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ABSTRACT. - Linearized instability implies nonlinear instability under
certain rather general conditions. This abstract theorem is applied to the
Euler equations governing the motion of an inviscid fluid. In particular this
theorem applies to all 2D space periodic flows without stagnation points
as well as 2D space-periodic shear flows.

Key words: Euler equations, essential spectrum.

RESUME. - L’ instabilite linearisee implique 1’ instabilite non lineaire sous
certaines conditions assez générales. Ce theoreme abstrait s’ applique aux
equations d’Euler qui gouvernent le mouvement d’un fluide non visqueux.
En particulier ce theoreme s’ applique a tous les flots periodiques dans le
plan, soit sans point de stagnation, soit des ecoulements de cisaillement.

INTRODUCTION

In this paper we prove a theorem which states that, under appropriate
conditions, linear instability of a steady flow of an ideal fluid implies
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188 S. FRIEDLANDER, W. STRAUSS AND M. VISHIK

nonlinear instability. Such a theorem is of course well known for ODE’s.
For the evolutionary Navier-Stokes equations describing a viscous flow (in
a bounded domain with classical boundary conditions) such a result was
proved by V. Yudovich (see [Y]). The case of the Euler equations addressed
in the paper is totally different for at least two reasons. First, in no sense
is the dynamics of an ideal fluid effectively finite-dimensional, as it is for
the Navier-Stokes equations. The second reason, which is related to the
first one, is that the spectral problem associated with the Euler equations is
always a degenerate non-elliptic problem with a continuous spectrum. This
also makes the question of both linear and nonlinear instability very much
dependent on the particular norm used.
The crucial idea underlying the approach in this paper is to use two Ba-

nach spaces: a "large" space Z where the spectrum of the linearized operator
is studied and a "small" space X ~ Z where a local existence theorem
for the nonlinear equation can be proved. This idea has its origin in the
recent paper of Y. Guo and W. Strauss [GS] who proved a similar theorem
for the Vlasov-Poisson system which describes collisionless plasmas.
The paper divides into two parts. The first part is an abstract theorem,

for which we give two variants (see Theorems 2.1 and 2.2). The abstract
theorem states, under certain conditions, that spectral instability for the
linearized operator L implies nonlinear instability. It is applicable to a wide
variety of nonlinear PDEs where a local existence theorem is known. The
main difficulty in applying either variant of the abstract theorem lies in
proving for a particular PDE that either

(i) etL satisfies a spectral gap condition which permits projections onto
the subspaces of growing and decaying modes (see Theorem 2.1)

(ii) etL has an eigenvalue with absolute value sufficiently close to the
spectral radius (see Theorem 2.2).
Any problem for which the unstable spectrum of the semigroup is

nonempty and purely discrete automatically satisfies both conditions. The
second part of the paper studies the specific case of the Euler equation.

In section 1 we describe the spectral gap condition. In section 2 we
prove Theorem 2.1 and we state the alternative approach of Theorem 2.2.
The proof of Theorem 2.2 is an abstraction of the proof given in Guo and
Strauss [GS] for the Vlasov-Poisson system. In section 3 we check that
the conditions of Theorem 2.1 other than the spectral gap condition are
satisfied for an arbitrary smooth Euler equilibrium and for usual functional
spaces: Z being the space of solenoidal square integrable vectors, X = Xs
is a space of solenoidal vectors with components in the Sobolev space
HS, s > § + 1.

Annnales de l’Institut Henri Poincaré - Analyse non linéaire



189NONLINEAR INSTABILITY IN AN IDEAL FLUID

In section 4 we describe how a dynamical system can be employed to
determine the growth rate due to instabilities in the continuous spectrum of
the linearised Euler equation. In Vishik [V] an explicit formula is proved
for the essential spectral radius as a Lyapunov type exponent. This result is
used to prove that certain flows, for example 2D shear flows and 2D flows
without stagnation points, have no unstable continuous spectrum. Hence
the results of sections 1-3 prove that any such flow which can be shown to
be linearly unstable must be nonlinearly unstable in Xs .

In section 5 we give an example of a linearly unstable 2D shear flow,
namely the flow with velocity profile sin rny, for which all the conditions
of Theorem 2.1 (or 2.2) are satisfied. We prove the existence of discrete
unstable spectrum following the approach used for the viscous problem
by Meshalkin and Sinai [MS] and Yudovich [Y], which utilizes continued
fractions to derive and analyze the characteristic equation. It is demonstrated
by construction that for m > 1 this characteristic equation has at least one
root corresponding to a discrete unstable eigenvalue.

