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Abstract—We introduce a new approach to image estimation
based on a flexible constraint framework that encapsulates mean-
ingful structural image assumptions. Piecewise image models
(PIM’s) and local image models (LIM’s) are defined and uti-
lized to estimate noise-corrupted images. PIM’s and LIM’s are
defined by image sets obeying certain piecewise or local image
properties, such as piecewise linearity, or local monotonicity. By
optimizing local image characteristics imposed by the models,
image estimates are produced with respect to the characteristic
sets defined by the models. Thus, we propose a new general
formulation for nonlinear set-theoretic image estimation. Detailed
image estimation algorithms and examples are given using two
PIM’s: piecewise constant (PICO) and piecewise linear (PILI)
models, and two LIM’s: locally monotonic (LOMO) and locally
convex/concave (LOCO) models. These models define properties
that hold over local image neighborhoods, and the corresponding
image estimates may be inexpensively computed by iterative
optimization algorithms. Forcing the model constraints to hold
at every image coordinate of the solution defines anonlinear re-
gressionproblem that is generally nonconvex and combinatorial.
However, approximate solutions may be computed in reasonable
time using the novel generalized deterministic annealing (GDA)
optimization technique, which is particularly well suited for
locally constrained problems of this type. Results are given for
corrupted imagery with signal-to-noise ratio (SNR) as low as 2
dB, demonstrating high quality image estimation as measured by
local feature integrity, and improvement in SNR.

Index Terms—Image enhancement, image estimation.

I. INTRODUCTION

ONE OF THE oldest ongoing problems in image pro-
cessing isimage estimation,which encompasses algo-

rithms that attempt to recover images (usually digital) from
observations. More specifically, it is generally desired to
remove unwanted noise artifacts, which are often broadband,
while simultaneously retaining significant high-frequency im-
age features, such as edges, texture and detail. In such a
context, the problem is often referred to asimage enhancement.
The objectives of image estimation/enhancement are generally
twofold, and conflicting: smoothing of image regions where
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the intensities vary slowly, and simultaneous preservation of
sharply-varying, meaningful image structures.

The first main theme of the current paper is the development
of image estimation algorithms thatbegin with a model for
the image.The model used should, of course, be designed to
capture meaningful image detail and structure for the applica-
tion at hand. We explore several fairly general image models
that are based on well-defined local image characteristics. The
models that we study are divided into two classes:piecewise
image models(PIM’s), which model images as everywhere
obeying a certain property (such as constancy or linearity) in
a piecewise manner, andlocal image models(LIM’s), which
characterize images as obeying a certain property (such as
monotonicity or convexity) over every subimage of specified
geometry.

A second main theme of the paper is the casting of the
estimation problem as anapproximationto anonlinear regres-
sion with respect to thecharacteristic setdefining the image
model. Estimation proceeds by encouraging adherence to the
model properties while maintaining a semblance (a minimum
distance) to the observed input image. The goal is to compute
a solution image that approximates the desired image property
and that also is at minimum distance (defined by a prescribed
distance norm) from the observed image.

The approach to image estimation described here is gener-
ally quite new. Some related methods have been reported that
attempt to preserve image smoothness in a more usual sense
(small derivative or Sobolev image norm), while at the same
time producing an output image that is “close” to the input
image [3], [10], [11], [13]. In these constrained optimization or
regularized methods, the smoothness constraint can be relaxed
at image boundaries—identified vialine processes[10]. The
regions between the discontinuities can be modeled as weakly
continuous surfaces, using a weak membrane model [4] or
a two-dimensional (2-D) noncausal Gaussian Markov random
field (GMRF) model [12], [23]. These approaches, while often
effective, do suffer from some drawbacks. First, they do not
fall within a flexible, unified framework that allows for the use
of different image models demanded by different applications.
Second, the implementation of smoothness constraints that
decouple across intensity boundaries is somewhat difficult
(since the estimation of line processes is a hard problem),
whereas models such as local monotonicity and piecewise lin-
earity naturally preserve boundaries between smooth regions.
Finally, the computational cost of obtaining image estimation
results using constrained combinatorial optimization is imprac-
tical for time-critical image processing applications. Here it
is shown that approximate nonlinear regression with respect
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to PIM’s and LIM’s can be accomplished with relatively
low computational complexity via the recently introduced
generalized deterministic annealing (GDA) algorithm. GDA
is a starting-state independent iterative optimization technique
that is particularly well-suited forlocally constrainedproblems
such as those studied here.

The paper is organized as follows. Section II outlines the
nonlinear regression approach to nonlinear image estimation.
Sections III and IV describe four image models (two PIM’s
and two LIM’s) and the estimation procedure in each case.
Computed image estimation examples are provided for each
model. Section V briefly discusses the iterative optimization
algorithm GDA, particularly those aspects that relate to the set-
theoretic image estimation problem. The utilization of GDA
leads to a nonheuristic implementation that is particularly
efficient for the problem. The paper is concluded in Section VI.

