraction of total RR

intervals labelled as normal-to-normal (NN) intervals was computed as NN/RR ratio.

This ratio has been used as a measure of data reliability [17,19], with the purpose to

exclude records with a ratio less than a 90% threshold. None of the records were

excluded as NN/RR is higher than 90%.
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Nonlinear properties of HRV were analyzed by the following methods: Poincaré Plot

[19,20], Approximate Entropy [21], Correlation Dimension [22], Detrended Fluctuation

Analysis [23,24], and Recurrence Plot [25-27]. We focussed on these methods as they

were implemented in a software freely distributed and widely used for research

activities.

Poincaré Plot

The Poincaré Plot (PP) is a common graphical representation of the correlation between

successive RR intervals, for instance the plot of RRj+1 versus RRj. A widely used approach

to analyze the Poincaré plot of RR series consists in fitting an ellipse oriented according to

the line-of-identity and computing the standard deviation of the points perpendicular to

and along the line-of-identity referred as SD1 and SD2, respectively [20].

Approximate entropy

Approximate entropy measures the complexity or irregularity of the RR series [21].

The algorithm for the computation of Approximate Entropy was briefly described here.

Given a series of N RR intervals, such as RR1, RR2,..., RRN, a series of vector of length

m X1,X2,..., XN-m+1 is constructed from the RR intervals as follows: Xi,=[RRi, RRi+1 ...

RRi+m-1].

The distance d[Xi,Xj] between vectors Xi and Xj is defined as the maximum absolute

difference between their respective scalar components. For each vector Xi, the relative

number of vectors Xj for which d[Xi,Xj]≤r, Cm
i (r) is computed where r is referred as a

tolerance value (see equation 1).

Cm
i (r) =

number of {d[Xi, Xj] ≤ r}
N − m + 1

∀j (1)

Then, the following index Fm(r) is computing by taking natural logarithm of each

Cm
i (r) and averaging them over i.

�m(r) =
1

N − m + 1

N.−m+1∑
i=1

ln Cm
i (r) (2)

Finally, the approximate entropy is computed as:

ApEn(m, r, N) = �m(r) − �m+1(r). (3)

In this study, we computed the ApEn with m = 2 and with three different value of

the threshold r:

r = 0.2*SDNN (standard deviation of the NN series);

r = rmax that is, the value of r in the interval (0.1 * SDNN, 0.9 * SDNN) which maxi-

mizes the ApEn;

r = rchon, that is the value computed according to the following formula proposed by

Chon [28]:

rchon = (−0.036 + 0.26
√

SDDS/SDNN)/ 4
√

N/1000 (4)

where N denotes the length of the NN sequence, and SDDS and SDNN, respectively,

are the measure of the short-term and long-term variability of the RR sequence. For-

mally, SDDS is the Standard Deviation of the Difference Sequence of the series RR,
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that is, [RRi+1 - RRi, RRi+2 - RRi+1,..., RRN - RRN-1], and SDNN is the Standard Devia-

tion of the series NN.

The value of the parameters r and m were chosen according to the recommendation

for slow dynamic time series, such as heart rate variability, (m = 2 and r = 0.2*SDNN)

[29,30] and to the findings of recent studies [28,31] which suggested choosing the

value of r which maximizes the entropy (r = rmax) and proposed a formula for auto-

matic selection of the value r (r = rchon).

Further in the paper, we will indicate the Approximate Entropy computed with the

different values of r with the following notation En(0.2), En(rmax) and En(rchon).

Correlation dimension

The correlation dimension D2 is another methods to measure the complexity used for

the HRV time series [22].

As for Approximate Entropy, the series of Xi is constructed and Cm
i (r) is computed

as in formula 2, but the distance function, in this case, is defined as follows:

d[Xi, Xj] =

√√√√ m∑
k=1

(Xi(k) − Xj(k))2 (5)

where Xi(k) and Xj(k) refer to the k-th element of the series Xi and Xj, respectively.

Then, the following index Cm(r) is computed by averaging Cm
i (r) over i.

Cm(r) =
1

N − m + 1

N−m+1∑
i=1

Cm
i (r) (6)

The correlation dimension D2 is defined as the following limit value:

D2(m) = lim
r→0

lim
N→∞

log Cm(r)
log r

(7)

In practice this limit value is approximated by the slope of the regression curve (logr,

logCm(r)). In the current study a value of m = 10 [30] was adopted.

Detrended Fluctuation Analysis

Detrended Fluctuation Analysis measures the correlation within the signal [23,24] and

consists into the steps described here.