1. SPECTRAL GAP CONDITION

Let us fix a pair of Banach spaces X 2014~ Z with a dense embedding.
We study the evolution equation

where L is a generator of a Co-group of operators in ,C(Z), etL leaves X
invariant for t e (~, X C D(L), N being a nonlinear operator N : X ~ Z.
We will list separately our assumptions about L and N.
(H 1) The nonlinear term N satisfies the inequality

(H2) "Gap condition". Suppose that for any t > 0 the spectrum a of
etL E ,C(Z) can be represented as follows:

where

Vol. 14, n ° 2-1997.



190 S. FRIEDLANDER, W. STRAUSS AND M. VISHIK

and

We assume moreover that

No assumptions about the sign of /1 are made. The partition of a is
illustrated by Fig. 1. We denote by P~ the Riesz projection corresponding
to the partition (1.3):

where the contours ~y~ surround (see Fig. 1). It is clear that P~ does not
depend on t > 0. We now introduce a new norm on Z. For any x E Z let

Fig. l. - Illustration of the partition of a spectrum that satisfies the spectral gap condition.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



191NONLINEAR INSTABILITY IN AN IDEAL FLUID

LEMMA l.l. - The norm ~~I . ~II is equivalent to I~ . there exists C > 0
such that

Proof - The restriction of etL to the image of PI is a strongly continuous
group and

This gives for the second term in the RHS of (1.9) for sufficiently small
e > 0

since a- C {z ~z~  for sufficiently small E > 0. This
yields

Likewise taking negative T we obtain

for sufficiently small E > 0. Hence as above

From (1.11) and (1.12) *. On the other hand,

Integrating with respect to T yields

* Here and below A  B means there exists a c > 0 such that A  cB.

Vol. 14, n° 2-1997.



192 S. FRIEDLANDER, W. STRAUSS AND M. VISHIK

2. NONLINEAR INSTABILITY:
ABSTRACT SUFFICIENT CONDITION

We assume that there is a local existence theorem for the equation (1.1).
This means that for any wo e X there exists a T > 0 and a unique

which is a solution to (1.1), e.g., in the following sense: for any cp e D(0, T)

The initial condition is assumed in the sense of strong convergence in Z:

Definition of nonlinear stability. - The trivial solution wo = 0 of
the equation (1.1) is called nonlinearly stable in X (Lyapunov stable) if,
no matter how small c > 0 is, there exists a 8 > 0 so that C b

implies a) we can choose T = oo in (2.1), and  ~ for a.e.
t E [0,oo). The trivial solution wo = 0 is called nonlinearly unstable if
it is not stable.

Remark. - By this definition we regard a "blowing up" solution (i.e., there
exists a maximal finite T > 0 in (2.1)) as a particular case of instability.

THEOREM 2.1. - Let N satisfy (H 1 ) and L satisfy the inequalities ( 1.3)-
(1.7) of the spectral gap condition (H2). Let the equation ( 1.1 ) admit a local
existence theorem in the sense described above. Then the trivial solution

wo = 0 to the equation ( 1.1 ) is nonlinearly unstable.

Proof - Suppose the contrary: wo = 0 is nonlinearly stable. Let c > 0 be
sufficiently small: it will be specified later. Let t E ~0, oc) be a global
solution to (1.1). We know that such a global solution exists  b,
where 8 is constructed from E using the definition of nonlinear stability.

Let for t > 0

Differentiating (2.3) and using (1.1) we obtain

Annales de l’Institut Henri Poincaré - Analyse non linéaire



193NONLINEAR INSTABILITY IN AN IDEAL FLUID

From definition (1.9) and (2.3)

We compute the right derivative of F(t). Letting h > 0, we have

We have, because of the strong continuity t --~ v(t) in Z,

On the other hand,

From (2.4), (2.5)-(2.8) we obtain

Vol. 14, n 2-1997.



194 S. FRIEDLANDER, W. STRAUSS AND M. VISHIK

But, because ])] . ]]) is a convex functional, the right derivative of ~~~P+~~~(t)~~~
exists for all t > 0. From (2.9) and (1.10)

for any tl > t2 > 0. Likewise for the minus component 

Therefore,

where

We have for h > 0

As above, from the strong continuity in Z of t 2014~ v(t),

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We have for the second term in the RHS of (2.14)

From (2.12)-(2.16) and (2.4)

Integrating both sides of (2.17) from t2 to tl where tl > t2 > 0 and using
(1.10) we obtain

Subtracting (2.18) from (2.10) yields

We will use inequality (2.19) to prove nonlinear instability of the trivial
solution wo = 0 of equation (1.1). Let wo E X be an arbitrary vector
satisfying