II. NONLINEAR IMAGE ESTIMATION

A. Nonlinear Image Estimation and the
Relationship to Nonlinear Regression

Consider the problem of estimating a discrete-space image

from an observed image where

(1)

In (1), represents additive independent, identically dis-
tributed (i.i.d.) noise where

.
The image estimation problem posed by (1) can be solved

via nonlinear regression

(2)

Here, the optimizing estimate is the (generally nonunique
[18]) image closest to the observation, among all images that
lie within the characteristic set , i.e., images that strictly
satisfy the image model (a PIM or LIM, in this case). The
characteristic set defines thecharacteristic propertyof the
regression, such as local monotonicity or piecewise constancy.
The term is the distance between imageand the
observed image , defined by an appropriate distance norm

.
Solving (2) is generally an expensive combinatorial opti-

mization for data sets approaching the size of images [18],
[19]. Locally monotonic regression algorithms in [18] are
of exponential complexity, although a recent algorithm that
promises linear complexity when operating on signals from a
finite alphabet has been proposed [22]. In the current paper,
we take a different approach: we recast the problem by treating
membership in as a soft constraint. This leads to a problem
well-suited to fast optimization algorithms.

B. Existence and Statistical Optimality
of Nonlinear Regression

Nonlinear regression of the form (2) always has at least one
solution provided that the characteristic setis a closed set

[18], as in all the cases considered here. Nonlinear regression
also has an interpretation as projection of the signal to be
regressed onto the characteristic set. The projection is with
respect to a semimetric [18]. The geometrical structure of the
regression problem also admits a strong statistical optimality
property. Indeed, if the additive noisein (1) consists of i.i.d.
samples coming from a discrete version of the generalized
exponential distribution function with density

(3)

then the solution to the nonlinear regression (2) is a maximum
likelihood estimate, provided that the distance norm used is
the -semimetric [20]

(4)

Thus, if the image noise can be modeled as i.i.d. and coming
from the density (3) for some, then the nonlinear regres-
sion problem can be formulated as maximum likelihood via
selection of the norm (4).

The generalized exponential distribution includes three very
common additive noise models that will be employed here. For

is the Laplacian density, and the optimizing data
constraint leading to an ML estimate is the-norm. Laplacian
noise is a common “heavy-tailed” or highly impulsive noise
model, e.g., to model data containing outliers. For

is Gaussian density, and the ML estimate is under the
-norm. Finally, as becomes uniform density,

and the distance measure to use is the-norm.
We can use the preceding observations to guide the selection

of the norm in the construction of a cost (energy)
functional for a regularized solution. The regularized solution
encapsulates soft constraints for consistency with the sensed
image and adherence to the characteristic property. Although
the introduction of the soft model constraint to replace the hard
constraint that the solution lie in changes the problem, if
the solution is forced toward both the original image under
the appropriate data constraint norm and also toward the
characteristic set, an estimateof the optimal regression will
be obtained which may be more physically sensible than the
regression .

C. Regularized Solution

In the regularized solution, the image estimateis found
by minimizing an energy functional that combines a
penalty for deviation from the observed image data with
a penalty for local deviation from the characteristic image
property—assumed to be a PIM or a LIM:

(5)

Thus

(6)

In (5), is the distance between imageand the
observed image , as defined in (4). This term is called the
data constraint.The distance norm is generally motivated by
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a priori information about the noise process, as described in
Section II-B. In all of the simulations, additive noise from the
general density (3) will be used for . In each
case, the appropriate optimal-norm or -semimetric is used
to define the data constraint.

The term in (5), themodel constraint,
provides an energy penalty for local deviation from acharac-
teristic property which defines the image model. The
form of themodel norm depends on the characteristic
property. However, in general it will be written

(7)

where is a local measure of error
energy relative to the characteristic set.

The characteristic properties studied here will be defined
by PIM’s and LIM’s. The model constraint is computed by
summing, over all image coordinates, the absolute distance
between and the closest local solution tothat satisfies the
characteristic property locally. Again, a suitable distance norm
may be selected to define the model constraint according to
some statistical or structural criterion.

The regularized solution (6) is a more tractable approxi-
mation to the regression (2). However, aside from the issue
of computational complexity, it can be argued that (6) may
often present a more physically sensible solution than (2).
Consider the case of (5), where is taken to be large: the
model constraint is thus given considerably greater weight than
data constraint. If is taken sufficiently large, then the solution
image will be forced to adhere to the characteristic property at
nearly every, and possibly at all image coordinates. In such a
case, the solution may not adequately resemble the input image
in some locations, owing to local deviations from the image
model. It may therefore be argued that the nonlinear regression
(2) yields solutions which may be numerically optimal, yet
suboptimal in the important sense ofimage enhancement.

The regularization parameter determines the degree to
which will conform to the data constraint versus the model
constraint. In [8], methods were explored for determining
such relative weights for more usual (linear) smoothness
operators. Generally, the estimation ofdepends on thea
priori knowledge of the corruptive noise and is typically
complex and time-consuming. Because operators used to eval-
uate the characteristic properties (the PIM’s and LIM’s) are
nonlinear (unlike the traditionally used Laplacian operator), the
methods used in [8] are not applicable to this implementation.
Instead, the regularization parameter may be selected via cross
validation [17]. With this method, the image is first divided
into an estimation set and a validation set. To evaluate the
solution quality given for a particular regularization parameter,
the nonlinear image estimation is performed using (5) on the
pixels in the estimation set. Simultaneously, image estimation
is implemented for the pixels in the validation set, but with a
cost functional that does not include the data constraint. So, the
pixels in the validation set can be used to predict the estimation
error [17]. The main drawback of using cross validation to

select the regularization parameter is that the cost to evaluate
a particular is equivalent to the cost of performing image
estimation itself.

