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Abstract

Nonlinear registration is an important technique to align two different images and widely

applied in medical image analysis. In this paper, we develop a novel nonlinear registration

framework based on the diffeomorphic demons, where a reciprocal regularizer is introduced

to assume that the deformation between two images is an exact diffeomorphism. In detail,

first, we adopt a bidirectional metric to improve the symmetry of the energy functional,

whose variables are two reciprocal deformations. Secondly, we slack these two deforma-

tions into two independent variables and introduce a reciprocal regularizer to assure the

deformations being the exact diffeomorphism. Then, we utilize an alternating iterative strat-

egy to decouple the model into two minimizing subproblems, where a new closed form for

the approximate velocity of deformation is calculated. Finally, we compare our proposed

algorithm on two data sets of real brain MR images with two relative and conventional meth-

ods. The results validate that our proposed method improves accuracy and robustness of

registration, as well as the gained bidirectional deformations are actually reciprocal.

1 Introduction

Magnetic Resonance Imaging (MRI) technique plays more and more important roles in the

study of brain structure and its function because it offers amount of reliable information by a

non-invasive approach [1]. Due to the large variances between the brain images from different

subjects, we cannot compare or analyze different MR images directly and should first align

them to a common reference. Therefore, normalizing the images is a precondition for the clin-

ical research [2–5].

In recent decades, a variety of effective registration methods are developed for constructing

the common reference and calculating the deformations between different images. Especially,

as a kind of fundamental methods, pairwise registration plays important roles in variants of

registration problems. According to the differences between representations of model and algo-

rithm, these methods are divided into two classes. One is the parametrization methods, in
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which the deformation between two images is approximated in some finite dimensional spaces.

For example, Shen and Davatzikos proposed the HAMMER algorithm based on the process of

feature detection and hierarchical deformation mechanism [6] and the further improved ver-

sion, named TPS-HAMMER [7] by introducing thin-plate spline and softassign techniques [8].

Sorzano and his coauthors used the B-Spline method to approximate the nonlinear deforma-

tion [9] while Rohde and his coauthors adopted the radially symmetric basis [10]. The others

are the variational models and methods, where the deformation is regarded as a certain func-

tional and the optimal deformation is represented by variational calculus. For example, a series

of nonlinear registration methods are developed by using an diffeomorphism to represent the

deformation [11–23] based on the fundamental work by Dupuis, Grenander, Miller and

Trouvé [24, 25]. By the diffeomorphic representation, a uniform framework for pairwise image

registration is constructed and later researches mainly focused on improving the model and

how to solve it efficiently. It should be pointed out that Beg and his coauthors proposed the

large deformation diffeomorphic metric mapping (LDDMM) method by the variation method

and geodesic shooting strategy [14], which gives a fine mathematical framework, while Cao

[15], Qiu [19] and Sommer [20] developed this method and applied them in different issues,

respectively. At the same time, Trouvé, Holm and Younes considered the nonlinear registration

on the diffeomorphism group directly and formed a metamorphosis theory [17, 21], where the

existence of solution of Euler equations was proved. For simplifying the registration model,

Ashburner decomposed the large deformation into several small deformations and translated

the image registration into a local optimisation problem which is solved by a Levenberg-Mar-

quardt strategy [11]. On the other hand, some effective numerical methods for these registra-

tion models were developed. Vercauteren and his coauthors combined the Demons algorithm

with the diffeomorphic framework and proposed Diffeomorphic Demons algorithm [22],

while they added the high-order information to their model by using the high-order BCH for-

mulae [23]. A comparison of LDDMM and Diffeomorphic Demons can be found in [16]. As a

conclusion, Diffeomorphic Demons algorithm is much faster than LDDMM algorithm, while

it incurs moderate loss of accuarcy. Later, Ashburner and Friston used the Gauss-Newton itera-

tion to solve the diffeomorphic registration model [12]. Klein and his coauthors compared

more recent 14 registration methods in [26]. For a comprehensive review of image registration

and especially diffeomorphism methods, we refer to [27] and [28, 29], respectively.