The condition (2.20) defines an open set in Z. Since X is dense in Z
there has to be a solution dvo to (2.20). Let w(t), t e [0, oo) be a global
solution to (1.1) with w(0) = 03C90 = Since  8 and because of
our assumption that the trivial solution is nonlinearly stable in X we have

Vol. 14, n° 2-1997.
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Using (1.2), (1.10) we obtain from (2.21)

Let 0  Ti  oo be defined as

Because of (2.20) and strong continuity of w : [0, oo) -~ Z we have Ti > 0.
We now assert that Ti = oo. Indeed, if Ti  oo, then

We apply (2.19) for tl = Tl, t2 = 0 and conclude using (2.23), (2.22)
and (1.6) that

because > for T E [0, Tl ) by definition of Ti.
Suppose é is small enough so that c  p), then the RHS of
(2.24) is positive while the LHS is negative (see (2.20)). This contradiction
proves that TI = oo.

Applying (2.19) again we have

provided e  p) as above. Using Gronwalls’ inequality we get

For sufficiently large t ( 2 . 25 ) contradicts our assumption that

 E. ll

Annales de l’Institut Henri Poincaré - Analyse non linéaire



197NONLINEAR INSTABILITY IN AN IDEAL FLUID

We now formulate the second abstract theorem applicable to the Euler
equation. We replace the conditions (HI), (H2) by a different set of
conditions. Consider the equation (1.1) where L and N have all the

properties stated at the beginning of §1. We assume the following.
(HI’) There exist ~ E (0,1], co > 0, p > 0 so that

(H2’) Let

Assume there exist Ai > +,~, ci > 0, c2 > 0 and wo EX, 0 so that

THEOREM 2.2. - Let the conditions (H 1’) and (H2’) be satisfied. Suppose
the equation ( 1.1 ) admits a local existence theorem. Then the trivial solution
to the equation ( 1.1 ) is nonlinearly unstable.
We omit the proof since the proof of a similar result appeared in [GS].

3. THE EULER EQUATION

Let SZ c Rn be a bounded domain with C~-smooth boundary ~03A9 so
that SZ has a structure of an n-dimensional manifold with boundary. Let
u0 be a C~-vector field on SZ which satisfies the steady Euler equations
with classical boundary conditions

where R is a C°°-smooth pressure. Here n denotes the
unit outward normal vector on the boundary Alternatively let
SZ = Tn = and

satisfies 3.1 (in this case ~SZ = 0). We take arbitrary s > 2 + 1 and denote

Vol. 14, nO 2-1997.
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In the case S2 = T n of course there is no boundary condition imposed.
We define L as the generator of the group (linearized Euler equation)

which is given by

Then eLtwo = w(t) for wo e Z where w(t) is the solution to the linearized
Euler equation,

We now define N : X ~ Z as follows

We note that for this choice of L, N equation (1.1) becomes the standard
Euler equation

PROPOSITION 3.1. - The operator N satisfies

Proof - According to the Weyl decomposition lemma,

We used the Sobolev embedding theorem on the last step (s > 2 + 1). D

All the general conditions we imposed on the pair X ~ Z are clearly
satisfied by (3.2), (3.3); the spectral gap condition, on the contrary, needs
to be checked in each case separately. The local existence theorem for the
Euler equation in Xs for s > 2 + 1 is well known (for example, see [T] ]
following earlier results in [L], [G], [W], [K]).

Remark. - To our knowledge a local existence theorem for the Euler
equation is unknown in Xs + 1.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Remark. - As follows from [BB] the results of this section are valid
also for

They are also valid in Holder classes.
We will indicate now that for appropriate choice of X, Z the condition

(2.26) is satisfied for the Euler equation.

LEMMA 3.2. - Let s > 2 + 1, X = Xs as in (3.2), Z is defined by (3.3).
Then the inequality (2.26) for the nonlinear term N(w) defined by (3.6) is
satisfied for p = oo, appropriate co > 0 and r~ = 2 - > 0.

Proof - Following the proof of Proposition 3.1 and choosing r =

)(s + § + I) > 2 + 1,

On the last step we noticed that r = (1 - q)s and used the interpolation
inequality

4. THE SPECTRUM OF THE EVOLUTION OPERATOR
FOR THE LINEARIZED EULER EQUATION

Here we analyze 03C3(etL) where L is defined as in (3.4). In general we do
not have a recipe to check whether for a given smooth flow uo the spectral
gap condition ( 1.3)-( 1.7) is satisfied. Little information is known in general.
We first define the essential spectrum (following Browder [B]). For

any Banach space B and an operator T e £(B) we use the following
classification of spectral points.
A point z E a(T) is called a point of discrete spectrum if it satisfies

the following conditions:
1. z is an isolated point in a(T).
2. z has finite multiplicity; that is, ker ( z - T) r = N is a

finite-dimensional subspace in B.

