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Nonlinear Image Estimation Using
Piecewise and Local Image Models

Scott T. Acton,Member, IEEE,and Alan C. Bovik,Fellow, IEEE

Abstract—We introduce a new approach to image estimation the intensities vary slowly, and simultaneous preservation of
based on a flexible constraint framework that encapsulates mean- sharply-varying, meaningful image structures.
ingful structural image assumptions. Piecewise image models The first main theme of the current paper is the development
(PIM’s) and local image models (LIM's) are defined and uti- fi timati lgorith thaeqi ith del f
lized to estimate noise-corrupted images. PIM’'s and LIM’s are 0 Image estimation aigorithms gin with a mo e. or
defined by image sets obeying certain piecewise or local imagethe image.The model used should, of course, be designed to
properties, such as piecewise linearity, or local monotonicity. By capture meaningful image detail and structure for the applica-
optimizing local image characteristics imposed by the models, tjon at hand. We explore several fairly general image models
image estimates are produced with respect to the characteristic that are based on well-defined local image characteristics. The

sets defined by the models. Thus, we propose a new genera dels th d divided i | . .
formulation for nonlinear set-theoretic image estimation. Detailed MOdeIs that we study are diviaed into two class@scewise

image estimation algorithms and examples are given using two image modelgPIM’s), which model images as everywhere
PIM's: piecewise constant (PICO) and piecewise linear (PILI) obeying a certain property (such as constancy or linearity) in

models, and two LIM'’s: locally monotonic (LOMO) and IocaIIy_ a piecewise manner, aridcal image model§LIM’s), which
convex/concave (LOCO) models. These models define pmpert'escharacterize images as obeying a certain property (such as

that hold over local image neighborhoods, and the corresponding - . . o
image estimates may be inexpensively computed by iterative MoNotonicity or convexity) over every subimage of specified

optimization algorithms. Forcing the model constraints to hold geometry.
at every image coordinate of the solution defines aonlinear re- A second main theme of the paper is the casting of the
gressionproblem that is generally nonconvex and combinatorial. - estimation problem as approximationto anonlinear regres-
However, approximate solutions may be computed in reasonable i, ith respect to theharacteristic setlefining the image
time using the novel generalized deterministic annealing (GDA) . . .
optimization technique, which is particularly well suited for Model. Estimation proceeds by encouraging adherence to the
locally constrained problems of this type. Results are given for model properties while maintaining a semblance (a minimum
corrupted imagery with signal-to-noise ratio (SNR) as low as 2 distance) to the observed input image. The goal is to compute
dB, demonstrating high quality image estimation as measured by g solution image that approximates the desired image property
local feature integrity, and improvement in SNR. and that also is at minimum distance (defined by a prescribed

Index Terms—image enhancement, image estimation. distance norm) from the observed image.

The approach to image estimation described here is gener-
ally quite new. Some related methods have been reported that

attempt to preserve image smoothness in a more usual sense

ONE OF THE oldest ongoing problems in image progsmall derivative or Sobolev image norm), while at the same

\_/ cessing isimage estimationwhich encompasses algo-ime producing an output image that is “close” to the input
rithms that attempt to recover images (usually digital) fromynage [3], [10], [11], [13]. In these constrained optimization or
observations. More specifically, it is generally desired tQqylarized methods, the smoothness constraint can be relaxed
remove unwanted noise artifacts, which are often broadbat&@l,image boundaries—identified vime processe§10]. The
while simultaneously retaining significant high-frequency iMyegions between the discontinuities can be modeled as weakly
age features, such as edges, texture and detail. In sucRoginuous surfaces, using a weak membrane model [4] or
context, the problem is often referred tolamge enhancement. 5 yyo-dimensional (2-D) noncausal Gaussian Markov random
The objectives of image esumaupn/enhgncement are genergllyy (GMRF) model [12], [23]. These approaches, while often
twofold, and conflicting: smoothing of image regions wherggeciive, do suffer from some drawbacks. First, they do not

fall within a flexible, unified framework that allows for the use
of different image models demanded by different applications.
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to PIM’'s and LIM’'s can be accomplished with relatively[18], as in all the cases considered here. Nonlinear regression
low computational complexity via the recently introducedlso has an interpretation as projection of the signal to be
generalized deterministic annealing (GDA) algorithm. GDAegressed onto the characteristic €6etThe projection is with
is a starting-state independent iterative optimization technigrespect to a semimetric [18]. The geometrical structure of the
that is particularly well-suited fdocally constrainecroblems regression problem also admits a strong statistical optimality
such as those studied here. property. Indeed, if the additive noisein (1) consists of i.i.d.

The paper is organized as follows. Section Il outlines treamples coming from a discrete version of the generalized
nonlinear regression approach to nonlinear image estimatiesponential distribution functiofp € (0, oo)] with density
Sections Il and IV describe four image models (two PIM’s _ »
and two LIM’'s) and the estimation procedure in each case. Jolw) =7 - exp(=(|]") (3)

Computed image estimation examples are provided for eaglgén the solution to the nonlinear regression (2) is a maximum

model. Section V briefly discusses the iterative optimizatigjkelihood estimate, provided that the distance norm used is
algorithm GDA, particularly those aspects that relate to the sgfe p-semimetric [20]

theoretic image estimation problem. The utilization of GDA

T T 1
leads to a nonheuristic implementation that is particularly NoLhd . /®
efficient for the problem. The paper is concluded in Section VI. lg —hl[p = Z Z l9(x, y) — h(z, y)| )
=0 y=0
II. NONLINEAR IMAGE ESTIMATION Thus, if the image noise can be modeled as i.i.d. and coming
from the density (3) for some, then the nonlinear regres-
A. Nonlinear Image Estimation and the sion problem can be formulated as maximum likelihood via
Relationship to Nonlinear Regression selection of the norm (4).