Although these algorithms can deal with the nonlinear image registration, there are still two

issues. One is the invertibility of the deformation field between two images in practice and the

other is the accuracy of registration. Due to various approximations in the model and calcula-

tion, the deformation is always not an exact diffeomorphism. That is, the composition of the

deformation and its inverse deformation is not an exact identity [30]. To deal with these prob-

lems, Ye and Chen introduced a constraint to deformation and designed an algorithm based

on a numerical PDE method [30]. Later, Lorenzi and his coauthors proposed a fast symmetric

method (LCC-Demons) based on Diffeomorphic Demons by using a symmetric local correla-

tion coefficient (LCC) metric and one order approximations of the deformation and its inver-

sion [18]. It should be pointed out that, neither Ye and Chen’s method nor LCC-Demons

settled down the above two issues thoroughly. Therefore, in this paper, we will further address

these two issues by using the advantages of these two methods. First, we apply a bi-direction

sum of squire distance (SSD) metric instead of the conventional SSD metric, which introduces

the deformation and its inverse synchronously. Then, we introduce an exact diffeomorphic

constraint and penalize it to the objective function. Finally, inspired by the solution of Diffeo-

morphic Demons, we calculate the closed form of velocity at each iteration and design a novel

nonlinear registration algorithm, in which a multi-scale strategy and a step-by-step warping

process [31] are used.

Nonlinear image registration
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The remainder of this paper is organized as follows. In Section 2, we first recall some rela-

tive materials for diffeomorphic registration methods, and then we extend the model of Diffeo-

morphic Demons by using a bi-direction metric and introducing the reversible constraint.

Then, in Section 3, we propose a solution of such new model and form a novel registration

algorithm. To validate the efficiency of proposed algorithm, we compare it with the conven-

tional Diffeomorphic Demons and symmetric Diffeomorphic Demons methods in Section 4.

Finally, the whole paper is concluded in Section 5.

2 Symmetric demonsmodel with a reciprocal regularization

In this section, we first recall the diffeomorphic model for the nonlinear image registration

and the Diffeomorphic Demons method. Then, we introduce a symmetric metric, which is

widely used in computer vision, and a group of symmetrically reversible constraint to the

model.

Denote the region of the image byO � Rn (where n is always 2 or 3), and then an image is

always represented by a BV function on this region. For a fixed image F and a moving image

M, the aim of registration is to find the best deformation filed s fromM to F, and the general

model of nonlinear registration is described as follows.

s� ¼ arg min
s2DiffðOÞ

DistðF; s �MÞ þ lRegðsÞ; ð1Þ

where Diff(O) = {s|s, s−1 2 C1(O,O)} is the set of all invertible and smooth deformations from

the region O to itself, Dist(�, �) is the distance to measure the similarity between two images,

Reg(s) is the regular term of the deformation s, s �Mmeans the deformation s acting on the

imageM and is defined by (s �M)(x) =M(s(x)), 8x 2 O, and λ is a balancing parameter. It

should be pointed out that there are several selections of the similarity metric and the regular-

ity term. In this paper, we adopt an L2 metric (SSD between two images) as the similarity met-

ric, which is defined by

DistðF; s �MÞ ¼
Z

O

jFðxÞ �MðsðxÞÞj2dx; ð2Þ

and the regularity term Reg(s) is selected as the Laplacian regularizer and defined by