Empirically, we have found the image estimation procedure
to be quite robust with respect to selection of; indeed, values
of that differ by one or two orders of magnitude (10 or 100)
do not yield very different results than obtained here. This is
due to the fact that the constraints defined by the PIM’s and
LIM’s used here are fully realizable. Meaningful image esti-
mates can be computed that have zero cost penalties from the
PIM and LIM constraints, in contrast to the Laplacian operator
that produces a zero-energy penalty only for an image without
edges. The results demonstrate this—in every example given
in the paper, over 90% of the pixels in the obtained image
estimate obey the defining characteristic property. However,
algorithms of this type appear to be somewhat sensitive to
under-specification of —for values an order of magnitude
smaller than unity (thus heavily weighting the data constraint
relative to the model constraint), the solution quality begins
to deteriorate.

Note that in the absence ofa priori information concerning
the original image structure, cross validation may be also
applied to select the appropriate PIM or LIM for image
estimation. With this approach, the validation error [17] (the
predicted mean-squared error) is computed for each potential
model using the corrupted image as the input. Then, the
model producing the lowest validation error is used for image
estimation.

III. I MAGE ESTIMATION USING PIECEWISE IMAGE MODELS

Piecewise image models, or PIM’s, describe images that
obey an image property, such as constancy, linearity, polyno-
mial behavior, or some other more abstract or other specific
property on a piecewise basis over the entire image domain.
The pieces over which the property holds form a proper
partition of the image; each piece is constrained to be of some
minimum size (specified by the model degree). The size of a
piece may be defined in various ways, such as the minimum
dimension along its minor axis. The piecewise model allows
for sudden discontinuities in the image property that defines
the PIM; there is no explicit discontinuity-detection mecha-
nism, however; the region boundaries naturally evolve as the
solution is found.

Two potentially useful piecewise image properties that de-
fine PIM’s are studied here:piecewise constancy(PICO), and
piecewise linearity(PILI). The associated regression prob-
lems defined by (2) are termedPICO regressionand PILI
regression,respectively. Both regressions are ill-posed com-
binatorial problems having nonunique solutions. The cor-
responding PICO or PILI image estimation problems (6)
are easily configured for iterative solution. Naturally, other
piecewise models can be defined, such as piecewise quadratic
(PIQU) models or higher-order piecewise polynomial models,
piecewise exponential (PIEX) models, etc. However, PICO
and PILI afford meaningful and simple image descriptions that
correspond to commonly encountered natural and synthetic
image data, and that adequately demonstrate the framework of
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Fig. 1. Illustrative examples of PICO-3 regression using two and four orientations.

this theory. Of course, PICO images define a somewhat more
restricted category of imagery; good examples include four-
color artwork, printed matter, and binary image data. Another
potentially useful application of PICO image estimation is as
a preprocessing stage to intensity-based image segmentation.
By first forming a PICO image (which defines a coarse seg-
mentation), the segmentation problem is reduced to deciding
whether to merge neighboring PICO regions.

The definitions of the PICO and PILI image properties are
quite similar, and can be given together as follows.

Definition 1: A one-dimensional (1-D) signal is piece-
wise constant(piecewise linear) of degree , or PICO-
(PILI- ) if the length of the shortest constant (linear) sub-
sequence in is greater than or equal to .

Thus, each sample is part of a constant (linear) segment
of length greater than or equal to. The lowest degree 1-D
PICO (PILI) regression of interest is PICO-2 (PILI-3) , since
all signals are PICO-1 (PILI-2).

In defining PILI we make a special dispensation for signals
quantized to integer values: the definition is relaxed by allow-
ing each sample to deviate from the nearest real-valued linear
trend by no more than unity.

Although PICO and PILI have simple definitions in one
dimension, for higher-dimensional signals there is quite a bit
of latitude in the definition. The following one supplies an ef-
fective piecewise characterization that is also computationally
convenient.

Definition 2: A two-dimensional (2-D) image is PICO-
(PILI- ) if is PICO- (PILI- ) (in the sense of Definition
1) on every 1-D path along a set of prescribed orientations.

We have experimented with two types of 2-D PICO/PILI
definitions: a two-orientation version, and a four-orientation
version. The two-orientation PICO (PILI) definition enforces
piecewise constancy (linearity) along image columns and
rows (linear paths quantized along 90intervals). The four-
orientation definition includes the diagonal orientations (linear
paths quantized along 45intervals).

Four-orientation PICO limits imagestreaking, or highly
visible and easy-to-misinterpret constant streaks, similar to
those that can occur when a 1-D median filter is applied to an
image [6]. Qualitatively, PICO image estimates that utilize the
four-orientation constraint exhibit smoother region boundaries,
whereas the two-orientation constraint may produce slightly
jagged boundaries between the constant regions. There are
tradeoffs, of course; imposing PICO along a larger number of
orientations creates a more expensive computation of energy

in (2) (more paths to check). Also, the four-orientation PICO
regression may round corners, as shown in Fig. 1.

In the presence of high-amplitude noise, we have observed
that streaking tends to be more severe in image estimates
computed under the two-orientation PILI model than under
the two-orientation PICO model. In fact, horizontal or vertical
streaks can appear along intensity discontinuities.

In the examples, four-orientation PICO and PILI estimates
are computed. Although PICO, PILI, and other PIM’s share
similarities, the assumptions made and the associated impli-
cations for implementation differ. These differences will be
explored as each model is developed.