The generalized exponential distribution includes three very
45mmon additive noise models that will be employed here. For
p =1, f,(z) is the Laplacian density, and the optimizing data

constraint leading to an ML estimate is tHenorm. Laplacian
noise is a common “heavy-tailed” or highly impulsive noise
model, e.g., to model data containing outliers. For=

In (1), n represents additive independent, identically dig, f,(x) is Gaussian density, and the ML estimate is under the

Consider the problem of estimating a discrete-space im
1, i(x, y) € Z] from an observed imagg where

g=1i+n. ()

tributed (i.i.d.) noise wheren = [n(z, ¥); 0 < =z, y < [*norm. Finally, ap — oc, f,(x) becomes uniform density,
N -1, n(z,y) € Z]. and the distance measure to use is fffenorm.
The image estimation problem posed by (1) can be solvedWe can use the preceding observations to guide the selection
via nonlinear regression of the norm||g — h||p in the construction of a cost (energy)
. . functional for a regularized solution. The regularized solution
g =arg it lg = hilp. (2) encapsulates soft constraints for consistency with the sensed

imageg and adherence to the characteristic property. Although
! . g the introduction of the soft model constraint to replace the hard
[18]) image closest to the observatignamong all images that ., qyraint that the solution lie i© changes the problem, if
lie .W|th|n th_e characteristic setC, i.e., images .that strictly the solution is forced toward both the original image under
safisfy th? image moqd (@ PIM or LIM’,'” this case). Th‘?ne appropriate data constraint norm and also toward the
characteristic seC defines thecharacteristic propertyof the characteristic set, an estimaieof the optimal regression will

regression, such as local monotonicity or piecewise constangy: optained which may be more physically sensible than the
The term||g — h||p is the distance between imageand the regressiong*

observed imageg, defined by an appropriate distance norm

Here, the optimizing estimatg* is the (generally nonunique

- 1lp- . _ _
i i ; . . . Regularized Solution
Solving (2) is generally an expensive combinatorial optc” [CoUANZ ut

mization for data sets approaching the size of images [18],/n the regularized solution, the image estimgtés found
[19]. Locally monotonic regression algorithms in [18] ardy Minimizing an energy functionak'(h) that combines a
of exponential complexity, although a recent algorithm th&@€enalty for deviation from the observed image data with
promises linear complexity when operating on signals froma Penalty for local deviation from the characteristic image
finite alphabet has been proposed [22]. In the current papfoperty—assumed to be a PIM or a LIM:

we take a d_iffgrent approach: we r_ecast t_he problem by treating E(h) = ||g — h|p + Allh — PROP(h)||5. (5)
membership inC as a soft constraint. This leads to a problem

well-suited to fast optimization algorithms. Thus

. - N 6 = arg min{E(h)}. 6
B. Existence and Statistical Optimality =g Hﬂn{ (h)} (6)

of Nonlinear Regression In (5), ||lg — h|p is the distance between imageand the
Nonlinear regression of the form (2) always has at least onbserved image;, as defined in (4). This term is called the
solution provided that the characteristic $gtis a closed set data constraint.The distance norm is generally motivated by
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a priori information about the noise processas described in select the regularization parameter is that the cost to evaluate
Section 1I-B. In all of the simulations, additive noise from the particularX is equivalent to the cost of performing image
general density (3) will be used fgr € {1, 2, oc}. In each estimation itself.
case, the appropriate optimainorm or p-semimetric is used  Empirically, we have found the image estimation procedure
to define the data constraint. to be quite robust with respect to selectiomgindeed, values
The term||h — PROP(h)|| in (5), themodel constraint, of A that differ by one or two orders of magnitude (10 or 100)
provides an energy penalty for local deviation froroterac- do not yield very different results than obtained here. This is
teristic propertyPROP which defines the image model. Thedue to the fact that the constraints defined by the PIM’s and
form of themodel norm|| - ||, depends on the characteristid-IM’s used here are fully realizable. Meaningful image esti-
property. However, in general it will be written mates can be computed that have zero cost penalties from the
NoLN1 PIM and LIM constraints, in contrast to the Laplacian operator
_ that produces a zero-energy penalty only for an image without
I = PROP(h)[la = Z Z IR, y) = PROPIR(, y)] edges. The results demonstrate this—in every example given
7) in the paper, over 90% of the pixels in the obtained image
estimate obey the defining characteristic property. However,
where|h(z, y) — PROP[h(z, y)]| is a local measure of error algorithms of this type appear to be somewhat sensitive to
energy relative to the characteristic set. under-specification ob—for values an order of magnitude
The characteristic properties studied here will be defin&naller than unity (thus heavily weighting the data constraint
by PIM’'s and LIM’s. The model constraint is computed byelative to the model constraint), the solution quality begins
summing, over all image coordinates, the absolute distarf@edeteriorate.
betweenh and the closest local solution inthat satisfies the ~ Note that in the absence afpriori information concerning
characteristic property locally. Again, a suitable distance norie original image structure, cross validation may be also
may be selected to define the model constraint according@@plied to select the appropriate PIM or LIM for image
some statistical or structural criterion. estimation. With this approach, the validation error [17] (the
The regularized solution (6) is a more tractable approxpredicted mean-squared error) is computed for each potential
mation to the regression (2). However, aside from the issi#del using the corrupted image as the input. Then, the
of computational complexity, it can be argued that (6) magodel producing the lowest validation error is used for image
often present a more physically sensible solution than (Bstimation.
Consider the case of (5), whereis taken to be large: the
model constraint is thus given considerably greater weight than
data constraint. IA is taken sufficiently large, then the solution !!l- | MAGE ESTIMATION USING PIECEWISE IMAGE MODELS
image will be forced to adhere to the characteristic property atPiecewise image models, or PIM’s, describe images that
nearly every, and possibly at all image coordinates. In suclobey an image property, such as constancy, linearity, polyno-
case, the solution may not adequately resemble the input imagial behavior, or some other more abstract or other specific
in some locations, owing to local deviations from the imaggroperty on a piecewise basis over the entire image domain.
model. It may therefore be argued that the nonlinear regressitime pieces over which the property holds form a proper
(2) yields solutions which may be numerically optimal, yepartition of the image; each piece is constrained to be of some
suboptimal in the important sense infage enhancement.  minimum size (specified by the model degree). The size of a
The regularization parameter\ determines the degree topiece may be defined in various ways, such as the minimum
which g will conform to the data constraint versus the modelimension along its minor axis. The piecewise model allows
constraint. In [8], methods were explored for determininfpr sudden discontinuities in the image property that defines
such relative weights for more usual (linear) smoothnetite PIM; there is no explicit discontinuity-detection mecha-
operators. Generally, the estimation ®dfdepends on th@ nism, however; the region boundaries naturally evolve as the
priori knowledge of the corruptive noise and is typicallysolution is found.
complex and time-consuming. Because operators used to evalfwo potentially useful piecewise image properties that de-
uate the characteristic properties (the PIM’'s and LIM’s) aftne PIM’s are studied hergriecewise constand?ICO), and
nonlinear (unlike the traditionally used Laplacian operator), th@ecewise linearity(PILI). The associated regression prob-
methods used in [8] are not applicable to this implementatidlems defined by (2) are termedlCO regressionand PILI
Instead, the regularization parameter may be selected via creggession,respectively. Both regressions are ill-posed com-
validation [17]. With this method, the image is first dividedinatorial problems having nonunique solutions. The cor-
into an estimation set and a validation set. To evaluate thesponding PICO or PILI image estimation problems (6)
solution quality given for a particular regularization parameteaye easily configured for iterative solution. Naturally, other
the nonlinear image estimation is performed using (5) on tipgecewise models can be defined, such as piecewise quadratic
pixels in the estimation set. Simultaneously, image estimati@RlQU) models or higher-order piecewise polynomial models,
is implemented for the pixels in the validation set, but with piecewise exponential (PIEX) models, etc. However, PICO
cost functional that does not include the data constraint. So, tired PILI afford meaningful and simple image descriptions that
pixels in the validation set can be used to predict the estimatioorrespond to commonly encountered natural and synthetic
error [17]. The main drawback of using cross validation tonage data, and that adequately demonstrate the framework of