RegðsÞ ¼ k rs k2: ð3Þ

To improve the precision of registration and consider the inverse deformation field, Ver-

cauteren et al. introduced a bi-direction metric instead of the conventional SSD in [23]. That

is, the similarity metric in Eq (1) is revised to

DistðF; s �MÞ þ DistðM; s�1 � FÞ; ð4Þ

where s−1 is the deformation from F toM and should be the inverse of s. In [23], to make the

algorithm faster, the authors used the linearization of s and its opposite to approximate the

deformations s and s−1, and hence the composition of deformations from F toM and fromM

to F is not exact identity. Therefore, in order to make the deformation being a exact diffeo-

morphism and keep the advantages of Diffeomorphic Demons, we slack the symmetric regis-

tration model by replacing the s−1 by an independent deformation t and add a Reciprocal

constraint s � t = t � s = Id to the model. Then, the registration model is translated to the fol-

lowing minimization problem.

min
s;t

Eðs; tÞ≔DistðF; s �MÞ þ DistðM; t � FÞ þ l½RegðsÞ þ RegðtÞ� ð5Þ

Nonlinear image registration
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s:t: s � t ¼ Id; t � s ¼ Id; 8s; t 2 DiffðOÞ ð6Þ

where λ is a positive parameter, � is the composite operator of two deformations and Id is the

identity deformation.

Combining the similarity metric in Eq (2) and regularity term in Eq (3), the final symmetric

registration model can be represented by

min
s;t

Eðs; tÞ≔Z

O

jFðxÞ �MðsðxÞÞj2 þ jMðxÞ � FðtðxÞÞj2
� �

dxþ lðk rs k2 þ k rt k2Þ ð7Þ

s:t: t � s ¼ Id; s � t ¼ Id; 8 s; t 2 DiffðOÞ ð8Þ

3 Algorithm

To design the algorithm, we first penalize the constraint to the objective function. Then, prob-

lems (7)–(8) is translated to following unconstrained optimization problem.

min
s;t;m

Z

O

jFðxÞ �MðsðxÞÞj2þjMðxÞ � FðtðxÞÞj2dx
þ lðk rs k2 þ k rt k2Þ þ mðk Id� t � s k2þ k Id � s � t k2Þ ð9Þ

where the positive parameter μ is the Lagrange multiplier. It should be pointed out that we

only use one multiplier here because of the dependence of two constraints. That is, one con-

straint includes the other one. Therefore, in practice, we only use one constraint.

It is clear that there are two independent variables except for μ in the objective function in

Eq (9), therefore the simplest method to solve such minimizing problem is the alternating iter-

ative method. That is, the minimizing problem (9) can be solved by alternatively iterating the

following two subproblems.

(S1) Fixing current deformation sk, we solve the kth deformation tk from F toM by

min
t2DiffðOÞ

Ek
1
ðtÞ≔Z

O

jMðxÞ � FðtðxÞÞj2dxþ l k rt k2 þ mk Id� sk � t k2 ð10Þ

(S2)Given the deformation tk, we calculate the (k + 1)th deformation sk+1 fromM to F by

min
s2DiffðOÞ

Ek
2
ðsÞ≔Z

O

jFðxÞ �MðsðxÞÞj2dxþ l k rs k2 þ mk Id� tk � s k2 ð11Þ

It is worth mentioning that the first two terms of Eqs (10) and (11) are similar to the objec-

tive function in Diffeomorphic Demons method. The only difference is the third term, which

assures that the composition of forward and backward deformation is identity. Therefore, we

can inherit the advantages of Diffeomorphic Demons to design an algorithm.

We consider the subproblem Eq (11) first and subproblem Eq (10) can be solved in the

same way. It should be pointed out that it is difficult to solve the subproblem Eq (11) directly

by minimizing the the similarity and regularity term simultaneously. Therefore, as Diffeo-

morphic Demons, we rewrite the model by introducing an independent intermediate variable

c, and Eq (11) is equivalent to the following minimizing problem,

min
s2DiffðOÞ

Ek
2
ðsÞ≔Z

O

jFðxÞ �MðcðxÞÞj2dxþ l k rs k2 þ mk Id � tk � c k2;

Nonlinear image registration
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s:t: c ¼ s

Still by Lagrange multiplier method, the above minimizing problem can be translated to the

following unconstrained optimization problem

min
s;c2DiffðOÞ

Ek
2
ðs; cÞ≔Z

O

jFðxÞ �MðcðxÞÞj2dxþ l k rs k2 þ m k Id� tk�c k2 þ sk c� s k2;

where σ is a positive parameter used to describe the weight of similarity between c and s. Then,

to deal with such optimization problem with two independent variables, we can also adopt an

efficient two-step process alternatively as follows.