A. PICO Image Estimation

If interpreted as an enhancement technique, PICO image
estimation successfully accomplishes intraregion smoothing,
while preserving important features, especially sharp edges,
and removing corruptive noise. As with all PIM’s, approximate
regressions of differentdegreesare possible, which determines
the amount of smoothing.

In (5) and (7), take . Then let the
set of possible substitutions (of the possible) for
that are members of a piecewise constant vector of length
greater than or equal to in all four orientations be
denoted by . Note that only a maximum of
eight values must be evaluated to construct ,
since any piecewise constant solution must be equal to one
of the eight neighboring pixels.

Within , the solution with smallest distance to
the current value of is assigned to .
If the set of local PICO solutions is empty (no local solutions
exist), then is assigned the maximum value

, so the maximum energy penalty is assessed.
At each coordinate , the maximum contribution to (7) is

, and the maximum contribution to is .
There is an interesting relationship between PICO regression

or PICO estimation, and a robust class of image-enhancing
order statistic filters, known as the weighted majority with
minimum range (WMMR) filters [14]. The development of the
WMMR filter was motivated by the fact that other impulse-
rejecting nonlinear filters, such as the median filter, preserve
undesirable monotonic degradation, such as blur, along image
edges. The WMMR tends to sharpen such edges by making
them more steplike. For a filter window spanning
samples, the WMMR is implemented by first selecting the

values in the filter window having a minimum range.
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The output is computed by a weighted sum of the
values. These filters, like the median filter [9], [15], have
an interesting root-signal analysis. Indeed, the root signals
(signals that remain unchanged by filtering) of a WMMR filter
of width are those signals that are PICO- . It
has also been shown that repeated passes of a WMMR filter
eventually produces a PICO root signal. (To achieve a PICO
root signal, the WMMR weights must be nonnegative and
sum to unity, with unequal first and last weights [14].) We
may make the interpretation, then, that the PICO regression
directly finds the fixed point of a WMMR filter. This may
be stated more strongly: since application of WMMR filters
tends to produce PICO results, thegoal of WMMR filtering
may be interpreted as finding a PICO replacement of the input
data at the expense of the noise. From this perspective, finding
the PICO regression or PICO estimate yields thebest possible
PICO replacement, while the WMMR filter can only deliver a
suboptimal one after repeated passes. As will be demonstrated
in a numerical comparison later in this section, enhancement
results obtained via the WMMR may eliminate important local
features that are retained by optimal PICO image estimation.

We note that in [11], a related PICO image estimation
procedure was studied. In that work, afixed-size 3 3
neighborhood of every pixel is examined—over each such
neighborhood, the target image is assumed constant. Since this
is assumed ateverypixel, this amounts to assuming the image
everywhere constant. A penalty is assigned at every pixel by
the following strategy: a comparison is made between each
pixel in the neighborhood and the pixel under consideration;
a penalty of one incurred if unequal, and a penalty of zero
if equal. A mean-field annealing algorithm iteratively mod-
erates a tradeoff between minimizing the differences between
neighboring pixels and the difference between the original and
estimated data. Because of conflict with the data constraint,
a PICO image of unknown region scale is obtained. While
the PICO constraint developed here leads to a well-defined
estimate, the one in [11] is inherently ill defined.

B. PILI Image Estimation

PILI image estimation is also useful for accomplishing
intraregion image smoothing without degrading intensity dis-
continuities. The characteristic set of the associated PILI
regression problem is the set of signals that are piecewise
linear. Within each image piece, PILI regression allows ef-
fective smoothing while retaining intensity trends, which are
approximated by linear functions. Thus, the domain of appli-
cation is broader than afforded by PICO regression/estimation.
1-D PILI regressions were used in [5] to model linear trends
in statistical data; piecewise linear topologies for geometric
models were explored in [21].

PILI image estimation attempts to enforce linearity on a
piecewise basis in a 1-D signal. In 2-D, the PILI vectors effec-
tively form piecewise planar regions. Ideal PILI regressions,
when computable (on small-scale problems) retain both step
edges and linearly varying ramp edges, while eliminating im-
pulses obtained in a corruptive process. PILI image estimates
approximate this behavior, and perhaps, improve upon it. In
comparison to PICO regression, PILI estimation yields a more

TABLE I
DESCRIPTION OFIMAGERY USED IN PICO AND PILI EXPERIMENTS

accurate response along slowly varying intensity changes.
However, PILI estimates are more difficult to compute and can
be less effective than PICO estimation in intense additive noise
environments (low SNR, high noise variance), in the sense of
image enhancement. The reason for this is that high-amplitude
noise processes often continue local groupings of outliers that
approximate linear segments; these may be retained or even
enhanced by a PILI estimate. However, for lower-intensity
noise, the PILI estimates are often very good.

In (5) and (7), take . Denote the set of
possible substitutions for such that a PILI vector of

length is created in all four orientations by .
Since the data is discrete, the test for linearity allows for
a maximum quantization error of . The substitution that
yields the smallest distance relative to in the set

is assigned to . If is
empty, then is assigned the maximum value

, yielding the maximum energy.
PILI estimation provides a simple and powerful method

for smoothing 1-D signals containing both step edges and
ramplike edge transitions. It is also a powerful approach
for image enhancement applications, as discrete image data
usually contains a proliferation of edge profiles that can be
well approximated either by sudden jumps in intensity, or by
more gradual linear trends.