=0 y=0
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input image PICO-3 regression input image PICO-3 regression

(w/ two orientations) (w/ four orientations)

Fig. 1. lllustrative examples of PICO-3 regression using two and four orientations.

this theory. Of course, PICO images define a somewhat mame(2) (more paths to check). Also, the four-orientation PICO
restricted category of imagery; good examples include fowegression may round corners, as shown in Fig. 1.

color artwork, printed matter, and binary image data. AnotherIn the presence of high-amplitude noise, we have observed
potentially useful application of PICO image estimation is dfat streaking tends to be more severe in image estimates
a preprocessing stage to intensity-based image segmentatiomputed under the two-orientation PILI model than under
By first forming a PICO image (which defines a coarse setjie two-orientation PICO model. In fact, horizontal or vertical
mentation), the segmentation problem is reduced to decididieaks can appear along intensity discontinuities.

whether to merge neighboring PICO regions. In the examples, four-orientation PICO and PILI estimates
The definitions of the PICO and PILI image properties a@'e computed. Although PICO, PILI, and other PIM's share
quite similar, and can be given together as follows. similarities, the assumptions made and the associated impli-

Definition 1: A one-dimensional (1-D) signak is piece- cations for implementation differ. These differences will be
wise constant(piecewise linedr of degreem, or PICOsn €Xplored as each model is developed.
(PILI-m) if the length of the shortest constant (linear) sub-
sequence ix is greater than or equal ta. A. PICO Image Estimation

Thus, each sample is part of a constant (linear) segmenh interpreted as an enhancement technique, PICO image

of length greater than or equal ta. The lowest degree 1-D .. - . . . )
PICO (PILI) regression of interest is PICO-2 (PILI-3) Sinceestlmatlon successfully accomplishes intraregion smoothing,
all signals are PICO-1 (PILI-2), while preserving important features, especially sharp edges,

. L . . nd removing corruptive noise. As with all PIM’s, approximate
In defining PILI we make a special dispensation for signa 9 b bp

. . S %gressions of differemtegreesare possible, which determines
guantized to integer values: the definition is relaxed by aIIovyﬁe amount of smoothing
ing each sample to deviate from the nearest real-valued Iinea[n (5) and (7) takePROP — PICO. Then let the
trend by no more than unity. ) L ) set of possible substitutions (of thi€ possible) fori(z, v)
Although PICO and PILI have simple definitions in 0NGya; are members of a piecewise constant vector of length

dimension, for higher-dimensional signals there is quite al{?ﬁeater than or equal ton in all four orientations be
of latitude in the definition. The following one supplies an efyonoteq by pico,, (z, y). Note that only a maximum of

fective piecewise characterization that is also computationagyght values must be evaluated to constrpito,, (z, y)

conve_ni_e_nt. . . ) ) since any piecewise constant solution must be equal to one
Definition 2: A two-dimensional (2-D) imagh is PICOm  f the eight neighboring pixels.

(PILI-m) if h is PICOsm (PILI-m) (in the sense of Definition  jithin pico,, (z, 1), the solution with smallest distance to
1) on every 1-D path along a set of prescribed orientationsihe current value ofi(z, y) is assigned taPICO,, [h(z, y)].

We have experimented with two types of 2-D PICO/PILjt the set of local PICO solutions is empty (no local solutions
definitions: a two-orientation version, and a four-orientatiogyist), thenPICO,,[h(x, y)] is assigned the maximum value
version. The two-orientation PICO (PILI) definition enforce:;b(gc7 y)+ K — 1, so the maximum energy penalty is assessed.
piecewise constancy (linearity) along image columns ang each coordinatéz, ¢), the maximum contribution to (7) is
rows (linear paths quantized along®9Mitervals). The four- g — 1, and the maximum contribution t&(h) is A(KX — 1).
orientation definition includes the diagonal orientations (linear There is an interesting relationship between PICO regression
paths quantized along 43ntervals). or PICO estimation, and a robust class of image-enhancing