(R1) Fixing current fixed deformation sk,l, we solve the intermediate variable ck,l by

min
c2DiffðOÞ

Hk
2;1ðcÞ≔Z

O

jFðxÞ �MðcðxÞÞj2dxþ m k Id� tk�c k2 þ sk c� sk;l k2; ð12Þ

(R2) Given the the intermediate variable ck,l, we calculate the sk,l+1 by

min
s2DiffðOÞ

Hk
2;2ðsÞ≔l k rs k2 þ sk ck;l � s k2: ð13Þ

Here, we use k and l to represent the indices of the outer iteration for Eqs (10) and (11), and

inner iteration for Eqs (12) and (13), respectively. It is worth mentioning that we can use a

Gaussian Kernel to smooth the deformation ck,l to solve the problem (13) because the meaning

of Eq (13) is to find a deformation which is similar to ck,l as well as smooth enough [32]. Then,

below we only consider the problem (12). The direct way is to use the gradient descent

method. Moreover, because the deformations are in the diffeomorphism group, we use an

intrinsic iteration as follows.

ck;l ¼ sk;l � exp ðuk;lÞ ð14Þ

where uk,l is a velocity of the deformation, which is located in the tangent space of diffeo-

morphism group at sk,l, and exp is the exponential map. Therefore, the rest issue is how to

solve the uk,l. By this representation, the optical flow procedure solves for the below energy

function.

min
u2XðDiffðOÞÞ

Hk
2;1ðuÞ ¼

Z

O

jFðxÞ �Mðsk;l � exp ðuÞðxÞÞj2dx

þ s k sk;l � exp ðuÞ � sk;lk2 þ mk Id � tk � sk;l � exp ðuÞ k2 ð15Þ

where XðDiffðOÞÞ is the set of all vector fields on the Diff(O).

To make two parts of the functional unified with respect to the order of magnitudes in the

objective function in Eq (15), we use the weak form in the constraint part. That is, we consider

the identity by acting on an image, which also makes programming easier. Then, Eq (15) is

translated to

min
u2XðDiffðOÞÞ

Lk
2
ðuÞ≔Z

O

jFðxÞ �Mðsk;l � exp ðuÞðxÞÞj2dxþ m

Z

O

jFðxÞ �

Fðtk � sk;l � exp ðuÞðxÞÞj2 þ sk sk;l � exp ðuÞ � sk;l k2 ð16Þ

To solve Eq (16) easier, similar to the Diffeomorphic Demons, we use the first order

approximation to the exponential map and substitute it into the objective function (16). There-

fore, we use the first order Taylor formula of any differentiable functional f on Diff(O) at a

Nonlinear image registration
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neighborhood of the deformation s as follows.

f ðs � exp ðuÞÞ ¼ f ðsÞ þ J fs � uþ Oðk u k2Þ ð17Þ

where

½J fs �i ¼
@

@ui

f ½s � exp ðuÞ�ju¼0

is the gradient of the functional f at s.