Vol. 14, n° 2-1997.
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3. The range of z - T is closed, which implies that there is a

complementary subspace Q C B such that B = N ~ Q, T Q c Q and
(z - T) is invertible on Q. On the contrary, if z does not satisfy (1.3), it
is called a point of essential spectrum. Thus

and the union in (4.1) is disjoint. We define for any T E ~C(B), following
Nussbaum [N],

We will use below the following theorem proved recently by Vishik [V].

THEOREM 4.1. - Let n == Tn = and uo be a C°° steady solution
to the Euler equation (uo, + = 0, div uo = 0, uo E (C°°(SZ))n,
po E C°°(SZ). Then for any t > 0,

where

Here(~, ~, b) satisfies the following system of ODE’s (which we call the
bicharacteristic amplitude equations)

The quantity on the RHS of (4.4) is the Lyapunov exponent of the cocycle
over the dynamical system in the projectivization of the cotangent bundle
defined by the b-equation. The dynamical system describes the evolution
of a point x and a direction ~~/ ( ~ ~ at this point. It is given by the first
two equations (4.5).

This theorem implies in particular that any z e a(etL) with |z| > e03C9t
is a point of discrete spectrum. Any accumulation point of 

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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necessarily belongs to Thus if n > then
there exists a partition

satisfying the gap condition (1.3)-(1.7). We note that for any flow 0

(see [V]) and therefore M can be chosen to be positive.
COROLLARY 4.2. - Assume the conditions of the Theorem 4.1. Suppose

there is a z E a(etL) with |z| ] > then the flow u0 is nonlinearly unstable
in X = Xs for every s > 2 + 1.

Proof - We combine either Theorem 2.1 or Theorem 2.2 with Theo-
rem 4.1. D
The Lyapunov exponent W can be effectively computed in a number of

examples [FV]. In [FV] it is proved that exponential stretching (positivity
of the Lyapunov exponent along at least one Lagrangian trajectory) implies
that c,v > 0. In the present paper we show that cv = 0 for several classes
of flows without exponential stretching. We present here two examples of
this situation.

PROPOSITION 4.3. - Let SZ = T~, uo as in the formulation of the theo-
rem 4.1. 0 for all x E T~. Then cJ = 0 and hence = 1

for t > 0.

Proof - We first point to the following general feature of the system
(4.5). We claim that = 0 implies

Indeed, differentiating and using (4.5)

We next assert that for n = 2

along any trajectory of (4.5). Indeed,

But ( a~° ~ - ( a~° )T ~, ~) = 0. Since, according to (4.6) (b, ~) = 0, it also
follows that a~° ~ - ( a~° )T ~ = c(t) b for some function c(t) .
Vol. 14, nO 2-1997.
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Hence

since div uo = 0. Thus (4.7) is proved.
Now we assert that, given the trajectory x (t), the equation for ~ can be

solved explicitly for n = 2 and ~co non vanishing as follows. Let k be a
unit vector in the directions x3. We may decompose

Then

In order to prove this identity we differentiate the right side of (4.10) and
use (4.5) to get

We claim that the last factor k x = - ( a~° )T ( 1~ x ~co ) . Indeed, for
every ~ ~ R2

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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since ~u0 ~x k = 0 and div u0 = 0 as claimed. Thus in order to check that
(4.11 ) times the right side of (4.10), we need only check
the first three terms of (4.11):

The left and right sides of (4.12) have the same scalar product with uo and
k x ~co which proves (4.12). Thus (4.10) follows.
From (4.9) and using 0 for all x E T2, we get

for some constant C. Hence from (4.10)

Changing t ~ -t we find also

Indeed if we start at point x(t) and apply the previous argument to -uo,
then the equation for ~ has the same solution just run in the reverse
direction. Thus we obtain ~~(0)~ i (1+t)~~(t)~ as claimed. Thus from (4.7)

Hence, from (4.4), cJ = 0. D
In the following proposition we consider a very simple class of 2D shear

flows that may vanish.

PROPOSITION 4.4. - Let SZ = T2, ~c(~1, ~2) _ (U(~2), 0). Then cv = 0.

Proof - From (4.7) (we were not making use of the assumption ~co 7~ 0
in deriving (4.7))

because ~ is a function linear in t. Hence cv = 0.