Four-orientation PICO limits imagstreaking, or highly order statistic filters, known as the weighted majority with
visible and easy-to-misinterpret constant streaks, similar fginimum range (WMMR) filters [14]. The development of the
those that can occur when a 1-D median filter is applied to MMR filter was motivated by the fact that other impulse-
image [6]. Qualitatively, PICO image estimates that utilize thejecting nonlinear filters, such as the median filter, preserve
four-orientation constraint exhibit smoother region boundariagndesirable monotonic degradation, such as blur, along image
whereas the two-orientation constraint may produce slightylges. The WMMR tends to sharpen such edges by making
jagged boundaries between the constant regions. There them more steplike. For a filter window spanniig: + 1
tradeoffs, of course; imposing PICO along a larger number sémples, the WMMR is implemented by first selecting the
orientations creates a more expensive computation of energyt+ 1 values in the filter window having a minimum range.
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The output is computed by a weighted sum of thet+ 1 TABLE |

values. These filters, like the median filter [9], [15], have DEscRIPTION OFIMAGERY USED IN PICO AND PILI EXPERIMENTS
an interesting root-signal analysis. Indeed, the root signalSmage Noise Distribution o, SNR
(S|gnals that remain unchanged by filtering) of a WMMR filter . Laplacian 05 2 2aB
of width 2m + 1 are those signals that are PIG@-+ 1). It Mammogram Uniform 11 11.0dB

has also been shown that repeated passes of a WMMR filter
eventually produces a PICO root signal. (To achieve a PICO
root signal, the WMMR weights must be nonnegative arffcurate response along slowly varying intensity changes.
sum to unity, with unequal first and last weights [14].) wé&lowever, PILI estimates are more difficult to compute and can
may make the interpretation, then, that the PICO regressigf less effective than PICO estimation in intense additive noise
directly finds the fixed point of a WMMR filter. This may environments (low SNR, high noise variance), in the sense of
be stated more strongly: since application of WMMR filter§nage enhancement. The reason for this is that high-amplitude
tends to produce PICO results, theal of WMMR filtering Noise processes often continue local groupings of outliers that
may be interpreted as finding a PICO replacement of the ingiRProximate linear segments; these may be retained or even
data at the expense of the noise. From this perspective, findfithanced by a PILI estimate. However, for lower-intensity
the PICO regression or PICO estimate yieldsltlest possible Noise, the PILI estimates are often very good.
PICO replacement, while the WMMR filter can only deliver a !n (5) and (7), takePROP = PILI,,. Denote the set of
suboptimal one after repeated passes. As will be demonstratedpossible substitutions far(z, y) such that a PILI vector of
in a numerical comparison later in this section, enhancemé@gth =m is created in all four orientations hyili,, (x, y).
results obtained via the WMMR may eliminate important locapince the data is discrete, the test for linearity allows for
features that are retained by optimal PICO image estimatioff. Maximum quantization error of1. The substitution that
We note that in [11], a related PICO image estimatioWi€lds the smallest distance relative idxz, y) in the set
procedure was studied. In that work, fxedsize 3 x 3 Pili, (2, y) is assigned td’I L1, [h(z, y)]. If pili,,(z, y) is
neighborhood of every pixel is examined—over each su@mpty, thenPILI,[h(z, y)] is assigned the maximum value
neighborhood, the target image is assumed constant. Since fig ¥) + K — 1, yielding the maximum energy.
is assumed atverypixel, this amounts to assuming the image PILI estimation provides a simple and powerful method
everywhere constant. A penalty is assigned at every pixel f§f smoothing 1-D signals containing both step edges and
the following strategy: a comparison is made between ea@nplike edge transitions. It is also a powerful approach
pixel in the neighborhood and the pixel under consideratiofr image enhancement applications, as discrete image data
a penalty of one incurred if unequal, and a penalty of zeksually contains a proliferation of edge profiles that can be
if equal. A mean-field annealing algorithm iteratively modwell approximated either by sudden jumps in intensity, or by
erates a tradeoff between minimizing the differences betwe@®re gradual linear trends.
neighboring pixels and the difference between the original andHowever, 2-D PILI estimation finds a greater degree of
estimated data. Because of conflict with the data constraif@mputational complexity than might be expected from ex-
a PICO image of unknown region scale is obtained. Whifmination of the 1-D problem. The reason for this is that
the PICO constraint developed here leads to a well-defin§ Strict constraint of piecewise linearity may be difficult to

estimate, the one in [11] is inherently ill defined. simultaneously satisfy along multiple linear orientations. This
leads to poor agreement with the linear model in some locales,
B. PILI Image Estimation which is acceptable, except that some visually misleading local

PILI image estimation is also useful for accomplishingonfigurations may occur. Conflicts arising between linear
intraregion image smoothing without degrading intensity di®aths in the image can result in poor reconstruction of image
continuities. The characteristic set of the associated PIEPNtours and a failure to eliminate noise. The characteristic
regression problem is the set of signals that are piecewl¥@perties of simpler models, such as piecewise constancy
linear. Within each image piece, PILI regression allows efnd (@s will be seen) local monotonicity, may be satisfied
fective smoothing while retaining intensity trends, which ar@long several orientations by making single pixel intensity
approximated by linear functions. Thus, the domain of appfubstitutions. By contrast, single pixel changes are often
cation is broader than afforded by PICO regression/estimatidigufficient in satisfying more complicated properties such as
1-D PILI regressions were used in [5] to model linear trend¥th the PILI model.
in statistical data; piecewise linear topologies for geometric
models were explored in [21]. C. PICO and PILI Image Estimation Examples

'PILI 'image .es.timation gttempts to enforce linearity on a |, the simulations, we selected images that we deemed
piecewise ba_3|s ina 1-D signal. I_n 2-D, the PILI vectors e_ffec&-) be well approximated by the PIM's, and added noise to
tively form piecewise planar regions. Ideal PILI regressiongyem For these simulations we provide numerical measures of
when computable (on small-scale problems) retain both stgg,mance expressed in terms of improvement in the error

edges and linearly varying ramp edges, while eliminating im\4 in the SNR. The SNR of a noisy image is computed via
pulses obtained in a corruptive process. PILI image estimates SNR= 101 (03 /02)
= 1U-logyolo; /o,

approximate this behavior, and perhaps, improve upon it. In
comparison to PICO regression, PILI estimation yields a movehereo? is the variance of the original uncorrupted image and
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Fig. 2. PICO image estimation. (a) Original “South Texas” image. (b) Corrupted image. (c) PICO-2 result. (d) WMMR-MED result.