By this approximation, the objective function in Eq (16) is approximated by

Lk
2
ðuÞ �

Z

O

½FðxÞ �Mðsk;lðxÞÞ� � JMsk;lðxÞ � uðxÞÞ
�
�

�
�
2

dx

þ m

Z

O

½FðxÞ � Fðtk � sk;lðxÞÞ� � JFtk�sk;lðxÞ � uðxÞÞ
�
�

�
�
2

dxþ sk u k2 ð18Þ

It is seen that this approximated objective function is L2 for u. Therefore, to make the equa-

tion short, we rewrite it as follows,

Lk
2
ðuÞ �

Z

O

FM

0

FF

0

B
@

1

C
A�

JM
sk;l

ffiffiffiffiffiffiffiffiffiffiffiffi

s=jOj
p

ffiffiffi
m
p � JF

tk�sk;l

0

B
B
@

1

C
C
A
� u

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

2

dx ð19Þ

where

FMðxÞ ¼ FðxÞ �Mðsk;lðxÞÞ;

FFðxÞ ¼ FðxÞ � Fðtkþ1 � sk;lðxÞÞ;

and |O| is the volume of the image region O.

Moreover, minimizing Eq (19) is equivalent to solving the following linear system for u.

JM
sk;l

ffiffiffiffiffiffiffiffiffiffiffiffi

s=jOj
p

ffiffiffi
m
p � JF

tk�sk;l

2

6
6
4

3

7
7
5
uðxÞ ¼

FMðxÞ
0

FFðxÞ

2

6
4

3

7
5 ð20Þ

According to the generalized inverse and the Sherman–Morrison formula, we obtain a

closed form of the velocity vector at the point x 2 O as follows,

uk;lðxÞ ¼ ½FMðxÞ�J
M
sk;l
ðxÞ þ ffiffiffi

m
p ½FFðxÞ�JF

tk�sk;lðxÞ
k JM

sk;l
ðxÞ k2 þ s=jOj þ m k JF

tk�sk;lðxÞ k2
: ð21Þ

Similarly, we can solve subproblem Eq (10) by only changing the corresponding variables

in iterations as follows.

tk;lþ1 ¼ K ? ½tk;l � exp ðvk;lÞ� ð22Þ

where K? is a Gaussian kernel K acting on the deformation, and

vk;lðxÞ ¼ ½MFðxÞ�JF
tk;l
ðxÞ þ ffiffiffi

m
p ½MMðxÞ�JM

sk�tk;lðxÞ
k JF

tk;l
ðxÞ k2 þ s=jOj þ m k JM

sk�tk;lðxÞ k2
ð23Þ

Nonlinear image registration
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where

MFðxÞ ¼ MðxÞ � Fðtk;lðxÞÞ;

MMðxÞ ¼ MðxÞ �Mðsk � tk;lðxÞÞ;

and JF
tk;l
¼ rðtk;l � FÞ and JM

sk�tk;l ¼ rðsk � tk;l �MÞ are the corresponding Jacobi of two terms in

Eq (10).

Therefore, we summarize the algorithm as follows.

Algorithm 1. Constrained Symmetric Algorithm

Step 0. Initialization.
Giventhe precision �1, �2 > 0 and initialdeformationfieldss1 and t1.

Step 1. Solvingthe minimizationproblem(10) by settingtk,0 = tk,
1.1 Calculatingvk,l by Eq (23),
1.2 Smoothingthe updatedfieldby a GaussianKernel:vk,l K?vk,l,
1.3 Set tk,l+1 = tk,l � exp(vk,l),
1.4 If kvk,lk > �1 thenset l( l + 1 and gotoStep1.1.Otherwiselet tk+1 = tk,l

and goto Step 2;
Step 2. Solvingthe minimizationproblem(11) by settingsk,0 = sk,
2.1 Calculatinguk,l by Eq (21),
2.2 Smoothingthe updatedfieldby a GaussianKernel:uk,l K?uk,l,
2.3 Set sk,l+1 = sk,l � exp(uk,l),

Fig 1. 40 LONI MR images.

doi:10.1371/journal.pone.0172432.g001

Nonlinear image registration
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2.4 If kuk,lk > �1 thenset l( l + 1 and gotoStep2.1.Otherwiselet sk+1 = sk,l
and goto Step 3;

Step 3. If E(sk+1, tk+1) > �2, then k( k + 1 and goto Step 1. Otherwiseoutputthe
optimaldeformationss� = sk+1 and t� = tk+1.

