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ABSTRACT This paper is devoted to the quantization of the
degree of nonlinearity of the relationship between two biological
variables when one of the variables is a complex nonstationary
oscillatory signal. An example of the situation is the indicial
responses of pulmonary blood pressure (P) to step changes of
oxygen tension (DpO2) in the breathing gas. For a step change of
DpO2 beginning at time t1, the pulmonary blood pressure is a
nonlinear function of time and DpO2, which can be written as
P(t-t1 z DpO2). An effective method does not exist to examine the
nonlinear function P(t-t1 z DpO2). A systematic approach is
proposed here. The definitions of mean trends and oscillations
about the means are the keys. With these keys a practical method
of calculation is devised. We fit the mean trends of blood pressure
with analytic functions of time, whose nonlinearity with respect
to the oxygen level is clarified here. The associated oscillations
about the mean can be transformed into Hilbert spectrum. An
integration of the square of the Hilbert spectrum over frequency
yields a measure of oscillatory energy, which is also a function of
time, whose mean trends can be expressed by analytic functions.
The degree of nonlinearity of the oscillatory energy with respect
to the oxygen level also is clarified here. Theoretical extension of
the experimental nonlinear indicial functions to arbitrary his-
tory of hypoxia is proposed. Application of the results to tissue
remodeling and tissue engineering of blood vessels is discussed.

In biomedical science, we often have to deal with variables that
are stochastic, oscillatory, and nonstationary and the relationship
of these variables to other chemical, mechanical, physical, and
pharmacological variables. In the cardiovascular system blood
pressure is such a variable. This paper illustrates the mathematical
approach to deal with the question of linearity or nonlinearity of
the dependence of blood pressure on other variables. As a specific
illustration, we consider the changes that occur in the lung when
a sea-level dwelling animal is flown to a ski resort at a higher
altitude where the partial pressure of oxygen in the gas that the
animal breathes is lower. What happens is that the pulmonary
arterial blood pressure becomes higher (1–3), the arterial blood
vessel wall becomes thicker (3–5), the different layers of the
arteries thicken with different rates and different courses of time
(2–6), the mechanical properties of the blood vessel wall change
with specific historical courses (7–9), cells in the wall modify,
grow, proliferate, or move (5, 6, 10–13), intercellular matrix and
interstitial space change (14, 15), the stress and strain distribution
in the vessel wall change with time in a specific way (16), and
because of cellular and extracellular changes the zero-stress state
of the blood vessel wall changes with time (7–9). The crucial fact
is the blood pressure change, because the blood pressure imposes
load on the blood vessel wall, causing stress and strain, and the
subsequent tissue and mechanical properties remodeling are

believed to be the results of these stress and strain changes.
Therefore, the exact behavior of blood pressure when the oxygen
tension changes is of paramount importance. But blood pressure
is stochastic (see Fig. 1). To get a meaningful and precise
description of the blood pressure history is the first step.

We used a catheter that was implanted in the pulmonary
arterial trunk of a rat to get the instantaneous reading of blood
pressure continuously over many days in a simulated laboratory
chamber. The oxygen tension in the breathing gas was controlled
as a constant or varied as a step decrease in time or a step increase
in time. Typical blood pressure records are shown in Fig. 1.
Previous reports (17) have demonstrated various features of
pulmonary hypertension caused by hypoxia, but no mathematical
analysis of the blood pressure-oxygen relationship was shown.
The present paper shows a systematic use of the method pre-
sented in refs. 18 and 19 to the study of the nonlinearity of the
pulmonary blood pressure-oxygen tension relationship.