The average RR of the RR interval series is calculated on all the N samples. The

alternate component of RR interval series, which is defined as RR minus its average

value RR, is integrated:

y(k) =
k∑

j=1

(RRj − RR), k = 1, ...., N . (8)

The integrated series is divided into non-overlapping segments of equal length n. A

least square line is fitted within each segment, representing the local trends with a bro-

ken line. This broken line is referred as yn(k), where n denotes the length of each

segment.
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The integrated time series is detrended as following: y(k)-yn(k). The root-mean-

square fluctuation of the detrended time series is computed according to the following

formula:

F(n) =

√√√√ 1
N

N∑
k=1

(y(k) − yn(k))2. (9)

The steps from 2 to 4 are repeated for n from 4 to 64.

Representing the function F(n) in a log-log diagram, two parameters are defined:

short-term fluctuations (a1) as the slope of the regression line relating log(F(n)) to log

(n) with n within 4-16; long-term fluctuations (a2) as the slope of the regression line

relating log(F(n)) to log(n) with n within 16-64.

Recurrence Plot

Recurrence Plot (RP) is another approach performed for measurement of the complex-

ity of the time-series [25-27]. RP was designed according to the following steps.

Vectors X i= (RRi, RRi+τ,..., RRi+(m-1) τ), with i = 1,..., K, with K=[N-(m-1)* τ)], where

m is the embedding dimension and τ is the embedding lag, are defined.

A symmetrical K-dimensional square matrix M1 is calculated computing the Eucli-

dean distances of each vector Xi from all the others.

After choosing a threshold value r, a symmetric K-dimensional square matrix M2 is

calculated as the matrix whose elements M2(i,j) are defined as:

M2
(
i, j

)
=

{
1 if M1(i, j) < r
0 if M1(i, j) > r

(10)

The RP is the representation of the matrix M2 as a black (for ones) and white (for

zeros) image.

In this study, according to [30,32], the following values of the parameters introduced

above were chosen: m = 10; τ = 1; r =
√

m * SDNN, with SDNN defined as the stan-

dard deviation of the NN series.

In the RP, lines are defined as series of diagonally adjacent black points with no

white space. The length l of a line is the number of points which the line consists of.

The following measures of RP were computed: recurrence rate (REC) defined in

equation 11; maximal length of lines (lmax); mean length of lines (lmean); the determin-

ism (DET) defined in equation 12; the Shannon Entropy (ShEn) defined in equation 13.

REC =
1

K2

K∑
i=1

K∑
j=1

M2(i, j) (11)

DET =

lmax∑
l=2

l * Nl

K∑
i=1

K∑
j=1

M2(i, j)

, with Nl = number of lines of length l (12)

ShEn =
lmax∑

l=lmin

nl * ln nl , with nl = percentage of Nl over all the number of lines. (13)

Melillo et al. BioMedical Engineering OnLine 2011, 10:96
http://www.biomedical-engineering-online.com/content/10/1/96

Page 5 of 13



The HRV analysis was performed using Kubios [30] for all the measures except the

Approximate Entropy ones which were computed using in-house software in Matlab

as their computation is not available in Kubios. All the computed measures are sum-

marized in Table 1.

Statistical analysis

We calculated mean, standard deviation, median and 25th and 75th percentiles to

describe distribution of HRV features during stress and rest conditions. Moreover, we

calculated mean, standard deviation, median and 25th and 75th percentiles of the indi-

vidual differences between stress session and rest session, and we used the Wilcoxon

signed rank test to investigate the statistical significance of features’ variation within

each subject. The statistical analysis was performed by in-house software developed in

MATLAB version R2009b (The MathWorks Inc., Natick, MA).

Classification and performance measurement

We adopted Linear Discriminant Analysis (LDA) as classification method. LDA aims to

find linear combinations of the input features that can provide an adequate separation

between two classes, in the current study, stress and rest session. LDA uses an empiri-

cal approach to define linear decision plans in the feature space. The discriminant

functions used by LDA are built up as a linear combination of the variables that seek

to maximize the differences between the classes. Further details about LDA can be

found in Krzanowski [33].

In order to evaluate the classifier, we computed the common measures for binary

classification performance measurement [34] using the formulae reported in Table 2,

considering positive to the test those records classified as under stress. Total classifica-

tion accuracy represents the ability of the classifier to discriminate between the two

sessions, sensitivity refers to the ability to identify records in the stress session and spe-

cificity refers to the ability to identify records in the rest session.