It is remarkable that the deformation is updated by combining the last deformation and the

exponential map of a velocity field. In fact, the exponential map of a vector field is difficult to

be calculated, especially when the velocity field is large. Here, we use a kind of Arsigny’s

approximate method. For the other approximate methods for the exponential map (or geode-

sic), we refer to [14, 33]. First, we evaluate the velocity field u. If it is too large, we choose a pos-

itive integer N such that u/2N is significantly small. Then, exp(u/2N)� Id + u/2N, and

expðuÞ � expðu=2NÞ � � � � � expðu=2NÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2
N

.

On the other hand, to accelerate the algorithm and avoid the local minima as possible, a

multiscale strategy is used. We estimate the deformation between two images from the low to

Fig 2. Cross-sectional views of data and registration results by threemethods. (A) Cross-sectional
views of moving image. (B) Cross-sectional views of fixed image. (C) Cross-sectional views of the result of
Diffeomorphic Demons. (D) Cross-sectional Views of the result of Symmetric-log-Demons. (E) Cross-sectional
Views of the result of our method.

doi:10.1371/journal.pone.0172432.g002

Nonlinear image registration
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high resolution, and the deformation field in the low resolution is used as the initial deforma-

tion for the high resolution.

4 Experimental results

In this section, we evaluate the performance of our proposed registration algorithm on two

real datasets of LONI LPBA40 MR images and IXI MR images. For the sake of comparison, we

also use the Diffeomorphic Demons [22] and the symmetric Diffeomorphic Demons [18]. All

programs are implemented in visual studio 2008, ITK2.4.0 and run by PC with Intel Core i7

2.50GHz CPU and 4G RAM.

4.1 LONI LPBA40 data

In order to test our registration algorithm, we compare with the Diffeomorphic Demons and

Symmetric-log-Demons algorithms on a public LONI dataset, which is widely used for testing

registration algorithms. There are totally 40 MR images shown in Fig 1, and their labels used

to construct the LONI Probabilistic Brain Atlas (LPBA40) at the Laboratory of Neuro Imaging

(LONI) at UCLA are available online (http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_

id=12). In each subject, 56 structures (ROIs) were manually labeled and brain masks were

Fig 3. Fixed image and the registration results by three methods. (A) Fixed image. (B) Registration result
by Diffeomorphic Demons. (C) Registration result by Symmetric-log-Demons. (D) Registration result by our
method.

doi:10.1371/journal.pone.0172432.g003

Nonlinear image registration
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Fig 4. The combined deformations by three methods. (A) Diffeomorphic Demons. (B) Symmetric-log-
Demons. (C) our method. (D) Symmetric-log-Demons in 10 times magnification. (E) Our method in 10 times
magnification.

doi:10.1371/journal.pone.0172432.g004

Nonlinear image registration
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constructed from the manual labels and projected back to the labeling space to produce brain

only MRI volumes.

By using two conventional nonlinear registration methods and our method, one group of

results are shown in Figs 2, 3 and 4, and the quantitative results are shown in Table 1 and Fig 5.

Table 1. Dice ratios of three ROIs by threemethods.

whole brain (average)

Diff. Demons 74.28 ± 2.0991
Symmetric-Demons 74.63 ± 1.9787
Our method 74.84 ± 2.0080

doi:10.1371/journal.pone.0172432.t001

Fig 5. Dice ratios of 56 ROIs by three methods. (A) Dice ratios from 1st to 28th ROIs. (B) Dice ratios from
29th to 56th ROIs.

doi:10.1371/journal.pone.0172432.g005
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In Fig 2, (A) and (B) are the cross-sectional images of the moving image and the fixed

image, respectively. (C), (D) and (E) are the registration results from the moving image to the

fixed image by three algorithms. It is seen that all methods do the registration well. That is,

(C), (D) and (E) are all similar to (B). It should be pointed out that there are still have some dif-

ferences, which are shown in Fig 3. It is easy to find that our registration result (D) still has a

slight improvement and is closer to the fixed image (A).