o2 is the variance of the noise. For each simulation, TableElimination of noise from cloud cover or from the sensor is an
lists the noise type and noise statistics, and the SNR. important step in segmenting the agricultural fields shown in

Fig. 2 illustrates PICO image estimation of a 256256 the image. Clearly, PICO image estimation can be an effective
South Texas SPOT satellite image. Note that the originalethod for preprocessing noisy images prior to segmentation.
image Fig. 2(a) is very PICO-like, hence provides an excellentAs a comparison, a & 5 WMMR-MED filter (40 iterations)
example of the advantage of matching the appropriate imagas also iteratively applied, as shown in Fig. 2(d). This
model to the estimation application. In the original SPOmMonlinearly filtered image, while supplying a very PICO-like
image, several boundaries are ambiguous and noisy outliezsult, did not retain several of the important features of the
are present. The addition of 3.2 dB Laplacian noise creategrage. Using smaller WMMR-MED filters led to severe loss
nontrivial enhancement problem [Fig. 2(b)]. The PICO imagef performance in noise reduction. Although Fig. 2(d) is nearly
estimate (with/'-norm data constraint and model constraintPICO, several of the South Texas fields are merged together
very effectively enacts intraregion smoothing, removing the edind, in some cases, severely distorted. This blurring effect
fects of additive noise while preserving the individual fields, a& the WMMR-MED filter would preclude the possibility
shown in Fig. 2(c). In terms of region coherence, the PICO& a meaningful segmentation and would also eliminate the
image is superior even to the original uncorrupted imagpossibility of detecting more subtle image regions, such as the
and would be simpler to segment into homogeneous regionsadways separating the fields.
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(© (d)
Fig. 3. PILI image estimation. (a) Mammogram image. (b) Corrupted image. (c) PILI-4 result. (d) Ledt®S result.

Fig. 3 is an example of PILI image estimation. In this TABLE I
case. a 256x 256 digital X-ray mammogram Fig. 3(61) is PICO AND PILI IMAGE ESTIMATION AND FILTERING RESULTS
processed. The image was selected since it is composgg,. Vethod NSE ASNR
largely of fairly smooth regions with few abrupt transitions. ‘
. . . . . . South Texas PICO-2 Regression 22.6 +5.75dB
A uniform-noise corrupted image is shown in Fig. 3(b). Thesouth Texas WMMR-MED (40x) 314 +4.32dB
resulting PILI image estimate, using tf&-norm in the data Mammogram PILLI4 Regression 16.3 +8.50dB

N . . . . Mammogram A-OS Filter 43.0 +4.29dB
constraint, [Fig. 3(c)] is nicely smoothed, but also retains

the important features of the original image. Here, nonlinear
image estimation with respect to the PILI-4 characteristisraically orders the intensities within the window, then linearly
set produced an improvement in the SNR of 8.5 dB. {feights them using a piecewise linear (triangular) weighting
PICO image estimation were employed instead, it is likelyy compute the output. Thus, the filter, called theOS filter
that misleading false contours would have developed in tigiangle OS filter) was selected, since it is near optimal
solution image, thus distorting possible interpretation of ther heavy-tailed noise in minimum variance sense [7]; it is
parenchymal tissues revealed in the mammogram. highly robust, and it supplies a linear weighting to naturally
As a filter comparison to the PILI image estimation methodrdered samples near intensity transitions. This makes it a fair
we applied a specifiorder statistic(OS) filter to the noisy comparison for a piecewise linear fit. It was implemented by
mammogram [7]. Within a finite window, the filter alge-applying a 1-DA-OS filter along both the rows and columns of
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input image LOMO-3 regression input image LOCO-4 regression

Fig. 4. lllustrative examples of LOMO-3 and LOCO-4 regressions in two dimensions.

the image (a common strategy that agrees with the row/columagression,and the estimation problem (6) HyOMO image
definition of PILI utilized here). A window span of five wasestimationand LOCO image estimation.
used in theA-OS filter example shown in Fig. 3(d)—the Again, the size and shape of the local geometry over
smallest possible\-OS filter, since the length-A-OS filter which the characteristic property is constrained to hold is an
is equivalent to the length 3 median filter. Larger windowmnportant specification, and is part of the definition of a LIM.
sizes and multiple iterations resulted in inferior (blurred)yhe definitions of LOMO and LOCO signals in both 1-D and
results. Although the result in Fig. 3(d) is fairly smooth2-D are again quite similar, and given together, as follows.
several important features (including the possible tumor!) haveDefinition 3: A 1-D signal x is LOMO-m (LOCO-m) if
been eliminated. By comparison, the PILI-4 estimate exhibigvery subsequence &f of length <m is monotonic (is either
superior feature preservation while still effectively smoothingonvex or concave).
the noise. Note that since every 1-D signal is LOMO-2 (LOCO-3),
Table Il gives numerical results for each nonlinear estima&OMO-3 (LOCO-4) is the smallest property degree of interest.
tion method, showing the MSE with respect to the original Definition 4: A 2-D imageh is LOMO-m (LOCO-m) ifh
uncorrupted image and the improvement in SNR from thie monotonic (is either convex or concave) on every 1-D path

corrupted image, which is given by of length <m along a set of prescribed orientations.
) - ) Both two- and four-orientation LOMO and LOCO ver-
ASNR= 10 logy [Ii — gl[*/|& — &I sions have been tested; the differences in solution quality

. between two-orientation and four-orientation implementations
It can be seen that in each case, the mean square error (MgEd t,nd to generally be quite small; indeed, image streaking

was substanti.ally smaller using the nonlinegr estimator.. Tgﬁpears not to be a problem with LIM's, at least those tested
improvement in SNR was also better, sometimes dramaticallys far. Therefore, the less expensive two-orientation version
SO. was used exclusively in the LOMO and LOCO examples (see
Fig. 4).
IV. IMAGE ESTIMATION USING LOCAL IMAGE MODELS