METHODS

Sixteen male Sprague–Dawley rats (Harlan, San Diego, CA),
358.9 6 4.9 g body weight, were used in the study. The protocol
and experimental methods are presented in refs. 19 and 20.
Briefly, each rat was implanted with an indwelling catheter in the
pulmonary arterial trunk when breathing a gaseous anesthetic of
isoflurane. After the implantation of the catheter, the rat could
move freely in a standard-sized cage in a quiet room that was
illuminated from 0600 to 1800 h. The catheter tubing had 0.305
mm i.d. and 0.635 mm o.d. and floated in the pulmonary arterial
trunk facing downstream. The other end of the tubing was
connected to a Statham pressure transducer (P23ID, Hato Rey,
PR). The pressure recorded therefore was the stagnation or total
pressure. The pressure was recorded continuously by a computer
at a sampling rate of 100 pointsysec over a 36-h period with a time
lag of 2 sec in every 60 sec for computer processing. The
analog-to-digital conversion was accomplished by a data trans-
lation board (DT31-EZ, Data Translation, Marlboro, MA). After
6 h in normal sea-level air with 20.9% oxygen, the rats were
exposed to a hypoxic gas containing nitrogen and 17.2% O2,
13.6% O2, or 10% O2 for 24 h followed by returning to breathing
normal sea-level air for 6 h. The changeover from one level of
oxygen tension to the next was accomplished in 1.5 6 0.5 min each
time. Hence, in the perspective of 1 day we say approximately that
the oxygen level was changed as a step function of time. Four rats
were used at each hypoxic level; four served as control without
hypoxia.

For mathematical analysis of the pressure signal, we begin by
considering the time between successive extrema as the local
time scale and define an intrinsic mode function (IMF) as a
function that satisfies two conditions: (i) in the whole data set,
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the number of extrema and the number of zero crossings must
either equal or differ at most by one; and (ii) at any point, the
mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero. Let X(t) be
an oscillatory signal shown in Fig. 1. A practical computational
way to obtain the first IMF is as follows. Let the successive
maxima of X(t) be connected by an envelope with the method
of cubic spline. Similarly the successive minima are connected
by an envelope. The mean of these envelopes is computed and
plotted and is designated m1(t). The difference,

X~t! 2 m1~t! 5 h1~t!, [1]

represents the oscillations of X(t) about m1(t). The function
h1(t) is treated as a new signal whose upper and lower
envelopes are constructed, and the new mean of the envelopes,
m11(t), is computed. The process is continued until the mean
of the envelopes becomes zero or insignificantly small. Then
the converged oscillatory function is the first intrinsic mode
and is designated as C1(t). The local mean of C1(t) is zero.

Next, the difference X(t) and C1(t) is computed and is called
the first residue, R1(t),

X~t! 2 C1~t! 5 R1~t!. [2]

R1(t) is treated as a new signal and is analyzed as before to yield
the second intrinsic mode, C2(t), whose local mean is zero. The
local time scale (the time interval between successive extrema)
of C2(t) is in general longer than that of C1. Iteration continues
until the signal X(t) is resolved into a series of IMFs in the form

X~t! 5 C1~t! 1 C2~t! 1 . . . 1 Cn~t!, [3]

in which each term Ci(t) is an oscillatory mode with zero local
mean, and the last mode, Cn(t), is nonoscillatory. The local
time scale of the last mode is the total length of the data set.

The last mode, Cn(t), in Eq. 3 represents a mean trend. The
sum Cn(t)1Cn21(t) also represents a mean trend that is
somewhat oscillatory. Generalizing, the set of functions

Mk~t! 5 Ck 1 Ck11 1 z z z 1 Cn, [4]

where 2 # k # n, represents a sequence of mean trends with
various degree of oscillations. The lower the k, the more
oscillation Mk(t) contains.

When the signal X(t) is influenced by another variable, S(t),
we are interested in the correlation of X(t) and S(t). If S(t)
represents a simple step function

S~t! 5 a 1 b1~t!, [5]

where 1(t) is a unit-step function, then both the IMFs C1(t),
C2(t), . . . Cn(t) and the mean trends Mn(t), Mn21(t), . . . Mk(t)
are functions of a and b. Traditionally, the functions Mk(t) in
response to a step S(t) as specified by Eq. 5 are called the
indicial response functions.

When the oxygen tension changes as a step decrease begin-
ning at time t0, the mean trend of the change in pulmonary
arterial blood pressure may be represented by the equation

Mk~t! 5 A 1 B~t 2 t0!e
2

t2t0

T1 1 C~1 2 e2
t2t0

T2 ! for t0 # t # t1,

[6]

where t0 is the instant of time when O2 concentration drops
suddenly, and t1 is the instant when O2 concentration increases
suddenly. A is the mean value of Mk(t) before time t0; B, C, T1,
and T2 are constants. On the other hand, for a step increase of
oxygen tension beginning at time t1, the following equation
with new constants D and T3 appears good enough:

Mk~t! 5 Mk~t1! 1 @Mk~t1! 2 D#~e2
t2t1

T3 2 1!, for t . t1. [7]