To estimate the performance measures we adopted a 10-fold cross-validation scheme

[35]. This technique consists in developing 10 classifiers as following: (1) dividing ran-

domly the dataset into 10 subsamples; (2) excluding a subsample (testing subset) in

Table 1 Nonlinear Heart Rate Variability measures selected in the current study

Measure Unit Description

SD1 ms The standard deviation of the PP perpendicular to the line of identity

SD2 ms The standard deviation of the PP along to the line of identity

En(0.2) Approximate Entropy computed with the threshold r set to 0.2*SDNN

En(rmax) Approximate Entropy computed with the threshold r
set to value which maximizes entropy

En(rchon) Approximate Entropy computed with the threshold r set
to value computed with the formula proposed by Chon[28]

D2 Correlation Dimension

a1 Short term fluctuation slope in Detrended Fluctuation Analysis

a2 Long-term fluctuation slope in Detrended Fluctuation Analysis

lmean Beats Mean line length in RP

lmax Beats Maximum line length in RP

REC % Recurrence rate

DET % Determinism

ShEn Shannon Entropy
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turn; (3) developing a classifier with the remaining 9 subsamples (training subset); (4)

testing each classifier with the excluded subsample (which is used as an independent

testing dataset), computing the performance measures using the formulae in Table 2.

The 10-fold cross-validation estimates of the performance measure are computed as

the averages over the 10 classifiers. We divided the dataset in 10 folds by subject and

not by record in order to obtain a person-independent testing [36].

Feature selection

It would be possible to use all the 13 selected HRV features reported in Table 1 for the

LDA, however this may decrease the performance of the classifier, particularly because

of curse of dimensionality. Therefore, we tried to find the subset of features which

could discriminate the two classes with the highest total classification accuracy: we

adopted the so-called exhaustive search method [35], investigating all the possible var-

iations with repetition of k out of N features (with k from 1 to N). Since the number

of features N is 13, we investigated 213 = 8192 subsets of features, training and testing

the same number of classifier, as discussed in the previous subsection.

For all the single features and for the best subset of features, that is, which achieved

the highest total classification accuracy, the discrimination function was computed

against all the dataset in order to provide classification rules.

All the analysis was performed by in-house software developed in MATLAB version

R2009b (The MathWorks Inc., Natick, MA).

Results
Table 3 shows the descriptive statistics of nonlinear short-term HRV measures in the

enrolled subject during the rest and stress sessions. Table 4 presents how nonlinear

short-term HRV measures vary in the subjects in rest or under stress due to an

ongoing university examination. The features SD2, D2, En(0.2), En(rchon), a1, lmax were

significantly reduced during university examination as compared with rest session,

while lmean, REC and ShEn increased significantly during stress.

Table 5 shows the performance of the classifier based on single nonlinear HRV mea-

sures. The highest 10-fold cross-validation estimate of the total classification accuracy

Table 2 Binary Classification Performance Measures

Measure Abbreviation Formulae

Total classification accuracy ACC
TP + TN

TP + TN + FP + FN

Sensitivity SEN
TP

TP + FN

Specificity SPE
TN

FP + TN

Positive Predictive Value PPV
TP

TP + FP

Negative Predictive Value NPV
TN

TN + FN

TP: the number of records performed during university examination correctly detected

TN: the number of records performed on holidays correctly detected

FP: the number of records performed on holidays incorrectly labelled as during university examination

FN: the number of records performed during university examination incorrectly labelled as on holidays.
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was achieved by SD2 and by D2. Applying the linear discriminant analysis against the

whole dataset, we obtained the following rules: for instance, referring to SD2, if SD2 is

lower than 0.0646 ms, the record is classified as under stress, otherwise as in rest con-

dition. Moreover, also the classifiers based on REC, En(rchon) and a1 obtained a satisfy-

ing accuracy rate (71%).

The classifier achieving the highest accuracy is based on the subset of features SD1,

SD2 and En(0.2), obtaining a total classification accuracy rate of 90%. All the perfor-

mance measures are reported in the last row of Table 5. The classification rule can be

express as follows:

The record is classified as stress if:

10.64 + 203.99 · SD1 − 108.74 · SD2 − 8.26 · En(0.2) > 0 (15)

Furthermore, the classification rule could be represented as in Figure 1: in the 3D

space of the features SD1, SD2 and En(0.2), the points under the plan defined by equa-

tion (12), are classified as STRESS; those above as REST.