On the other hand, we show the combinations of the straight and backward deformation

fields in Fig 4. From Fig 4(A), 4(B) and 4(C), the maximal magnitude is 5.56 mm. At this scale,

(B) and (C) are almost black. That is, the combinations of the straight and backward deforma-

tion fields are closer to identities. Therefore, it is seen that both Symmetric-Demons and our

proposed method are more accurate than the conventional Diffeomorphic Demons. But when

we enlarge (b) and (C) with scale 10, the results are shown in Fig 4(D) and 4(F). From the Fig

4(D), the maximal magnitude of Symmetric-Demons is 3.33 mm, and the combined deforma-

tion field of our method is still close to an identity. That is, the deformation of our proposed

Fig 6. 30 IXI MR images.

doi:10.1371/journal.pone.0172432.g006

Nonlinear image registration

PLOSONE | DOI:10.1371/journal.pone.0172432 February 23, 2017 12 / 19



method is closer to the diffeomorphism than the Symmetric-Demons, and therefore, our pro-

posed method is more accurate.

Finally, to quantitatively evaluate the registration accuracy, we calculate the Dice ratios of

56 ROIs by three methods shown in Fig 5 and the total average of whole brain is list in Table 1.

It is clear that our proposed method has a slight improvement.

4.2 IXI data

In this part, we conduct the same experiment on the data of IXI MR images, which can be

downloaded at http://brain-development.org/ixi-dataset/. Here, we use 30 MR images in the fol-

lowing experiment. Each image has 83 manually delineated ROIs and its size of is 256 × 256 ×

198 and the voxel spacing is 1 × 1 × 1mm3. Slices of images are shown in Fig 6.

By using two conventional nonlinear registration methods and our method, one group of

results are shown in Figs 7, 8 and 9, and the quantitative results are shown in Table 2. Similar

to the results on LONI data, our method still have some improvements at the aspect of preci-

sion as well as it preserves the deformations between two images Reciprocal. Concretely,

in Fig 7, (A) and (B) are the cross-sectional images of moving image and fixed image,

Fig 7. Cross-sectional views of data and registration results by threemethods. (A) Cross-sectional
views of moving image. (B) Cross-sectional views of fixed image. (C) Cross-sectional views of the result of
Diffeomorphic Demons. (D) Cross-sectional views of the result of Symmetric-log-Demons. (E) Cross-sectional
views of the result of our method.

doi:10.1371/journal.pone.0172432.g007
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respectively. (C), (D) and (E) are the registration results from the moving image to fixed image

by three algorithms. It is seen that all methods perform well. That is, (C), (D) and (E) are all

similar to (B). It should be pointed out that there are still have some differences, which are

shown in Fig 8. It is easy to find that our registration result (D) still has a slight improvement

and is closer to the fixed image (A).

Furthermore, we show the combinations of the straight and backward deformation fields in

Fig 9. From Fig 9(A), 9(B) and 9(C), the maximal magnitude is 6.47 mm. At this scale, (B) and

(C) are almost black. That is, the combinations of the straight and backward deformation fields

are closer to identities. Therefore, it is seen that both Symmetric-Demons and our proposed

method are more accurate than the conventional Diffeomorphic Demons. But when we

enlarge (b) and (c) with scale 10, the results are shown in Fig 9(D) and 9(E). From the Fig 9

(D), the maximal magnitude of Symmetric-Demons is 0.603 mm, and the combined deforma-

tion field of our method is still close to an identity. That is, the deformation of our proposed

method is closer to the diffeomorphism than the Symmetric-Demons, and therefore, our pro-

posed method is more accurate.

Finally, to quantitatively evaluate the registration accuracy, we calculate the Dice ratios of

83 ROIs by three methods shown in Fig 10, and the total average of whole brain is list in

Table 2. It is seen that our proposed method has a slight improvement.