Conjugate to the mean trends defined by Eq. 4, the oscil-
lations about the mean trend Mk(t) is defined as:

Xk~t! 5 C1~t! 1 z z z 1 Ck21~t!. [8]

For oscillations about the mean, Hilbert transform allows us to
define instantaneous frequency and amplitude of the signal
(21). The Hilbert transform of X(t) is Y(t) defined by the
reciprocal relationship:

Y~t! 5
1

p
E X~t9!

t 2 t9
dt9, X~t! 5 2

1

p
E Y~t9!

t 2 t9
dt9, [9]

in which the integral is defined in the sense of Cauchy principal
value (21). Titchmarsh (21) attributes the idea to consider the
complex variable Z(t) 5 X(t) 1 iY(t) to Hilbert. Z(t) can be
written in polar coordinates as:

Z~t! 5 X~t! 1 iY~t! 5 a~t!exp@iu~t!#, [10]

a~t! 5 @X2~t! 1 Y2~t!#1y2,

u~t! 5 arc tan@Y~t!yX~t!#. [11]

FIG. 1. Four typical sets of traces and IMFs of the pulmonary arterial pressure of rats subjected to a step lowering of pO2 at 6 h and a step
rise of pO2 at 30 h. Lowest pO2: Column 1 20.9%; column 2 17.2%; column 3 13.6%; and column 4 10.0%.
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Huang et al. (18) defined the instantaneous frequency v(t) as
the derivative of u(t) with respect to time t:

v~t! 5 du~t!ydt . [12]

Then the amplitude a(t) of Eq. 10 and the frequency v(t) of Eq.
12 are functions of time t and can be plotted in contour maps
as shown in figures 2 and 3 of ref. 19. The frequency-time
distribution of the amplitude is designated as the Hilbert
amplitude spectrum, H(v,t).

The vanishing of the local means of the functions C1, . . . Cn-1

is very important, because the Hilbert spectral amplitude a(t)
and the phase angle u(t) have unique physical meaning only if
the local means are zero. The last mode, Cn, is the nonoscil-
latory residue and could contain no more than one maximum
and one minimum. In most cases, this component is a mono-
tonic function representing the trend of the data. This com-
ponent is not involved in the spectral concept and should not
be included in the instantaneous frequency computation un-
less justified independently based on physical considerations.

The Hilbert amplitude spectrum of Xk(t) may be designated
as Hk(v,t). The square of Hk(v,t) represents an oscillatory
energy density. We can define the oscillatory energy about the
mean, Ek(t), by an integration over all frequencies:

Ek~t! 5 E
v

Hk
2~v, t!dv. [13]

In practice, at any given time within a time interval of one
heartbeat, there are only two or three frequencies that con-
tribute to the energy Ek(t). Clearly, Ek(t) is another nonsta-
tionary stochastic variable that can be treated in the same
manner as outlined above. Each Ek(t) has its IMFs, mean
trends, and oscillations about the mean.

The degree of nonlinearity of the hypertension-hypoxia
relationship is revealed by the dependence of the material
constants A, B, . . ., T1, T2 . . . in Eqs. 6 and 7 as functions of
the constants a and b in the step function given in Eq. 5.

RESULTS

Fig. 1 shows the records of the pulmonary blood pressure
history (24- or 36-h traces) and their IMFs of four typical rats,
one at each level of hypoxia. The records were plotted from the

digital recording. The blood pressure was measured in units of
cm H2O (' 98.063 Nym2 at 4°C). The concentration of oxygen
was expressed in terms of % partial pressure in the breathing
gas. In normal atmosphere the concentration of oxygen was
20.9%. We tested rats at pO2 5 20.9, 17.2, 13.6, and 10% atm
(n 5 4). The pO2 value is shown by straight line segments in
Fig. 1 (Upper). The level of hypoxia is designated as 2DpO2

and is equal to 20.9 minus the test concentration. The IMFs
were computed as in refs. 18–20.

Fig. 2 shows the mean trends of the mean blood pressure
(MBP) in response to a step decrease of oxygen tension
(2DpO2) at 6 h and step increase of oxygen tension at 30 h. In
each column, Fig. 2, Upper shows the Mk(t) as defined by Eq.
4, for k 5 9, 10, z z z 18. Fig. 2, Lower shows M10 fitted by an
analytic function in the form of Eqs. 6 and 7. Because the
oxygen level was changed as step functions, the fitted analytic
functions are the indicial response functions of the MBP in
response to step change of oxygen level. The coefficients in the
analytic functions of Eq. 6 are listed in Table 1 and are used
to study the nonlinearity of the indicial functions with regard
to the level of hypoxia (see Fig. 5A).