Vol. 14, nO 2-1997.
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5. AN EXAMPLE OF A SHEAR FLOW
THAT IS NONLINEARLY UNSTABLE

For the case of classical boundary conditions which are not addressed
in this section, the Rayleigh criterion states that any shear flow without
inflexion points is linearly stable. Of course for periodic boundary condition
there must be an inflexion point.

In this section we prove the existence of an unstable eigenvalue
z E ~disc(~), ~ > 1 for a particular shear flow. In fact we will construct
a C°° (even CW ) eigenfunction of L with an eigenvalue of positive real part.
According to proposition 4.2 and theorem 4.1 the spectral gap condition is
satisfied for such a flow. Thus according to Theorem 2.1 and the results of
§3 showing that all the other conditions (besides the spectral gap condition)
of this theorem are satisfied, this flow is nonlinearly unstable in say X ~,
s > 2 (see (3.2)).

In this section n = 2, ~co = (U(~), 0), R2 = (~, ~), T2 = 1~2~2~r7~2.
We choose the flow

For perturbations w satisfying ( 2~r ) -2 = 0, we may introduce
a stream function ~ : T 2 -~ f~, 

The equation (3.5) written for the stream function 03C8 instead of 03C9 is

We will construct a solution to (5.3) of the form

The coefficients cj decay exponentially as j -~ ~ oc, thus the eigenfunction
for L constructed using (5.2) is in ( C‘‘ (T 2 ) ) 2 . For fixed k our eigenvalue
problem is described by the Rayleigh equation which follows from (5.3),

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Here k E Z is fixed and we are looking for a solution X : T1 -~ ~ with
Re a > 0.

PROPOSITION 5.1. - Let m > 1 and m2 ~ ml + m22 where m1, m2 E 
m2 -I 0. Then there exists a real eigenvalue a of the operator L

with a > 0 with a smooth (analytic) eigenfunction. Therefore this flow is
nonlinearly unstable in XS with s > 2.

We follow the approach of [MS] for the Navier-Stokes equations who
investigated stability of viscous shear flow with a profile like (5.1 ) using
the techniques of continued fractions. Their elegant paper was followed by
[Yu] and recently by [Li]. To our knowledge no previous proof of instability
for the inviscid flow (5.1) appears in the literature. In 1935 Tollmien [To]
gave a heuristic demonstration of instability of an inviscid shear flow
U(y) = sin y with the boundary condition w2 = 0 in a sufficiently wide
channel. This is a classical result widely quoted in engineering literature
although no mathematical proof has been given to our knowledge.

Proof - The recurrence relation equivalent to (5.5) is

We assume 0 since otherwise (5.5) does not have nontrivial solutions
with Re a > 0. We may moreover assume k > 0 since the equation (5.5)
remains valid under X. We assumed
for simplicity that the diophantine equation

does not have solutions with m1m2 ~ 0. We will construct below a
solution with k  rn. We define

Note that denominator in (5.7) is not vanishing. Let

Then (5.6)-(5.8) imply

Vol. 14, n° 2-1997.
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We shall construct a sequence d~ ~ 0, j E mZ. Define

It follows from (5.9), (5.10) that

We note that

We define now dj = 0 for j ~ 0 (mod m) and define for p > 1, p E Z,
a real and positive

Obviously the continued fraction in the RHS of (5.14) is convergent.
Indeed the partial denominators grow exponentially because the elements
are positive and bounded away from zero. Likewise, from (5.9), (5.11 )

We define for p > 0, p E Z, cr real and positive

Again, convergence of the continued fraction in the RHS of (5.15) is evident.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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It is easy to check that as p --~ 00

We see that

From (5.9)-(5.11 ) we obtain the characteristic equation

Since = (see (5.7)), (5.19) is equivalent to

Suppose there exists a real and positive such that (5.20) is satisfied. Choose

Then this sequence satisfies (5.9) by construction and 0

exponentially because of (5.16)-(5.18).
We are now going to study the characteristic equation (5.20). The RHS

F(a) defined for a E (0, oo) is a continuous function because the sequence
of partial fractions is uniformly convergent on ~~, oo j for any e > 0 (with
exponential estimate). Because the elements are positive, we have

Figure 2 shows the graphs of and f(a) together with the graph of
A;~

- 2 _ ~ 
Here 

_

Vol. 14, n ° 2-1997.
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As is obvious from Figure 2 equation (5.20) is guaranteed to have a positive
solution provided that g’ (0) > - a°2~~ . This condition is

which is guaranteed for, say,

Fig. 2. - Graphs of curves showing the existence
of a solution to the characteristic equation (5.20).
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