However, 2-D PILI estimation finds a greater degree of
computational complexity than might be expected from ex-
amination of the 1-D problem. The reason for this is that
the strict constraint of piecewise linearity may be difficult to
simultaneously satisfy along multiple linear orientations. This
leads to poor agreement with the linear model in some locales,
which is acceptable, except that some visually misleading local
configurations may occur. Conflicts arising between linear
paths in the image can result in poor reconstruction of image
contours and a failure to eliminate noise. The characteristic
properties of simpler models, such as piecewise constancy
and (as will be seen) local monotonicity, may be satisfied
along several orientations by making single pixel intensity
substitutions. By contrast, single pixel changes are often
insufficient in satisfying more complicated properties such as
with the PILI model.

C. PICO and PILI Image Estimation Examples

In the simulations, we selected images that we deemed
to be well approximated by the PIM’s, and added noise to
them. For these simulations we provide numerical measures of
performance expressed in terms of improvement in the error
and in the SNR. The SNR of a noisy image is computed via

SNR

where is the variance of the original uncorrupted image and



984 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 7, JULY 1998

(a) (b)

(c) (d)

Fig. 2. PICO image estimation. (a) Original “South Texas” image. (b) Corrupted image. (c) PICO-2 result. (d) WMMR-MED result.

is the variance of the noise. For each simulation, Table I
lists the noise type and noise statistics, and the SNR.

Fig. 2 illustrates PICO image estimation of a 256256
South Texas SPOT satellite image. Note that the original
image Fig. 2(a) is very PICO-like, hence provides an excellent
example of the advantage of matching the appropriate image
model to the estimation application. In the original SPOT
image, several boundaries are ambiguous and noisy outliers
are present. The addition of 3.2 dB Laplacian noise creates a
nontrivial enhancement problem [Fig. 2(b)]. The PICO image
estimate (with -norm data constraint and model constraint)
very effectively enacts intraregion smoothing, removing the ef-
fects of additive noise while preserving the individual fields, as
shown in Fig. 2(c). In terms of region coherence, the PICO-3
image is superior even to the original uncorrupted image,
and would be simpler to segment into homogeneous regions.

Elimination of noise from cloud cover or from the sensor is an
important step in segmenting the agricultural fields shown in
the image. Clearly, PICO image estimation can be an effective
method for preprocessing noisy images prior to segmentation.

As a comparison, a 5 5 WMMR-MED filter (40 iterations)
was also iteratively applied, as shown in Fig. 2(d). This
nonlinearly filtered image, while supplying a very PICO-like
result, did not retain several of the important features of the
image. Using smaller WMMR-MED filters led to severe loss
of performance in noise reduction. Although Fig. 2(d) is nearly
PICO, several of the South Texas fields are merged together
and, in some cases, severely distorted. This blurring effect
of the WMMR-MED filter would preclude the possibility
of a meaningful segmentation and would also eliminate the
possibility of detecting more subtle image regions, such as the
roadways separating the fields.
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(a) (b)

(c) (d)

Fig. 3. PILI image estimation. (a) Mammogram image. (b) Corrupted image. (c) PILI-4 result. (d) Length-5�-OS result.

Fig. 3 is an example of PILI image estimation. In this
case, a 256 256 digital x-ray mammogram, Fig. 3(a), is
processed. The image was selected since it is composed
largely of fairly smooth regions with few abrupt transitions.
A uniform-noise corrupted image is shown in Fig. 3(b). The
resulting PILI image estimate, using the -norm in the data
constraint, [Fig. 3(c)] is nicely smoothed, but also retains
the important features of the original image. Here, nonlinear
image estimation with respect to the PILI-4 characteristic
set produced an improvement in the SNR of 8.5 dB. If
PICO image estimation were employed instead, it is likely
that misleading false contours would have developed in the
solution image, thus distorting possible interpretation of the
parenchymal tissues revealed in the mammogram.

As a filter comparison to the PILI image estimation method,
we applied a specificorder statistic (OS) filter to the noisy
mammogram [7]. Within a finite window, the filter alge-

TABLE II
PICO AND PILI IMAGE ESTIMATION AND FILTERING RESULTS

braically orders the intensities within the window, then linearly
weights them using a piecewise linear (triangular) weighting
to compute the output. Thus, the filter, called the-OS filter
(triangle OS filter) was selected, since it is near optimal
for heavy-tailed noise in minimum variance sense [7]; it is
highly robust, and it supplies a linear weighting to naturally
ordered samples near intensity transitions. This makes it a fair
comparison for a piecewise linear fit. It was implemented by
applying a 1-D -OS filter along both the rows and columns of



986 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 7, JULY 1998

Fig. 4. Illustrative examples of LOMO-3 and LOCO-4 regressions in two dimensions.

the image (a common strategy that agrees with the row/column
definition of PILI utilized here). A window span of five was
used in the -OS filter example shown in Fig. 3(d)—the
smallest possible -OS filter, since the length-3 -OS filter
is equivalent to the length 3 median filter. Larger window
sizes and multiple iterations resulted in inferior (blurred)
results. Although the result in Fig. 3(d) is fairly smooth,
several important features (including the possible tumor!) have
been eliminated. By comparison, the PILI-4 estimate exhibits
superior feature preservation while still effectively smoothing
the noise.