The second class of image models studial image A LOMO Image Estimation
models(LIM’s), describe images that obey an image property, The smoothing properties of locally monotonic (LOMO)
such as monotonicity, convexity/concavity, or other specifiegression have previously been studied in some depth for
property overeveryimage region of specified size and ged-D signals in [18], [19]. Local monotonicity is well suited for
ometry. Because the characteristic properties are requireddascribing images, since the model embodies image structures
hold everywhere, LIM'’s require more flexible image propertiethat include step edges, ramp edges, and all types of monotonic
than do PIM’s; for example, the only images that are locallgdge profiles. The LOMO model also captures smoothness.
constant everywhere are globally constant; the only imagébus, LOMO image estimates tend to have well-preserved
that are locally linear everywhere are also globally lineaedges and effectively smoothed noise.
Thus constancy and linearity are image properties that do noNow take PROP = LOMO,, in (5) and (7). The set of
lead to interesting LIM’s. By contrast, piecewise monotonipossible substitutions (of th& possible) forh(z, y) such that
regressions/estimates and piecewise concave/convex regh€s; y) is @ member of a LOMO segment of lengthm along
sions/estimates lead to viable models. each prescribed orientations is denotetho,,, (x, ). Within

Since they are required to hold everywhere, the charabis set, the solution having the smallest distance to the current
teristic properties of LIM's must have the ability to capturealue of h(x, y) is LOMO,,[h(z, y)]. If lomo,,(z, y) = ¢,
a broad range of image structures. Two such characterigtien setLOM O, [h(z, y)] = h(z, y) + K — 1.
properties are studied hettecal monotonicitLOMO), which Just as PICO regression and PICO image estimation are
defines images that are monotonic on every local regioelated to the WMMR nonlinear enhancement filter (through
of specific geometry, antbcal convexity/concavityl OCO), sharing of fixed points), the techniques of LOMO regression
which defines images that are convex or concave on evenyd LOMO image estimation are related to thedian filter.
local region of specific geometry. We refer to the associatéadeed, it was research into the interesting properties of the
regression problems (2) asOMO regressionand LOCO median filter that first led to the introduction of the concept
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of locally monotonic regression [18]. Just as the PICO signals TABLE Il

are the fixed points of the WMMR filters, LOMO signals are DESCRIPTION OFIMAGERY USED IN LOMO AND LOCO EXPERIMENTS
the fixed points of median filters (with a well-established 1-Dypag. Noise Distribution . SNR
fixed point theory [9], [15]). Similar arguments may be madeC Ganssi 190 10045
. . . . . ameraman aussian R .

in favor of LOMO regression and LOMO image estimation aSrre. Laplacian 28.1 1.7dB

were made for PICO-based methods. Since repeated filtering

with a median filter leads inevitably to a LOMO signal,

then median filtering may be seen as a method for inducitiye appropriate LIM. Table Il lists the relevant input image

“LOMOness” on a signal. LOMO regression/estimation is alsgtatistics.

such a technigue; however, with a more directed goal of Next, Fig. 5 depicts filtering of the cameraman image

finding a best LOMO signal. As might be expected, therdFig. 5(a)], containing a mixture of detailed and smooth

are similarities between median filtering results and LOM@egions. This image was selected since the LOMO model

estimation results, as will be seen in the simulation. is intended to be quite generic. A Gaussian-noise corrupted
version of this image was created, as shown in Fig. 5(b);

o hence, the data constraint was defined using /theorm.

B. LOCO Image Estimation Fig. 5(c) shows the result of LOMO-3 image estimation.
LOCO regression for 1-D signals was first studied in [19]The flexibility of the LOMO model is evident—through the
The idea behind locally convex/concave (LOCO) image esgimultaneous smoothing of large-scale regions such as the
mation is that a signal can be smoothed by limiting the rate bfickground, and the retention of the finely detailed features
change in monotonicity within every signal region. This is &uch as the cameraman’s facial features. Notice the smooth
very novel measure of signal smoothness, and certainly, LO@ontours and the natural ramplike edges, such as the shading
regression/estimation is somewhat specialized. For examgig,the tripod. Several small but physically meaningful regions
LOCO regression does not adequately preserve step eddeshe image, such as the eyes and the individual camera
Also, the LOCO model constraint is not particularly effeccomponents, are retained in the LOMO image estimate.
tive at eliminating large noise impulses; undesirable LOCBy comparison, the rootlike signal generated by successive

oscillations may be created on the image surfaces. Howewapplication (40 iterations) of a & 3 square window median
for images that contain smoothly changing edge structuresfitter [Fig. 5(d)] is quite smooth in the global sense, but at
LOCO oscillatory patterns, the approach can be very effectithe loss of detail, and the creation of several unattractive
This time, takePROP = LOCO,, in (5) and (7). Let blotchy patches [6]. Note also the blurring of facial features,
loco,,.(z, i) be the set of possible solutions fafz, y) that the camera, and the buildings in the background.
are members of locally convex/concave segments of lengthFinally, Fig. 6 depicts LOCO estimation of a severely
>m along both the vertical and horizontal orientations. Theorrupted (1.7 dB) image of a tree’s cross section. The appli-
member ofloco,,(z, y) having the smallest distance to thecation of the LOCO image model is appropriate, because the
current value ofi(z, y) is the value of LOCO,,[h(z, v)]. If “tree” image [Fig. 6(a)] exhibits an approximately sinusoidally
loco,,(z, y) is empty, thenLOCO,,[h(x, y)] is assigned the varying intensity pattern—and few steplike edges. The noisy
maximum valueh(z, y) + K — 1. image, which was corrupted with Laplacian-distributed noise,
Like piecewise linearity, the constraint for local convexis severely degraded [Fig. 6(b)]. However, the LOCO image
ity/concavity is expensive to compute, since several nontriviestimate (defined using thié-norm for the data constraint)
solutions to the LOCO constraint may exist at each pixehown in Fig. 6(c) is a very smooth result that corresponds
location. However, unlike PILI regression/estimation, satisery well with the intensity profile of the original image in
fying the LOCO property locally in two directions is notFig. 6(a). As a method of comparison with an appropriate
difficult when using single pixel changes at each iteration abnlinear filter, amoving LOCOfilter was applied to the
an optimization routine. image. The moving LOCO filter, defined here for the first
As a method of image enhancement, LOCO image esdlime, forces the digital signal to be locally convex/concave, in
mation has not been previously applied to real-world imagke 1-D sense, along the row and columns of the image. Note
data. Since the LOCO model does not preserve step edghat a sampled locally convex/concave signal has a difference
the domain of application is somewhat limited, and certainbignal (z; — x;_1, ;41 — =, Ti12 — zi41, - --) that is locally
would preclude images of most man-made, indoor scenesonotonic. Specifically, a 1-D LOC®t + 1 signal has an
Nevertheless, LOCO image estimation may used efficaciouslysociated difference signal that is LOM®@- Therefore, a
in specific image applications, as well as in extended domait LOCO signal can be computed by forcing the difference
such as smoothing of nonabrupt audio signals immersedsignal to be LOMO. This is accomplished by first computing
noise, or for enhancing other inherently bandlimited (lowpas#je difference signal along an image row or column (discrete
signals. differentiation), using the moving LOMO filter defined in [19]
to create a LOMO difference signal, then summing the new
o differences (discrete integration) to compute the LOCO signal.
C. LOMO and LOCO Image Estimation Examples This operation is applied to each image row and column. Note
In each simulation we attempt to utilize, for each estimdhat this operation does not guarantee that the result will be
tion method, an input image that is effectively modeled byOCO in the 2-D sense. However, it has the advantage of
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(d)