Fig. 3 shows the oscillations about the mean trends, Xk(t), as
defined by Eq. 8, and the ‘‘energy’’ of the oscillations, Ek(t), as
defined by Eq. 13. In each column, Xk(t) (k 5 6, 8, 9, . . . 12),
Ek(t) (k 5 6, 8, 9), a large scale plot of X6(t), and a large scale
plot of E6(t) are shown.

Fig. 4 shows the analysis of the energy of oscillation E6(t)
shown in the lowest panel of Fig. 3. The results of IMFs, Mks,
and Xks of E6(t) are shown. The Mk(t)s of E6(t) are fitted by
analytic functions in the same manner as by Eqs. 6 and 7. The
coefficients in the analytic functions are listed in Table 2. The
correlation with hypoxia is shown in Fig. 5B.

Table 1 shows the coefficients of the analytic functions that
fit the mean trend of order k, [Mk(t)], of the MBP [Mk(t)MBP].
Table 2 shows the coefficients of the kth order mean of the
energy of oscillations of blood pressure about the M6MBP, i.e.,
E6(t).

Fig. 5A shows the correlation of the coefficients of the
analytical indicial functions of the MBP listed in Table 1 with
the level of hypoxia 2DpO2. It is seen that A, B, D, T1, and T2

are remarkably linear functions of 2DpO2. T3 is mildly non-
linear. But the product BT1, which represents physically the
magnitude of the peak of the indicial function above the base
line for the case of decreased oxygen tension, is nonlinear. BT1

FIG. 2. Mean trends of the MBP and their analytical expressions. Mk(t)MBP is the mean trend of order k, a function representing the MBP
history. The highest order, Mn(t), has no oscillations. The number n is data specific. Mk(t)MBP with k , n contains oscillations of various degree
(see Eq. 4). (Upper) Mk(t) for various values of k. (Lower) One example at a larger scale and the curve fitting by Eqs. 6 and 7 is illustrated. The
coefficients of the fitted curves are listed in Table 1 except for the case of rat no. 1212, which was not subjected to hypoxia. For the normal rat
1212, the mean trends of order 16 and the analytic approximation of M16(t) are shown in the lowest left panel.
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is the product of two linear factors; hence, it is a quadratic
function of hypoxia. The coefficient C, which represents
physically the asymptotic level of the blood pressure hyper-
tension, is also nonlinear, and the nonlinearity is of the simple
exponential type.

Fig. 5B shows the corresponding relations of the coefficients
of the indicial functions of the kth order mean trend of E6(t),
the energy of oscillations of the signal X6(t) (Eq. 8), oscillating
about the MBP trend M6(t). The energy (Eq. 13) is propor-
tional to the mean square of the systolic-diastolic pressure

FIG. 3. Oscillations about the mean trends and their energy history. Xk(t) is the kth-order oscillations about the kth-order trend of the MBP,
Mk(t)MBP (see Eqs. 4 and 8). The Hilbert spectrum of Xk(t) was computed. An integration of the square of the Hilbert amplitude spectrum over
all frequencies yields the energy of oscillations (EO). EO(t) corresponding to Xk(t) is denoted by Ek(t). (Upper) Xk(t) (k 5 6, 8, 9, . . . 12) and Ek(t)
(k 5 6, 8, 9). (Lower) X6(t) and E6(t) at a larger scale.

Table 1. The coefficients of the analytic functions that fitted the kth-order trend Mk(t)MBP for the MBP history