Table II gives numerical results for each nonlinear estima-
tion method, showing the MSE with respect to the original
uncorrupted image and the improvement in SNR from the
corrupted image, which is given by

SNR

It can be seen that in each case, the mean square error (MSE)
was substantially smaller using the nonlinear estimator. The
improvement in SNR was also better, sometimes dramatically
so.

IV. I MAGE ESTIMATION USING LOCAL IMAGE MODELS

The second class of image models studied,local image
models(LIM’s), describe images that obey an image property,
such as monotonicity, convexity/concavity, or other specific
property overevery image region of specified size and ge-
ometry. Because the characteristic properties are required to
hold everywhere, LIM’s require more flexible image properties
than do PIM’s; for example, the only images that are locally
constant everywhere are globally constant; the only images
that are locally linear everywhere are also globally linear.
Thus constancy and linearity are image properties that do not
lead to interesting LIM’s. By contrast, piecewise monotonic
regressions/estimates and piecewise concave/convex regres-
sions/estimates lead to viable models.

Since they are required to hold everywhere, the charac-
teristic properties of LIM’s must have the ability to capture
a broad range of image structures. Two such characteristic
properties are studied here:local monotonicity(LOMO), which
defines images that are monotonic on every local region
of specific geometry, andlocal convexity/concavity(LOCO),
which defines images that are convex or concave on every
local region of specific geometry. We refer to the associated
regression problems (2) asLOMO regressionand LOCO

regression,and the estimation problem (6) byLOMO image
estimationand LOCO image estimation.

Again, the size and shape of the local geometry over
which the characteristic property is constrained to hold is an
important specification, and is part of the definition of a LIM.
The definitions of LOMO and LOCO signals in both 1-D and
2-D are again quite similar, and given together, as follows.

Definition 3: A 1-D signal is LOMO- (LOCO- ) if
every subsequence ofof length is monotonic (is either
convex or concave).

Note that since every 1-D signal is LOMO-2 (LOCO-3),
LOMO-3 (LOCO-4) is the smallest property degree of interest.

Definition 4: A 2-D image is LOMO- (LOCO-m) if
is monotonic (is either convex or concave) on every 1-D path
of length along a set of prescribed orientations.

Both two- and four-orientation LOMO and LOCO ver-
sions have been tested; the differences in solution quality
between two-orientation and four-orientation implementations
was found to generally be quite small; indeed, image streaking
appears not to be a problem with LIM’s, at least those tested
thus far. Therefore, the less expensive two-orientation version
was used exclusively in the LOMO and LOCO examples (see
Fig. 4).

A. LOMO Image Estimation

The smoothing properties of locally monotonic (LOMO)
regression have previously been studied in some depth for
1-D signals in [18], [19]. Local monotonicity is well suited for
describing images, since the model embodies image structures
that include step edges, ramp edges, and all types of monotonic
edge profiles. The LOMO model also captures smoothness.
Thus, LOMO image estimates tend to have well-preserved
edges and effectively smoothed noise.

Now take in (5) and (7). The set of
possible substitutions (of the possible) for such that

is a member of a LOMO segment of length along
each prescribed orientations is denoted . Within
this set, the solution having the smallest distance to the current
value of is . If ,
then set .

Just as PICO regression and PICO image estimation are
related to the WMMR nonlinear enhancement filter (through
sharing of fixed points), the techniques of LOMO regression
and LOMO image estimation are related to themedian filter.
Indeed, it was research into the interesting properties of the
median filter that first led to the introduction of the concept
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of locally monotonic regression [18]. Just as the PICO signals
are the fixed points of the WMMR filters, LOMO signals are
the fixed points of median filters (with a well-established 1-D
fixed point theory [9], [15]). Similar arguments may be made
in favor of LOMO regression and LOMO image estimation as
were made for PICO-based methods. Since repeated filtering
with a median filter leads inevitably to a LOMO signal,
then median filtering may be seen as a method for inducing
“LOMOness” on a signal. LOMO regression/estimation is also
such a technique; however, with a more directed goal of
finding a best LOMO signal. As might be expected, there
are similarities between median filtering results and LOMO
estimation results, as will be seen in the simulation.

B. LOCO Image Estimation

LOCO regression for 1-D signals was first studied in [19].
The idea behind locally convex/concave (LOCO) image esti-
mation is that a signal can be smoothed by limiting the rate of
change in monotonicity within every signal region. This is a
very novel measure of signal smoothness, and certainly, LOCO
regression/estimation is somewhat specialized. For example,
LOCO regression does not adequately preserve step edges.
Also, the LOCO model constraint is not particularly effec-
tive at eliminating large noise impulses; undesirable LOCO
oscillations may be created on the image surfaces. However,
for images that contain smoothly changing edge structures, or
LOCO oscillatory patterns, the approach can be very effective.

This time, take in (5) and (7). Let
be the set of possible solutions for that

are members of locally convex/concave segments of length
along both the vertical and horizontal orientations. The

member of having the smallest distance to the
current value of is the value of . If

is empty, then is assigned the
maximum value .

Like piecewise linearity, the constraint for local convex-
ity/concavity is expensive to compute, since several nontrivial
solutions to the LOCO constraint may exist at each pixel
location. However, unlike PILI regression/estimation, satis-
fying the LOCO property locally in two directions is not
difficult when using single pixel changes at each iteration of
an optimization routine.