Fig. 5. LOMO image estimation: (a) Cameraman image. (b) Corrupted image. (c) LOMO-3 result. (d) Iterated median filter result.

speed. The moving LOCO filter result is shown in Fig. 6(dpixel intensities andV? is the number of pixels in the image.
Although the result is reasonable, this filter fails to match thEhe estimation problem is, of course, inherently multistate (as
smooth, high-quality result of the LOCO-4 image estimate. opposed to binary). In the examples presented here, 8-b data
Table IV lists the errors incurred by both LIM-based nonlinis used so that each optimization variable has 256 discrete
ear estimation and by the comparative nonlinear filters used.digtes. The energy functions defined for the PICO, PILI,
eacr_l case, th_e MSE was ag_ain substa_ntially smaller_using tR®MO, and LOCO models are nonconvex: hence, globally
nonlinear estimator. Accordingly, the improvement in SNByima| solutions cannot be found using steepest descent (local
was also superior. search). Suboptimal local minima can be avoided through the
statistical hill climbing of stochastic simulated annealing (SA).
V. ITERATIVE SOLUTION VIA GDA However, even “practical” implementations of SA have an

The nonlinear image estimation problems studied here afaréalistic computational expense for gray-level image esti-
all combinatorial, multistate(full gray level), andnoncon- mation applications. As an effective alternative, we formulate
vex.Combinatorial optimization problems have discrete, finitgolutions to nonlinear estimation problems usgeneralized
solution spaces that increase exponentially (equivalently, @terministic annealingGDA), a very recent optimization
N) as the problem size increases [16]. Clearly, the imadechnique that provides high-quality solutions for time-critical
estimation problem is combinatorial as the number of possildgplications [2]. Unlike previous optimization methods used in
solutions increases d§"”, whereK is the number of possible image processing applications, GDA is a general-purpose tool
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Fig. 6. LOCO image estimation: (a) Tree image. (b) Corrupted image. (c) LOCO-4 result. (d) Moving LOCO filter result.

TABLE IV
LOMO/LOCO IMAGE ESTIMATION AND FILTERING RESULTS
Image Method MSE ASNR
Cameraman LOMO-3 Regression 137.2 +3.62dB
Cameraman Median Filter (40x) 2519 +0.98dB
Tree LOCO-4 Regression 165.4 +5.76dB
Tree Moving LOCO Filter 1048.3 -2.26dB

chain represents a specific, unique solution. For an opti-
mization problem withV? variables withX possible states,
the SA Markov chain hask™" possible states. Solution
changes occur according to the SA transition probabilities.
At each temperature in the annealing process, the chain
converges to an equilibrium state (stationary distribution)
after many transitions. At high temperatures, the stationary
distribution is uniform, where all solutions in the chain have

for multistate problems, is characterized by rapid, guaranteggual probability. As the temperature is slowly reduced in the
convergence and by the ability to escape undesirable loe@nealing process, the chdireezesinto a globally optimal
solutions. In contrast to SA, GDA can easily be implementegblution. To directly estimate the limiting solution of the SA
in a true parallel fashion on a single instruction multiplalgorithm, GDA utilizes N? separatelocal Markov chains
data (SIMD) architecture, without the need for “divide andf length K. Each local Markov chain represents the state

congquer” schemes.

of an optimization variable (e.g., pixel intensity). Using the

GDA directly estimates the limiting solution of the SASA transition probabilities, GDA iteratively computes the
algorithm. The iterative, stochastic solution of SA may bdistribution (not the state) of each local Markov chain at
modeled as a Markov process [1]. Each state in the Markavgiven temperature. Due to the shortgrlength of the
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GDA local Markov chains, the equilibrium state at eaclbstimation problem
temperature is achieved quickly after only a few iterations.
As the temperature is lowered in the annealing process, a
single solution emerges for each optimization variable (tffd
d_|str|but_|on becomes singular at the final st_ate for the optimiza- Ty = AEpae/In { K } (14)
tion variable). When all of theV local chains have become K -2

frozen at a final state, the estimate of the optimal solution \jsere AE. . is the maximum energy change, afd,;
. . max 1 nmin
completed. The approximate solution corresponds to a 10¢alihe minimum (nonzero) energy change possible with one

T =AEmym/In[K? — K — 1] (13)

minimum in the energy function [2]. _ variable change. Because the minimum and maximum energy
Denote the distribution for the local Markov chain forchanges depend on the realizatiodRROP(h), AE,,.x, and
the pixel intensity h(z, y) at iterationt by 7*(z,y) = AFE, .. must be computed for each PIM and LIM. For the