Table 3 Descriptive statistics of nonlinear HRV features during holidays and during
university examination

Meas. Rest session Stress session

Mean SD Med. 25th 75th Mean SD Med. 25th 75th

SD1 0.024 0.01 0.023 0.016 0.03 0.024 0.011 0.024 0.012 0.033

SD2 0.078 0.024 0.079 0.061 0.094 0.048 0.022 0.046 0.031 0.057

D2 2.828 1.09 3.179 2.244 3.544 1.649 1.282 1.494 0.468 2.574

En(0.2) 1.095 0.125 1.102 1.02 1.192 0.99 0.24 0.932 0.841 1.177

En(rmax) 1.122 0.101 1.113 1.057 1.217 1.086 0.171 1.017 0.952 1.217

En(rchon) 1.112 0.111 1.106 1.052 1.217 0.983 0.243 0.951 0.842 1.177

a1 1.413 0.16 1.438 1.283 1.51 1.054 0.446 1.043 0.69 1.447

a2 0.781 0.182 0.715 0.644 0.953 0.759 0.135 0.766 0.678 0.851

lmax 286.7 111.2 282 178 384 213.4 136.5 179 86 282

lmean 11.09 2.478 10.43 9.518 12.68 14.88 6.771 13.32 11.10 16.92

REC 33.46 6.27 32.57 29.55 37.59 42.24 12.05 43.25 36.11 49.02

DET 98.61 0.86 98.78 98.31 99.19 98.75 1.28 99.25 98.14 99.63

ShEn 3.171 0.233 3.139 3.043 3.362 3.421 0.397 3.417 3.21 3.642

Table 4 Comparison of nonlinear HRV features during holidays and during university
examination

Meas. Mean SD Med. 25th 75th p-value

SD1 0.0001 0.0148 -0.0016 -0.0088 0.0116 0.79

SD2 -0.0298 0.0269 -0.0272 -0.0493 -0.0162 <0.01

D2 -1.1791 1.4455 -0.9694 -2.7376 -0.1371 <0.01

En(0.2) -0.1056 0.2321 -0.1272 -0.2517 0.0448 <0.01

En(rmax) -0.0360 0.1629 -0.0758 -0.1441 0.0865 0.11

En(rchon) -0.1294 0.2315 -0.1385 -0.2623 0.0069 <0.01

a1 -0.3594 0.4525 -0.3774 -0.7115 0.0431 <0.01

a2 -0.0220 0.2250 -0.0224 -0.1828 0.0999 0.49

lmax -73.3 168.5 -93.5 -171.0 39.0 <0.01

lmean 3.7916 7.6832 3.0725 -0.7296 5.7562 <0.01

REC 8.78 14.30 8.93 -1.26 17.28 <0.01

DET 0.14 1.50 0.47 -0.73 0.84 0.29

ShEn 0.2505 0.4907 0.3008 -0.0737 0.4896 <0.01

Melillo et al. BioMedical Engineering OnLine 2011, 10:96
http://www.biomedical-engineering-online.com/content/10/1/96

Page 8 of 13



Among the classifier based on couple of features for comparison with other studies it

is interesting to report the performance of the classifier based on SD1 and SD2 which

achieved a total classification accuracy, a sensitivity and a specificity rate of 82%, 79%

and 86%.

Discussion
In this study, we compared within-subject variations of short-term nonlinear HRV

measures in healthy subjects during condition of mental stress due to an on-going uni-

versity examination.

Almost all the features measuring complexity of the time series statistically decreased

during the stress session, like D2, En(0.2), En(rchon), which have been widely used com-

plexity measures for HRV [37].

Table 5 Performance of the classification rules based on single features and on the best
subset of features

Features ACC SEN SPE PPV NPV Classified as stress if

SD2 73% 79% 67% 70% 76% SD2<0.0646

D2 73% 69% 76% 74% 71% D2<2.2533

REC 71% 67% 76% 74% 70% REC>0.3791

En(rchon) 71% 64% 79% 75% 69% En(rchon)<1.0530

a1 71% 57% 86% 80% 67% a1<1.2479

ShEn 68% 64% 71% 69% 67% ShEn>3.3060

lmean 67% 57% 76% 71% 64% lmean>13.2302

En(0.2) 64% 62% 67% 65% 64% En(0.2)<1.0517

lmax 60% 62% 57% 59% 60% lmax<250.6263

En(rmax) 58% 64% 52% 57% 59% En(rmax)<1.1099

DET 56% 69% 43% 55% 58% DET>0.9870

a2 40% 50% 31% 42% 38% a2<0.7711

SD1 39% 33% 45% 38% 40% SD1>0.0243

SD1,SD2, En(0.2) 90% 86% 95% 95% 87% See formula 15

Figure 1 3D plot of the classification rule based on SD1, SD2 and En(0.2). The points in sub-space
under the blue plane were classified as STRESS; the ones in the sub-space above the blue plane were
classified as REST.
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Almost all the features measuring complexity of the time series statistically decreased

during the stress session. These findings confirms the results obtained by Anishchenko

[13], which showed that Approximate Entropy decreased significantly during stress

condition due to university examination. Among the approximate entropy measures

considered in this study, the one based on threshold value rchon achieved the highest

total classification accuracy. These results support previous findings regarding rchon
capability to detect different physiological conditions [38].