As a method of image enhancement, LOCO image esti-
mation has not been previously applied to real-world image
data. Since the LOCO model does not preserve step edges,
the domain of application is somewhat limited, and certainly
would preclude images of most man-made, indoor scenes.
Nevertheless, LOCO image estimation may used efficaciously
in specific image applications, as well as in extended domains
such as smoothing of nonabrupt audio signals immersed in
noise, or for enhancing other inherently bandlimited (lowpass)
signals.

C. LOMO and LOCO Image Estimation Examples

In each simulation we attempt to utilize, for each estima-
tion method, an input image that is effectively modeled by

TABLE III
DESCRIPTION OFIMAGERY USED IN LOMO AND LOCO EXPERIMENTS

the appropriate LIM. Table III lists the relevant input image
statistics.

Next, Fig. 5 depicts filtering of the cameraman image
[Fig. 5(a)], containing a mixture of detailed and smooth
regions. This image was selected since the LOMO model
is intended to be quite generic. A Gaussian-noise corrupted
version of this image was created, as shown in Fig. 5(b);
hence, the data constraint was defined using the-norm.
Fig. 5(c) shows the result of LOMO-3 image estimation.
The flexibility of the LOMO model is evident—through the
simultaneous smoothing of large-scale regions such as the
background, and the retention of the finely detailed features
such as the cameraman’s facial features. Notice the smooth
contours and the natural ramplike edges, such as the shading
on the tripod. Several small but physically meaningful regions
in the image, such as the eyes and the individual camera
components, are retained in the LOMO image estimate.
By comparison, the rootlike signal generated by successive
application (40 iterations) of a 3 3 square window median
filter [Fig. 5(d)] is quite smooth in the global sense, but at
the loss of detail, and the creation of several unattractive
blotchy patches [6]. Note also the blurring of facial features,
the camera, and the buildings in the background.

Finally, Fig. 6 depicts LOCO estimation of a severely
corrupted (1.7 dB) image of a tree’s cross section. The appli-
cation of the LOCO image model is appropriate, because the
“tree” image [Fig. 6(a)] exhibits an approximately sinusoidally
varying intensity pattern—and few steplike edges. The noisy
image, which was corrupted with Laplacian-distributed noise,
is severely degraded [Fig. 6(b)]. However, the LOCO image
estimate (defined using the-norm for the data constraint)
shown in Fig. 6(c) is a very smooth result that corresponds
very well with the intensity profile of the original image in
Fig. 6(a). As a method of comparison with an appropriate
nonlinear filter, amoving LOCOfilter was applied to the
image. The moving LOCO filter, defined here for the first
time, forces the digital signal to be locally convex/concave, in
the 1-D sense, along the row and columns of the image. Note
that a sampled locally convex/concave signal has a difference
signal that is locally
monotonic. Specifically, a 1-D LOCO- signal has an
associated difference signal that is LOMO-. Therefore, a
1-D LOCO signal can be computed by forcing the difference
signal to be LOMO. This is accomplished by first computing
the difference signal along an image row or column (discrete
differentiation), using the moving LOMO filter defined in [19]
to create a LOMO difference signal, then summing the new
differences (discrete integration) to compute the LOCO signal.
This operation is applied to each image row and column. Note
that this operation does not guarantee that the result will be
LOCO in the 2-D sense. However, it has the advantage of
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(a) (b)

(c) (d)

Fig. 5. LOMO image estimation: (a) Cameraman image. (b) Corrupted image. (c) LOMO-3 result. (d) Iterated median filter result.

speed. The moving LOCO filter result is shown in Fig. 6(d).
Although the result is reasonable, this filter fails to match the
smooth, high-quality result of the LOCO-4 image estimate.

Table IV lists the errors incurred by both LIM-based nonlin-
ear estimation and by the comparative nonlinear filters used. In
each case, the MSE was again substantially smaller using the
nonlinear estimator. Accordingly, the improvement in SNR
was also superior.

V. ITERATIVE SOLUTION VIA GDA

The nonlinear image estimation problems studied here are
all combinatorial, multistate(full gray level), andnoncon-
vex.Combinatorial optimization problems have discrete, finite
solution spaces that increase exponentially (equivalently, as

!) as the problem size increases [16]. Clearly, the image
estimation problem is combinatorial as the number of possible
solutions increases as , where is the number of possible

pixel intensities and is the number of pixels in the image.
The estimation problem is, of course, inherently multistate (as
opposed to binary). In the examples presented here, 8-b data
is used so that each optimization variable has 256 discrete
states. The energy functions defined for the PICO, PILI,
LOMO, and LOCO models are nonconvex; hence, globally
optimal solutions cannot be found using steepest descent (local
search). Suboptimal local minima can be avoided through the
statistical hill climbing of stochastic simulated annealing (SA).
However, even “practical” implementations of SA have an
unrealistic computational expense for gray-level image esti-
mation applications. As an effective alternative, we formulate
solutions to nonlinear estimation problems usinggeneralized
deterministic annealing(GDA), a very recent optimization
technique that provides high-quality solutions for time-critical
applications [2]. Unlike previous optimization methods used in
image processing applications, GDA is a general-purpose tool
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(a) (b)

(c) (d)

Fig. 6. LOCO image estimation: (a) Tree image. (b) Corrupted image. (c) LOCO-4 result. (d) Moving LOCO filter result.