DpO2,

% atm Rat code

Order no. k

of Mk(t)MBP A B BT1 T1 C T2 D A–D T3

23.7 0607 10 29.3 7 16.1 2.3 2.5 6 25.7 3.6 0.3

12 29.7 7 16.1 2.3 2.5 3 25.8 3.9 0.3

14 29.5 6 15.6 2.6 2.0 3 25.8 3.7 0.3

16 29.5 4 12.0 3.0 2.0 3 25.3 4.2 2.0

23.7 0601 10 27.6 2 7.0 3.5 1 6 26.9 0.7 0.5

23.7 0609 10 32.0 5 20.0 4.0 1 2 29.7 2.3 0.3

23.7 0621 10 27.5 3 10.5 3.5 1 5 26.1 1.4 0.5

27.3 0501 10 31.2 13 45.5 3.5 2.0 6.5 27.2 4.0 0.4

12 31.1 13 45.5 3.5 2.0 6.5 27.3 3.8 0.4

14 31.4 13 45.5 3.5 1.5 6.5 27.7 3.7 0.5

16 30.8 10 40.0 4.0 0.5 6.5 27.6 3.2 2.0

27.3 0427 10 29.2 8 32.0 4.0 1 5 25.6 3.6 0.3

27.3 0429 10 27.9 24 55.2 2.3 4 4 23.7 4.2 0.5

27.3 0504 10 30.3 13 52.0 4.0 3 2 29.1 1.2 0.5

210.9 0718 10 29.7 23 46 2.0 13 2 26.7 3.0 0.5

12 29.8 23 46 2.0 13 2 26.5 3.3 0.5

14 29.9 20 46 2.3 12 2 26.4 3.5 0.5

16 34.1 4.5 36 8.0 1 1 24.8 9.3 2.0

210.9 0417 10 28.0 15 58.5 3.9 16 8 27.9 0.1 0.5

210.9 0422 10 27.1 9 49.5 5.5 8 6 23.8 3.3 0.5

210.9 0508 10 33.4 40 40.0 1.0 13 2 27.2 6.2 0.5

The units of A, BT1, C, D, and A–D are cm H2O. The unit of B is cm H2O per h. The units of T1, T2, and T3 are h.
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differences. It is seen that the indicial functions of the oscil-
lations about the mean behave quite similarly to those of the
MBP itself.

Now, we have completed what we set out to do. The clarity
of the results offered by the IMF method was unique. We have

found that when the oxygen tension in the breathing gas is
decreased or increased as a step function of time, both the
MBP and the Hilbert energy spectrum of the oscillations about
the mean change with time and with the level of change of the
partial pressure of O2. If the MBP or the mean energy of

Table 2. The curve-fitted coefficients of the kth trend, Mk(t) of E6(t), of the energy of the oscillations of the signal Xk(t)MBP oscillating
about the Mk(t)MBP

DpO2,

% atm Rat code

Order no. k

of Mk(t)E6 A B BT1 T1 C T2 D A–D T3

23.7 0607 9 10 1.5 5.25 3.5 4.0 6 12.5 22.5 1.5

11 10 1.5 5.25 3.5 4.0 6 12.5 22.5 1.5

13 10 1.5 5.25 3.5 4.0 6 13.5 23.5 1.5

23.7 0601 9 11 2.2 7.7 3.5 4.5 6 13.0 22.0 1.5

23.7 0609 9 12 1.0 3.5 3.5 6.0 6 16.5 23.5 1.5

23.7 0621 9 7 2.3 11.5 5.0 9.0 6 14.0 27.0 1.5

27.3 0427 9 7 1.3 5.2 4.0 1.7 6 4.5 2.5 1.5

11 7 1.3 5.2 4.0 1.7 6 4.5 2.5 1.5

13 7 1.3 5.2 4.0 1.7 6 5.3 1.7 1.5

27.3 0429 9 12 50.0 100.0 2.0 7.0 8 17.0 25.0 1.5

27.3 0501 9 13 22.0 66.0 3.0 8.0 6 18.0 25.0 1.5

27.3 0504 9 14 19.0 76.0 4.0 6.0 8 16.0 22.0 1.5

210.9 0417 9 14 35.0 122.5 3.5 15.0 4 20.0 26.0 1.5

11 14 35.0 122.5 3.5 15.0 4 20.0 26.0 1.5

13 14 30.0 105.0 3.5 15.0 4 23.0 29.0 1.5

210.9 0422 9 22 40.0 200.0 5.0 30.0 8 40.0 218.0 1.5

210.9 0508 9 17 100.0 100.0 1.0 10.0 3 20.0 23.0 1.5

210.9 0718 9 25 60.0 120.0 2.0 20.0 6 32.0 27.0 1.5

The units of A, BT1, C, D, and A–D are (cm H2O)2. The unit of B is (cm H2O)2 per h. The units of T1, T2, and T3 are h. The physical significance
of the parameters A, B, . . . T3 is given in the legend of Fig. 3.