[ (2, y; O)m*(z, y; 1) ---w'(z, y; K — 1)]. Theith compo- piCO, PILI, LOMO, and LOCO models, assuming integer-
nentr*(z, y; *) is the probability mass function éi(z, y) at valued pixel intensities, define the minimumsemimetric
iteration . The K' components ofr*(z, y) are theK states value in (4) asy where

of the local Markov chain that correspond to the possible . _ . _

intensities for a given pixel. At each iteration, a new density | " lg —hilp = min b = PROP(h)[|1

— 2 2 1
is computed for each pixel intensity based on the previous = (K — DIN?" — (N? - 1)V/7] (15)
distribution. An update for theéth component atx, y) is for p > 1. Therefore
accomplished by AE, i = min{y, M} (16)
ol . LSt o Since each of the four PIM's and LIM’s have the same
@, y; ) =(1/K) Y Arlz, v; i, ) maximum contribution to the energy functional
=0
e g )+ )] (8) Al = max{ =1, AUK = 1)}. (17
An effective implementation of GDA for the nonlinear
where image estimation problem follows.
. . o iti i i N = 0 - q =
Ar(z, y; i, 5) = 1/[1 + exp(1/ T Eroeia. o [M, ) = 4] Step 1. Inmahza‘uonj SetT = T, and setr(z, y; ©)
. 1/KV$797L0S$SN—170§9S
- Eloc(az,y)[h(xv y) = [’]})] (9) N — 1’ 0 S L S K — 1.

and Ey,q(., ) [h(z, y) = i] is thelocal energyat (, i) when Step 2. Iteration: Use (8) to update*(z, y; ?)Vx’ Y, 4
pixel h(z, y) is assigned a value of. The local energy 0szsN-10sysN-10si<K-—1
is computed using the mean field estimates of neighboringSteP 3. Equilibrium: If the number of iterations at the

variables. The mean field estimate of the pixel vahie, y) current temperature; > n.(T), then setl’ = 7T
at time ¢ is (where0.9 < 7 < 0.95).

L Step 4. Saturation: If 1" < 1%, stop. Else, return to Step
c
* i it . 2.
P (@, y) = int [z% i (2, y; L)] (10) Additional speedup may be obtained usimimdowedGDA

= (WGDA) [2], where only a small window of states of length
where infe) is the nearest integer function. Uniform converg,  in the K-length local chains are active at any time.
gence for the estimate may be described¥as'(z, y) < The window is centered at the mean field estimate (10) for
Ve, y: 0 <z < N-1,0<y < N-—1 Vh*(z,y) is each pixel; window shifts are limited to one state/iteration
the change im*(x, y) between successive iterations. For thgy prevent oscillations. In all the examples presented here,
probability densities, uniform convergence may be stated ag WGDA implementation withK,, = 9 was utilized. The
WGDA affords over two orders of magnitude of improvement

t+41 Nt ; _ , _ !
7 sy ) = (@ y ) <e Y,y i 0<w in speed over a practical SA algorithm, for comparable solution
SN-1,0<y<N-1,0<i<K-1.  (11) qualiy.

For image estimatiors = 1/K? guarantees that the changes VI. CONCLUDING REMARKS

in pixel inte_nsity_(ll) are less than ”F“W’?*(% y)<1].The_ The characteristic set—e.g., PICO, PILI, LOMO,
number of iterations needed to obtain this measure of unifoiy~5_ jefines the image model used. Naturally, the

convergence at a temperatufeis given by [2] model used must be appropriate. An image that was originally

1 or nearly LOMO is an ideal candidate for LOMO estimation.

n <ﬁ) However, generalizations can be made. For images of

ne(T) = %3 1 (12) man-made environments, PICO, PILI, and LOMO are quite

In [( )e—T/Ame + —} tenable models, since they all effectively preserve steplike
edges that are usually numerous in man-made scenes. For

where 1} is the initial annealing temperaturg; is the fi- images of synthetic environments containing surfaces having

nal temperature. Using the guidelines in [2] for the imageniform reflectance profiles (e.g., a robotics application),
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PICO estimation is quite powerful. Natural scenes contain a Texas, Austin, May 1990. _ o o
combination of sharp steplike edges and gradually changiF?Q] A. Restrepo (Palacios) and A. C. Bovik, “On the statistical optimality

of locally monotonic regression[EEE Trans. Signal Processingpl.

ramplike edges, so LOMO estimation is an excellent choice. 45 pp 1548-1550, 1994.
PILI estimation displays superior performance on mangl] C. P. Rourke and B. J. Sandersdniroduction to Piecewise Linear

images with smooth intensity profiles, but at greater expense,

Topology. Berlin, Germany: Springer-Verlag, 1981.
N. D. Sidiropoulos, “Fast locally monotonic regressiolfEE Trans.

The applications for LOCO image estimation are much more Signal Processingyol. 45, pp. 389-395, 1997.
restricted. One application might be estimating 2-D sinusoid&Bl T. Simchony, R. Chellapa, and Z. Lichtenstein, “Graduated nonconvex-

gratings. The PIM’s and LIM’s considered here do provide

ity algorithm for image estimation using compound Gauss Markov field
models,” inProc. IEEE Int. Conf. Acoustics, Speech, Signal Processing,

a diversity of image models for image estimation tasks, Glasgow, UK., 1989, pp. 1417—1420.
although, no doubt, many others can be defined.
We are currently studying application of PIM’s and LIM’s as
set-theoretic constraints on the restoration of images that have Scott T. Acton (S'89-M'93) received the B.S.
been both blurred and corrupted with noise. The extensi degree in electrical engineering from Virginia Poly-

of the PIM’'s and LIM's to color and multispectral imagery

technic Institute and State University, Blacksburg, in
1988, and the M.S. and Ph.D. degrees in electrical

is still open. Currently, the image estimation process usit engineering from the University of Texas, Austin,
the piecewise and local models could be applied to ea in &I99h0 and 1k9%?>_, r_efjpe?tiv]‘ely-AT&T he MITRE
H ) € has worked In Inaustry Ttor , the
spe?tral bgnd |ndepepdently. _The development of PIM’s al . Corporation, and Motorola, Inc. Currently, he is an
LIM’s that incorporate information from several spectral banc Associate Professor in the School of Electrical and
simultaneously could be useful to the color imaging and to tl b Computer Engineering, Oklahoma State University,

remote sensing community.
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