TABLE IV
LOMO/LOCO IMAGE ESTIMATION AND FILTERING RESULTS

for multistate problems, is characterized by rapid, guaranteed
convergence and by the ability to escape undesirable local
solutions. In contrast to SA, GDA can easily be implemented
in a true parallel fashion on a single instruction multiple
data (SIMD) architecture, without the need for “divide and
conquer” schemes.

GDA directly estimates the limiting solution of the SA
algorithm. The iterative, stochastic solution of SA may be
modeled as a Markov process [1]. Each state in the Markov

chain represents a specific, unique solution. For an opti-
mization problem with variables with possible states,
the SA Markov chain has possible states. Solution
changes occur according to the SA transition probabilities.
At each temperature in the annealing process, the chain
converges to an equilibrium state (stationary distribution)
after many transitions. At high temperatures, the stationary
distribution is uniform, where all solutions in the chain have
equal probability. As the temperature is slowly reduced in the
annealing process, the chainfreezesinto a globally optimal
solution. To directly estimate the limiting solution of the SA
algorithm, GDA utilizes separatelocal Markov chains
of length . Each local Markov chain represents the state
of an optimization variable (e.g., pixel intensity). Using the
SA transition probabilities, GDA iteratively computes the
distribution (not the state) of each local Markov chain at
a given temperature. Due to the shorter-length of the
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GDA local Markov chains, the equilibrium state at each
temperature is achieved quickly after only a few iterations.
As the temperature is lowered in the annealing process, a
single solution emerges for each optimization variable (the
distribution becomes singular at the final state for the optimiza-
tion variable). When all of the local chains have become
frozen at a final state, the estimate of the optimal solution is
completed. The approximate solution corresponds to a local
minimum in the energy function [2].

Denote the distribution for the local Markov chain for
the pixel intensity at iteration by

. The th compo-
nent is the probability mass function of at
iteration . The components of are the states
of the local Markov chain that correspond to thepossible
intensities for a given pixel. At each iteration, a new density
is computed for each pixel intensity based on the previous
distribution. An update for theth component at is
accomplished by

(8)

where

(9)

and is the local energyat when
pixel is assigned a value of. The local energy
is computed using the mean field estimates of neighboring
variables. The mean field estimate of the pixel value
at time is

int (10)

where int is the nearest integer function. Uniform conver-
gence for the estimate may be described as

. is
the change in between successive iterations. For the
probability densities, uniform convergence may be stated as

(11)

For image estimation, guarantees that the changes
in pixel intensity (11) are less than unity . The
number of iterations needed to obtain this measure of uniform
convergence at a temperatureis given by [2]

(12)

where is the initial annealing temperature is the fi-
nal temperature. Using the guidelines in [2] for the image

estimation problem

(13)

and

(14)

where is the maximum energy change, and
is the minimum (nonzero) energy change possible with one
variable change. Because the minimum and maximum energy
changes depend on the realization of , , and

must be computed for each PIM and LIM. For the
PICO, PILI, LOMO, and LOCO models, assuming integer-
valued pixel intensities, define the minimum-semimetric
value in (4) as where

(15)

for . Therefore

(16)

Since each of the four PIM’s and LIM’s have the same
maximum contribution to the energy functional

(17)

An effective implementation of GDA for the nonlinear
image estimation problem follows.

Step 1. Initialization: Set and set

.
Step 2. Iteration: Use (8) to update

.
Step 3. Equilibrium: If the number of iterations at the

current temperature, , then set
(where ).

Step 4. Saturation: If , stop. Else, return to Step
2.

Additional speedup may be obtained usingwindowedGDA
(WGDA) [2], where only a small window of states of length

in the -length local chains are active at any time.
The window is centered at the mean field estimate (10) for
each pixel; window shifts are limited to one state/iteration
to prevent oscillations. In all the examples presented here,
a WGDA implementation with was utilized. The
WGDA affords over two orders of magnitude of improvement
in speed over a practical SA algorithm, for comparable solution
quality.

VI. CONCLUDING REMARKS

The characteristic set—e.g., PICO, PILI, LOMO,
LOCO—defines the image model used. Naturally, the
model used must be appropriate. An image that was originally
or nearly LOMO is an ideal candidate for LOMO estimation.
However, generalizations can be made. For images of
man-made environments, PICO, PILI, and LOMO are quite
tenable models, since they all effectively preserve steplike
edges that are usually numerous in man-made scenes. For
images of synthetic environments containing surfaces having
uniform reflectance profiles (e.g., a robotics application),
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PICO estimation is quite powerful. Natural scenes contain a
combination of sharp steplike edges and gradually changing
ramplike edges, so LOMO estimation is an excellent choice.
PILI estimation displays superior performance on many
images with smooth intensity profiles, but at greater expense.
The applications for LOCO image estimation are much more
restricted. One application might be estimating 2-D sinusoidal
gratings. The PIM’s and LIM’s considered here do provide
a diversity of image models for image estimation tasks,
although, no doubt, many others can be defined.

We are currently studying application of PIM’s and LIM’s as
set-theoretic constraints on the restoration of images that have
been both blurred and corrupted with noise. The extension
of the PIM’s and LIM’s to color and multispectral imagery
is still open. Currently, the image estimation process using
the piecewise and local models could be applied to each
spectral band independently. The development of PIM’s and
LIM’s that incorporate information from several spectral bands
simultaneously could be useful to the color imaging and to the
remote sensing community.
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