FIG. 4. Analysis of the energy of oscillations E6(t), which is a stochastic signal with its own IMFs (shown in A), Mk(t)s (shown in B), and Xk(t)s.
In C and D, Mk(t) of E6(t) and Xk(t) of E6(t) are shown for k 5 12 and 9, respectively. They are fitted with analytic functions as in Eqs. 6 and 7.
The coefficients of the fitted curves are given in Table 2, except for the normal rat 1221, whose results are shown in C.
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oscillation is denoted by y(t), and the hypoxia (the negative
change of the oxygen partial pressure) is denoted by x(t), then
our results may be expressed by the following equation:

y~t! 5 E
0

t

F6~x, t 2 t!
dx

dt
~t!dt. [14]

When x is a positive step function, dxydt is a positive delta
function, then F1 applies and is called the positive indicial
response function. When x is a negative step function, dxydt is
a negative delta function, the F2 applies and is called the
negative indicial response function. We have determined the
functions F1(x, t-t) and F2(x, t-t). As a theoretical extension
of our experimental results, we would like to propose that Eq.
14 is valid for an arbitrary function x(t), with F1(x, t-t)
associated with an arbitrary history of increasing positive
hypoxia, whenever dxydt is positive; and with F2(x, t-t)
associated with increasing oxygen tension, when dxydt is
negative. When dxydt 5 0, either F1 or F2 persists, until it
becomes nonvanishing.

If x 5 0 all the time, i.e., if the oxygen tension in the
breathing gas was maintained constant, we found the typical
trend of the MBP was not a periodic function with a 24 h.
period, as shown in Figs. 1–4 (Left). The fluctuations about the
mean are fractal, e.g., the IMFs of 10-sec segments shown in
figures 1C and 3 A and B of ref. 19 are fairly similar to those
shown in Fig. 1 of this paper. The total number of modes are
fewer for the short segments and more for the long segments
(eight for the 10-sec segment but 16 for the 24-h segment).

CONCLUSION AND DISCUSSION

We conclude that the IMF method leads to clear and reason-
able definition of the mean trends and oscillations about the
mean trends of blood pressure. The energy of oscillations can
be similarly resolved to mean trends and oscillations about the
mean. These trends, when fitted with analytic functions, tell us
that under step hypoxia or step recovery, the outcomes of rise
and decay of the MBP and the energy of oscillations are quite
similar. Most parameters of the indicial functions vary linearly
with the degree of hypoxia, whereas a few parameters vary as
quadratic function of hypoxia.

The successive IMFs are like successive subharmonic oscil-
lations. The last IMF is nonoscillatory and is the basic mean
trend. The subharmonic feature differs fundamentally from
the Fourier analysis, which emphasizes higher harmonics.

In our laboratory, the study of blood pressure fluctuation
caused by hypoxic gas breathing was motivated by research on
the tissue remodeling of pulmonary blood vessels. We have
collected tissue specimens of rat lungs subjected to periods of
step changes of oxygen tension for various lengths of time,

measured the changed morphology, diameter, opening angle,
thicknesses of the intima-media, adventitia, and mechanical
properties, made measurements of blood flow, and calculated
the stresses (22). Like blood pressure, most of these variables
are nonstationary oscillatory functions of time, especially the
flow and the shear stress acting on the endothelium, and can
be benefited by the IMF method.
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FIG. 5. (A) The degree of nonlinearity of the effects of the oxygen tension in breathing gas on the parameters that characterize the indicial
responses of the MBP given in Eqs. 6 and 7 and Table 1 is shown. The physical meaning of the parameters are: A, the MBP (unit: cm H2O) at
time t 5 t0; B, the amplitude of the second term (unit: cm H2O per h); BT1, the peak height of the MBP indicial function above A for step DpO2

(unit: cm H2O); C, the asymptotic hypertensive MBP above A as t30 for step 2DpO2 (unit: cm H2O); D, the asymptotic MBP as t30 for step
increase of DpO2 (unit: cm H2O); t0, time of step lowering of pO2 (unit: h); t1, time of step rising of pO2 (unit: h); T1, time constant for MBP rise
(unit: h); T2, time constant for MBP asymptote as t3` (unit: h). (B) Similar to A except related to the energy of oscillations of the blood pressure
about the mean. Mk(t) is the kth-order mean of the E6(t) about the sixth order of MBP. Data are from Table 2.
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