Fig 8. Fixed image and the registration results by three methods. (A) Fixed image. (B) Registration result
by Diffeomorphic Demons. (C) Registration result by Symmetric-log-Demons. (D) Registration result by our
method.

doi:10.1371/journal.pone.0172432.g008
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Fig 9. The combined deformations by three methods. (A) Diffeomorphic Demons. (B) Symmetric-log-
Demons. (C) Our method. (D) Symmetric-log-Demons in 10 times magnification. (E) Our method in 10 times
magnification.

doi:10.1371/journal.pone.0172432.g009
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Table 2. Dice ratios of 83 ROIs by three methods.

whole brain (average)

Diff. Demons 76.12 ± 3.3082
Symmetric-Demons 76.04 ± 3.3797
Our method 76.85 ± 3.4018

doi:10.1371/journal.pone.0172432.t002

Fig 10. Dice ratios of 83 ROIs by three methods. (A) Dice ratios from 1st to 28th ROIs. (B) Dice ratios from
29th to 56th ROIs. (C) Dice ratios from 57th to 83th ROIs.

doi:10.1371/journal.pone.0172432.g010
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In general, from the numerical results, our proposed method not only improves the accu-

racy of the registration slightly, but also assures that the deformation is an actual diffeomorph-

ism. In addition, by our method, we can get the deformation field and its inverse between two

images at once.

5 Conclusion

In this paper, we considered the nonlinear image registration problem, especially, the invert-

ibility of deformation field. First, we improve the registration model by using the bi-direction

metric and introducing a regular constraint to assure that the deformation is a real diffeo-

morphism. Second, we decompose the model into two subproblems by the alternative iteration

strategy. Then, inspired by the Diffeomorphic Demons algorithm, we established a novel regis-

tration algorithm, in which a new closed form for the velocity of deformation in each step is

calculated as well as a multi-scale method is adopted. Finally, several numerical results on two

real data validated that the propose method not only improved the accuracy of registration

slightly, but also assured that the deformations between images are the actually invertible. In

addition, by our method, we can gain the deformation field and its inverse between two images

simultaneously.
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9. Sorzano C, Thévenaz P, Unser M. Elastic registration of biological images using vector-spline regulari-
zation. IEEE Trans Biomed Eng. 2005; 52:652–663. doi: 10.1109/TBME.2005.844030 PMID:
15825867

10. Rohde G, Aldroubi A, Dawant B. The adaptive bases algorithm for intensity-based nonrigid image regis-
tration. IEEE Trans Med Imaging. 2003; 22:1470–1479. doi: 10.1109/TMI.2003.819299 PMID:
14606680

11. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007; 38:95–113. doi: 10.
1016/j.neuroimage.2007.07.007 PMID: 17761438

12. Ashburner J, Friston K. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimi-
sation. NeuroImage. 2011; 55:954–967. doi: 10.1016/j.neuroimage.2010.12.049 PMID: 21216294

13. Avants B, Epstein C, GrossmanM, Gee J. Symmetric diffeomorphic image registration with cross-corre-
lation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;
12:26–41. doi: 10.1016/j.media.2007.06.004 PMID: 17659998

14. BegM, Miller M, et al., Computing large deformation metric mappings via geodesic flows of diffeo-
morphisms. Int J Comput Vis. 2005; 61:139–157. doi: 10.1023/B:VISI.0000043755.93987.aa

15. Cao Y, Miller M, Winslow R, Younes L. Large deformation diffeomorphic metric mapping of vector fields.
IEEE Trans Med Imaging. 2005; 24:1216–1230. doi: 10.1109/TMI.2005.853923 PMID: 16156359

16. Hernandez M, Olmos S, Pennec X. Comparing algorithms for diffeomorphic registration: stationary
LDDMM and diffeomorphic demons. MICCAI. 2008; 24–35.
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