Furthermore, our finding of decreased complexity measures, in particular D2, are in

line with studies about the relationship between Heart Rate complexity and acute phy-

sical stress [7-9] or short-term mental stress [1].

The decreased value of complexity measures reflects a change towards more stable

and periodic behaviour of the heart rate under stress which may be associated with

stronger regularity, decoupling of multimodal integrated networks and deactivation of

control-loops within the cardiovascular system [39-41]. As interpreted by Schubert [1],

this reduction in heart rate complexity during a high stress condition may reflect a

lower adaptability and fitness of the cardiac pacemaker.

The results of the classification for automatic detection of high-stress reinforce the

findings of the statistical analysis: the D2 and the En(rchon) enables detecting the stress

condition with a total classification accuracy rate higher than 70%. Furthermore, also

the SD2, which is a measure of long-term variability, and a1, which provided informa-

tion about short-term fluctuations, achieved comparable performances.

The combination of features achieving the best results consists of the two parameters

of PP (SD1 and SD2) and a measure of complexity (En(0.2)) and enables detecting the

stress condition with a total classification accuracy, a sensitivity and a specificity rate

of 90%, 86% and 95%, respectively. The SD1 was chosen in the best combination of

features, although the classifier based only on SD1 achieved the lowest performance

among the one based on single features, because it provided information different

from the other features, particularly SD2 and En(0.2).

We underlined that, even if not shown in best combination, the classifier based on

the two parameters of the PP (SD1 and SD2) achieved a total classification accuracy

higher than 80%, confirming the usefulness of PP as a valid marker for mental stress

[10,42].

The performance achieved by the selected subset of nonlinear features is higher than

that achieved by selected linear feature on the same data-set reported in our unpub-

lished observations. Furthermore, comparing with the study of Kim [2], who adopted a

logistic regression on linear HRV features for distinguishing high stressed subject from

low stressed ones, achieving a total classification accuracy of 70%, the performance of

the current study are better. These comparisons confirms the usefulness of nonlinear

HRV features for automatic classification [43].

Controlled breathing was not asked in order not to affect student performance dur-

ing the university exam. However, the effect of breathing pattern on HRV is a debated

question. Some studies [44,45] showed that different breathing conditions may have an

impact on the reproducibility of HRV. In contrast, other studies [46-48] found that

such factors did not have a significant impact on HRV reliability and their findings

seem to suggest that HRV is reliable and consistent over time, whether or not respira-

tion is controlled.
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In the current study, we focussed only on a few nonlinear methods, those which

were implemented in Kubios, a free software for HRV analysis. Although this choice is

a limit of the current study, it could be useful in order to increase the reproducibility

of the experiment by other investigators.

As regards the classification methods, LDA succeeded partially in separating the two

classes, providing an intelligible model. The intelligibility of features and classification

rule is strongly appreciated in medical domain data-mining [49]. However, the adop-

tion of a linear classifier may represent another limit of the current study, which did

not enable us to consider nonlinear structures in classification. In future work we will

use nonlinear methods such as Artificial Neural Network (ANN) and Support Vector

Machine (SVM) with adequate kernel, in order to achieve a possible improvement in

the performance measurement. However, we underlined that the computational cost of

the LDA is lower than the ANN or SVM, saving time in the operation.

Finally, the results of this paper could extend the use of portable sensing devices,

usually adopted in cardiac applications [50,51], to stress detection.

Conclusions
In conclusion, the results of the current study suggest that nonlinear HRV analysis

using short term ECG recording could be effective in automatically detecting real-life

stress condition, such as a university examination. The proposed classifier based on the

Poincaré Plot measures and on the Approximate Entropy enables detecting the condi-

tion of stress due to university examination with a total classification accuracy, a sensi-

tivity and a specificity rate of 90%, 86, and 95%, respectively.

Further research on a large sample size and on different stressful conditions will help

to further elucidate the findings of this study and effectiveness of HRV analyses for dif-

ferentiation between low and high stress condition.
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